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CHAPTER 2. SPECIFYING THE STRUCTURE OF 
MULTIVARIATE GENERAL LINEAR MODELS

The transition from the scalar version of the univariate linear model to the 
univariate model expressed in matrix algebraic terms is given in Chapter 1 
(see Equations 1.2 and 1.3). The univariate linear model is readily general-
ized to the multivariate model with p > 1 response variables by augmenting 
the orders of Y B E, , and  to accommodate the additional columns of 
dependent variables, the added columns of regression coefficients associ-
ated with each dependent variable, and the additional columns of the dis-
turbances associated with each Y variable in the matrix of errors. To specify 
the multivariate model, we write

Y X B En p n q q p n p×( ) × +( ) + ×( ) ×( )= +1 1 . [2.1]

In this chapter, we will define the elements of these matrices and discuss 
both the statistical and the substantive ideas necessary to specify the multi-
variate model that must accommodate multiple columns of Y, B and E. The 
order of these three matrices is one key feature of the specification that 
differentiates multivariate from univariate models. Conversely, the design 
matrix X, in all of its possible variations, will be identical to the comparable 
univariate design matrix—we need only develop the mechanism for coping 
with the multiplicities of dependent variables, parameter estimates, and 
disturbances that characterize multivariate linear models.

Specifying the multivariate linear model involves at least two discrete, 
but related, activities:

 • Choosing reliable and valid criterion and predictor variables based on 
theoretical explanations of their hypothesized relationships, including 
their direction, magnitude, and conceptual mechanism (see Jaccard  
& Jacoby, 2010, for a discussion of building conceptual theoretical 
models), and

 • Specifying the mathematical model that is consistent with these theo-
retical arguments.

In this chapter, we introduce methods for specifying the mathematical 
form of the multivariate model, discuss several different specifications of 
the design matrix X, and introduce the numerical examples that will be 
used to illustrate these developments in subsequent chapters.
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The Mathematical Specification of the Model

The mathematical specification of the multivariate linear model begins with 
the definitions of the four matrices of Equation 2.1 that denote a truly multi-
variate problem if the number of criterion variables (p) is greater than 1. 
Multivariate models are written in matrix terms, and following the usual con-
ventions1 we denote the order of the matrix by designating its dimensions by 
reference to the number of rows and columns in the matrix. The intersection 
of any row and any column defines a specific element of the matrix; Y23

, for 
example, denotes the observation of the second row and the third column  
of Y. Letting n denote the number of observations and p denote the number 
of dependent variables in a model, then the (n × p) dependent variable matrix 
Y(n × p) denotes a matrix of n rows and p columns. An expanded version of  
all such Y matrices will therefore have a similar general form in which the 
order of Y and all of its elements can be readily identified,

Y( )n p

p

p

n n np

Y Y Y

Y Y Y

Y Y Y

× =





















11 12 1

12 22 2

1 2

�
�

� � � �
�

.

Similarly, the explanatory variables of the model are contained in the 
design matrix, X n q× +( )1  in which the order of the matrix is defined by the n 
rows and the q +1 column vectors consisting of the q predictor measures 
( )X X X q1 2, ,  and the unit column vector X 0 ≡ 1 as previously defined 
for estimating the model intercept. The design matrix will have a general 
form of
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The matrix of model parameters B of Equation 2.1 differs substantially 
from the univariate model of Equation 1.3. Multiple dependent variables 
are accompanied by multiple columns of B to accommodate all of the Y-X 
relationships. The order of B is governed by the q +1 columns of X and the  

1We assume some familiarity with matrix terminology and matrix algebraic proce-
dures. Detailed coverage is given in Namboodiri (1984) and Schott (1997); succinct 
coverage relevant to regression analysis is given in Draper and Smith (1998, Chap. 4).
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p columns of Y; B q p+ ×( )1
 defines the matrix of parameters in the population 

model that must be estimated as part of the analysis. The rows of B corre-
spond to the predictor variables X X X X q0 1 2, , ,  and the columns repre-
sent the response variables Y Y Yp1 2, , ,
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In Equation 2.1, the matrix product X Bn q q p× +( ) + ×( )1 1
 conforms with 

respect to multiplication, and the order of the product XB n p×( )  is determined 
by the number of rows of X and the number of columns of B. Following the 
row-by-column rules for matrix multiplication results in a product matrix that 
contains the weighted linear combinations of XB  for each of the variables in 
Y across all of the n observations:
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The additive equality expressed in Equation 2.1 is satisfied since the order 
of XB n p×( ) conforms to the order of E n p×( ), which in turn conforms to the 
order of Y( )n p× . Using these results, the expanded matrix version of the full 
multivariate linear model for the variables Y, X, B, and E would appear as
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All the multivariate models to be covered in this volume will be specified 
by mathematical models consistent with Equation 2.1. The number of units 
of observation (cases, participants) and the number of the variables in the 
response matrix Y( )n p×  and design matrix X n q× +( )1

determine the initial 
specification of the model. The remaining aspects of the model specifica-
tion rest on theoretical and conceptual arguments and will also depend on 
design considerations (e.g., multivariate multiple regression [MMR] or 
multivariate analysis of variance [MANOVA]) that will dictate the nature 
of the vectors of the design matrix X n q× +( )1 .

Defining the Substantive Roles of Criterion and  
Predictor Variables

The specification of the model in multivariate analysis is partly nonmathemat-
ical, and it is best that there be clear reasons and careful definitions for inclu-
sion of both dependent and explanatory variables. Theoretical considerations 
are paramount in this endeavor. Since theoretical arguments are project spe-
cific, we attempt to lay out briefly the conceptual arguments that underlie each 
of the examples introduced at the end of this chapter. More extensive advice 
on this important aspect of model specification is given in Jaccard and Jacoby 
(2010). Beyond the theoretical and conceptual arguments that dictate the 
choice of response and explanatory variables, there are four general consid-
erations and decision points that apply across all projects that require attention 
prior to data collection and analysis. They include the following:

 • Measurement level of the Y variables
 • Measurement of the X-variables; either continuously distributed, cat-

egorical, or both
 • Experimental status of the X-variables; either manipulated or observed
 • Purpose of the X-variables; theoretical substance or control of  

confounding

The first consideration is the nature of the dependent variables. In this vol-
ume, we deal exclusively with continuously distributed dependent variables.2 
Most traditional multivariate analyses have been developed around interval 
data that can be assumed to be multivariate normal in distribution. Although 
multivariate models that deal with limited dependent variables such as rank 

2We refer here to truly continuous variables (an infinite number of possible gradations 
on the real number line) and discrete variables (a quantitative scale whose integer 
values are ordinal but on which the gradations between integers is suspect; i.e., 2.5 
children). In this volume, we follow the looser tradition of treating both variables as 
continuous. The difference will be evident by the context of the examples.
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transformation analysis (Puri & Sen, 1971), multivariate logistic regression 
(Glonek & McCullagh, 1995), and cross-classified frequency counts (Zwick 
& Cramer, 1986) have been proposed, we do not cover them here.

On the predictor variable side of the model several features of the 
X-variables must be considered. These decisions determine how the design 
matrix will be formulated and how the data are (or have been) collected, 
how inferences are made from the analysis, and what inferences are justi-
fied. The first of these decision points is to decide if the X-variable is con-
tinuously distributed, discrete, or categorical in nature.3 A model containing 
only continuous or discrete explanatory variables is typically classified as 
a traditional regression model while those models containing only categor-
ical predictor variables are often classified as analysis of variance models. 
Models with both continuous and categorical predictors in the design 
matrix have no special designation but are equally possible in the linear 
model analysis. We present example data sets below that contain continu-
ous explanatory variables, categorical variables (requiring one or more 
vectors), and combinations of both types of variables.

The second decision that must be considered about the predictor vari-
ables is their intended role in inference: Are they theoretically important 
and require tests of hypotheses, or are they to be treated as covariates for 
purposes of controlling extraneous variance and potential confounding? A 
variable’s role will usually be clear from a carefully argued theoretical 
context and is part of the process of specifying the model. The same is true 
for control variables—their inclusion is based on whether they serve one of 
two purposes—either they are (1) included because they are known to be 
substantially correlated with the dependent variables, but not to the theo-
retically important predictors in the model, such variables included in the 
design matrix X can reduce error variance, or (2) they are substantially  
correlated with both an explanatory variable and one or more response 
variables and therefore are serious candidates for common-cause, third-
variable confounders (Rothman, Greenland, & Lash, 2008). In both 
instances, their inclusion is intended to be one of control and may or may 
not require a hypothesis test on the variable.

3It is necessary to keep in mind the distinction between a variable (say X) and a 
vector (say x1). Continuously distributed variables require only a single vector to 
represent their variability. Categorical variables, such as group membership in mul-
tiple groups, require multiple vectors to represent their variability. The variable of 
“treatment” that compares two different treatments with a single control contains 
three groups and requires two vectors to fully represent its variability. Discussions 
of categorical or qualitative variable coding schemes in linear model analysis can 
be found in Cohen et al. (2003, Chap. 8).
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A final judgment that must be made in the selection of predictor varia-
bles in a linear model is related to the experimental versus observational 
origin of the X-variables in the model, namely, what is the underlying source 
of the variability in the predictor? Is the variability of the explanatory vari-
able under the control of the experimenter or does its variability derive from 
unknown sources? The first of these sources of variability characterizes the 
manipulated experiment and the second describes ex post facto observa-
tional studies. While it matters little to the mathematical specification of the 
model, this characteristic of the specification plays an important role in the 
permissible conclusions that can be drawn from the analysis; the permissible 
strength of causal conclusions that can be attributed to the results of an 
analysis often hinge on this distinction (Morgan & Winship, 2007).

The Example Data and Specification of the Models

Throughout the remainder of this volume, we use several numerical examples 
to illustrate a variety of multivariate linear model analyses. All the examples 
use continuously distributed interval level–dependent variables. The first and 
second data sets are used in Chapter 3 to introduce the estimation of the 
parameters in the multivariate general linear model. They will also be used as 
running examples to illustrate results on multivariate measures of strength of 
association (Chapter 4), multivariate test statistics (Chapter 4), and the mul-
tivariate general linear hypothesis testing procedure (Chapter 5). The third 
data set is used to illustrate MANOVA models, including a single-classification 
MANOVA and a 3 × 2 factorial MANOVA with two main effects and their 
interaction (Chapter 6). The first and second data sets are also used to illus-
trate the recovery of two of the four multivariate test statistics from only 
univariate quantities (Chapter 4) and to illustrate the details of canonical cor-
relation analysis (CCA) that subsumes all the models dealt with in this vol-
ume (Chapter 7). The examples are drawn from several disciplines, including 
personnel psychology, anthropology, environmental epidemiology, and neu-
ropsychology. To set the stage of model specification, the conceptual basis of 
each example data set is described below along with summary descriptive 
statistics. The specification of the analytic models appropriate for each of 
the examples will be a central part of subsequent chapters. The models to be 
specified will include MMR, MANOVA, and CCA.

Example 1: Personality and Success in the Job Application  
Process (MMR, CCA)

Caldwell and Burger (1998) conducted an observational study of 99 college 
students nearing the completion of their studies and who were anticipating 
entering the employment market. Individual differences on personality 
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dimensions are thought to be among the many factors that are important in 
achieving a successful outcome to the job application and interviewing 
process. Three dimensions of personality drawn from the Five-Factor 
model of personality (Costa & McRae, 2000)4 are used here to illustrate the 
estimation of the parameters and tests of hypotheses of an MMR model 
with four response variables: background preparation for the interviews, 
social preparation for the interviews, the number of follow- 
up interviews achieved, and the number of offers of employment received. 
For three predictor variables of Neuroticism, Extraversion, and 
Conscientiousness, their defining characteristics (facets) provide the con-
ceptual bases for the predictions. The personality variable of Neuroticism 
is characterized by anxiety, hostility, depression, self-consciousness, impul-
siveness, and vulnerability. It is easy to see how these characteristics might 
impede both preparation for, and success in, the job-seeking process. On 
the other hand, Extraversion is characterized by warmth, gregariousness, 
assertiveness, activity, excitement seeking, and positive emotions—all of 
which would predict success in the interpersonal aspects of seeking 
employment. The personality dimension of Conscientiousness is defined  
by features of competence, order, dutifulness, achievement striving, self-
discipline, and deliberation—facets that may well predict variation in the 
careful preparation for the job interview process that should also be related 
to success. It can be hypothesized that a significant proportion of the joint 
variation in the successful outcome variables would be predictable from 
these personality variables. Caldwell and Burger (1998) give further details 
of the underlying rationale. The means, standard deviations, and correla-
tions of the Personality–Job Application data are presented in Table 2.1.

4Caldwell and Burger (1998) present means, standard deviations, and correlations 
for all five of the Five-Factor personality dimensions. Neuroticism, Extraversion, 
and Conscientiousness were selected for predictor variables due to their theoretical 
relevance to the dependent variables. For this example, we generated a set of n = 99 
fictitious data cases based on the descriptive statistics of Caldwell and Burger 
(1998, p. 128, Table 2), which exactly reproduced the mean, variance, and correla-
tional structure reported in their manuscript. These fictitious data were used for the 
illustrative analyses presented here. The individual cases, per se, are not absolutely 
necessary for the analyses presented in this text. The multivariate analyses reported 
in this volume can be computed from intermediate statistics (e.g., means, variances, 
and correlations) by matrix language programs (e.g., SAS IML, SPSS MATRIX, 
STATA MATRIX) or by some available software packages. Harris (2001, pp. 305–
307) gives instructions for multivariate analysis based on means, standard devia-
tions, and correlations using the SPSS MANOVA procedure.
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Example 2: PCB Exposure, Age, Gender, Cardiovascular  
Disease Risk Factors, and Cognitive Functioning (MMR, CCA)

In certain areas of the United States, there is concern over the possible 
adverse effects of industrially produced environmental contaminants (e.g., 
polychlorinated biphenyls [PCBs]) on public health—both physical and 
psychological (Carpenter, 2006). Exposure to PCBs has been hypothesized 
to adversely affect measures of two related, but conceptually distinct, sets 
of outcome variables: two major risk factors of cardiovascular disease 
(physical) and three measures of cognitive functioning (neuropsychologi-
cal). Because the liver is heavily involved in the body’s attempt to remove 
toxic substances from the bloodstream (PCBs in this example), it has been 
hypothesized that overactivation of the liver concomitantly leads to an 
overproduction of cholesterol and triglycerides, which are two known 
major risk factors for cardiovascular disease (Goncharov et al., 2008). 
There is also speculation that exposure to PCBs may also have adverse 
effects on cognitive functioning—such as memory and cognitive flexibility 
(Lin, Guo, Tsai, Yang, & Guo, 2008). The data of Example 2 consist of six 
response variables: cholesterol, triglycerides, immediate memory, delayed 
memory, and two measures of cognitive flexibility (Stroop Color and 
Stroop Word tests), which are hypothesized to be adversely affected by 
exposure to PCBs. The multivariate linear model fitted to these data also 
includes age and gender. It is well known that liver function, memory, and 
cognitive flexibility are declining functions of age; assessing the effect of 
age on these dependent variables can provide control of inevitable con-
founding—since body burden of PCBs is a function of time, age is an obvi-
ous confound for any effect of exposure (e.g., rPCBs.age = .73). We include 
gender as an explanatory variable in these models insofar as gender is 
known to be modestly related to both physical and psychological classes of 
dependent variable. The descriptive statistics for these example data, based 
on n = 262 cases, is shown in Table 2.2 and will be used to illustrate both 
MMR analysis and the related CCA.

Example 3: Stature Differences of Indigenous North American  
Populations (MANOVA)

Auerbach and Ruff (2010) present data on measurements of stature, relative 
lower limb length, and crural index5 of skeletal pre-European indigenous 

5A crural index is the ratio of the length of the tibia to the length of the femur bone. 
Since the data used in this example are summary statistics, the data are in the aggre-
gate and will show less within group variability than would data based on the 
original 967 observations. There are both pros and cons (Lubinski & Humphreys, 
1996; Robinson, 1950) surrounding the use of aggregate data; such data are more 
than adequate for our purposes here.
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populations of North America. Stature information is important in the study 
of the origin and distribution of pre-European indigenous populations in 
North America. From 75 different sites in North America, the authors 
evaluated the three variables on the skeletal remains of 535 males and 432 
females. The means of the three dependent variables for males and females 
at each of the 75 sites provide a total sample of n = 145 cases as the data 
used in this example (see Auerbach & Ruff, 2010, Tables 1 and 2). Auerbach 
and Ruff have clustered these archeological sites into 11 regions based on 
natural (geographic) and cultural designations, and further clustered the 
sites into four geographically distinct groupings: (1) High Latitude Arctic 
Group, (2) Temperate: West Group, (3) Great Plains Group, and (4) Temperate: 
East Group. This clustering leads naturally to the specification of a four-
group, one-way MANOVA model with three dependent variables.6 There 
are at least two ways to describe the research question, formulate hypoth-
eses, and specify the model for MANOVA designs. One common approach 
is to ask whether the vectors of the three dependent variable means differ 
simultaneously across the four clusters of sites. Specifying this hypothesis 
in vector notation with columns defined by g = 4 groups, and rows defined 
p = 3 response variables, the null hypothesis of equality of the group mean 
vectors is written as

H0 1 2 3 4:� � � �= = =

or in expanded form as

 
H :0

11

21

31

12

22

32

13

23

33

µ

µ

µ

µ

µ

µ

µ

µ

µ

















=
















=
















=
















µ

µ

µ

14

24

24

.

 
An alternate way of characterizing the one-way MANOVA is to ask if 

there is a significant amount of joint variation in the three dependent varia-
bles that can be accounted for by group membership. The linear model of 
Equation 2.1 can be specified to address this question by adopting one of 
several methods for coding the design matrix X to identify levels of a 
MANOVA factor contained in a categorical (qualitative) variable of group 
membership. The coding method can be chosen such that the parameter esti-
mates identify differences between the means as reflected in the hypothesis 
above. This method of solving MANOVA problems is instructive in that the 

6Auerbach and Ruff combine the temperate groups into a single cluster in their 
manuscript. We preserve the four-group clustering of regions for this one-way 
MANOVA example for pedagogical reasons.
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Source: From Auerbach & Ruff (2010). “Stature Estimation Formulae for Indigenous North 
American Populations”, Table 2, pp. 195–197.

Note: Means, standard deviations, and correlations are based on the full sample of n = 145.

Table 2.4   Correlations Among the Three Response Variables for the 
Stature Estimation Data

 
Mean Stature

Mean Lower 
Limb Length

Mean Crural 
Index

Mean stature    1.000
Mean lower limb length     .570   1.000
Mean crural index     .354    .265   1.000
Mean 158.39 48.81 84.27
SD   7.12  0.80  1.74

Source: From Auerbach & Ruff (2010). “Stature Estimation Formulae for Indigenous North 
American Populations”, Table 1, pp. 193–194.

Note: n1 = 26, n2 = 54, n3 = 14, n4 = 51.

Table 2.3   Means and (Standard Deviations) for the Four Group,  
One-Way MANOVA on Stature

 
Mean Stature

Mean Lower 
Limb Length

Mean Crural 
Index

Group 1
High Latitude Arctic

153.07
  (4.90)

48.32
 (0.73)

81.61
 (1.37)

Group 2
Temperate: West

157.20
  (7.43)

48.64
 (0.82)

84.87
 (1.28)

Group 3
Great Plains Group

161.20
  (6.91)

49.21
 (0.60)

85.64
 (1.27)

Group 4
Temperate: East

161.60
  (5.84)

49.12
 (0.71)

84.59
 (0.96)

output from the linear model most frequently associated with regression 
analysis (e.g., R2 ) is integrated with the information most frequently associ-
ated with the classical solution to the analysis of variance (i.e., mean differ-
ences). We will undertake a more careful discussion of these equivalences in 
Chapter 6 and illustrate different methods of coding the design matrix to 
capture group differences. The means and standard deviations of the three 
stature response variables classified by the four site clusters of the Auerbach 
and Ruff data are displayed in Table 2.3. The correlations among the response 
variables and the grand means are given in Table 2.4.
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Table 2.6  Cell Sample Sizes for the 2 × 3 Factorial MANOVA

b1 b2 b3

a1 n11 = 13 n11 = 55 n11 = 7

a2 n11 = 13 n11 = 50 n11 = 7

Example 4: A 2 × 3 Factorial MANOVA—Sex by  
Geographic Group of the Stature Data

In addition to the regional identification of each case in the 75 North 
American sites, Auerbach and Ruff (2010) also catalogued their data as 
male or female according to the sex of the skeletal remains. Thus, the 70 
sites with complete data (five sites had no females) can be partitioned into 
male (n = 75) and female (n = 70) groups. When the factor for sex is 
crossed with a factor of geographic organization—11 regions sorted into 
three clusters—the data can be organized into a 2 × 3 factorial analysis of 
variance design. In a factorial design with multiple dependent variables 
(i.e., stature, lower limb length, and crural index), the primary focus of the 
MANOVA is on the three sources of influence in the model—the main 
effects of sex and geographic region and the interaction between the two. 
While differences in the dependent variables across geographic groups 
(Factor A) as well as mean differences between genders (Factor B) can be 
important, the interpretation of the analysis may depend on the A × B inter-
action. Assessing if vectors of mean differences between levels of one fac-
tor are constant across the levels of the second factor is usually a major goal 
of factorial MANOVA. This 2 × 3 classification of the Auerbach and Ruff 
data provide the basis of the factorial MANOVA illustration presented in 
Chapter 6. As was the case with the one-way MANOVA, the design can be 
characterized in the classical way as tests of differences between mean vec-
tors or as a linear model with predictor vectors designed to contrast vectors 
of group mean differences. The means and standard deviations of the six 
cells of this 2 (Sex) × 3 (Geographic Cluster) MANOVA design are dis-
played in Tables 2.5 and 2.6.




