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Fundamentals of Hierarchical Linear  
and Multilevel Modeling

G. David Garson

INTRODUCTION

Hierarchical linear models and multilevel models are variant terms for what are 
broadly called linear mixed models (LMM). These models handle data where 
observations are not independent, correctly modeling correlated error. 
Uncorrelated error is an important but often violated assumption of statistical 
procedures in the general linear model family, which includes analysis of 
variance, correlation, regression, and factor analysis. Violations occur when error 
terms are not independent but instead cluster by one or more grouping variables. 
For instance, predicted student test scores and errors in predicting them may 
cluster by classroom, school, and municipality. When clustering occurs due to a 
grouping factor (this is the rule, not the exception), then the standard errors 
computed for prediction parameters will be wrong (ex., wrong b coefficients in 
regression). Moreover, as is shown in the application in Chapter 6 in this 
volume, effects of predictor variables may be misinterpreted, not only in 
magnitude but even in direction.

Linear mixed modeling, including hierarchical linear modeling, can lead to 
substantially different conclusions compared to conventional regression analysis. 
Raudenbush and Bryk (2002), citing their 1988 research on the increase over time 
of math scores among students in Grades 1 through 3, wrote that with hierarchical 
linear modeling,

The results were startling—83% of the variance in growth rates was between schools. 
In contrast, only about 14% of the variance in initial status was between schools, 
which is consistent with results typically encountered in cross-sectional studies of 
school effects. This analysis identified substantial differences among schools 
that conventional models would not have detected because such analyses do not 
allow for the partitioning of learning-rate variance into within- and between-school 
components. (pp. 9–10)
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Linear mixed models are a generalization of general linear models to better 
support analysis of a continuous dependent variable for the following:

 1. Random effects: For when the set of values of a categorical predictor variable are seen 
not as the complete set but rather as a random sample of all values (ex., when the 
variable “product” has values representing only 30 of a possible 142 brands). Random 
effects modeling allows the researcher to make inferences over a wider population 
than is possible with regression or other general linear model (GLM) methods.

 2. Hierarchical effects: For when predictor variables are measured at more than one 
level (ex., reading achievement scores at the student level and teacher–student 
ratios at the school level; or sentencing lengths at the offender level, gender of 
judges at the court level, and budgets of judicial districts at the district level). The 
researcher can assess the effects of higher levels on the intercepts and coefficients 
at the lowest level (ex., assess judge-level effects on predictions of sentencing 
length at the offender level).

 3. Repeated measures: For when observations are correlated rather than independent 
(ex., before–after studies, time series data, matched-pairs designs). In repeated 
measures, the lowest level is the observation level (ex., student test scores on multiple 
occasions), grouped by observation unit (ex., students) such that each unit (student) 
has multiple data rows, one for each observation occasion.

The versatility of linear mixed modeling has led to a variety of terms for the 
models it makes possible. Different disciplines favor one or another label, and 
different research targets influence the selection of terminology as well. These 
terms, many of which are discussed later in this chapter, include random intercept 
modeling, random coefficients modeling, random coefficients regression, random 
effects modeling, hierarchical linear modeling, multilevel modeling, linear mixed 
modeling, growth modeling, and longitudinal modeling. Linear mixed models in 
some disciplines are called “random effects” or “mixed effects” models. In 
economics, the term “random coefficient regression models” is used. In sociology, 
“multilevel modeling” is common, alluding to the fact that regression intercepts 
and slopes at the individual level may be treated as random effects of a higher 
(ex., organizational) level. And in statistics, the term “covariance components 
models” is often used, alluding to the fact that in linear mixed models one may 
decompose the covariance into components attributable to within-groups versus 
between-groups effects. In spite of many different labels, the commonality is that 
all adjust observation-level predictions based on the clustering of measures at 
some higher level or by some grouping variable.

The “linear” in linear mixed modeling has a meaning similar to that in regres-
sion: There is an assumption that the predictor terms on the right-hand side of the 
estimation equation are linearly related to the target term on the left-hand side. Of 
course, nonlinear terms such as power or log functions may be added to the predic-
tor side (ex., time and time-squared in longitudinal studies). Also, the target variable 
may be transformed in a nonlinear way (ex., logit link functions). Linear mixed 
model (LMM) procedures that do the latter are “generalized” linear mixed models. 
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Just as regression and GLM procedures can be extended to “generalized general 
linear models” (GZLM), multilevel and other LMM procedures can be extended to 
“generalized linear mixed models” (GLMM), discussed further below.

Linear mixed models for multilevel analysis address hierarchical data, such as 
when employee data are at level 1, agency data are at level 2, and department data 
are at level 3. Hierarchical data usually call for LMM implementation. While most 
multilevel modeling is univariate (one dependent variable), multivariate multilevel 
modeling for two or more dependent variables is available also. Likewise, models 
for cross-classified data exist for data that are not strictly hierarchical (ex., as when 
schools are a lower level and neighborhoods are a higher level, but schools may 
serve more than one neighborhood).

The researcher undertaking causal modeling using linear mixed modeling 
should be guided by multilevel theory. That is, hierarchical linear modeling pos-
tulates that there are cross-level causal effects. Just as regression models postulate 
direct effects of independent variables at level 1 on the dependent variable at level 
1, so too, multilevel models specify cross-level interaction effects between vari-
ables located at different levels. In doing multilevel modeling, the researcher 
postulates the existence of mediating mechanisms that cause variables at one 
level to influence variables at another level (ex., school-level funding may posi-
tively affect individual-level student performance by way of recruiting superior 
teachers, made possible by superior financial incentives).

Multilevel modeling tests multilevel theories statistically, simultaneously 
modeling variables at different levels without necessary recourse to aggrega-
tion or disaggregation.1 Aggregation and disaggregation as used in regression 
models run the risk of ecological fallacy: What is true at one level need not be 
true at another level. For instance, aggregated state-level data on race and lit-
eracy greatly overestimate the correlation of African American ethnicity with 
illiteracy because states with many African Americans tend to have higher 
illiteracy for all races. Individual-level data shows a low correlation of race 
and illiteracy.

WHY USE LINEAR MIXED/HIERARCHICAL LINEAR/ 
MULTILEVEL MODELING?

Why not just stick with tried-and-true regression models for analysis of data? 
The central reason, noted above, is that linear mixed models handle random 
effects, including the effects of grouping of observations under higher entities 
(ex., grouping of employees by agency, students by school, etc.). Clustering of 
observations within groups leads to correlated error terms, biased estimates of 
parameter (ex., regression coefficient) standard errors, and possible substantive 
mistakes when interpreting the importance of one or another predictor variable. 
Whenever data are sampled, the sampling unit as a grouping variable may well 
be a random effect. In a study of the federal bureaucracy, for instance, “agency” 
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might be the sampling unit and error terms may cluster by agency, violating 
ordinary least squares (OLs) assumptions.

Unlike OLs regression, linear mixed models take into account the fact that 
over many samples, different b coefficients for effects may be computed, one for 
each group. Conceptually, mixed models treat b coefficients as random effects 
drawn from a normal distribution of possible b’s, whereas OLs regression treats 
the b parameters as if they were fixed constants (albeit within a confidence inter-
val). Treating “agency” as a random rather than fixed factor will alter and make 
more accurate the ensuing parameter estimates. Put another way, the misestima-
tion of standard errors in OLs regression inflates Type 1 error (thinking there is 
relationship when there is not: false positives), whereas mixed models handle 
this potential problem. In addition, LMM can handle a random sampling vari-
able like “agencies,” even when there are too many agencies to make into 
dummy variables in OLs regression and still expect reliable coefficients. 

In summary, OLs regression and GLM assume error terms are independent 
and have equal error variances, whereas when data are nested or cross-classified 
by groups, individual-level observations from the same upper-level group will 
not be independent but rather will be more similar due to such factors as shared 
group history and group selection processes. While random effects associated 
with upper-level random factors do not affect lower-level population means, they 
do affect the covariance structure of the data. Indeed, adjusting for this is a central 
point of LMM models and is why linear mixed models are used instead of regres-
sion and GLM, which assume independence.

It is true that analysis of variance and other GLM methods have been adapted 
to handle non-independent models also, but these adaptations are problematic. 
In estimating model parameters when there are random effects, it is necessary to 
adjust for the covariance structure of the data. The adjustment made by GLM 
assumes uncorrelated error (that is, it assumes data independence). Lack of data 
independence is present in multilevel data when the sampling unit (ex., cities, 
schools, agencies) displays intraclass correlation. LMM does not assume data 
independence. In addition to handling correlated error, LMM also has the advan-
tage of using maximum likelihood (ML) and restricted maximum likelihood 
(REML) estimation. GLM produces optimum estimates only for balanced 
designs (where the groups formed by the factors are equal in size), whereas ML 
and REML yield asymptotically efficient estimators even for unbalanced 
designs. ML and REML estimates are normal for large samples (they display 
asymptotic normality), allowing significance testing of model covariance 
parameters, something difficult to do in GLM. In contrast, GLM estimates 
parameters as if they were fixed, calculating variance components based on 
expected mean squares.

Logistic regression also does not provide for random effects variables, nor (even 
in the multinomial version) does it support near-continuous dependents (ex., test 
scores) with a large number of values. Binning such variables into categories, as 
is sometimes done, loses information and attenuates correlation. However, logistic 
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multilevel models are possible using generalized linear mixed modeling proce-
dures, available in sPss, sAs, and other statistical packages.

TYPES OF LINEAR MIXED MODELS

Linear mixed modeling supports a very wide variety of models, too extensive to 
enumerate here. As mentioned above, different disciplines and authors have 
employed differing labels for specific types of models, adding to the seeming 
complexity of the subject. In this section, the most common types of models are 
defined, using the most widely applied labels.

The “types” refer to various combinations of what is being predicted and what 
is doing the predicting. In ordinary regression, the researcher normally is predict-
ing a level 1 (typically individual subject level) dependent variable such as 
“employee performance score” from one or more level 1 independent variables 
(ex., from “employee education”). In the multilevel world of linear mixed model-
ing, however, there are other possibilities. Let level 2 be defined by the grouping 
variable “agency” and a level 2 variable such as “mean agency education,” with 
the multilevel theory being that the presence of more highly educated employees 
in an agency has a synergistic effect at the level of the individual. The level 2 
grouping variable may have an effect on the intercept (mean score) at level 1 and/
or on the b coefficient (slope) of education at level 1. Likewise, the level 2 predic-
tor, mean agency education, may have an effect on the level 1 intercept and the 
level 1 slope. These possibilities give rise to the types of models depicted in 
Figures 1.1 (see page 10) and 1.2 (see page 11).

There are three broad classes of models: fixed effects, random effects, and 
mixed. Most models treated in this book are mixed, hence the term “linear mixed 
modeling.”

1. Fixed effects models. Linear mixed modeling is mostly about models involv-
ing random effects as well as fixed effects. In mixed models, effects that impact 
the intercept (representing the mean of the dependent variable when other predic-
tors are zero) are modeled as fixed effects. However, purely fixed effects models 
such as ordinary regression models may be fitted also. These are models with only 
fixed factors and optional fixed covariates as predictors. An example would be a 
study of employee performance score by education, controlling for gender. Most 
models for analysis of variance, regression, and GLM are fixed effects models. 
These are the most common type of model in social science. Compared to an OLs 
regression model, a fixed effects model implemented in LMM will generate very 
similar if not identical estimates with similar (but not identical) output tables.

2. Random effects models. Random effects models are those with one or 
more random factors and optional covariates as predictors. Effects that influ-
ence the covariance structure are modeled as random factors. sampling variables 
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(ex., state, where individuals are sampled within a sample of states; subject, 
where a sample of subjects have repeated measures over time) are random fac-
tors, as is any grouping variable where the clustering of effects creates correlated 
error. An example would be a study of employee performance score at level 1 by 
agency at level 2, controlling for salary level at level 1. score would be the 
dependent variable, agency the random factor (assuming only a random sample 
of agencies were studied), and salary the covariate. The level 1 intercept of score 
may be modeled as a random effect of agency at level 2. Likewise, the level 1 
slope of employee education might be modeled as a random effect of agency. If 
only the intercept is modeled, it is a random intercept model.2 If the slope is 
modeled as well, it is a random coefficients model. some authors use the term 
“hierarchical linear model” to refer to random effects models in which both 
intercepts and slopes are modeled.

3. Mixed models. Mixed models, naturally, are ones with both fixed and ran-
dom effects. A given effect may be both fixed and random if it contributes to both 
the intercept and the covariance structure for the model. Predictors at any level 
are typically included as fixed effects. For instance, covariates at level 2 are nor-
mally included as fixed effect variables. slopes of variables at lower levels may 
be random effects of higher-level variables. Grouping variables (ex., school, 
agency) at any level are random factors.

Hierarchical linear models (HLM) are a type of mixed model with hierarchical 
data—that is, where nested data exist at more than one level (ex., student-level 
data and school-level data, with students nested within schools). In explaining a 
dependent variable, HLM models focus on differences between groups (ex., 
schools) in relation to differences within groups (ex., among students within 
schools). While it is possible to construct one-level models in linear mixed 
modeling, most use of LMM can be seen as one or another form of HLM, so the 
two terms are often used synonymously in spite of nuanced differences.

Random intercept models are models where only the intercept of the level 1 
dependent variable is modeled as an effect of the level 2 grouping variable and 
possibly other level 1 or level 2 (or higher) covariates. Random coefficients mod-
els are ones where the coefficient(s) of lower-level predictor(s) is/are modeled as 
well. There are several major types of random intercept and random coefficient 
models, enumerated below (see Table 1.1).

 • The null model, also called the “unconditional model” or a “one-way 
AnOVA with random effects,” is a type of random intercept model that predicts 
the level 1 intercept of the dependent variable as a random effect of the level 2 
grouping variable, with no other predictors at level 1 or 2 in a two-level model. 
For instance, differences in mean performance scores may be analyzed in terms 
of the random effect of agency at level 2. The researcher is testing to see if there 
is an agency effect. The null model is used to calculate the intraclass correlation 
coefficient (ICC), which is a test of the need for mixed modeling as discussed in 
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Chapter 2. The null model also serves as a “baseline model” for purposes of 
comparison with later, more complex models. note that a model is “conditional” 
by the presence of predictors at level 1 or level 2. since the researcher almost 
always employs predictor variables and is not simply interested in the null model, 
most mixed models are conditional. The central point of LMM often is to assess 
the difference between the researcher’s conditional model and the null model 
without predictors. The likelihood ratio test (discussed in Chapter 2) can be used 
to assess this difference.

 • One-way ANCOVA with random effects models. It is also possible to have a 
level 1 covariate and still predict the level 1 intercept (but not the slope of the level 1 
covariate) as a random effect of the level 2 grouping variable, with no other level 2 
predictors. For instance, differences in mean performance scores (the intercepts) 
may be analyzed as predicted by salary at level 1, predicting only the level 1 inter-
cept of performance scores in terms of the between-groups effect of agency as a 
grouping variable.

 • Random intercept regression models are also called “means-as-outcomes 
regression models.” This variant of the random intercept model predicts the level 1 
intercept on the basis of the level 2 grouping variable and also on the basis of one 
or more level 2 random effect predictors. For instance, differences in mean per-
formance scores (the intercepts) may be analyzed, predicting the level 1 intercept 
in terms of the between-groups effect of agency and the level 2 random effect 
variable EquipmentBrand (a factor representing a sample of some of many brands 
of equipment, where different agencies used different brands).

 • Random intercept ANCOVA models are also called “means-as-outcomes 
AnCOVA models.” This type is simply a random intercept regression model in 
which there is also a level 1 covariate treated as a fixed effect (slope not predicted 
by level 2). some authors would classify this as another type of random intercept 
regression model.

 • Random coefficients (RC) models, also called “random coefficient regres-
sion models” or “multilevel regression models,” are a type of mixed model with 
hierarchical data. The level 1 dependent is predicted by at least one level 1 
covariate. The slope of this covariate and the intercept are predicted by the ran-
dom effect of the grouping variable at level 2. That is, each group at the higher 
level (ex., agency level) is assumed to have a different regression slope as well 
as a different intercept for purposes of predicting a level 1 dependent variable. 
While this could be visualized by using OLs regression by superimposing the n 
regression lines for the n schools, LMM incorporates this variability of regres-
sion lines into a single analysis.

 • Full random coefficients models, also called “intercepts-and-slopes-as-
outcomes models,” are a type of RC model in which the level 1 slopes and 
intercepts are modeled not only by the level 2 grouping variable as a random 
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factor, but also by one or more other level 2 variables. For instance, differences 
in mean performance scores at level 1 may be analyzed, predicting the level 1 
intercept and the slope of the level 1 predictor salary in terms of the between-
groups effect of agency and the level 2 variable EquipmentBrand.

Random Intercept Null Model
(One-Way ANOVA With Random Effects)

AgencyID

Intercept of
employee score
as dependent

Level 2

Level 1

Random Intercept Model With Level 1 Predictors
(ANCOVA Model With Random Effects)

AgencyID

Intercept of
employee score
as dependent

Slope times
employee
education

Level 2

Level 1

Random Intercept Model With Level 2 Predictors
(Random Intercept Regression or Means-as-Outcomes Regression)

AgencyID

Intercept of
employee score
as dependent

Mean agency
education

Level 2

Level 1

Figure 1.1 Types of linear mixed models
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Table 1.1 below summarizes nomenclature for common types of linear mixed 
models.

Random intercept and random coefficients models are discussed further in 
Chapters 3, 4, and 5, which treat multilevel modeling using HLM 7, sPss, and 

Random Intercept Model With Level 1 and 2 Predictors
(Random Intercept ANCOVA or Means-as-Outcomes ANCOVA)

AgencyID

Intercept of
employee score
as dependent

Mean agency
education

Mean agency
education

Slope times
employee
education

Level 2

Level 1

Level 2

Level 1

Random Coefficients Regression Model

AgencyID

Intercept of
employee score
as dependent

Slope times
employee
education

Level 2

Level 1

Full Random Coefficients Model
(Intercepts-and-Slopes-as-Outcomes Model)

AgencyID

Intercept of
employee score
as dependent

Slope times
employee
education

Figure 1.2 Types of linear mixed models, continued
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sAs software, respectively. In Chapter 6, Forrest C. Lane, Kim F. nimon, and 
J. Kyle Roberts further develop the topic in their article, “A Random Intercepts 
Model of Part-Time Employment and standardized Testing Using sPss.” In 
Chapter 7, Carissa L. shafto and Jill L. Adelson present “A Random Intercept 
Regression Model Using HLM: Cohort Analysis of a Mathematics Curriculum 
for Mathematically Promising students.” Then, in Chapter 8, Gregory J. Palardy 
presents “Random Coefficients Modeling With HLM: Assessment Practices and 
the Achievement Gap.” Finally, in Chapter 9, shevaun neupert presents 
“Emotional Reactivity to Daily stressors Using a Random Coefficients Model 
With sAs PROC MIXED: A Repeated Measures Analysis.”

GENERALIZED LINEAR MIXED MODELS

Generalized linear mixed models serve similar purposes to the models already 
discussed except that the “generalized” label means that new algorithms have 
been added to support a variety of link functions. Link functions, of course, are 
transforms of the dependent variable similar to that found, for instance, in binary 

Table 1.1 Six Common Types of Two-Level Linear Mixed Models

I. Only the intercept is modeled as a random effect.

A. no level 1 covariates
1. The null model, also called the unconditional model or one-way AnOVA with random effects

B. Level 1 covariates only
2. Random intercept model: AnCOVA with random effects

C. Level 2 covariates only
3. Random intercept regression: “means as outcomes regression”

D. Both level 1 and level 2 covariates
4. Random intercept AnCOVA: “means as outcomes AnCOVA”

II. One or more level 1 slopes as well as the intercept are modeled.

A. no level 1 covariates
not applicable: A level 1 covariate must exist to have a slope to model!

B. Level 1 covariates only
1. Random coefficients regression

C. Level 2 covariates only
not applicable

D. Both level 1 and level 2 covariates
2. Full random coefficients model: “intercepts and slopes as outcomes”



CHAPTER 1.  FUnDAMEnTALs OF HIERARCHICAL LInEAR AnD MULTILEVEL MODELInG  13

logistic regression, where what is predicted is not the dependent variable itself 
(using the identity link function of OLs regression) but instead is the logit (the 
natural log of the odds that the dependent equals 1) of the dependent variable. 
Although the predictor side of the equation must be linearly related to the link 
function of the dependent, the original values of the predictor variables may be 
nonlinearly related to the original values of the dependent variable. A large 
number of link functions are possible, only some of which are currently supported 
by statistical packages for hierarchical linear modeling. Of fundamental 
importance is that generalized linear mixed modeling supports dependent 
variables that are not continuous and not normally distributed, as is required by 
ordinary regression and other general linear model procedures.

Although GLMM is not the focus of this book, it is important that the researcher 
be aware of the possibilities supported by generalized linear mixed modeling and 
be assured that the data at hand are best modeled by the LMM models described 
in this volume rather than by GLMM methods. nonetheless, even if GLMM is 
selected due to the nature of the researcher’s dependent variable, nearly all of the 
LMM considerations discussed in the present volume still apply.

Figure 1.3 HLM 7 “Basic Settings” dialog
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In HLM 7 software, generalized linear mixed models are integrated into the 
main user interface in the Basic settings menu choice, as illustrated in Figure 1.3 
above. In sPss (starting with sPss 19), GLMM is obtained in the GEnLInMIXED 
procedure obtained by selecting Analyze, Mixed Models, Generalized Linear 
from the menu system, then going to the Target pane of the Fixed Effects tab, as 
illustrated in Figure 1.4 below. In sAs, GLMM is mainly associated with PROC 
GLIMMIX.

Figure 1.4 SPSS 19 generalized linear mixed models “Target” dialog

At the core of analysis with generalized linear mixed models is selecting the 
type of data distribution and link function that corresponds to the nature of the 
researcher’s dependent variable. As shown in Figure 1.3, HLM 7 offers seven 
GLMM possibilities3:

1. Normal (continuous). This alternative assumes a normal distribution of the 
dependent variable with an identity link function. The outcome variable at level 1 
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may have any value on a continuous scale (ex., employee-level performance 
scores). This option creates the same models as for ordinary linear mixed modeling.

2. Bernoulli. This alternative assumes a Bernouilli distribution, which is a 
special case of the binomial distribution, employing a logit link function. In a 
Bernouilli model, the outcome variable at level 1 (ex., employee-level retirement 
status) has only two outcomes (ex., not retired = 0, retired = 1).

3. Binomial (number of trials). This alternative assumes a dependent variable 
with a binomial distribution and a logit link function, corresponding to binary 
logistic regression.

4. Poisson (constant exposure). This alternative assumes a dependent variable 
reflecting count data (hence non-negative integer values) with a log link function. 
The “constant exposure” term, also called “equal exposure,” means each level 1 
subject had the same chance to accumulate the count (ex., the same time interval).

5. Poisson (variable exposure). An example of this type would be a count of 
people displaying some trait in multiple cities of differing populations. The 
“exposure” varies since, all other things equal, larger cities might be expected to 
have a larger count. Like Poisson-constant exposure models, this alternative also 
assumes Poisson distribution of count data with a log link function, but the 
Poisson variance is weighted by the exposure variable.

6. Multinomial. This alternative assumes a multinomial distribution of the 
dependent variable, with a generalized logit link function. Multinomial data are 
categorical, such as “career choice” with values 1 = administrative, 2 = clerical, 
3 = other. The coding values are arbitrary. A multinomial model is an extension 
of the Bernouilli model for dependents with more than two categories.

7. Ordinal. This alternative also assumes the dependent variable has a cate-
gorical distribution, but the categories are ordered—for example, ordered from 
“strongly agree” to “strongly disagree.” The link function is cumulative logit.

sPss 19 offers eight link alternatives plus a “Custom” alternative. In 
addition, there is a checkbox for “Use number of trials as denominator,” which 
can convert the dependent variable into a ratio (ex., number of successes 
divided by number of trials, transforming a count into a rate). For categorical 
dependent variables, the sPss “TARGET” pane also allows the researcher to 
set the reference category to something other than the default, which is the 
highest-coded category.

1. Linear model. Used with an identity link function when the dependent is 
continuous and normal. This is the same as the “normal” selection in HLM 7.

2. Gamma regression. Used for dependents whose values are skewed toward 
larger values, this alternative assumes a gamma distribution with a log link.
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3. Loglinear. Used for count data over a fixed time period, this alternative 
assumes a dependent with a Poisson distribution with a log link. It corresponds 
to the “Poisson-constant exposure” option in HLM 7.

4. Negative binomial regression. This option specifies a negative binomial 
distribution with a log link. It is used for data on number of trials required to 
observe k successes.

5. Multinomial logistic regression. This is the same option as for the “Multinomial” 
alternative in HLM 7, with a multinomial distribution and generalized logit link.

6. Binary logistic regression. This is the same logistic regression model as for 
the “Binomial” option in HLM 7, with a binomial distribution and logit link.

7. Binary probit. This option assumes the dependent exhibits a binomial dis-
tribution with a probit link, which in turn assumes the binary values reflect an 
underlying normal distribution.

8. Interval censored survival. This option assumes a dependent with a bino-
mial distribution using a complementary log-log link. This option is used with 
survival and event history data, which include right-censored observations 
(where some cases do not experience the event of interest by the time the mea-
surement period ends).

9. Custom. The Custom alternative allows any permissible combination of 
dependent variable distribution and link function. Multinomial distributions must 
use the logit link. Binomial distributions are the only other type that may use the 
logit link. The identity, power, and log links may be used with any distribution 
other than multinomial. The CLOGLOG (log complement) link, the negative log-
log link, and the probit link are only used with a binomial distribution. Apart from 
these restrictions, the combinations that the researcher may select are reflected in 
options listed in the sPss syntax for the Target clause:

/TARGET_OPTIONS]
    [REFERENCE = value]
    [DISTRIBUTION = NORMAL | BINOMIAL | MULTINOMIAL | 
 GAMMA|INVERSE_GAUSSIAN | NEGATIVE_BINOMIAL | 
 POISSON]
    [LINK = IDENTITY | CLOGLOG | LOG | LOGC | LOGIT | 
 NLOGLOG | PROBIT | POWER]
    [LINK_PARAMETER = number]

sAs 9.2 PROC GLIMMIX contains a DIsT= statement with these options:

BETA, defaulting to a logit link function

BInARY, defaulting to a logit link function
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BInOMIAL, defaulting to a logit link function

EXPOnEnTIAL, defaulting to a log link function

GAMMA, defaulting to a log link function

GAUssIAn|nORMAL, defaulting to an identity link function

GEOMETRIC, defaulting to a logit link function

InVGAUss, defaulting to an inverse squared link function

LOGnORMAL, defaulting to an identity link function 

MULTInOMIAL, defaulting to a cumulative logit link function

nEGBInOMIAL, defaulting to a log link function

POIssOn, defaulting to a log link function Poisson

TCEnTRAL, defaulting to an identity link function

In sAs 9.2, the LInK = keyword in PROC GLIMMIX syntax supports the 
following link functions:

CUMCLL (cumulative, complementary log-log)

CUMLOGIT or CLOGIT (cumulative logit)

CUMLOGLOG (cumulative log-log)

CUMPROBIT (cumulative probit)

CLOGLOG (complementary log-log)

GLOGIT (generalized logit)

IDEnTITY (identity)

LOG (log)

LOGIT (logit)

LOGLOG (log-log)

PROBIT (probit) 

POWER() (power with exponent within the parentheses)

POWERMInUs2 (power with exponent -2)

RECIPROCAL or InVERsE (reciprocal)

While the number of combinations of dependent variable distributions and 
associated link functions is very large, the most common pairings are

 (1) normal distribution with identity link, which is the linear regression or AnOVA 
model;

 (2) inverse Gaussian (a.k.a. inverse normal) with an inverse squared link function, 
which models positively skewed, positively valued dependents;
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 (3) gamma distribution with a log link, also used for skewed dependents in gamma 
regression;

 (4) multinomial distribution with a generalized or cumulative logit link, used for 
categorical or ordinal dependents in multinomial or ordinal regression;

 (5) binomial distribution with a logit link, for binary logistic regression models;

 (6) Poisson distribution with a log link, for count of events per fixed number of time 
periods in Poisson regression; and

 (7) negative binomial distribution, used instead of Poisson for count data with 
overdispersion (when the variance is greater than the mean).

REPEATED MEASURES, LONGITUDINAL AND GROWTH MODELS

Increasingly, linear mixed modeling is the preferred approach when analyzing 
longitudinal data.4 studies in this category carry a variety of labels, including 
repeated measures designs, longitudinal analysis, and growth models. The 
common thread is the need to address the autocorrelation problem: Repeated 
observations for the same unit (ex., same employee with repeated performance 
score measures) exhibit clustering. Just as linear mixed models address the 
problem of clustering of measures and correlation of error by grouping or level 
variable, LMM addresses the problem of clustering by observation unit. Put 
another way, longitudinal data in LMM may be modeled by treating the multiple 
measures (ex., performance scores) as level 1 and the observation units (ex., 
employees) as level 2. Of course, level 2 units may still be nested within or cross-
classified by levels 3 and 4 (ex., agency and department).

Repeated Measures

The object of repeated measures designs is to model within-subject variance. 
What is “within” a subject is, of course, the series of measurements taken over 
time for a given unit of analysis (typically an individual subject). Each subject 
will have multiple rows of data corresponding to multiple observation times. In 
terms of multilevel analysis, level 1 is within-subjects (for the variance among 
repeated measures for given individuals, on the average) and level 2 is between-
subjects, with the observation unit (usually the individual) being a grouping vari-
able for the measures. The grouping (subjects) variable can be used to assess the 
between-subjects random effect on a level 1 variable, such as employee perfor-
mance test score. In a random intercepts model where there are level 1 covariates 
(predictors), this is done by creating one regression for each subject, generating 
multiple intercepts, where the true intercept is estimated as a random function of 
the intercepts of all the regressions. Random slopes may be generated in the same 
way to obtain a random coefficients model.
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Longitudinal and Growth Models

Growth models are a common type of repeated measures linear mixed model 
in which time is modeled as a fixed and as a random effect on some measurement 
about the individual (ex., employee performance score). Visualized graphically, a 
“growth curve” for each employee can be charted in which time is the X-axis and 
the dependent variable, such as performance score, forms the Y-axis. Growth 
curves will vary by individual, depending on time-invariant and time-variant 
variables such as IQ or training workshop hours, respectively.

The object of growth modeling is not merely to see if there is a trend in score 
over time, but also to discover if the grouping variable has an effect on the trend 
(ex., if there is an employee effect) and if there is a pattern to the change in inter-
cepts or coefficients over time. Assuming the time variable is measured in equal 
metric intervals, the time variable is a covariate and the growth pattern may be 
analyzed to see, for instance, if on average it increases linearly in steps, grows 
quadratically, or grows according to some other function of time.

Many different types of linear mixed models can be constructed in which 
time is a variable. To take one example, that of predicting a metric time series 
of employee performance scores at level 1 grouped by employee at level 2, the 
purpose of longitudinal analysis may be to see if and how the linear correlation 
of score and time is influenced by employee-specific effects. Time may be 
modeled as a fixed effect to capture the linear correlation, and in the fixed 
effects output, the b coefficient for time indicates how much, on average, each 
employee increases or decreases in score per measurement period. Time can 
also be modeled as a random effect to capture the effect of time nested within 
employees on the coefficient of time at level 1. (A regression is fitted for each 
employee, and a standard error is computed for the b coefficient of time in 
these regressions.)

If an unstructured covariance structure (see Chapter 2) is assumed, one will 
get covariance parameters for the intercept, for the b coefficient of the level 1 
predictor, and for the covariance of the two. The larger the parameter for the 
intercept, the greater the variance of score among employees when time = 0, 
which is the start time. The larger the parameter for time as a random effect 
nested within employees, the greater (and more likely to be significant) the 
between-employees variability of the time coefficient. If there are level 2 
(employee-level) covariates, these are treated as additional fixed factors. For 
instance, if education is such a covariate, fixed factors include time, education, 
and time*education. Time is also a random effect. The covariance parameter for 
the residual reflects the within-subjects variance, which is the variance of test 
scores across time for any given employee after controlling for other variables 
in the model (time, education, and the time*education interaction), and as such 
is the unexplained variance in the model.

There are many types of random coefficients growth models, some of which 
are illustrated in Chapters 3, 4, and 5. These provide an introductory guide to 
multilevel modeling using HLM 7, sPss, and sAs software, respectively. 
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Chapter 10, by David F. Greenberg and Julie A. Phillips, treats “Hierarchical 
Linear Modeling of Growth Curve Trajectories Using HLM,” dealing with a 
standard form of growth modeling. Chapter 11, by Jaime Lynn Maerten-Rivera, 
presents “A Piecewise Growth Model Using HLM7 to Examine Change in 
Teaching Practices Following a science Teacher Professional Development 
Intervention,” where piecewise growth models are ones where growth trajectories 
are divided and modeled separately. And in Chapter 12, Maike Luhmann and 
Michel Eid treat “studying Reaction to Repeated Life Events With Discontinuous 
Change Models Using HLM,” where discontinuous change models handle data 
where the individual growth trajectory is divided into discrete segments punctu-
ated by discontinuities such as life events.

MULTIVARIATE MODELS

Multivariate linear mixed modeling (MLMM) is to LMM what multiple analysis 
of variance (MAnOVA) and covariance (MAnCOVA) are to general linear 
models (GLM): Each enables simultaneous analysis of multiple dependent 
variables defined at level 1 in a multilevel model. MLMM also goes under the 
label “hierarchical multivariate linear modeling” (HMLM).

In addition, nonlinear link functions can be added using multivariate general-
ized linear mixed modeling (MGLMM), extending what is possible with general-
ized linear mixed modeling (GLMM) of dependent variables considered singly.

MLMM and MGLMM are often used in analysis of latent variables, where the 
multiple level 1 dependents are seen as indicators for an underlying latent con-
struct. This is the “multilevel latent outcome model.” For instance, measures of 
six specific skills, skill1 through skill6, may be seen as indicators for the latent 
variable “performance.” As another example, sammel, Lin, and Ryan (1999), in 
a study of several teratogenic (birth defect–inducing) agents, used MLMM to 
model the latent variable “teratogenic exposure” based on multiple indicators 
associated with the different agents.5

In a second application, MLMM and MGLMM may be used for joint analysis 
of what would otherwise be separate repeated measures analyses of different 
outcome variables. This is the “multilevel model for correlated outcomes” or 
“repeated measures multivariate linear mixed model” (see Molenberghs, 2007). 
In a third usage, MLMM and MGLMM may be used where skill1 through skill6 
measure the same skill, but at different times; output1 through output6 measure 
objective productivity at different times; and the research focus is on testing a 
“parallel growth model.” MLMM can also be employed as a form of cluster 
analysis, based on longitudinal data on individuals’ behavior over time, classify-
ing individuals according to differences in growth curves (Villarroel, 2009). A 
fifth type of usage of MLMM and MGLMM centers on analysis where the mul-
tiple dependents are members of an exponential family, such as score, score-
squared, and other exponential functions (see Gueorguieva, 2001). Multivariate 
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modeling is discussed further in Chapter 15, by Larry J. Brant and shan L. sheng, 
in their article, “Predicting Future Events From Longitudinal Data With 
Multivariate Hierarchical Models and Bayes’ Theorem Using sAs.” For more on 
MLMM in HLM 7, see Raudenbush, Bryk, Cheong, Congdon, and Du Toit 
(2011). For more on MLMM in sPss, see Heck, Thomas, and Tabata (2010, 
Ch. 7). For more on MLMM in sAs, see Wright (1998).

CROSS-CLASSIFIED MODELS

Cross-classified models handle data that do not meet the nesting assumptions 
of hierarchical models. Above, an example of assumed test scores are grouped 
by individual employee, with employees nested within agencies and agencies 
within departments. However, what if the data include employees who are 
employed by multiple agencies? In educational research, what if students are 
members of multiple classrooms rather than each student belonging to just one 
classroom? As another example, in repeated measures studies involving 
interviews of subjects, the same subject may be interviewed by more than one 
interviewer, and therefore the subject is cross-classified on the interviewer 
effect. such data, illustrated in Figure 1.5 below, are cross-classified and 
require cross-classified random effects modeling (see Beretvas, Meyers, & 
Rodriguez, 2005). Exclusively hierarchical data are less common than cross-
classified data, and thus cross-classified linear mixed modeling (CCLMM; also 
called cross-classified multilevel measurement modeling [CCMMM], and 
cross-classified random effects modeling [CCREM]) is an important tool 
within the LMM family.

Applying hierarchical linear mixed modeling to cross-classified data can seri-
ously bias variance component estimates as well as bias the estimation of the 
standard errors of the regression coefficients. Meyers and Beretvas (2006) found 
that such misspecification did not significantly affect parameter estimates for 
fixed effects, but did bias estimates for standard errors, and also biased estimates 
of variance components of the random effects, inflating Type 1 error. Luo and 
Kwok (2009), using simulation studies, likewise found that “ignoring a crossed 
factor causes overestimation of the variance components of adjacent levels and 
underestimation of the variance component of the remaining crossed factor” 
(p. 182). In the present volume, George Leckie (Chapter 14) similarly notes that 
ignoring cross-classification effects leads to overestimation of level 1 (ex., stu-
dent) and level 2 (ex., school) effects using conventional hierarchical linear 
modeling. Moreover,

ignoring a crossed factor at the kth level causes underestimation of the standard error 
of the regression coefficient of the predictor associated with the ignored factor and 
overestimation of the standard error of the regression coefficient of the predictor at 
the (k-1)th level. (Luo & Kwok, 2009, p. 182)
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This type of misspecification bias can be great and is greater the less the two 
cross-classified factors are related,6 the greater the variance of the factor modeled 
incorrectly, and the larger the design effect (reflected in larger per-cluster sample 
sizes) (Meyers & Beretvas, 2006).

In Chapter 13 of this volume, Brian F. Patterson illustrates cross-classified 
models further in his article, “A Cross-Classified Multilevel Model for First-
Year College natural science Performance Using sAs.” Then, in Chapter 14, 
George Leckie discusses “Cross-Classified Multilevel Models Using stata: 
How Important Are schools and neighborhoods for students’ Educational 

Hierarchical data: Each student (black dot) is nested within
a single school, and each school within a single district.

District 1 District 2

S1

S2 S3

S4

Cross-classified data: Each student is nested with in a
single scholl, but a school (ex., S2) can draw from

multiple neighborhoods.

Neighborhood 1 Neighborhood 2

S1
S2 S3

S4

Figure 1.5 Hierarchical vs. cross-classified data
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Attainment?” For more on cross-classified models in HLM 7, see Raudenbush 
et al. (2011). For more on cross-classified models in sPss, see Heck, Thomas, 
and Tabata (2010, Ch. 8). For more on cross-classified models in sAs, see 
Beretvas (2008). All three packages support two- and three-level CCLMM 
models.

SUMMARY

Multilevel and hierarchical modeling through various types of linear mixed 
models has rapidly become a required asset in the statistical toolkit of researchers 
worldwide. By correctly modeling correlated error, which arises from the 
clustering of data at the group level, LMM models address a major shortcoming 
of regression, AnOVA, and other general linear model analyses. Failure to take 
correlated error into account can easily affect the researcher’s substantive 
conclusions. Whether used to model random effects, hierarchical effects, or 
repeated measures effects, linear mixed modeling is a versatile tool, applicable to 
a broad range of common research problems. Generalized linear mixed modeling 
incorporates nonlinear link functions of the dependent variable. Multivariate 
linear mixed modeling incorporates analysis of multiple dependent variables. 
Cross-classified linear mixed modeling handles crossed factors that depart from 
strictly hierarchical structure. All variants handle cross-level interaction terms as 
well as cross-level main effects, and all variants test multi-level theories without 
necessity to aggregate or disaggregate data — a commonly flawed practice in 
ordinary regression modeling. With this versatility and power, it is small wonder 
that courses on hierarchical linear modeling, multilevel modeling, and linear 
mixed modeling now pervade doctoral research programs.

After evaluating the research design and after screening data to meet the 
assumptions of LMM (to be discussed in Chapter 2), the researcher must select 
the type of model to explore. This depends on the research question. If the 
research interest is confined to understanding why mean values of the dependent 
variable vary, then a random intercept model may suffice. If, however, the 
research interest is in exploring the relative effects of predictor variables, a ran-
dom coefficients model is ordinarily selected. If there are multiple dependent 
variables to be treated as a set, multivariate models are required. If data are not 
nested in a strictly hierarchical manner, cross-classified models will be needed. 
Models also vary by number of levels of data involved, though in practice nearly 
all linear mixed modeling is confined to analysis of two to four levels.

Within these broad categories, there are many variations on type of model. 
The null model models the dependent variable without predictors apart from the 
grouping variable(s). One-way random effects AnCOVA models predict the 
level 1 dependent as a fixed effect of level 1 covariates and a random effect of 
higher-level grouping variables. Random intercept regression models (means-
as-outcomes regression models) add higher-level random effect predictors. 
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Random intercept AnCOVA models (means-as-outcomes AnCOVA) are a type 
of random intercept regression in which there are also level 1 fixed effect predic-
tors. Random coefficients (RC) models predict level 1 slopes as well as inter-
cepts. Full random coefficients models (intercepts-and-slopes-as-outcomes 
models) model level 1 slopes and intercepts as functions of higher-level group-
ing factors and higher-level covariates. With any model, data for repeated mea-
surements may be present, in which case some type of longitudinal or growth 
model may be undertaken.

In summary, linear mixed modeling is a versatile procedure that supports an 
extremely large number of variations of type of model, only some of which are 
mentioned in this chapter. Generalized linear mixed modeling (GLMM) sup-
ports still more types, covering nonlinear link functions for a variety of data 
distributions of the dependent variable. In this way, GLMM supports linear 
mixed modeling for binary, ordinal, and multinomial logistic models; probit, 
gamma, and negative binomial regression models; Poisson regression models 
and models for interval-censored survival data such as used in event history 
analysis, to name a few.

Looking ahead, Chapter 2 presents considerations preliminary to multilevel 
analysis, focusing on meeting the assumptions of linear mixed modeling and on 
understanding how models are evaluated. Then, in the following three chapters, 
the details of implementing a number of types of basic linear mixed models are 
presented. Chapters 3 through 5 present the same models as implemented in 
HLM 7, sPss 19, and sAs 9.2, respectively. The remaining 10 chapters of this 
volume, written by authors from diverse fields, present further applications based 
on these statistical packages (plus one application illustrated for stata), all fol-
lowing a standard format emphasizing how to implement and report data analysis 
for linear mixed models.

NOTES

1. It should be noted, though, that in practice some variables may represent aggregated 
scores.

2. some authors use the term “hierarchical linear model” to refer to random effects 
models in which both intercepts and slopes are modeled.

3. Different options are offered in HLM 7 for multivariate generalized linear mixed 
models.

4. For a discussion comparing repeated measures AnOVA and event history approaches, 
see schulz and Maas (2010).

5. This article also contains a useful comparison of GLMM methods with factor 
analysis and structural equation modeling as alternative approaches to modeling latent 
variables.

6. This may seem anomalous, but if factors are correlated, then modeling one of them 
in a hierarchical design will reduce some of the bias that otherwise would occur.
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