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1.1 Introduction

Sir Ronald Fisher, the statistician, eugenicist, evolutionary biologist, geneticist, and father 
of modern experimental design, observed that experiments are “only experience carefully 
planned in advance, and designed to form a secure basis of new knowledge” (Fisher, 
1935a, p. 8). The design of experiments to investigate scientific or research hypotheses 
involves a number of interrelated activities:

 1. Formulation of statistical hypotheses that are germane to the scientific hypothesis. 
A statistical hypothesis is a statement about (a) one or more parameters of a 
population or (b) the functional form of a population. Statistical hypotheses are 
rarely identical to scientific hypotheses; they are testable formulations of scientific 
hypotheses.

 2. Determination of the experimental conditions (independent variable) to be used, 
the measurement (dependent variable) to be recorded, and the extraneous condi-
tions (nuisance variables) that must be controlled.

 3. Specification of the number of subjects (experimental units) required and the 
population from which they will be sampled.1

 4. Specification of the procedure for assigning the subjects to the experimental conditions.

 5. Determination of the statistical analysis that will be performed.

1An experimental unit is that entity that is assigned to an experimental condition independently 
of other entities. An experimental unit may contain several observational units. For example, in an 
educational experiment, the experimental unit is often the classroom, but the individual students are 
the observational units. Administering an educational intervention to a classroom can result in non-
independence of the observational units. For a discussion of this problem, see Levin (1992).
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In short, an experimental design identifies the independent, dependent, and nuisance 
variables and indicates the way in which the randomization and statistical aspects of an 
experiment are to be carried out.

Subject Matter and General Organization of This Book

Experimental design, the subject of this book, refers to a plan for assigning subjects to 
experimental conditions and the statistical analysis associated with the plan. Selecting an 
appropriate plan and performing the correct statistical analysis are important facets of 
scientific research. However, the most important facet—identifying relevant research 
questions—is outside the scope of this book. The reader should remember that a carefully 
conceived and executed design is of no value if the scientific hypothesis that led to the 
experiment is without merit. Careful planning should always precede the data collection 
phase of an experiment. Data collection is usually the most costly and time-consuming 
aspect of an experiment. Advanced planning helps to ensure that the data can be used to 
maximum advantage. No amount of statistical wizardry can salvage a badly designed 
experiment.

Chapters 1 to 3 provide an overview of important design concepts and analysis tools 
that are used throughout the remainder of the book. Chapter 3 describes a procedure devel-
oped by Ronald A. Fisher called the analysis of variance. The procedure is used to decom-
pose the total variation displayed by a set of observations into two or more identifiable 
sources of variation. Analysis of variance enables researchers to interpret the variability in 
designed experiments. Fisher showed that by comparing the variability among subjects 
treated differently to the variability among subjects treated alike, researchers can make 
informed choices between competing hypotheses in science and technology. A detailed 
examination of each analysis of variance design begins in Chapter 4. This examination 
includes a description of the design, conditions under which the design is appropriate, 
assumptions associated with the design, a computational example, and advantages and 
disadvantages of the design.

Two kinds of computational algorithms are provided for the designs. The first, 
referred to as the classical sum-of-squares approach, uses scalar algebra and is suitable for 
calculators. The second, called the cell means model approach, uses matrix algebra and is 
more suitable for computers.2 In Chapters 7 and 13, I provide a brief description of a third 
computational algorithm: the regression model approach.

1.2 Formulation of Plans for 
the Collection and Analysis of Data

Acceptable Research Hypotheses

Some questions currently cannot be subjected to scientific investigation. For example, the 
questions “Can three or more angels dance on the head of a pin?” and “Does life exist in 

2Readers who are interested only in the traditional approach to the analysis of variance can, without 
loss of continuity, omit the material on the cell means model.
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more than one galaxy in the universe?” cannot be answered because no procedures now 
exist for observing either angels or life on other galaxies. Scientists confine their research 
hypotheses to questions that can be answered by procedures that are available or that can 
be developed. Thus, the question concerning the existence of life on other galaxies cur-
rently cannot be investigated, but with continuing advances in space science, it is likely 
that eventually the question will be answered.

An experiment involves the manipulation of one or more variables by a researcher to 
determine the effect of this manipulation on another variable. Questions that provide the 
impetus for experimental research should be reducible to the form, if A, then B. For exam-
ple, if albino rats are exposed to microwave radiation, then their food consumption will 
decrease. This research hypothesis can be investigated because procedures are available 
both for manipulating the radiation level and for measuring the food consumption of rats.

Much research departs from this pattern because nature rather than the researcher 
manipulates the independent variable. It would be unethical, for example, to study the 
effects of prenatal malnutrition on IQ by deliberately providing pregnant women with 
inadequate diets. Instead, the question is investigated by locating children whose mothers 
were malnourished during pregnancy and then comparing their IQs with those of children 
whose mothers were not malnourished. Research strategies in which the independent vari-
able is not manipulated by the researcher include surveys, case studies, and naturalistic 
observation. These research strategies pose special problems for researchers who want to 
make causal inferences, as I discuss in Section 1.3.

Distinction Between Independent and Dependent Variables

In the radiation example cited earlier, the presence or absence of radiation is the independent 
variable—the variable that is manipulated by the researcher. More generally, an indepen-
dent variable is any suspected causal event that is under investigation. The terms indepen-
dent variable and treatment are interchangeable. A dependent variable is the measurement 
that is used to assess the effects, if any, of manipulating the independent variable. In the 
radiation example, the dependent variable is the amount of food consumed by the rats.

Selection of the Independent Variable

The independent variable in the radiation example is the presence or absence of radiation. 
The treatment has two levels. If the researcher is interested in the nature of the relationship 
between the radiation dose and food consumption, three or more levels of radiation must be 
used. The levels could be 0 microwatts, 20,000 microwatts, 40,000 microwatts, and 60,000 
microwatts of radiation. This treatment is an example of a quantitative independent vari-
able in which different treatment levels are different amounts of the independent variable.

When the independent variable is quantitative, the levels of the variable are generally 
chosen so that they are equally spaced. Usually there is little interest in the exact values of 
the treatment levels used in the experiment. In the radiation example, the research hypoth-
esis also could be investigated using three other levels of radiation—say, 25,000, 50,000, 
and 75,000 microwatts in addition to the 0 microwatt control level. The treatment levels 
should cover a sufficiently wide range so that the effects of the independent variable can 
be detected if such effects exist. In addition, the number and spacing of the levels should 
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be sufficient to define the shape of the function that relates the independent and dependent 
variables. Selection of the appropriate levels of the independent variable can be based on 
the results of previous experiments or on theoretical considerations. It may be beneficial 
to carry out a small pilot experiment to identify the most appropriate treatment levels. A 
pilot experiment also is useful for determining the number of experimental units required 
to test the statistical hypothesis.

Under the conditions described in Chapters 3 and 4, the levels of a quantitative inde-
pendent variable can be selected randomly from a population of treatment levels. If this 
procedure is followed, a researcher can extrapolate from the results of the experiment to 
treatment levels that are not included in the experiment. If the treatment levels are not 
randomly sampled, the results of an experiment apply only to the specific levels included 
in the experiment.

Often a different type of independent variable is used. For example, if the treatment 
levels are unmodulated radiation, amplitude-modulated radiation, and pulse-modulated 
radiation, the treatment is called a qualitative independent variable. The different treat-
ment levels represent different kinds rather than different amounts of the independent 
variable. The particular levels of a qualitative independent variable used in an experiment 
are generally of specific interest to a researcher. And the levels chosen are usually dictated 
by the research hypothesis.

Selection of the Dependent Variable

The choice of an appropriate dependent variable may be based on theoretical consider-
ations, although in many investigations, the choice is determined by practical consider-
ations. In the radiation example, other dependent variables that could be measured include 
the following:

 1. Activity level of the rats in an activity cage

 2. Body temperature of the rats

 3. Emotionality of the rats as evidenced by their amount of defecation and urination

 4. Problem-solving ability

 5. Weight change of the rats

 6. Speed of running in a straight-alley maze

 7. Visual discrimination capacity

Several independent variables can be used in an experiment, but the designs described 
in this book are limited to the assessment of one dependent variable at a time. If it is 
necessary to evaluate two or more dependent variables simultaneously, a multivariate 
analysis of variance design can be used.3 The selection of the most fruitful variables to 

3For a discussion of these designs, see R. J. Harris (2001); Lattin, Carroll, and Green (2003); Meyers, 
Gamst, and Guarono (2006); Stevens (2002); and Todman and Dugard (2007).
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measure should be determined by a consideration of the sensitivity, reliability, distribution, 
and practicality of the possible dependent variables. From previous experience, a 
researcher may know that one dependent variable is more sensitive than another to the 
effects of a treatment or that one variable is more reliable—that is, gives more consistent 
results—than another variable. Because behavioral research generally involves a sizable 
investment in time and material resources, the dependent variable should be reliable and 
maximally sensitive to the phenomenon under investigation. Choosing a dependent 
variable that possesses these two characteristics can minimize the amount of time and 
effort required to investigate a research hypothesis.

Other factors to consider in selecting a dependent variable are whether the population 
distributions for the various treatment levels are approximately normal and whether the 
populations have equal variances. I have more to say about these factors in Chapter 3 when 
I discuss the assumptions underlying the analysis of variance (ANOVA). If theoretical 
considerations do not dictate the selection of a dependent variable and if several alternative 
variables are equally sensitive and reliable, in addition to being normally distributed with 
equal variances, a researcher should select the variable that is most easily measured.

Nuisance Variables

In addition to independent and dependent variables, all experiments include one or more 
nuisance variables. Nuisance variables are undesired sources of variation in an experi-
ment that affect the dependent variable. As the name implies, the effects of nuisance vari-
ables are of no interest per se. There are many potential sources of nuisance variables. For 
example, the calibration of equipment may change during the course of an experiment; the 
presentation of instructions may vary slightly from subject to subject; errors may occur in 
measuring or recording a subject’s response; environmental factors such as room illumina-
tion, noise level, and room temperature may not be constant for all subjects; and subjects 
may experience lapses in attention, concentration, and interest.

In the radiation example, potential nuisance variables include the sex of the rats, dif-
ferences in the weights of the rats prior to the experiment, presence of infectious diseases 
in one or more cages where the rats are housed, temperature variation among the cages, 
and differences in previous feeding experiences of the rats. If not controlled, nuisance 
variables can affect the outcome of an experiment. For example, if rats in the radiated 
groups suffer from some undetected disease, differences among the groups will reflect the 
effects of the disease in addition to radiation effects—if such effects exist.

The effect of a nuisance variable can take several forms. For example, a nuisance 
variable can systematically distort results in a particular direction, in which case the effect 
is called bias. Alternatively, a nuisance variable can increase the variability of the phenom-
enon being measured and thereby increase the error variance. Error variance is variability 
among observations that cannot be attributed to the effects of the independent variable. 
You also can think of error variance as differences in the performance of subjects who are 
treated alike. Sometimes a nuisance variable systematically distorts results in a particular 
direction and increases the error variance—the worst-case scenario.

Nuisance variables are undesired sources of variation and hence are threats to drawing 
valid inferences from research. Other threats to valid inference making are described in 
Sections 1.5 and 1.6.



6 Experimental Design

1.3 Research Strategies

Research is performed for the following purposes: (1) to explore, (2) to describe or classify, 
(3) to establish relationships, or (4) to establish causality. Over the years, researchers have 
developed a variety of research strategies to accomplish these purposes. These strategies 
include the experiment, quasi-experiment, survey, case study, and naturalistic observation.

Experiments

An experiment enables a researcher to test a hypothesized relationship between an inde-
pendent variable and a dependent variable by manipulating the independent variable. 
Experiments are usually performed in an environment that permits a high degree of control 
of nuisance variables. Such environments rarely duplicate real-life situations, but an 
experiment is still a useful way of obtaining knowledge. An experiment is characterized 
by the (1) manipulation by the researcher of one or more independent variables, (2) use of 
controls such as randomly assigning subjects or experimental units to the experimental 
conditions, and (3) careful observation or measurement of one or more dependent vari-
ables. The first and second characteristics—manipulation of an independent variable and 
the use of controls such as randomization—distinguish experiments from nonexperimental 
research strategies. The manipulation of one or more independent variables also is neces-
sary for inferring causality. We infer that A causes Y if the following are true: A precedes 
Y (temporal precedence of A); whenever A is present, Y occurs (sufficiency of A); and A 
must be present for Y to occur (necessity of A).4

As noted earlier, this book is concerned with two aspects of experiments: the plan for 
assigning subjects to experimental conditions and the statistical analysis associated with 
the plan. Because the statistical analysis procedures for experiments also are applicable to 
other research strategies, I briefly describe some of these strategies next.

Quasi-Experiments

Quasi-experiments are similar to experiments except that the subjects are not randomly 
assigned to the independent variable. Quasi-experiments are used instead of experiments 
when random assignment is not possible or when, for practical or ethical reasons, it is 
necessary to use preexisting or naturally occurring groups such as subjects with a particu-
lar illness or subjects who have been sexually abused.5

An example of a well-designed quasi-experiment is the Newburgh-Kingston Caries-
Fluorine Study (Hilleboe, 1956). This study was designed to determine the effect of adding 
fluoride to a community water supply. The cities studied, Newburgh and Kingston, New 
York, are located on the Hudson River about 35 miles apart. Beginning on May 2, 1945, 
sodium fluoride was added to the drinking water of Newburgh to bring the fluoride content 
from about 0.1 part per million to about 1.2 parts per million. The fluoride concentration 

4Causality is a complex concept. For other defi nitions and views of causality, see Pearl (2000); Shad-
ish (2010); Shadish, Cook, and Campbell (2002); Sobel (2008); and West and Thoemmes (2010).
5For an excellent treatment of quasi-experimental designs, see Shadish et al. (2002).
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of Kingston’s water remained at about 0.1 part per million. In the year prior to adding 
fluoride to Newburgh’s water supply, baseline data on the prevalence of tooth decay were 
obtained for school children aged 6 to 12. Baseline pediatric examinations also were per-
formed on smaller samples. The baseline data in the two communities were similar for 
both tooth decay and general health. The effect of adding fluoride to Newburgh’s water 
supply was evaluated 10 years later by examining more than 2000 children aged 6 to 16 
in the two communities. For the 6- to 9-year-olds, the reduction in tooth decay in 
Newburgh relative to the rate in Kingston was 57%. For older children in Newburgh who 
had not used fluoridated water all their lives, the reduction was 41%. The tooth decay rate 
in Newburgh also was similar to that in Aurora, Illinois. Aurora has a naturally occurring 
fluoride level of about 1.2 parts per million—the same as that in Newburgh—and is known 
for its low level of tooth decay. The data from this quasi-experiment provide strong sup-
port for the efficacy of fluoridated water in preventing tooth decay.

The interpretation of the results of the Newburgh-Kingston study is relatively straightfor-
ward. The interpretation of the results of most quasi-experiments is often less straightforward 
because it is difficult to rule out all variables other than the independent variable as explanations 
for an observed difference. Researchers in the Newburgh-Kingston study attempted to rule out 
as many nuisance variables as possible. They chose two communities of comparable size on the 
Hudson River. And the communities had similar naturally occurring levels of fluoride in their 
water supplies. Because the communities are only 35 miles apart, they have similar climates and 
weather conditions. The potential variable of differences in the general health of children in the 
two communities was ruled out by a pediatric examination. Also, the tooth decay rate obtained 
with artificially fluoridated water in Newburgh was found to be similar to the rate in Aurora, 
which has about the same naturally occurring fluoride level.

There is always the possibility that some variable other than the higher fluoride level 
was responsible for the observed difference in tooth decay between Newburgh and 
Kingston. However, every effort, short of random assignment, was made to eliminate other 
variables as explanations for the observed difference. Random assignment is the best safe-
guard against undetected nuisance variables. As a general principle, the difficulty of unam-
biguously interpreting the outcome of research varies inversely with the degree of control 
that a researcher is able to exercise over randomization.

Surveys

Surveys rely on the technique of self-report to obtain information about such variables as 
people’s attitudes, opinions, behaviors, and demographic characteristics. The data are col-
lected by means of an interview or a questionnaire. Although surveys cannot establish cau-
sality, they can explore, describe, classify, and establish relationships among variables.

A survey enables a researcher to collect a considerable amount of information about a 
large number of people. If the survey respondents are representative of a population of inter-
est, the results of the survey can be generalized to the population. Unfortunately, survey 
respondents are often not representative. For example, many people refuse to give phone 
interviews or respond to Internet questionnaires, and the return rate for questionnaires 
received in the mail is typically between 10% and 45%. In all likelihood, people who do not 
cooperate differ in significant ways from those who do. There are other problems with 
surveys. Some people tend to give socially acceptable answers or answers that they think 
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the interviewer wants to hear. Also, people may have incomplete or inaccurate memories 
for past events. Despite these problems, surveys can be efficient, useful sources of infor-
mation: witness the success of the U.S. census, Gallup Poll, Harris Poll, and Roper Poll.

Case Studies

In a case study, a researcher observes selected aspects of a subject’s behavior over a period of 
time. The subject is usually a person, but it may be a setting such as a business, school, or neigh-
borhood. Often the subject possesses an unusual or noteworthy condition. For example, Luria 
(1968) studied the Russian mnemonist Shereshevskii, who used mnemonic tricks and devices to 
remember phenomenal amounts of material. Significant discoveries also may result from study-
ing less remarkable subjects. Jean Piaget’s theory of intellectual development, for example, 
evolved from his intensive observation of his own three children. He presented tasks in a non-
standard manner to one child at a time in informal settings and observed the child’s verbal and 
motor responses. Piaget did not attempt to systematically manipulate preselected independent 
variables, nor did he focus on just one or two dependent variables. Instead, his approach was 
quite flexible, which allowed him to alter his procedures and follow up on new hypotheses. His 
flexible case study approach uncovered knowledge about children’s cognitive development that 
might not have been discovered by a more rigid experimental approach.

Case studies can lead to interesting insights that merit further investigation. However, 
case studies are particularly susceptible to the effects of nuisance variables. Furthermore, 
questions arise about the degree to which the findings generalize to other populations.

Naturalistic Observation

Naturalistic observation involves observing individuals or events in their natural setting 
without using manipulative interventions or measuring techniques that might intrude on 
the setting. Naturalistic observation is a passive form of research in the sense that the 
individual being observed determines the events that are available to be recorded. The 
researcher is an unobtrusive recorder of the ongoing events. Because a researcher can 
focus on only a finite number of events, decisions must be made concerning the events that 
will be observed. As in a case study, the researcher has the freedom to shift his or her focus 
to those events that seem most interesting. The data from naturalistic observations may be 
difficult to analyze, as when the researcher records a running description of a behavior, or 
easy to analyze, as when a frequency count of a behavior is made.

Naturalistic observation is one of the oldest methods for studying individuals and 
events. In some sciences, most notably astronomy, the strategy has led to extremely accu-
rate predictions. Classic examples of naturalistic observation are Charles Darwin’s voy-
ages on the HMS Beagle as he compiled the data that led to the theory of evolution and 
Jane Goodall’s (1971, 1986) study of chimpanzees in their natural habitat in Tanzania, 
which gave us a new appreciation for this highly social animal.

As a research strategy, naturalistic observation has two advantages over more controlled 
strategies such as the experiment. First, findings from naturalistic observations generalize 
readily to other real-life situations. Second, the strategy avoids the reactive arrangements 
problem that is described in Section 1.5. This problem is avoided because subjects are 
unaware that their behavior is being studied; hence, they do not react in an unnatural way as 



9CHAPTER 1  Research Strategies and the Control of Nuisance Variables

they might if they were aware that they were being studied. Unfortunately, there are some 
serious limitations associated with naturalistic observation. Although the strategy is useful 
for describing what happened, it does not yield much information about why something hap-
pened. To find out why something happened, it is necessary to tamper with the natural course 
of events. Also, the strategy is an inefficient way to answer “What if?” questions because the 
event of interest may occur infrequently or not at all in a natural setting.

In this section, I described five widely used research strategies. The strategies are 
presented in order of decreasing control of the independent and dependent variables. 
Research always involves a series of trade-offs—a theme I return to time and again. As our 
control of the independent and dependent variables decreases, our ability to unambigu-
ously interpret the outcome of the research decreases, but our ability to generalize the 
results to the real world increases.

1.4 Other Research Strategies

The classification scheme for research strategies that I have described is widely used, but 
it is not exhaustive. There are numerous other ways of classifying research strategies. Each 
discipline tends to develop its own nomenclature and categories. This section describes 
some other ways of categorizing research strategies.

Ex Post Facto Studies

The term ex post facto study (after-the-fact study) refers to any nonexperimental research 
strategy in which subjects are singled out because they have already been exposed to a 
particular condition or because they exhibit a particular characteristic. In such studies, the 
researcher does not manipulate the independent variable or assign the experimental condi-
tions to the subjects. The retrospective cohort study and the case-control study, described 
in the following section, are examples of ex post facto studies.

Retrospective and Prospective Studies

Retrospective and prospective studies are nonexperimental research strategies in which 
the independent and dependent variables occur before or after, respectively, the beginning 
of the study. Retrospective studies use historical records to look backward in time; 
prospective studies look forward in time. A retrospective study is particularly useful for 
studying the relationship between variables that occur infrequently or variables whose 
occurrence is difficult to predict. For example, much of our knowledge about the health 
effects of ionizing radiation came from studying persons exposed to the World War II 
bombings of Hiroshima and Nagasaki. A retrospective study also is useful when there is a 
long time interval between a presumed cause and effect. For example, a decade or more 
can pass between exposure to a carcinogen and the clinical detection of cancer.

There are two types of retrospective studies: retrospective cohort studies and case-
control studies. In a retrospective cohort study, also called a historical cohort study, 
records are used to identify two groups of subjects: those who have and those who have not 
been exposed to the independent variable. Once the exposed and nonexposed groups have 
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been identified, they are compared in terms of the frequency of occurrence of the dependent 
variable. Consider, for example, McMichael, Spirtas, and Kupper’s (1974) study of workers 
in the rubber industry. Employment records were used to identify 6678 workers who were 
alive on January 1, 1964. The mortality experience of these workers over the following 
9-year period was compared with the mortality experience of persons in the same age and 
gender categories in the U.S. population. The researchers found that the rubber workers had 
much higher death rates from cancers of the stomach, prostate, and hematopoietic tissues.

In a case-control study, also called a case-referent study, records are used to identify 
two groups of subjects: those who exhibit evidence of the dependent variable, called cases, 
and those who do not, called controls. The cases and controls are then compared in terms 
of their previous exposure to the independent variable. Consider, for example, the study 
by Clarke, Morgan, and Newman (1982), who investigated the relationship between ciga-
rette smoking and cancer of the cervix. One hundred eighty-one women with cervical 
cancer (cases) and 905 women without cervical cancer (controls) were interviewed to 
determine their smoking histories. The researchers found that a much larger proportion of 
the cases than the controls had smoked cigarettes.

Neither the retrospective cohort study nor the case-control study can establish a causal 
relationship. However, the research strategies can suggest interesting relationships that 
warrant experimental investigation. In the retrospective cohort study, more than one 
dependent variable can be investigated, but only one independent variable can be studied 
at a time. In the case-control study, multiple independent variables can be investigated, but 
only one dependent variable can be studied at a time. Despite these and other limitations, 
both research strategies have been particularly useful in the health sciences.

As noted earlier, a prospective study, also called a follow-up study, longitudinal 
study, or cohort study, is a nonexperimental research strategy in which the independent 
and dependent variables are observed after the onset of the investigation. Subjects are clas-
sified as exposed or nonexposed based on whether they have been exposed to a naturally 
occurring independent variable. The exposed and nonexposed groups are then followed for 
a period of time, and the incidence of the dependent variable is recorded. A classic exam-
ple is the Framingham Study (T. Gordon & Kannel, 1970), which attempted to identify 
factors related to the dependent variable of cardiovascular disease. In the study, more than 
5000 persons living in Framingham, Massachusetts, who did not have clinical evidence of 
atherosclerotic heart disease were examined at 2-year intervals for more than 30 years. The 
study identified several factors, including hypertension, elevated serum cholesterol, and 
cigarette smoking, that were related to cardiovascular disease.

Prospective studies have advantages over retrospective studies. First, the purported cause 
(independent variable) clearly precedes the effect (dependent variable); second, the amount and 
quality of information are not limited by the availability of historical records or the recollections 
of subjects; and third, measures of the incidence of the dependent variable can be computed. But 
prospective studies have some serious limitations, too. If the dependent variable is a rare event, 
a prohibitively large sample may be required to find a sufficient number of subjects who develop 
the rare event. Also, the investigation of a chronic process using a prospective study may require 
years to complete. Unfortunately, lengthy studies often suffer from logistic problems such as 
keeping in touch with the subjects and turnover of the research staff. The distinguishing features 
of retrospective and prospective studies are summarized in Table 1.4-1.
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Longitudinal and Cross-Sectional Studies

The term longitudinal study refers to any research strategy in which the same individuals 
are observed at two or more times. Usually the time interval between observations is fairly 
long. For example, in the Framingham Study mentioned earlier, subjects were examined 
at 2-year intervals for more than 30 years in an attempt to identify factors related to car-
diovascular disease.

A longitudinal study involves studying the same individuals over time. Identifying 
changes in individuals over time is not difficult, but identifying the cause of the changes 
can be a problem because it is difficult to control all nuisance variables over an extended 
period of time. As a result, a researcher is often faced with competing explanations for the 
observed changes. The longer the study, the more numerous the competing explanations. 
There are other problems with longitudinal studies. Over the course of a long study, sub-
jects move, die, or decide to drop out of the study. Often the attrition rates for the groups 
being followed are different, which introduces another source of bias. Also, longitudinal 
studies tend to be more expensive and require a longer commitment of a researcher’s time 
than cross-sectional studies, which are described next.

A cross-sectional study is any research strategy in which two or more cohorts are 
observed at the same time. As used here, a cohort denotes a person or group of people who 
have experienced a significant life event such as a birth, marriage, or illness during a given 
time interval—say, a calendar year or a decade. The Newburgh-Kingston Caries-Fluorine 
Study mentioned earlier involved several cohort comparisons: children living in Newburgh 
versus those living in Kingston and 6- to 9-year-olds versus older children.

Cross-sectional studies tend to be less expensive than longitudinal studies, and they 
provide more immediate results. Also, attrition of subjects is less likely to be a problem in 
cross-sectional studies. However, as mentioned earlier in discussing the Newburgh-
Kingston Caries-Fluorine Study, there is always the possibility that even in a well-designed 
cross-sectional study, variables other than those under investigation are responsible for the 
observed difference in the dependent variable. As noted earlier, random assignment is the 
best safeguard against undetected nuisance variables.

Time of Occurrence of Independent and 
Dependent Variables

Prior to Initiation of Study After Initiation of Study

Subject Classified on Basis 
of Independent Variable

Retrospective cohort study 
(historical cohort study)

Prospective study (follow-up 
study, longitudinal study, 

cohort study)

Subject Classified on Basis 
of Dependent Variable

Case-control study 
(case-referent study)

Table 1.4-1  Distinguishing Features of Retrospective and Prospective Studies
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Longitudinal-Overlapping and Time-Lag Studies

The two research strategies described in this section combine features of longitudinal and 
cross-sectional studies. A longitudinal-overlapping study, also called a sequential study, 
can be used to compress the time required to perform a longitudinal study. Suppose that a 
researcher wants to observe children at 2-year intervals from ages 5 through 13. A longi-
tudinal study would require 8 years. This time can be compressed to 4 years by observing 
a group of 5-year-olds and a second group of 9-year-olds. The 5-year-old children are 
observed at ages 5, 7, and 9; the 9-year-old children are observed at ages 9, 11, and 13. 
Note the overlapping age: Both groups include 9-year-olds. The layout for this study is 
diagrammed in Figure 1.4-1, where O1, O2, and O3 denote the first, second, and third 
observations of the children in each group, respectively. In addition to cutting the length 
of the study in half, this research strategy enables a researcher to compare 5- and 9-year-
olds after completing the first set of observations. This comparison would be delayed for 
4 years in a longitudinal study. The earlier discussion of the advantages and disadvantages 
of cross-sectional studies is applicable to a longitudinal-overlapping study.

In a time-lag study, observations are made at two or more times but different subjects 
(cohorts) are measured at each time. Consider, for example, the annual administration of 
the Scholastic Aptitude Test to high school juniors and seniors. For a number of years, the 
test score means for seniors have been declining. This example of a time-lag study shares 
some of the characteristics of longitudinal and cross-sectional studies. The test scores are 
obtained at two or more times, as in a longitudinal study, but as in a cross-sectional study, 
different senior classes are observed at each testing period. The layout for this study is 
diagrammed in Figure 1.4-2, where the groups represent five senior classes that are each 
observed once and Oi denotes one of the i = 1, . . . , 5 observations. 

Time-Series and Single-Case Studies

A time-series study involves making multiple observations of one or more subjects or 
cohorts before and after the introduction of an independent variable. The independent vari-
able may or may not be controlled by the researcher. Consider a study to determine the 
effect of banning the importation of assault rifles in 2005 on the incidence of homicides 

Subject’s 
Age

1st 
Obs.

Subject’s 
Age

2nd 
Obs.

Subject’s 
Age

3rd 
Obs.

Group1 5 O1 7 O2 9 O3

Group2 9 O1 11 O2 13 O3

Figure 1.4-1   Simplified layout for a longitudinal-overlapping study, where O1, O2, 
and O3 denote, respectively, the first, second, and third observations 
(Obs.) on the children in Group1 and Group2.
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Year
1st 

Obs.
2nd 
Obs.

3rd 
Obs.

4th 
Obs.

5th 
Obs.

Group1(Seniors) 2005 O1

Group2(Seniors) 2006 O2

Group3(Seniors) 2007 O3

Group4(Seniors) 2008 O4

Group5(Seniors) 2009 O5

Figure 1.4-2   Simplified layout for a time-lag study, where O1, . . . , O5 denote 
observations (Obs.) on members of five senior classes denoted by Group1 
through Group5.

and suicides. One way to evaluate the effect of the ban is to compare the number of homicides 
and suicides in 2004 with the number in 2005. Suppose that the data in Figure 1.4-3(a) are 
obtained. Because of the reduction from 2004 to 2005, one might infer that the ban reduced the 
number of homicides and suicides. However, other nuisance variables such as an unusually cool 
summer could have been responsible for the reduction. A time-series study would provide stron-
ger evidence for or against the effectiveness of banning the importation of assault rifles. 
Following this approach, a researcher would record the number of homicides and suicides for 
several years before and after the ban and note trends in the data. Consider the hypothetical data 
in Figures 1.4-3(b–d). Figure 1.4-3(b) suggests that the decrease in the number of homicides 
and suicides from 2004 to 2005 reflected nothing more than random year-to-year variation. 
Figure 1.4-3(c) suggests that the ban had only a temporary effect. Figure 1.4-3(d) suggests that 
the ban had no effect because similar reductions were observed during the years prior to and after 
the ban. These hypothetical examples illustrate the importance of obtaining multiple observa-
tions so that change can be viewed within a context.

A single-case study, not to be confused with the case studies described in Section 1.3, 
has many of the characteristics of a time-series study. However, in a single-case study, 
multiple observations of a single subject are made before and after the introduction of an 
independent variable, and the researcher controls the independent variable.

Single-case studies were widely used in the behavioral sciences in the late 1880s and early 
1900s. Examples include the pioneering work of Ebbinghaus (1850–1909) on forgetting, 
Wundt’s (1832–1920) research on sensory and perceptual processes, and Titchener’s (1867–
1927) measurement of sensory thresholds. Researchers began to use large samples and random 
assignment in the 1920s and 1930s, primarily because of the influence of R. A. Fisher (1890–
1962). B. F. Skinner’s (1904–1990) research on schedules of reinforcement in the 1940s and 
1950s rekindled an interest in single-case studies. This research strategy has proven to be par-
ticularly useful in assessing the effects of an intervention in clinical psychology research.6

The simplest single-case study uses an A-B design. The letter A denotes a baseline 
phase during which no intervention is in effect; the letter B denotes the intervention phase. 

6Barlow, Nock, and Hersen (2009); Kazden (1982); and Morgan and Morgan (2009) provide in-depth 
discussions of single-case studies.
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The baseline phase serves three purposes: It provides data about a subject’s performance 
prior to instituting an intervention, it provides a basis for predicting a subject’s future 
performance in the absence of an intervention, and it indicates the normal variability in the 
subject’s performance.

Consider an experiment to reduce the occurrence of thumb sucking of a 6-year-old 
named Bill. Bill usually sucked his thumb at bedtime while his mother read to him. During 
the baseline phase that lasted 3 days, Bill’s mother read to him while an older sibling 
recorded the percent of story-reading time during which Bill sucked his thumb. During the 
treatment phase, when Bill began sucking his thumb, his mother would stop reading and 
remain quiet until Bill removed his thumb from his mouth. By the end of the seventh treat-
ment day, Bill had stopped sucking his thumb when his mother read to him. The layout for 
this study is diagrammed in Figure 1.4-4, where Oi denotes one of the i = 1, . . . , n obser-
vations of the dependent variable.
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Figure 1.4-3   Part (a) shows the decrease in the number of homicides and suicides following 
a ban on the importation of assault rifles in 2004. A time-series study can 
place the data in perspective. The hypothetical data in part (b) suggest that the 
decrease in the number of homicides and suicides from 2004 to 2005 reflected 
random year-to-year variation, part (c) suggests that the ban had a temporary 
effect, and part (d) suggests that the ban had no effect.
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In this example, the treatment appears to be related to the cessation of thumb sucking. 
But there is always the possibility that coincidental changes in a nuisance variable were 
completely or partly responsible for the cessation of thumb sucking. Statistical regression, 
which is described in Section 1.5, is a potential nuisance variable in this kind of research 
because the behavior that is to be altered is one that occurs frequently. Because of statisti-
cal regression, there is a tendency for the frequency of behaviors that have a high rate of 
occurrence to decrease in the absence of any intervention, as well as a tendency for the 
frequency of behaviors that have a low rate of occurrence to increase. In the thumb-
sucking example, a stronger case for the efficacy of the treatment could be made if thumb 
sucking reappears when the treatment is withdrawn—that is, when Bill’s mother continues 
reading even though Bill sucks his thumb. This modified design with the sequence of 
events

baseline → treatment → baseline

is diagrammed in Figure 1.4-5. Note that there are two opportunities to observe the effects 
of the treatment: the transition from the baseline to the treatment (A-B) and the transition 
from the treatment to the baseline (B-A). The presence of two transitions in the A-B-A 
design decreases the probability that changes in the dependent variable are the result of 
coincidental changes in a nuisance variable. A problem with this design is that the 
experiment ends on a baseline phase—a phase during which thumb sucking is expected to 
reappear. The solution to this problem is to reintroduce the B phase following the second 
A phase so that the experiment ends with the intervention phase. The design is called an 
A-B-A-B design and is shown in Figure 1.4-6. This design has the added advantage of 
providing three transitions: from A to B, from B to A, and from A to B. Hence there are 
three opportunities to evaluate the efficacy of the treatment. In a single-subject study, the 
use of one or more reversals in which a treatment is withdrawn to see whether the 
dependent variable returns to the baseline level can raise ethical questions. For example, 
if a treatment is successful in stopping an autistic child from repeatedly hitting his or her 
head against a wall, the withdrawal of the treatment and the subsequent return to head 
banging could result in physical injury to the child. In this example, the withdrawal of the 
treatment would be unacceptable.

Baseline (A Phase) Treatment (B Phase)

Subject O1, O2, . . . , Oi Oi + 1, Oi + 2, . . . , On 

Figure 1.4-4   Simplified layout for a single-case study, where O1, O2, . . . , Oi denote 
observations on a subject during the baseline period (A phase) and Oi + 1, 
Oi + 2, . . . , On denote observations during the treatment period 
(B phase). Any difference between the A and B phases in the mean of the 
observations or change in the trend of the observations is attributed to the 
intervention.
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I have described a variety of research strategies in Section 1.3 and this section. In the 
next two sections, I briefly examine some threats to drawing valid inferences from 
research. In Section 1.7, I describe some general approaches to controlling nuisance vari-
ables and minimizing threats to valid inference making.

1.5 Threats to Valid Inference Making

Two goals of research are to draw valid conclusions about the effects of an independent 
variable and to make valid generalizations to populations and settings of interest. Shadish, 
Cook, and Campbell (2002), drawing on the earlier work of Campbell and Stanley (1966), 
have identified four categories of threats to these goals:7

 1. Statistical conclusion validity is concerned with threats to valid inference making 
that result from random error and the ill-advised selection of statistical procedures.

 2. Internal validity is concerned with correctly concluding that an independent vari-
able is, in fact, responsible for variation in the dependent variable.

 3. Construct validity of causes and effects is concerned with the possibility that 
operations that are meant to represent the manipulation of a particular independent 
variable can be construed in terms of other variables.

 4. External validity is concerned with the generalizability of research findings to 
and across populations of subjects and settings.

This book is concerned with three of the threats to valid inference making: threats to 
statistical conclusion validity, internal validity, and external validity. In the discussion that 

7The list of categories and threats to valid inference making are taken from Campbell and Stanley 
(1966) and Shadish et al. (2002). Responsibility for the interpretation of items in their lists is mine.

Baseline (A Phase) Treatment (B Phase) Baseline (A Phase)

Subject O1, O2, . . . , Oi Oi + 1, Oi + 2, . . . , Oi′ Oi′ + 1, Oi′ + 2, . . . , On 

Figure 1.4-5   Simplified layout for a single-case study, where O1, O2, . . . , On denote 
observations on a subject during a sequence of A-B-A phases.

Baseline (A Phase) Treatment (B Phase) Baseline (A Phase) Treatment (B Phase)

Subject O1, O2, . . . , Oi Oi + 1, Oi + 2, . . . , Oi′ Oi′ + 1, Oi′ + 2, . . . , Oi″ Oi″ + 1, Oi″ + 2, . . . , On

Figure 1.4-6   Simplified layout for a single-case study, where O1, O2, . . . , On denote observations on a 
subject during a sequence of A-B-A-B phases.
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follows, I focus on the three threats. The reader is encouraged to consult the original 
sources: Campbell and Stanley (1966) and Shadish et al. (2002). The latter book should be 
read by all researchers who, for one reason or another, are unable to randomly assign 
subjects to treatment conditions.

Threats to Statistical Conclusion Validity

 1. Low statistical power. A researcher may fail to reject a false null hypothesis 
because the sample size is inadequate, irrelevant sources of variation are not con-
trolled or isolated, or inefficient test statistics are used.

 2. Violated assumptions of statistical tests. Test statistics require the tenability of 
certain assumptions. If these assumptions are not met, incorrect inferences may 
result. This threat is discussed in Section 3.5.

 3. Fishing for significant results and the error rate problem. With certain test 
statistics, the probability of drawing one or more erroneous conclusions increases 
as a function of the number of tests performed. This threat to valid inference mak-
ing is discussed in detail in Chapter 5.

 4. Reliability of measures. The use of a dependent variable that has low reliability 
may inflate the estimate of the error variance and result in not rejecting a false null 
hypothesis.

 5. Reliability of treatment implementation. Failure to standardize the administra-
tion of treatment levels may inflate the estimate of the error variance and result in 
not rejecting a false null hypothesis.

 6. Random irrelevancies in the experimental setting. Variation in the environ-
ment (physical, social, etc.) in which a treatment level is administered may 
inflate the estimate of the error variance and result in not rejecting a false null 
hypothesis.

 7. Random heterogeneity of respondents. Idiosyncratic characteristics of the sub-
jects may inflate the estimate of the error variance and result in not rejecting a false 
null hypothesis.

Threats to Internal Validity

 1. History. Events other than the administration of a treatment level that occur 
between the time a subject is assigned to the treatment level and the time the 
dependent variable is measured may affect the dependent variable.

 2. Maturation. Processes not related to the administration of a treatment level that 
occur within subjects simply as a function of the passage of time (growing older, 
stronger, larger, more experienced, etc.) may affect the dependent variable.

 3. Testing. Repeated testing of subjects may result in familiarity with the testing 
situation or acquisition of information that can affect the dependent variable.
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 4. Instrumentation. Changes in the calibration of a measuring instrument, shifts in 
the criteria used by observers and scorers, or unequal intervals in different ranges 
of a measuring instrument can affect the measurement of the dependent variable.

 5. Statistical regression. When the measurement of the dependent variable is not per-
fectly reliable, there is a tendency for extreme scores to regress or move toward the 
mean. Statistical regression operates to (a) increase the scores of subjects originally 
found to score low on a test, (b) decrease the scores of subjects originally found to 
score high on a test, and (c) not affect the scores of subjects at the mean of the test. The 
amount of statistical regression is inversely related to the reliability of the test.

 6. Selection. Differences among the dependent-variable means may reflect prior differ-
ences among the subjects assigned to the various levels of the independent variable.

 7. Mortality. The loss of subjects in the various treatment conditions may alter the 
distribution of subject characteristics across the treatment groups.

 8. Interactions with selection. Some of the foregoing threats to internal validity may 
interact with selection to produce effects that are confounded with or indistinguish-
able from treatment effects. Among these are selection history effects and selection 
maturation effects. For example, selection maturation effects occur when subjects 
with different maturation schedules are assigned to different treatment levels.

 9. Ambiguity about the direction of causal influence. In some types of research—
for example, correlational studies—it may be difficult to determine whether X is 
responsible for the change in Y or vice versa. This ambiguity is not present when 
X is known to occur before Y.

 10. Diffusion or imitation of treatments. Sometimes the independent variable 
involves information that is selectively presented to subjects in the various treat-
ment levels. If the subjects in different levels can communicate with one another, 
differences among the treatment levels may be compromised.

 11. Compensatory rivalry by respondents receiving less desirable treatments. 
When subjects in some treatment levels receive goods or services generally 
believed to be desirable and this becomes known to subjects in treatment levels 
that do not receive those goods and services, social competition may motivate the 
subjects in the latter group, the control subjects, to attempt to reverse or reduce 
the anticipated effects of the desirable treatment levels. Saretsky (1972) named 
this the “John Henry” effect in honor of the steel driver who, upon learning that 
his output was being compared with that of a steam drill, worked so hard that he 
outperformed the drill and died of overexertion.

 12. Resentful demoralization of respondents receiving less desirable treatments. 
If subjects learn that the treatment level to which they have been assigned 
received less desirable goods or services, they may experience feelings of resent-
ment and demoralization. Their response may be to perform at an abnormally low 
level, thereby increasing the magnitude of the difference between their perfor-
mance and that of subjects assigned to the desirable treatment level.



19CHAPTER 1  Research Strategies and the Control of Nuisance Variables

Threats to External Validity

 1. Interaction of testing and treatment. Results obtained under conditions of 
repeated testing may not generalize to situations that do not involve repeated test-
ing. A pretest, for example, may sensitize subjects to a topic and, by focusing 
attention on the topic, enhance the effectiveness of a treatment. The opposite effect 
also can occur. A pretest may diminish subjects’ sensitivity to a topic and thereby 
reduce the effectiveness of a treatment.

 2. Interaction of selection and treatment. The constellation of factors that affect the 
availability of subjects to participate in an experiment may restrict the generaliz-
ability of results to populations that share the same constellation of factors. For 
example, if volunteers were used in an experiment, the results may generalize to 
only volunteer populations.

 3. Interaction of setting and treatment. The unique characteristics of the setting in 
which results are obtained may restrict the generalizability of the results to settings 
that share the same characteristics. Results obtained in a classroom, for example, 
may not generalize to an assembly line.

 4. Interaction of history and treatment. Occasionally results are obtained on 
the same day as a particularly noteworthy event. These results may be differ-
ent from results that would have been obtained in the absence of the note-
worthy event.

 5. Reactive arrangements. Subjects who are aware that they are being observed 
may behave differently than subjects who are not aware that they are being 
observed.

 6. Multiple-treatment interference. When subjects are exposed to more than one 
treatment, the results may generalize to only populations that have been exposed 
to the same combination of treatments.

1.6 Other Threats to Valid Inference Making

Experimenter-Expectancy Effect

Controlling nuisance variables in research with human subjects is particularly challenging. 
Experiments with human subjects are social situations in which one person behaves under 
the scrutiny of another. The two people in this social situation have expectations about each 
other, communicate with each other, and form impressions about each other. The power of 
the subjects in the situation is always unequal: The researcher requests a behavior and the 
subject behaves. The researcher’s overt request may be accompanied by other more subtle 
requests and messages. For example, body language, tone of voice, and facial expressions 
can communicate the researcher’s expectations and desires concerning the outcome of an 
experiment. Such communications can affect a subject’s performance. Rosenthal (1963) has 
reported that researchers tend to obtain from their subjects—whether human or animal—
the data they want or expect to obtain. A researcher’s expectations and desires also can 
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influence the way he or she records, analyzes, and interprets data. According to Rosenthal 
(1969, 1978), observational or recording errors are usually small and unintentional. 
However, when such errors occur, more often than not they are in the direction of support-
ing the researcher’s hypothesis. Sheridan (1976) has reported that researchers are much 
more likely to recompute and double-check results that conflict with their hypotheses than 
results that support their hypotheses. The effect of a researcher’s expectations and desires 
on the outcome of an experiment is called the experimenter-expectancy effect.

Demand Characteristics

The experimenter-expectancy effect is one source of bias in an experiment; another source 
is what Orne (1962) has called demand characteristics. Demand characteristics refer to 
any aspect of the experimental environment or procedure that leads a subject to make 
inferences about the purpose of an experiment and to respond in accordance with—or in 
some cases, contrary to—the perceived purpose. Subjects are inveterate problem solvers. 
When they are told to perform a task, the majority will try to figure out what is expected 
of them and perform accordingly. Demand characteristics can result from rumors about an 
experiment, what subjects are told when they sign up for an experiment, the laboratory 
environment, or the communication that occurs during the course of an experiment. 
Demand characteristics influence a subject’s perceptions of what is appropriate or 
expected.

Subject-Predisposition Effects

As I have discussed, an experimenter’s expectations and motives can influence a sub-
ject’s performance, and subjects often respond in ways that they think are appropriate or 
expected by the researcher. There is another source of bias in an experiment. Subjects, 
because of past experience, personality, and so on, come to experiments with a predis-
position to respond in a particular way. I describe four kinds of subject-predisposition 
effects.

Cooperative-subject effect. The first predisposition is that of the cooperative subject 
whose main concern is to please the researcher and be a “good subject.” Cooperative 
subjects are particularly susceptible to the experimenter-expectancy effect. They try, 
consciously or unconsciously, to provide data that support the researcher’s hypothesis. 
This subject predisposition is called the cooperative-subject effect.

Screw you effect. A second group of subjects tends to be uncooperative and may even try 
to sabotage the experiment. Masling (1966) has called this predisposition the “screw you 
effect.” It can result from resentment over being required to participate in an experiment, 
from a bad experience in a previous experiment such as being deceived or made to feel 
inadequate, or from a dislike for the course or the professor associated with the experiment. 
Uncooperative subjects may try, consciously or unconsciously, to provide data that do not 
support the researcher’s hypothesis.
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Evaluation apprehension. A third group of subjects are apprehensive about being 
evaluated. Subjects with evaluation apprehension (Rosenberg, 1965) aren’t interested in 
the experimenter’s hypothesis, much less in sabotaging the experiment. Instead, their 
primary concern is to gain a positive evaluation from the researcher. The data they provide 
are colored by a desire to appear intelligent, well adjusted, and so on and to avoid revealing 
characteristics that they consider undesirable.

Faithful subjects. A fourth group of subjects have been labeled faithful subjects (Fillenbaum, 
1966). Faithful subjects try to put aside their own hypotheses about the purpose of an experiment 
and to follow the researcher’s instructions to the letter. Often they are motivated by a desire to 
advance scientific knowledge. The data produced by overly cooperative or uncooperative 
subjects or by subjects with evaluation apprehension can cause a researcher to draw a wrong 
conclusion. The data of faithful subjects, however, are not contaminated by such predispositions; 
faithful subjects simply try to do exactly what they are told to do.

Placebo Effect

The last source of bias that I describe is the placebo effect. A placebo is an inert substance 
or neutral stimulus that is administered to subjects as if it was the actual treatment condi-
tion. When subjects begin an experiment, they are not entirely naive. They have ideas, 
understandings, and perhaps a few misunderstandings about what will happen. If subjects 
expect that an experimental condition will have a particular effect, they are likely to 
behave in a manner consistent with their expectation. For example, subjects who believe 
that a medication will relieve a particular symptom may report feeling better even though 
they have received a chemically inert substance instead of the medication. Any change in 
the dependent variable attributable to receiving a placebo is called the placebo effect.

In the previous sections, I described a variety of threats to valid inference making: 
threats to statistical conclusion validity, internal validity, and external validity; the exper-
imenter-expectancy effect; demand characteristics; subject-predisposition effects; and the 
placebo effect. This list of threats is far from complete. For a fuller discussion of threats 
to valid inference making, the reader should consult Shadish et al. (2002) and Rosenthal 
(1979). In the following section, I describe some procedures for controlling nuisance vari-
ables and minimizing threats to valid inference making.

1.7 Controlling Nuisance Variables and 
Minimizing Threats to Valid Inference Making

General Approaches to Control

Four general approaches are used to control nuisance variables. One approach is to hold 
the nuisance variable constant for all subjects. Examples are using only male rats of the 
same weight and presenting all instructions to subjects by means of an iPad, computer, or 
DVD player. Although a researcher may attempt to hold all nuisance variables constant, 
inevitably some variable will escape attention.
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A second approach—one that is used in conjunction with the first—is to assign subjects 
randomly to the experimental conditions. Then known as well as unsuspected sources of 
variation are distributed over the entire experiment and thus do not selectively affect just 
one or a limited number of treatment levels. Random assignment has two other purposes. It 
permits the computation of an unbiased estimate of error effects—those effects not attrib-
utable to the manipulation of the independent variable—and it helps to ensure that the error 
effects are statistically independent. Through random assignment, a researcher creates two 
or more groups of subjects that at the time of assignment are probabilistically similar on the 
average. When random assignment is used, a researcher increases the magnitude of random 
variation among observations to minimize bias, which is the distortion of results in a par-
ticular direction. Random variation can be taken into account in evaluating the outcome of 
an experiment; it is more difficult to account for bias.

A third approach to controlling nuisance variables is to include the variable as one of 
the factors in the experimental design. This approach is illustrated in Section 2.2.

The three approaches for controlling nuisance variables illustrate the application of 
experimental control as opposed to the fourth approach, which is statistical control. In 
some experiments, it may be possible through the use of regression procedures (see 
Chapter 13) to statistically remove the effects of a nuisance variable. This use of statistical 
control is referred to as the analysis of covariance.

Some Specific Approaches to Control

In addition to the four general approaches just described, a variety of other procedures are 
used to control nuisance variables and minimize threats to valid inference making.

Single-blind procedure. In a single-blind experiment, subjects are not informed about 
the nature of their treatment or, when feasible, the purpose of the experiment. A single-
blind procedure helps to minimize the effects of demand characteristics. Sometimes the 
purpose of an experiment cannot be withheld from subjects because of informed consent 
requirements that are imposed on the researcher. (Informed consent requirements are 
discussed in Section 1.8.)

Double-blind procedure. In a double-blind experiment, neither the subjects nor the 
researcher are informed about the nature of the treatment that the subjects receive. For 
example, in a drug study, the dose levels and placebo can be coded so that those 
administering the drug and those receiving the drug cannot identify the condition that is 
administered. A double-blind procedure helps to minimize experimenter-expectancy 
effects and demand characteristics.

Partial-blind procedure. Many treatments are of such a nature that they are easily 
identified by a researcher. In this case, a partial-blind procedure can be used in which 
the researcher does not know until just before administering the treatment level which 
level will be administered. In this way, experimenter-expectancy effects are minimized 
until the administration of the treatment level.



23CHAPTER 1  Research Strategies and the Control of Nuisance Variables

Deception. Deception occurs when subjects are not told the relevant details of an 
experiment or when they are told that the experiment has one purpose when in fact the 
purpose is really something else. Deception is used to direct a subject’s attention away 
from the purpose of an experiment so as to minimize the effects of demand characteristics. 
Deception should never be used without a prior careful analysis of the ethical ramifications. 
(Ethical issues are discussed in Section 1.8.)

Disguised-experiment technique (unobtrusive experimentation). In the disguised-
experiment technique, the subjects are not aware that they are participating in an 
experiment. The naturalistic-observation research strategy described in Section 1.3 is an 
example of this approach to minimizing the bias that might result from reactive 
arrangements and demand characteristics.

Multiple researchers. In some research areas, the characteristics of a researcher such as 
appearance, personality, inexperience, and so on can affect the results that are obtained. 
These researcher characteristics can seriously limit the generalizability of results. If 
several researchers are used, the researchers can be included as one of the variables in the 
experiment, and the significance of the variable can be evaluated.

Debriefing. It is a common practice to hold a postexperimental meeting with subjects at 
which time details of the experiment are shared. During this debriefing, subjects can be 
quizzed concerning their beliefs and expectations about the experiment. Information 
obtained at this time can be used to determine whether demand characteristics could have 
affected the results of the experiment.

Experimenter-expectancy control groups. The magnitude of the experimenter-
expectancy effect can be determined by using several groups of researchers. One group of 
researchers is led to expect one experimental outcome, a second group is led to expect the 
opposite outcome, and a third group is led to believe that the treatment will have no effect 
on the dependent variable. Unfortunately, this procedure can be costly because it involves 
using numerous researchers and subjects.

Unrelated-experiment technique. The unrelated-experiment technique is designed to 
disguise the purpose of an experiment and minimize subject demand characteristics by 
separating the presentation of the independent variable from the measurement of the 
dependent variable. This technique requires subjects to participate in two experiments. In 
the first experiment, the subjects receive the independent variable. Later, the subjects are 
contacted and asked to participate in a second experiment at which time the dependent 
variable is measured. The researcher conveys the impression that the second experiment 
has no relationship to the first experiment.

Quasi-control group. This procedure uses a second control group, called a quasi-control 
group, to assess the effects of demand characteristics. The quasi-control group is exposed 
to all of the instructions and conditions that are given to the experimental group except that 
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the treatment condition of interest is not administered. This group, unlike a regular control 
group, does not receive a placebo. Following the presentations of the instructions, the 
quasi-control subjects are asked to produce the data that they would have produced if they 
had actually received the treatment condition.

In a double-blind experiment, the quasi-control procedure can be carried one step 
further: Subjects can be asked to pretend that they have received the treatment condition 
and to behave accordingly—that is, to be simulators. At the conclusion of the experiment, 
the researcher is asked to identify the real subjects, control subjects, and simulators. 
Comparisons among the groups can be useful in detecting experimenter-expectancy 
effects and demand characteristics.

Yoked control procedure. Researchers would like the experiences of subjects in an 
experiment to be identical except for the independent variable. Unfortunately, it is difficult 
to keep the experiences of all subjects identical when a subject’s behavior determines 
aspects of the experimental situation—for example, the number of shocks received in a 
learning experiment. A yoked control procedure allows a researcher to match two 
subjects on some important aspects of the experience they have in an experiment. In this 
procedure, two subjects—an active subject and a passive subject—are simultaneously 
exposed to the same experimental condition, but the behavior of only the active subject 
affects the outcome. Both members of the pair are subjected to the consequences of the 
active subject’s behavior. For example, yoked active and passive subjects receive a shock 
each time the active subject makes an incorrect response, thus controlling the variable of 
number of shocks received.

1.8 Ethical Treatment of Subjects

In recent years, the research community has witnessed a renewed resolve to protect the 
rights and interests of humans and animals. Codes of ethics for research with human sub-
jects have been adopted by a number of professional societies. Of particular interest are 
those of the American Educational Research Association (2011), American Evaluation 
Association (2008), American Psychological Association (2002), American Sociological 
Association (1999), and American Statistical Association (1999). These codes specify 
what is required and what is forbidden. In addition, they point out the ideal practices of
the profession as well as ethical pitfalls. The 1970s saw the passage of laws to govern the 
conduct of research with human subjects. One law, which was originally enforced by the 
U.S. Department of Health, Education, and Welfare (HEW), now the Department of 
Health and Human Services (HHS), requires that all research funded by HHS involving 
human subjects be reviewed by an institutional review board (Weinberger, 1974, 1975). As 
a result, most institutions that conduct research have human subjects committees that 
screen all research proposals. These committees can disapprove research proposals or 
require additional safeguards for the welfare of subjects.

In addition to codes of ethics of professional societies, legal statutes, and peer review, 
perhaps the most important regulatory force within society is the individual researcher’s 
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ethical code. Researchers should be familiar with the codes of ethics and statutes relevant 
to their research areas and incorporate them into their personal codes of ethics.

Space does not permit an extensive examination of ethical issues here. For this the 
reader should consult the references above and the thorough and balanced treatment by 
Diener and Crandall (1978). However, I cannot leave the subject without listing some 
general guidelines.

 1. A researcher should be knowledgeable about issues of ethics and values, take these 
into account in making research decisions, and accept responsibility for decisions 
and actions that have been taken. The researcher also is responsible for the ethical 
behavior of collaborators, assistants, and employees who have parallel obligations.

 2. Subjects should be informed of aspects of research that might be expected to influ-
ence their willingness to participate. Failure to make full disclosure places an 
added responsibility on the researcher to protect the welfare and dignity of the 
subject. Subjects should understand that they have the right to decline to partici-
pate in an experiment and to withdraw at any time; pressure should not be used to 
gain cooperation.

 3. Research subjects should be protected from physical and mental discomfort, harm, 
and danger. If risk of such consequences exists, a researcher must inform the sub-
ject of this. If harm does befall a subject, the researcher has an obligation to 
remove or correct the consequences.

 4. Special care should be taken to protect the rights and interests of less powerful 
subjects such as children, minorities, patients, the poor, and prisoners.

 5. Research deception should never be used without a prior careful ethical analysis. 
When the methodological requirements of a study demand concealment or decep-
tion, the researcher should take steps to ensure the subject’s understanding of the 
reason for this action and afterward restore the quality of the relationship that 
existed. Where scientific or other compelling reasons require that this information 
be withheld, the researcher acquires a special responsibility to ensure that there are 
no damaging consequences for the subject.

 6. Private information about subjects may be collected only with their consent. All 
such research information is confidential. Publication of research results should be 
in a form that protects the subject’s identity unless the subject agrees otherwise.

 7. After data are collected, the researcher must provide the subjects with information 
regarding the nature of the study and relevant findings.

 8. Results of research should be reported accurately and honestly, without omissions 
that might affect their interpretation.

A number of guides for research with animals have been published. Those engaged in 
such research should be familiar with the American Psychological Association’s (1996) 
Guidelines for Ethical Conduct in the Care and Use of Animals.
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1.9 Review Exercises8

 1. Terms to remember:

 a. statistical hypothesis (1.1)9  b. experimental unit (1.1)

 c. experimental design (1.1)  d. analysis of variance (1.2)

 e. independent variable (1.2)  f. dependent variable (1.2)

 g. quantitative independent  h. qualitative independent
variable (1.2)   variable (1.2)

 i. ANOVA (1.2)  j. nuisance variable (1.2)

 k. bias (1.2)  l. error variance (1.2)

 m. experiment (1.3)  n. quasi-experiment (1.3)

 o. survey (1.3)  p. case study (1.3)

 q. naturalistic observation (1.3)  r. ex post facto study (1.4)

 s.    retrospective and prospective  t.  retrospective cohort
  studies (1.4)   study (1.4)

 u. case-control study (1.4)  v. longitudinal study (1.4)

 w. cross-sectional study (1.4)  x. cohort (1.4)

 y. longitudinal-overlapping study (1.4)  z. time-lag study (1.4)

 aa. time-series study (1.4) ab. single-case study (1.4)

 ac. statistical conclusion validity (1.5) ad. internal validity (1.5)

 ae. construct validity (1.5) af. external validity (1.5)

 ag. statistical regression (1.5) ah. demand characteristics (1.6)

 ai. cooperative-subject effect (1.6) aj. screw you effect (1.6)

 ak. evaluation apprehension effect (1.6) al. faithful subject (1.6)

 am. placebo effect (1.6) an. error effects (1.7)

 ao. single-blind experiment (1.7) ap. double-blind experiment (1.7)

 aq. partial-blind procedure (1.7)  ar. quasi-control group (1.7)

 as. yoked control procedure (1.7)

 *2. [1.1] For each of the following, identify the experimental unit (EU) and the obser-
vational unit (OU).

 *a. Fraternities at a large state university were randomly sampled and the 
members asked to complete several scales of the California Psychological 
Inventory.

8Problems or portions thereof for which answers are given in Appendix F are denoted by *.
9The numbers in parentheses indicate the section in which the term is fi rst described.
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 *b. Cars at a roadblock were stopped at random and the occupants searched for 
illegal drugs.

 c. Twenty students in an introductory psychology class were selected by 
random sampling and asked to participate in an experiment.

 d. The time to run a straight-alley maze was recorded for each of five randomly 
sampled rats from 10 cages.

 e. Telephone numbers obtained by random sampling from a directory were 
called and the respondents asked their political preference.

 *3. [1.2] Which of the following are acceptable research hypotheses?

 *a. Right-handed people tend to be taller than left-handed people.

 *b. Behavior therapy is more effective than hypnosis in helping smokers kick the 
habit.

 c. Most clairvoyant people are able to communicate with beings from outer 
space.

 d. Rats are likely to fixate an incorrect response if it is followed by an intense 
noxious stimulus.

 *4. [1.2] For each of the following studies, identify the (i) independent variable, 
(ii) dependent variable, and (iii) possible nuisance variables.

 *a. Televised scenes portraying physical, cartoon, and verbal violence were 
shown to 20 preschool children. The facial expressions of the children were 
videotaped and then classified by judges.

 *b. Power spectral analyses of changes in cortical electroencephalogram (EEG) 
were made during a 1- to 5-hour period of morphine administration in 
10 female Sprague-Dawley rats.

 c. The effects of four amounts of flurazepam on hypnotic suggestibility in men 
and women were investigated.

 d. The keypecking rates of 20 female Silver King pigeons on fixed ratio rein-
forcement schedules of FR10, FR50, and FR100 were recorded.

 *5. [1.2] For the independent variables in Exercise 4, indicate (i) which are quantita-
tive and (ii) which are qualitative.

 6. [1.3] (a) List the ways in which experiments and quasi-experiments differ.

(b) Why wasn’t the Newburgh-Kingston Caries-Fluorine Study an experiment?

 7. [1.3] Describe how you would design the study described in Exercise 4a (a) as an 
experiment and (b) as a naturalistic observation study.

 *8. [1.3–1.4] (i) Classify each of the following according to the most descriptive or 
definitive category in Sections 1.3 and 1.4: Use only one classification. (ii) What 
features of the studies prompted your classification?
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 *a. The effect of participation in the Boy Scouts, the independent variable, on 
the propensity for assuming leadership roles as an adult was investigated for 
a random sample of 400 men who were lifelong residents of Columbus, 
Ohio, and between the ages of 30 and 60. The subjects were classified as 
having held or not held a leadership role during the previous 5-year period. 
Records were then used to determine those men who had participated in the 
Boy Scouts.

 *b. In a study of 86 lonely people, it was found that they display some of the 
characteristics of shy people: Lonely people disclose less personal informa-
tion about themselves to opposite-sex friends than do nonlonely people, and 
they use inappropriate levels (too intimate or too impersonal) of self- 
disclosure in initial interactions.

 *c. Two hundred thirty-two sixth graders took a test that measured arithmetic 
achievement. Two hundred of the students were matched on the basis of their 
achievement scores. One member of each pair was randomly assigned to 
participate in a conventional arithmetic instruction program; the other mem-
ber of the pair participated in an experimental arithmetic program. At the end 
of the semester, it was found that the arithmetic achievement scores of the 
students who participated in the experimental arithmetic program were 
higher than those of the other sample of students, t(99) = 2.358, p = .020, 
g = .54.

 *d. Job performance ratings of graduates of a police academy were obtained for 
six classes from 2005 to 2010.

 e. Cabdrivers in a large city were classified as expert drivers (n = 14), average 
drivers (n = 33), or poor drivers (n = 11), the independent variable, based on 
company records of their earnings for the previous 6-month period. All of the 
drivers were men between the ages of 26 and 45 and had driven a cab for at 
least 5 years. According to employment tests, expert drivers were superior to 
average and poor drivers in their ability to perceive large meaningful patterns 
and to do so with such speed that it appeared almost intuitive. Furthermore, 
expert drivers organized their knowledge of the city hierarchically, from 
large geographic areas down to smaller neighborhoods.

 f. According to a national survey, the mean number of movies attended per 
month by 14-year-old boys in the United States is 4.8, with a standard 
deviation of 1.3. Juvenile court records in Houston, Texas, indicate that the 
corresponding statistics for a random sample of 31 boys who appeared in 
court are 4.9Y =  and ˆ 1.6.σ =  The researcher concluded that the dispersion 
of the movie attendance distribution for boys who appeared in the Houston 
juvenile court, one of the dependent variables, was greater than that for the 
nation at large, χ2(30) = 45.44, p < .05.

 g. A survey by the Centers for Disease Control and Prevention in Atlanta, Geor-
gia, found that 27.6% of 15-year-old girls in 1999 had had premarital sex at 
least once. The comparable percentages for 2003 and 2008 were 53% and 
77.2%, respectively.
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 h. The relationship between birth order and participation in dangerous sports 
such as hang gliding, auto racing, and boxing was investigated. Records at 
Florida State University were screened to obtain 50 men who were first-born, 
second-born, and so on and to identify their recreational activities while at 
the university.

 i. Pediatricians in Oklahoma provided the names of 421 new mothers. The 
mothers’ infant feeding practices were subsequently determined. Eight years 
later, elementary school records for 372 of these children indicated that the 
breast-fed babies had a higher level of performance in school than did those 
who had been bottle-fed.

 j. Employment records were used to identify 86 men who had worked for a 
company in Cleveland, Ohio, that manufactured chemicals used as fire retar-
dants. A second group of men, n = 89, was identified who worked for two 
other companies in Cleveland and had no exposure to the chemicals. Evi-
dence of primary thyroid dysfunction was found in four of the exposed men; 
none of the unexposed men showed evidence of thyroid dysfunction.

 *9. [1.5] Identify potential threats to internal validity for these studies.

 *a. Exercise 8a *b. Exercise 8b

 c. Exercise 8d d. Exercise 8g

 e. Exercise 8h f. Exercise 8i

 *10. [1.5] Identify potential threats to external validity in these studies.

 *a. Exercise 8c *b. Exercise 8e

 c. Exercise 8f d. Exercise 8j

 *11. [1.6] For the experiments in Exercise 8, indicate those for which the following are 
potential threats to valid inference making.

 *a. Experimenter-expectancy effect b. Demand characteristics

 c. Subject-predisposition effects

 12. [1.7] Two approaches to controlling nuisance variables and minimizing threats to 
valid inference making are holding the nuisance variable constant and using ran-
dom assignment or random sampling. Indicate which experiments in Exercise 8 
used these approaches and which approach was used.

 13. [1.8] Section 1.8 lists eight general guidelines for the ethical treatment of subjects. 
Recognizing that all of the guidelines are important, select the five that you think 
are the most important and rank order them (assign 1 to the most important guide-
line). What do your selection and rankings reveal about your own ethical code?
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C H A P T E R  2

2.1 Introduction

A variety of research strategies were described in Chapter 1. In this chapter, I describe 
some basic experimental designs that are used with these research strategies. Recall 
from Section 1.1 that an experimental design is a plan for assigning subjects to 
experimental conditions and the statistical analysis associated with the plan. This 
chapter focuses on the assignment of subjects to experimental conditions and on the 
general features of some basic designs. The statistical analysis associated with the 
designs is presented in Chapters 4 to 16.

2.2 Overview of Some Basic 
Experimental Designs

t Test for Independent-Samples Design

One of the simplest experimental designs is the randomization and analysis plan that is 
used with a t test for independent samples. A two-sample t statistic is often used to test 
the null hypothesis that the difference between two population means is equal to some 
value, usually zero. Consider an experiment to help cigarette smokers break the habit. 
The independent variable is two kinds of therapy; the dependent variable is the number 
of cigarettes smoked per day 6 months after therapy. For notational convenience, the two 
kinds of therapy are called treatment A. The levels of treatment A that correspond to the 
specific therapies are denoted by the lowercase letter a and a subscript: a1 denotes cogni-
tive behavioral therapy, and a2 denotes hypnosis. A particular but unspecified level of 
treatment A is denoted by aj, where j ranges over the values 1 and 2. The number of 
cigarettes smoked per day 6 months after therapy by subject i in treatment level j is 
denoted by Yij.

Experimental Designs: 
An Overview
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The null and alternative hypotheses for the cigarette smoking experiment are,
respectively,

H0: μ1 – μ2 = 0

H1: μ1 – μ2 ≠ 0

where μ1 and μ2 denote the mean cigarette consumption of the respective populations. The 
Greek letter μ (mu) is pronounced “mew.” Assume that 30 smokers who want to stop 
smoking are available to participate in the experiment. I want to assign n = 15 smokers to 
each of the p = 2 treatment levels so that each possible assignment has the same probability. 
This can be done by numbering the smokers from 1 to 30 and drawing numbers from the 
random numbers table in Appendix Table E.1. The first n numbers drawn between 1 and 
30 are assigned to treatment level a1; the remaining subjects are assigned to a2. The layout 
for the experiment is shown in Figure 2.2-1. The subjects who received treatment level a1 
are called Group1; those who received treatment level a2 are called Group2. The two 
sample means, .1Y  and .2Y , reflect the effects of the treatment levels that were administered 
to the subjects.1 The computational procedures and assumptions associated with a t test for 
independent samples are discussed in Section 4.2.

1A sample mean for the jth treatment level is obtained by summing over the i = 1, . . . , n subjects in the 
jth treatment level and dividing by n—that is, 1

n
iji Y=∑ /n = . jY . Notice that the i subscript in Yij has 

been replaced by a dot in . jY . The dot indicates that summation was performed over the i subscript. 

Treat.
Level

Dep.
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Group1

⎧
⎪
⎨
⎪⎩

Subject1
Subject2
     

Subject15

a1

a1

a1

Y11

Y21

Y15, 1

.1Y

Group2

⎧
⎪
⎨
⎪⎩

Subject1
Subject2
     

Subject15

a2

a2

a2

Y12

Y22

Y15, 2

.2Y

Figure 2.2-1   Layout for a t test for independent-samples design. The treatment level is 
denoted by Treat. Level; the dependent variable is denoted by Dep. Var. 
Thirty subjects are randomly assigned to two levels of treatment A with 
the restriction that 15 subjects are assigned to each level. The mean 
cigarette consumptions for subjects in treatment levels a1 and a2 are 
denoted by .1Y  and .2Y , respectively.
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Completely Randomized Design

The t test for independent-samples design involves randomly assigning subjects to two 
levels of a treatment. A completely randomized analysis of variance design, described 
next, extends this design strategy to two or more treatment levels. Consider an experiment 
to evaluate the effectiveness of three therapies in helping cigarette smokers break the habit. 
The null and alternative hypotheses for the experiment are, respectively,

H0: μ1 = μ2 = μ3

H1: μj ≠ μj′ for some j and j′,  j ≠ j′

The null hypothesis can be tested by using a completely randomized analysis of variance 
design. This design is denoted by the letters CR-p, where CR stands for completely 
randomized and p is the number of levels of the treatment. In this example, p is equal to 3. 
For convenience, the three kinds of therapy are called treatment A. The three levels of 
treatment A are denoted by the lowercase letter a and a subscript: a1 is behavioral therapy, a2 
is hypnosis, and a3 is a medication delivered by means of a patch applied to a smoker’s back.

Assume that 45 smokers who want to stop smoking are available to participate in the 
experiment. The subjects are randomly assigned to the treatment levels with the restriction 
that 15 subjects are assigned to each therapy. The phrase randomly assigned is important. 
Randomization distributes the idiosyncratic characteristics of the subjects over the three 
treatment levels so that they do not selectively bias the outcome of the experiment. And 
randomization helps to prevent the experimenter’s personal biases from being introduced 
into the experiment. As I discuss in Chapter 3, randomization also helps to obtain an 
un biased estimate of the random error variation in the experiment, and it helps to ensure 
that the error effects are statistically independent. The layout for the experiment is shown 
in Figure 2.2-2. A comparison of the layout in this figure with that in Figure 2.2-1 for a t 
test for independent-samples design reveals that they are the same except that a completely 
randomized design can have more than two treatment levels. When p = 2, the layouts for 
the designs are identical.

Thus far, I have identified the null hypothesis that I want to test, μ1 = μ2 = μ3, and 
described the manner in which the subjects are assigned to the three treatment levels. In 
the following paragraphs, I discuss the composite nature of an observation, describe the 
experimental design model equation for a CR-p design, and examine the meaning of the 
terms treatment effect and error effect.

Experimental design model equation. An observation, denoted by Yij for subject i in 
treatment level j, can be thought of as a composite that reflects the effects of (1) the 
independent variable, (2) individual characteristics of the subject or experimental unit, 
(3) chance fluctuations in the subject’s performance, (4) measurement and recording errors 
that occur during data collection, and (5) any other nuisance variables such as 
environmental conditions that have not been controlled. Consider the cigarette consumption 
of subject 2 in treatment level a2 in Figure 2.2-2. Suppose that 6 months after therapy, this 
subject is smoking three cigarettes a day (Y22 = 3). What factors have affected the value of 
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Y22? One factor is the effectiveness of the therapy received—hypnosis in this case. Other 
factors are the subject’s cigarette consumption prior to therapy, the subject’s level of 
motivation to stop smoking, and the weather during the previous 6 months, to mention 
only a few. In summary, Y22 is a composite that reflects (1) the effects of treatment level 
a2, (2) effects unique to the subject, (3) effects attributable to chance fluctuations in the 
subject’s behavior, (4) errors in measuring and recording the subject’s cigarette 
consumption, and (5) any other effects that have not been controlled.

My conjectures about Y22 or any other observation can be expressed more formally 
by an experimental design model equation. The model equation for the smoking 
experiment is

Yij = μ + αj + εi( j )      (i = 1, . . . , n; j = 1, . . . , p)
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⎧
⎪
⎨
⎪⎩
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Y21

Y15, 1

.1Y
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⎧
⎪
⎨
⎪⎩
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a2

a2

Y12

Y22

Y15, 2

.2Y
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⎧
⎪
⎨
⎪⎩
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Subject2
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a3

a3
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Y13

Y23

Y15, 3
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Figure 2.2-2   Layout for a completely randomized design (CR-3 design). The treatment 
level is denoted by Treat. Level; the dependent variable is denoted by 
Dep. Var. Forty-five subjects are randomly assigned to three levels of 
treatment A, with the restriction that 15 subjects are assigned to each 
level. The mean cigarette consumptions for subjects in treatment levels 
a1, a2, and a3 are denoted by .1Y , .2Y , and .3Y , respectively.
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where

Yij  is the observation for subject i in treatment level j.

μ  is the population grand mean of μ1, μ2, and μ3. You can think of μ as the average 
value around which the treatment means vary; μ is a constant for the 45 scores in 
the experiment.

αj  (alpha) is the treatment effect for population j and is equal to μj – μ, the deviation 
of the grand mean from the jth population mean. The treatment effect reflects the 
effects of the jth therapy and is a constant for the 15 scores in treatment level aj.

εi( j )  (epsilon) is the error effect associated with Yij and is equal to Yij – μ – αj. The error 
effect represents effects unique to subject i, effects attributable to chance fluctuations 
in subject i’s behavior, and any other effects that have not been controlled such as 
environmental conditions—in other words, all effects not attributable to treatment level 
aj. The notation i(j) indicates that the ith subject appears only in treatment level j; 
subject i is said to be nested within the jth treatment level.2

According to the model equation for this completely randomized design, each observation 
is the sum of three parameters μ, αj, and εi( j ). The values of the parameters are unknown, 
but in Section 3.2, I show how they can be estimated from sample data.

The meanings of the terms grand mean, μ, and treatment effect, αj, in the model equation 
seem fairly clear; the meaning of error effect, εi( j ), requires a bit more explanation. Why do 
observations, Yijs, in the same treatment level vary from one subject to the next? This variation 
must be due to differences among the subjects and to other uncontrolled variables because the 
parameters μ and αj in the model equation are constants for all subjects in the same treatment 
level. To put it another way, observations in the same treatment level are different because the 
error effects, εi( j )s, for the observations are different. Recall that error effects reflect idiosyn-
cratic characteristics of the subjects—those characteristics that differ from one subject to 
another—and any other variables that have not been controlled. Researchers attempt to mini-
mize the size of error effects by holding constant sources of variation that might contribute to 
the error effects and by the judicial choice of an experimental design. Designs described in the 
following sections permit a researcher to isolate and remove some sources of variation that 
would ordinarily be included in the error effect.

An experimental design model is an example of a linear model. A linear model con-
sists of two parts: a linear model equation, for example, Yij = μ + αj + εi( j ), and assump-
tions about the model parameters. The assumptions for this model are described in Section 
3.3. The model is called a linear model because the observation, Yij, is equal to a linear 
combination of the model parameters: μ + αj + εi( j ).

t Test for Dependent-Samples Design

The two designs just described require the use of independent samples. Two samples are 
independent if, for example, a researcher samples randomly from two populations or uses 

2Nesting of subjects and treatments is discussed in Section 11.1. 
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a random procedure to assign subjects to two groups. Dependent samples, on the other 
hand, can be obtained by any of the following procedures:

 1. Observing each subject under each treatment level in the experiment—that is, 
obtaining repeated measures on the subjects.

 2. Forming sets of subjects who are similar with respect to a variable that is correlated 
with the dependent variable. This procedure is called subject matching.

 3. Obtaining sets of identical twins or littermates and assigning one member of the 
pair randomly to one treatment level and the other member to the other treatment 
level.

 4. Obtaining pairs of subjects who are matched by mutual selection—for example, 
husband and wife pairs or business partners.

In behavioral, medical, and educational research, the subjects are often people whose 
aptitudes and experiences differ markedly. Individual differences are inevitable, but it is 
often possible to isolate or partition out a portion of these effects so that they do not appear 
in estimates of the error effects. One design for accomplishing this is a t test for dependent 
samples. As the name suggests, the design uses dependent samples. A t test for dependent 
samples also uses a more complex randomization and analysis plan than a t test for 
independent samples, but the added complexity is usually accompanied by greater 
power3—a point that I develop when I discuss a randomized block analysis of variance 
design in the next section.

Let’s reconsider the cigarette smoking experiment. It is reasonable to assume that the 
difficulty in breaking the smoking habit is related to the number of cigarettes that a person 
smokes per day. The design of the experiment can be improved by isolating this variable. 
Suppose that instead of randomly assigning 30 subjects to the treatment levels, I form pairs 
of subjects such that the subjects in each pair have similar cigarette consumptions prior to 
the experiment. The subjects in each pair constitute a block of matched subjects. A simple 
way to match the subjects is to rank them in terms of the number of cigarettes they smoke 
per day. The subjects ranked 1 and 2 are assigned to block 1, those ranked 3 and 4 are 
assigned to block 2, and so on. In this example, 15 blocks of matched subjects can be 
formed. After all of the blocks have been formed, the two subjects in each block are ran-
domly assigned to the two kinds of therapy. The layout for this experiment is shown in 
Figure 2.2-3. If my hunch is correct—that the difficulty in breaking the smoking habit is 
related to the number of cigarettes that a person smokes per day—this design should result 
in a greater likelihood of rejecting the null hypothesis:

H0: μ.1 – μ.2 = 0

than does a t test for independent samples. Later I show that the increased power to reject 
the null hypothesis results from isolating the nuisance variable of number of cigarettes 
smoked per day and thereby reducing the size of the error effects.

3Power refers to the probability of rejecting a false null hypothesis (see Section 2.5).
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Randomized Block Design

Earlier you learned that the layout and randomization procedures for a t test for indepen-
dent samples and a completely randomized analysis of variance design are the same except 
that a completely randomized design can have more than two treatment levels. The same 
comparison can be drawn between a t test for dependent samples and a randomized block 
analysis of variance design. A randomized block analysis of variance design is denoted 
by the letters RB-p, where RB stands for randomized block and p is the number of levels 
of the treatment.

Suppose that in the cigarette smoking experiment, I want to evaluate the effectiveness 
of three kinds of therapy in helping smokers break the habit. The three kinds are behavioral 
therapy, denoted by a1; hypnosis, denoted by a2; and a medication, denoted by a3. I suspect 
that the difficulty in breaking the smoking habit is related to the number of cigarettes that 
a person smokes per day. I can use the blocking procedure described in connection with a 
t test for dependent samples to isolate and control this nuisance variable. If a sample of 45 
smokers is available, I can form 15 blocks that contain three subjects who have had simi-
lar consumptions of cigarettes prior to the experiment. The dependent variable for a sub-
ject in block i and treatment level j is denoted by Yij. The layout for the experiment is 
shown in Figure 2.2-4. A comparison of the layout in this figure with that in Figure 2.2-3 
for a t test for dependent-samples design reveals that they are the same except that the 
randomized block design has p = 3 treatment levels. When p = 2, the layouts for the 
designs are identical.

A randomized block design enables a researcher to test two null hypotheses:

H0: μ.1 = μ.2 = μ.3 (Treatment population means are equal.)

H0: μ1. = μ2. = . . . = μ15. (Block population means are equal.)
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Treat.
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Block1

Block2

Block3

    
Block15

a1

a1

a1

a1

Y11

Y21

Y31

Y1 5, 1

a2

a2

a2

a2

Y12

Y22

Y32

    Y15, 2

.1Y  
     .2Y

Figure 2.2-3   Layout for a t test for dependent samples, where each block contains two 
subjects whose cigarette consumptions prior to the experiment were 
similar. The two subjects in a block are randomly assigned to the 
treatment levels. The mean cigarette consumptions for subjects in 
treatment levels a1 and a2 are denoted by .1Y  and .2Y , respectively.



37CHAPTER 2  Experimental Designs: An Overview

The first hypothesis states that the population means for the three therapies are equal. The 
second hypothesis, which is usually of little interest, states that the population means for 
the 15 levels of the nuisance variable, cigarette consumption prior to the experiment, are 
equal. I expect a test of this null hypothesis to be significant. If the nuisance variable of 
the number of cigarettes smoked prior to the experiment does not account for an 
appreciable proportion of the total variation in the experiment, little has been gained by 
isolating the effects of the variable. Before exploring this point, I describe the experimental 
design model equation for an RB-p design.

Experimental design model equation. The model equation for the smoking experiment is

Yij = μ + αj + πi + εij      (i = 1, . . . , n; j = 1, . . . , p)

where

Yij   is the observation for the subject in block i and treatment level j.

μ  is the population grand mean of μ11, μ21, . . . , μ15, 3. You can think of μ as the 
average value around which the treatment and block means vary; μ is a constant 
for the 45 observations in the experiment.

αj   is the treatment effect for population j and is equal to μ.j – μ, the deviation of the 
grand mean from the jth population treatment mean. The treatment effect reflects 
the effects of the jth therapy and is a constant for the 15 observations in treatment 
level aj.

Treat.
Level

Dep.
Var.

Treat.
Level

Dep.
Var.

Treat.
Level

Dep.
Var.

Block1

Block2

Block3

Block15

a1

a1

a1

a1

Y11

Y21

Y31

Y15, 1

a2

a2

a2

a2

Y12

Y22

Y32

Y15, 2

a3

a3

a3

a3

Y13

Y23

Y33

Y15, 3

.1Y

.2Y

.3Y

.15Y

.1Y .2Y .3Y

Figure 2.2-4  Layout for a randomized block design (RB-3 design), where each block 
contains three matched subjects whose cigarette consumptions prior to the 
experiment were similar. The subjects in a block are randomly assigned to 
the treatment levels. The mean cigarette consumptions for subjects in 
treatment levels a1, a2, and a3 are denoted by .1Y , .2Y , and .3Y , 
respectively; the mean cigarette consumptions for subjects in Block1, 
Block2, . . . , Block15 are denoted by .1Y , .2Y , . . . , .15Y , respectively.
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πi   (pi) is the block effect for population i and is equal to μi. – μ, the deviation of the 
grand mean from the ith population block mean. The block effect reflects the 
effects of smoking a certain number of cigarettes per day prior to therapy.

εij   is the error effect associated with Yij and is equal to Yij – μ – αj – πi. The error 
effect represents effects unique to subject i in treatment level j, effects attributable 
to chance fluctuations in subject i’s behavior, and any other effects that have not 
been controlled such as environmental conditions—in other words, all effects not 
attributable to treatment level j and block i.4

According to the equation for this randomized block design, each observation is the sum of 
four parameters: μ, αj, πi, and εij. The error effect is that portion of an observation that remains 
after the grand mean, treatment effect, and block effect have been subtracted from it; that is, 
εij = Yij – μ – αj – πi. The sum of the squared error effects for this randomized block design,

2 2( )ij ij j iYε = − μ − α − π∑ ∑ ∑ ∑

will be smaller than the sum for the completely randomized design,

2 2( )ij ij jYε = − μ − α∑ ∑ ∑ ∑

if πi is greater than zero for one or more blocks. As I show in Section 3.3, the F statistic 
that is used to test the null hypothesis in analysis of variance can be thought of as the ratio 
of error and treatment effects,

F = ( ) ( )
( )

f f
f

+error effects treatment effects

error effects

where f( ) denotes a function of the effects in parentheses. It is apparent from an 
examination of this ratio that the smaller the sum of the squared error effects, the larger 
the F statistic and, hence, the greater the probability of rejecting a false null hypothesis. 
Thus, by isolating a nuisance variable that accounts for an appreciable portion of the total 
variation in a randomized block design, a researcher is rewarded with a more powerful test 
of a false null hypothesis.

As you have seen, blocking with respect to the nuisance variable, the number of ciga-
rettes smoked per day, enables me to isolate this variable and remove it from the error effects. 
But what if the nuisance variable does not account for any of the variation in the experiment? 
In other words, what if all of the block effects are equal to zero (μi. – μ = 0 for all i)? Then 
the sum of the squared error effects for the randomized block and the completely randomized 
designs will be equal, and the effort used to form blocks of matched subjects in the random-
ized block design will be for naught. The larger the correlation between the nuisance variable 
and the dependent variable, the more likely it is that the block effects account for an appre-
ciable proportion of the total variation in the experiment.

4For now, I ignore the possibility that cigarette consumption interacts with type of therapy. 
Section 8.3 describes an experimental design model equation that includes a treatment-block 
interaction term (απ)ji.
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Latin Square Design

The Latin square design described in this section derives its name from an ancient puzzle 
that was concerned with the number of different ways that Latin letters can be arranged in 
a square matrix so that each letter appears once in each row and once in each column. An 
example of a 3 × 3 Latin square is shown in Figure 2.2-5. I use the letter a and subscripts 
in place of Latin letters. The Latin square design is denoted by the letters LS-p, where 
LS stands for Latin square and p is the number of levels of the treatment. A Latin square 
design enables a researcher to isolate the effects of not one but two nuisance variables. The 
levels of one nuisance variable are assigned to the rows of the square; the levels of the 
other nuisance variable are assigned to the columns. The levels of the treatment are 
assigned to the cells of the square.

c1 c2 c3

b1 a1 a2 a3

b2 a2 a3 a1

b3 a3 a1 a2

Figure 2.2-5      Three-by-three Latin square, where aj denotes one of the j = 1, . . . , p 
levels of treatment A, bk denotes one of the k = 1, . . . , p levels of nuisance 
variable B, and cl denotes one of the l = 1, . . . , p levels of nuisance 
variable C. Each level of treatment A appears once in each row and once 
in each column as required for a Latin square.

Let’s return to the cigarette smoking experiment. With a Latin square design, I can 
isolate the effects of cigarette consumption and the effects of a second nuisance variable—
say, the length of time in years that a person has smoked. The advantage of being able to 
isolate two nuisance variables comes at a price. The randomization procedures for a Latin 
square design, which are described in Chapter 14, are more complex than those for a ran-
domized block design. Also, the number of rows and columns of a Latin square must each 
equal the number of treatment levels, which is three in this example. I can assign three 
levels of cigarette consumption to the rows of the Latin square: b1 is less than one pack 
per day, b2 is one to three packs per day, and b3 is more than three packs per day. The other 
nuisance variable, the duration of the smoking habit in years, can be assigned to the col-
umns of the square: c1 is less than 1 year, c2 is 1 to 5 years, and c3 is more than 5 years. 
The dependent variable for the ith subject in the jth treatment level, kth row, and lth col-
umn is denoted by Yijkl. The layout of the design is shown in Figure 2.2-6.

The Latin square design lets me test three null hypotheses:

H0: μ1.. = μ2.. = μ3.. (Treatment population means are equal.)

H0: μ.1. = μ.2. = μ.3. (Row population means are equal.)

H0: μ..1 = μ..2 = μ..3 (Column population means are equal.)
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Treat.
Comb.

Dep.
Var.

Group1
⎧
⎨
⎩

Subject1
     
Subject5

a1b1c1

a1b1c1

Y1111

Y5111

.111Y

Group2
⎧
⎨
⎩

Subject1
     
Subject5

a1b2c3

a1b2c3

Y1123

Y5123

.123Y

Group3
⎧
⎨
⎩

Subject1
     
Subject5

a1b3c2

a1b3c2

Y1132

Y5132

.132Y

Group4
⎧
⎨
⎩

Subject1
     
Subject5

a2b1c2

a2b1c2

Y1212

Y5212

        .212Y

Group9
⎧
⎨
⎩

Subject1
     
Subject5

a3b3c1

a3b3c1

Y1331

Y5331

.331Y

Figure 2.2-6   Layout for a Latin square design (LS-3 design) that is based on the Latin 
square in Figure 2.2-5. The treatment combination is denoted by Treat. 
Comb. Treatment A represents three kinds of therapy, nuisance variable B 
represents the number of cigarettes smoked per day, and nuisance 
variable C represents the length of time in years that a person has 
smoked. Subjects in Group1, for example, received behavioral therapy 
(a1), smoked less than one pack of cigarettes per day (b1), and had 
smoked for less than 1 year (c1). The mean cigarette consumptions for the 
subjects in the nine groups are denoted by .111Y , .123Y , . . . , .331Y .
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The first hypothesis states that the population means for the three therapies are equal. The 
second and third hypotheses make similar assertions about the population means for the two 
nuisance variables: number of cigarettes smoked per day and duration of the smoking habit 
in years. Tests of these nuisance variables are expected to be significant. As discussed earlier, 
if the nuisance variables do not account for an appreciable proportion of the total variation 
in the experiment, little has been gained by isolating the effects of the variables.

Experimental design model equation. The model equation for this version of our 
smoking experiment is

Yijkl = μ + αj + βk + γl + εPooled       (i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , p; l = 1, . . . , p)

where

Yijkl  is the observation for subject i in treatment level j, row k, and column l.

μ  is the population grand mean of μ111, μ123, . . . , μ331. You can think of μ as the 
average value around which the treatment, row, and column means vary; μ is 
a constant for all scores in the experiment.

αj  is the treatment effect for population j and is equal to μj.. – μ, the deviation of the 
grand mean from the jth population treatment mean. The treatment effect reflects 
the effects of the jth therapy and is a constant for the scores in treatment level aj.

βk  (beta) is the row effect for population k and is equal to μ.k. – μ, the deviation 
of the grand mean from the kth population row mean. The row effect reflects 
the effects of smoking a certain number of cigarettes per day prior to therapy.

γl  (gamma) is the column effect for population l and is equal to μ..l – μ, the 
deviation of the grand mean from the lth population column mean. The 
column effect reflects the effects of smoking for a certain number of years 
prior to therapy.

εPooled   is the pooled error effect associated with Yijkl and is equal to Yijkl – μ – αj – 
βk – γl. The nature of this pooled error effect is discussed in Chapter 14.

According to the equation for this Latin square design, each observation is the sum of 
five parameters: μ, αj, βk, γl, and εPooled . The sum of the squared error effects for this Latin 
square design,

2 2( )ijkl j k lYε = − μ − α − β − γ∑ ∑ ∑ ∑ ∑ ∑Pooled

will be smaller than the sum for the randomized block design,

2 2( )ij ij j iYε = − μ − α − π∑ ∑ ∑ ∑

if the combined effects of 2
kβ∑  and 2

lγ∑  are greater than 2
iπ∑ .
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Building block designs. Thus far, I have described three of the simplest analysis of 
variance designs: completely randomized design, randomized block design, and Latin 
square design. I call these three ANOVA designs building block designs because all 
complex ANOVA designs can be constructed by modifying or combining these simple 
designs. Furthermore, the randomization procedures, data analysis procedures, and 
assumptions for complex ANOVA designs are extensions of those for the three building 
block designs. The following section provides a preview of a factorial design that is 
constructed from two completely randomized designs.

Completely Randomized Factorial Design

Factorial designs differ from those described previously because two or more treatments can be 
evaluated simultaneously in a single experiment.5 The simplest factorial design from the stand-
point of randomization procedures, data analysis, and assumptions is based on a completely 
randomized analysis of variance design and hence is called a completely randomized factorial 
design. A two-treatment, completely randomized factorial design is denoted by the letters 
CRF-pq, where the letters CR denote the building block design, F indicates that the design is a 
factorial design, and p and q stand for the number of levels of treatments A and B, respectively.

Consider an experiment to evaluate the effects of two treatments on the speed of read-
ing. Let treatment A consist of two levels of room illumination: a1 is 15-foot candles and 
a2 is 30-foot candles. Treatment B consists of three levels of type size: b1 is 9-point type, 
b2 is 12-point type, and b3 is 15-point type. This design is designated by the letters CRF-
23, where 2 is the number of levels of treatment A and 3 is the number of levels of treat-
ment B. The layout for the design is obtained by combining the treatment levels of a CR-2 
design with those of a CR-3 design so that each treatment level of the CR-2 design appears 
once with each level of the CR-3 design. The resulting CRF-23 design has 2 × 3 = 6 treat-
ment combinations as follows: a1b1, a1b2, a1b3, a2b1, a2b2, a2b3. When treatment levels 
are combined in this way, the treatments are said to be completely crossed. Completely 
crossed treatments are a characteristic of all completely randomized factorial designs. 
Assume that 30 sixth-graders are available to participate in the experiment. The children 
are randomly assigned to the six treatment combinations, with the restriction that five 
children receive each combination. The layout of the design is shown in Figure 2.2-7.

Experimental design model equation. The model equation for the experiment is

Yijk = μ + αj + βk + (αβ)jk + εi( j k)      (i = 1, . . . , n; j = 1, . . . , p; k =1, . . . , q)

where

Yijk  is the observation for subject i in treatment combination ajbk.

μ  is the population grand mean of μ11, μ12, . . . , μ23. You can think of μ as the 
average value around which the treatment A and B means vary; μ is a constant for 
the 30 observations in the experiment.

5The distinction between a treatment and a nuisance variable is in the mind of the researcher. A 
nuisance variable is included in a design to improve the effi ciency and power of the design; a treat-
ment is included because it is related to the scientifi c hypothesis that a researcher wants to test. This 
distinction has important implications for the statistical analysis, as you will learn.
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αj  is the treatment effect for population aj and is equal to μj. – μ, the deviation of the grand 
mean from the jth population treatment mean. This treatment effect reflects the effects 
of the jth level of room illumination and is a constant for the 15 scores in treatment 
level aj.

βk  is the treatment effect for population bk and is equal to μ.k – μ, the deviation of 
the grand mean from the kth population treatment mean. This treatment effect 
reflects the effects of the kth level of type size and is a constant for the 10 scores 
in treatment level bk.

Treat.
Comb.

Dep.
Var.

Group1
⎧
⎨
⎩

Subject1
     
Subject5

a1b1

a1b1

Y111

Y511

.11Y

Group2
⎧
⎨
⎩

Subject1
     
Subject5

a1b2

a1b2

Y112

Y512

.12Y

Group3
⎧
⎨
⎩

Subject1
     
Subject5

a1b3

a1b3

Y113

Y513

.13Y

Group6
⎧
⎨
⎩

Subject1
     
Subject5

a2b3

a2b3

Y123

Y523

.23Y

Figure 2.2-7  Layout for a completely randomized factorial design (CRF-23 design) where 
30 subjects are randomly assigned to six combinations of treatments A and B, 
with the restriction that five subjects are assigned to each combination. 
Treatment A represents two levels of room illumination; treatment B represents 
three levels of type size. Subjects in Group1, for example, read in a room with 
15-foot candles of illumination (a1), and the material was typed using 9-point 
type (b1). The mean reading speeds for the subjects in the six groups are 
denoted by .11Y , .12Y , . . . , .23Y .
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(αβ)jk  is the interaction effect for populations aj and bk and is equal to μjk – μj. – μ.k 
+ μ. Interaction effects are discussed in Chapter 9.

εi( j k)  is the error effect associated with Yijk and is equal to Yijk – μ – αj – βk – (αβ)jk. 
The error effect represents effects unique to subject i, effects attributable to 
chance fluctuations in subject i’s behavior, and any other effects that have not 
been controlled—in other words, all effects not attributable to treatment level 
aj, treatment level bk, and the interaction of aj and bk.

Null hypotheses. This design lets me test three null hypotheses:

H0: μ1. = μ2. (Treatment A population means are equal.)

H0: μ.1 = μ.2 = μ.3 (Treatment B population means are equal.)

H0: μjk – μj'k – μjk' + μj'k' = 0 for all j and k   (All AB interaction effects equal zero.)

The last hypothesis is unique to factorial designs. It states that the joint effects (interaction) of 
treatments A and B are equal to zero for all combinations of the two treatments. Two treatments 
are said to interact if differences in performance under the levels of one treatment are different 
at two or more levels of the other treatment. Figure 2.2-8 illustrates two possible outcomes of 
the reading experiment: Part (a) illustrates the presence of an interaction, and part (b) illustrates 
the absence of an interaction. When two treatments interact as in Figure 2.2-8(a), a graph of the 
population means always reveals at least two nonparallel lines for one or more segments of the 
lines. I say more about interactions in Chapter 9.

Comparison of CR-p and CRF-pq designs. Earlier I observed that a completely 
randomized design is the building block design for a completely randomized factorial 
design. The similarities between the two designs become apparent when you compare the 
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Figure 2.2-8     Two possible outcomes of the reading experiment. Part (a) illustrates an 
interaction between treatments A and B; part (b) illustrates the absence 
of an interaction. Nonparallelism of the lines for one or more segments 
of the lines signifies interaction.
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randomization procedures for the designs. For both designs, the subjects are randomly 
assigned to the treatment levels (combinations), with the restriction that the same number 
of subjects is assigned to each level (combination).6 When I describe the assumptions for 
the two designs in Chapters 3 and 9, we find additional similarities.

2.3 Classification of Analysis of Variance Designs

In the last section, I described four of the simpler analysis of variance (ANOVA) designs. 
As you will see, this discussion only scratched the surface. There is a bewildering array of 
analysis of variance designs available to researchers. Furthermore, there is no universally 
accepted nomenclature for analysis of variance designs; some designs have as many as 
five different names.7 And most of the design nomenclatures do not indicate which 
ANOVA designs share similar randomization plans and layouts. My design nomenclature 
in Table 2.3-1 is based on the concept of building block designs. Recall that all complex 
designs can be constructed by modifying or combining three simple designs: completely 

6As discussed in Chapter 5, the assignment of the same number of subjects to each treatment level of 
a completely randomized design is desirable but not necessary.
7For example, a completely randomized design has been called a one-way classifi cation design, single-
factor experiment, randomized group design, simple randomized design, and single variable experiment. 

Analysis of Variance Designs Abbreviated Designation

 I. Systematic designs

II. Randomized designs with one treatment

   A. Experimental units randomly assigned to treatment levels 

1. Completely randomized design CR-p

    B.  Experimental units assigned to relatively homogeneous blocks 
or groups prior to random assignment to treatment levels 

1. Balanced incomplete block design BIB-p

2. Crossover design CO-p

3. Generalized randomized block design GRB-p

4. Graeco-Latin square design GLS-p

5. Hyper-Graeco-Latin square design HGLS-p

6. Latin square design LS-p

7. Lattice balanced incomplete block design LBIB-p

8. Lattice partially balanced incomplete block design LPBIB-p

Table 2.3-1  Classification of ANOVA Designs

(Continued)



46 Experimental Design

 9. Lattice unbalanced incomplete block design LUBIB-p

10. Partially balanced incomplete block design PBIB-p

11. Randomized block design RB-p

12. Youden square design YBIB-p

III. Randomized designs with two or more treatments

   A. Factorial designs: designs in which all treatments are crossed

 1. Designs without confounding

 a. Completely randomized factorial design CRF-pq

 b. Generalized randomized block factorial design GRBF-pq

 c. Randomized block factorial design RBF-pq

 2. Design with group-treatment confounding

 a. Split-plot factorial design SPF-p.q

 3. Designs with group-interaction confounding

 a. Latin square confounded factorial design LSCF-pk

 b. Randomized block completely confounded factorial design RBCF-pk

 c  Randomized block partially confounded factorial design RBPF-pk

 4. Designs with treatment-interaction confounding

 a. Completely randomized fractional factorial design CRFF-pk–i

 b. Graeco-Latin square fractional factorial design GLSFF-pk

 c. Latin square fractional factorial design LSFF-pk

 d. Randomized block fractional factorial design RBFF-pk–i

   B.  Hierarchical designs: designs in which one or more 
treatments are nested

 1. Designs with complete nesting

 a. Completely randomized hierarchical design CRH-pq(A)

 b. Randomized block hierarchical design RBH-pq(A)

 2. Designs with partial nesting

 a. Completely randomized partial hierarchical design CRPH-pq(A)r

 b. Randomized block partial hierarchical design RBPH-pq(A)r

 c. Split-plot partial hierarchical design SPPH-p.qr(B)

Table 2.3-1  Classification of ANOVA Designs (Continued)

(Continued)
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randomized design (CR-p), randomized block design (RB-p), and Latin square design 
(LS-p). These three designs provide the organizational structure for the design nomenclature 
and classification system that is outlined in Table 2.3-1. The letter p in the table denotes 
the number of levels of a treatment. If a design includes a second or third treatment, the 
number of their levels is denoted by q and r, respectively.

The category systematic designs in Table 2.3-1 is of historical interest only. According 
to Leonard and Clark (1939), agricultural field research using systematic designs on a 
practical scale dates back to 1834. Prior to the work of R. A. Fisher in the 1920s and 1930s, 
as well as that of J. Neyman and E. S. Pearson on the theory of statistical inference, inves-
tigators used systematic schemes instead of random procedures to assign plots of land or 
other suitable experimental units to treatment levels—hence the designation systematic 
designs for these early field experiments. Over the past 100 years, systematic designs have 
fallen into disuse because designs that use random assignment are more likely to provide 
valid estimates of treatment effects and error effects, and they can be analyzed with the 
powerful tools of statistical inference such as the analysis of variance.

The impetus for the development of better research procedures came from the need 
to improve agricultural techniques. Today the experimental design nomenclature is 
replete with terms from agriculture. Modern principles of experimental design, particu-
larly the random assignment of experimental units to treatment levels, received general 
acceptance as a result of the work of Fisher (1935b) and Fisher and MacKenzie (1922, 
1923). Experimental designs that use the randomization principle are called random-
ized designs. The randomized designs in Table 2.3-1 are subdivided into several distinct 
categories based on (1) the number of treatments, (2) whether the subjects are sub-
divided into homogeneous blocks or groups prior to assigning them to treatment levels, 
(3) the nature of any confounding, (4) the use of crossed versus nested treatments, and 
(5) the use of a covariate.

A quick perusal of Table 2.3-1 reveals why researchers sometimes have difficulty 
selecting an appropriate ANOVA design; there are a lot of designs from which to choose. 
Because of the wide variety of designs available, it is important to identify them clearly in 
research reports. One often sees statements such as “a two-treatment factorial design was 
used.” It should be evident that a more precise description is required. This description 
could refer to any of the 11 factorial designs in Table 2.3-1.

Table 2.3-1  (Continued)

Note: Abbreviated designations are discussed in the text.

IV. Designs with one or more covariates

   A.  Designs that include a covariate have the letters AC added to the 
abbreviated designation.

1. Completely randomized analysis of covariance design CRAC-p

2. Completely randomized factorial analysis of covariance design CRFAC-pq

3. Latin square analysis of covariance design LSAC-p

4. Randomized block analysis of covariance design RBAC-p

5. Split-plot factorial analysis of covariance design SPFAC-p.q
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In Section 2.2, I briefly described 4 of the 34 types of ANOVA designs in Table 2.3-1. 
These descriptions highlighted the ways in which the designs differ: (1) randomization, 
(2) experimental design model equation, (3) number of treatments, (4) inclusion of a nui-
sance variable as a factor in the experiment, and (5) power. In Chapters 4 and 8 to 16, 
I discuss other ways in which designs differ: (1) use of crossed or nested treatments or a 
combination of the two, (2) presence or absence of confounding, and (3) use of a covariate. 
I also identify the following common threads that run through the various designs:

 1. All complex designs can be constructed from the three building block designs: 
completely randomized design, randomized block design, and Latin square design.

 2. There are only four kinds of variation in ANOVA: total variation, between-groups 
variation, within-groups variation, and interaction variation.

 3. All error terms involve either within-groups variation or interaction variation.

 4. The numerator of an F statistic should always estimate one more source of variation 
than the denominator, and that source of variation should be the one that is being tested.

2.4 Selecting an Appropriate Design

Questions to Consider in Selecting an Appropriate Design

Considering the variety of analysis of variance designs available, it is not surprising that 
some researchers approach the selection of an appropriate design with trepidation. 
Selection of the best design for a particular research problem requires a familiarity with 
(1) the research area and (2) the designs that are available. In selecting a design, the fol-
lowing questions need to be considered.

 1. Does the design permit the calculation of a valid estimate of the experimental 
effects and the error effects?

 2. Does the data collection procedure produce reliable results?

 3. Does the design possess sufficient power to permit an adequate test of the statisti-
cal hypotheses?

 4. Does the design provide maximum efficiency within the constraints imposed by 
the experimental situation?

 5. Does the experimental procedure conform to accepted practices and procedures used in 
the research area? Other things being equal, a researcher should use procedures that 
offer an opportunity for comparing the findings with the results of other investigations.

The question “What is the best experimental design to use?” is not easily answered. 
Statistical as well as nonstatistical factors must be considered. The discussion of specific 
designs in Chapters 4 and 8 to 15 should go a long way toward demystifying the selection 
of an appropriate analysis of variance design.
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*2.5 Review of Statistical Inference

Scientific and Statistical Hypotheses

People are by nature inquisitive. We ask questions, develop hunches, and sometimes put 
our hunches to the test. Over the years, a formalized procedure for testing hunches has 
evolved—the scientific method. The procedure involves (1) observing nature, (2) asking 
questions, (3) formulating hypotheses, (4) conducting experiments, and (5) developing 
theories and laws. Let’s examine the third step: formulating hypotheses.

A scientific hypothesis is a testable supposition that is tentatively adopted to account for 
certain facts and to guide in the investigation of others. It is a statement about nature that 
requires verification. Four examples of scientific hypotheses are (1) the child-rearing practices 
of parents affect the personalities of their offspring, (2) college students who are active in 
student government have higher IQs than students who are not involved in student govern-
ment, (3) cigarette smoking is associated with high blood pressure, and (4) children who feel 
insecure engage in overt aggression more frequently than do children who feel secure. These 
hypotheses have three characteristics in common with all scientific hypotheses: (1) They are 
intelligent, informed guesses about phenomena of interest; (2) they can be reduced to the form 
of an if-then statement—for example, “If John smokes, then he will show signs of high blood 
pressure”; and (3) their truth or falsity can be determined by observation or experimentation.

Statistical inference is a form of reasoning in which a rational decision about a scien-
tific hypothesis can be made on the basis of incomplete information. Rational decisions 
often can be made without resorting to statistical inference, as when a scientific hypothesis 
concerns some limited phenomenon that is directly observable—for example, “This rat is 
running.” The truth or falsity of this hypothesis can be determined by observing the rat. 
Many scientific hypotheses, however, refer to phenomena that cannot be directly observed 
or to populations that are so large that it is impossible or impractical to view all of their 
elements—for example, “All rats run under condition X.” It is impossible to observe the 
entire population of rats under condition X. Likewise it is impossible to observe all parents 
rearing their children, all students who are active in student government, all smokers, or all 
insecure children. If a scientific hypothesis cannot be evaluated directly by observing all of 
the elements of a population, then it may be possible to evaluate the hypothesis indirectly 
by statistical inference. This evaluation involves observing a sample from the population of 
interest and making a rational decision about the probable truth or falsity of the scientific 
hypothesis. Classical statistical inference encompasses two complementary topics: hypoth-
esis testing and confidence interval estimation. I consider hypothesis testing first.

The first step in evaluating a scientific hypothesis is to express the hypothesis in the 
form of a statistical hypothesis. You learned in Chapter 1 that a statistical hypothesis is a 
statement about one or more parameters of a population or the functional form of a popu-
lation. For example, “μ ≤ 115” is a statistical hypothesis; it states that the population mean 
is less than or equal to 115. Another statistical hypothesis can be formulated that states that 

*This section provides an elementary review of statistical inference. It assumes a prior exposure to 
both descriptive and inferential statistics. Readers who have a good grasp of statistical inference can 
omit this section. Those who want a more in-depth review can consult Statistics: An Introduction 
(Kirk, 2008). 
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the mean is greater than 115—that is, μ > 115. These hypotheses, μ ≤ 115 and μ > 115, are 
mutually exclusive and exhaustive; if one is true, the other must be false. They are exam-
ples, respectively, of the null hypothesis, denoted by H0, and the alternative hypothesis, 
denoted by H1. The null hypothesis is the one whose tenability is actually tested. If on the 
basis of this test the null hypothesis is rejected, then only the alternative hypothesis 
remains tenable. According to convention, the alternative hypothesis is formulated so that 
it corresponds to the researcher’s scientific hunch. The process of choosing between the 
null and alternative hypotheses is called hypothesis testing.

The Role of Logic in Evaluating a Scientific Hypothesis

Logic plays a key role in evaluating a scientific hypothesis. This evaluation involves a 
chain of deductive and inductive logic that begins and ends with the scientific hypothesis. 
The chain is diagrammed in Figure 2.5-1. First, by means of deductive logic, the scientific 
hypothesis and its negation are expressed as two mutually exclusive and exhaustive statis-
tical hypotheses that make predictions about one or more population parameters or the 
functional form of a population. These predictions, called the null and alternative hypoth-
eses, are made about the population mean, median, variance, and so on. The next step in 
the chain is to obtain a random sample from the population and estimate the population 
parameters of interest. A statistical test is then used to decide whether the sample data are 
consistent with the null hypothesis. If the data are not consistent with the null hypothesis, 
the null hypothesis is rejected; otherwise, it is not rejected.

A statistical test involves (1) a test statistic, (2) a set of hypothesis-testing conven-
tions, and (3) a decision rule that leads to an inductive inference about the probable truth 
or falsity of the scientific hypothesis, which is the final link in the chain shown in Figure 
2.5-1. If errors occur in the deductive or inductive links in the chain of logic, the statistical 

Deductive inference

Random sampling
and estimation of

population parameters

Statistical test

Scientific
hypothesis

Inductive
inference

Statistical
hypotheses

Figure 2.5-1   The evaluation of a scientific hypothesis begins with a deductive 
inference and ends with an inductive inference concerning the probable 
truth or falsity of the scientific hypothesis.
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hypothesis that is tested may have little or no bearing on the original scientific hypothesis, 
or the inference about the scientific hypothesis may be incorrect. Consider the scientific 
hypothesis that cigarette smoking is associated with high blood pressure. If this hypothesis 
is true, then a measure of central tendency such as mean blood pressure should be higher 
for the population of smokers than for nonsmokers. The statistical hypotheses are

H0: μ1 – μ2 ≤ 0

H1: μ1 – μ2 > 0

where μ1 and μ2 denote the unknown population means for smokers and nonsmokers, 
respectively. The null hypothesis, μ1 – μ2 ≤ 0, states in effect that the mean blood pressure 
of smokers is less than or equal to that of nonsmokers. The alternative hypothesis states 
that the mean blood pressure of smokers is greater than that of nonsmokers. These 
hypotheses follow logically from the original scientific hypothesis. Suppose the researcher 
formulates the statistical hypotheses in terms of population variances, for example,

H0: 
2 2
1 2σ − σ  ≤ 0

H1: 
2 2
1 2σ − σ  > 0

where 2
1σ  and 2

2σ  denote the population variances of smokers and nonsmokers, respectively. 
A statistical test of this null hypothesis, which states that the variance of blood pressure for 
the population of smokers is less than or equal to the variance for nonsmokers, would have 
little bearing on the original scientific hypothesis. However, it would be relevant if the 
researcher was interested in determining whether the two populations differ in dispersion.

The reader should not infer that for any scientific hypothesis there is only one suitable 
null hypothesis. A null hypothesis that states that the correlation between the number of 
cigarettes smoked and blood pressure is equal to zero bears more directly on the scientific 
hypothesis than the one involving population means. If cigarette smoking is associated 
with high blood pressure, then there should be a positive correlation between cigarette 
consumption and blood pressure. The statistical hypotheses are

H0: ρ ≤ 0

H1: ρ > 0

where ρ denotes the population correlation coefficient for cigarette consumption and blood 
pressure. So we see that both creativity and deductive skill are required to formulate 
relevant statistical hypotheses.

Sampling Distributions, the Central Limit 
Theorem, and Test Statistics

At this point in the review, I need to examine three concepts that play key roles in statisti-
cal inference: sampling distributions, the central limit theorem, and test statistics.
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Sampling distribution. Inferential statistics are concerned with reasoning from a sample 
to the population—from the particular to the general. Such reasoning is based on a 
knowledge of the sample-to-sample variability of a statistic—that is, on its sampling 
behavior. Before data have been collected, I can speak of a sample statistic such as Y  in 
terms of probability. Its value is yet to be determined and will depend on which 
observations happen to be randomly selected from the population. Thus, at this stage of an 
investigation, a sample statistic is a random variable,8 because it is computed from 
observations obtained by random sampling. Like any random variable, a sample statistic 
has a probability distribution that gives the probability associated with each value of the 
statistic over all possible samples of the same size that could be drawn from the population. 
The distribution of a statistic is called a sampling distribution to distinguish it from the 
probability distribution for, say, an observation. In the discussion that follows, I focus on 
the sampling distribution of the mean.

Central limit theorem. The characteristics of the sampling distribution of the mean are 
succinctly stated in the central limit theorem, one of the most important theorems in 
statistics. In one form, the theorem states that if random samples are obtained from a 
population with mean μ and finite standard deviation σ, then as the sample size n increases, 
the distribution of Y  approaches a normal distribution with mean μ and standard deviation 
(standard error) equal to / nσ . Probably the most important point is that regardless of the 
shape of the sampled population, the means of sufficiently large samples will be nearly 
normally distributed. Just how large is sufficiently large? The answer depends on the shape of 
the sampled population; the more a population departs from the normal shape, the larger n 
must be. For most populations encountered in the behavioral sciences and education, a sample 
size of 50 to 100 is sufficient to produce a nearly normal sampling distribution of Y . The 
tendency for the sampling distribution of a statistic to approach the normal distribution as n 
increases helps to explain why the normal distribution is so important in statistics.

Test statistics. It is important to distinguish between sample statistics and test statistics. 
The former are used to describe characteristics of samples or to estimate population 
parameters; the latter are used to test hypotheses about population parameters. An example 
of a test statistic is the t statistic:

0 0
ˆ ˆ /Y

Y Yt
n

− μ − μ
= =

σ σ

where Y  is the mean of a random sample from the population of interest, μ0 is the 
hypothesized value of the population mean, σ̂  is an estimator of the unknown population 
standard deviation, n is the size of the sample used to used to compute Y  and σ̂ , and 
ˆ ˆ /Y nσ = σ . ˆ Yσ  is an estimator of the population standard error of the mean, Yσ .

Like all statistics, t has a sampling distribution. If the null hypothesis is true and Y is 
approximately normally distributed or n is large, t is distributed as the t distribution. The 

8A random variable is a numerical quantity whose value is determined by the outcome of a random 
experiment. 



53CHAPTER 2  Experimental Designs: An Overview

distribution is unimodal and symmetrical about a mean of zero. The variance of the t dis-
tribution depends on the sample size or, more specifically, degrees of freedom. The term 
degrees of freedom, denoted by df or ν  (Greek letter nu and pronounced “new”), refers 
to the number of scores whose values are free to vary, as I show in Section 3.2. For now I 
simply note that the degrees of freedom for the t statistic described above are equal to ν = 
n – 1, and the variance of the t distribution is equal to ν/(ν – 2). The t distribution is actu-
ally a family of distributions whose shapes depend on the number of degrees of freedom. 
A comparison of three members of the t family and the standard normal distribution is 
shown in Figure 2.5-2.

0
t

f (t )

ν = ∞ (same as normal distribution)

ν = 12

ν = 4

Figure 2.5-2  Graph of the t distribution for 4, 12, and ∞ degrees of freedom. The 
t distribution for ν = ∞ is identical to the normal distribution.

Hypothesis Testing Using a One-Sample t Test Statistic

Suppose that I am interested in testing the scientific hypothesis that on the average, college 
students who are active in student government at Big Ten universities have higher IQs than 
college students who are not involved in student government. The corresponding statistical 
hypothesis is μ > μ0, where μ denotes the unknown population mean of students who are 
active in student government and μ0 denotes the population mean of college students who 
are not involved. Also assume that the mean IQ of noninvolved college students, μ0, is 
known to equal 115. The first step in testing the scientific hypothesis is to state the null 
and alternative hypotheses:

H0: μ ≤ 115

H1: μ > 115

where μ0 has been replaced by 115, the known population mean IQ of college students who 
are not involved in student government. As written, the null hypothesis is inexact because 
it states a range of possible values for the population mean—all values less than or equal 
to 115. However, one exact value is specified—μ = 115—and that is the value actually 
tested. If the null hypothesis μ = 115 can be rejected, then any null hypothesis in which μ 
is less than 115 also can be rejected. This follows because if μ = 115 is considered 
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improbable because the sample mean exceeds 115, any population mean less than 115 is 
considered even less probable.

The second step in testing a scientific hypothesis is to specify the test statistic. A rela-
tively small number of test statistics are used to evaluate hypotheses about population 
parameters. As you see in Section 3.1, the principal ones are denoted by z, t, χ2 (chi 
square), and F. A test statistic is called a z statistic if its sampling distribution is the stan-
dard normal distribution, a test statistic is called a t statistic if its sampling distribution is 
a t distribution, and so on. The choice of a test statistic is determined by (1) the hypothesis 
to be tested, (2) information about the population that is known, and (3) assumptions about 
the population that appear to be tenable. Which test statistic should be used to test the 
hypothesis μ ≤ 115? Because the hypothesis concerns the mean of a single population, the 
population standard deviation is unknown, and the population is assumed to be approxi-
mately normal, the appropriate test statistic is

0
ˆ /
Yt

n
− μ

=
σ

The next step in the hypothesis testing process is to choose a sample size. I want the 
sample to be large enough but not too large. Later I show that there is a rational way of 
estimating the size of a sample that will be large enough to reject a false null hypothesis. 
For now, I resort to the time-honored practice of arbitrarily specifying a sample size that I 
think is large enough—say, 61. It turns out that this sample size is not large enough. Once 
the test statistic and sample size have been specified, the sampling distribution can be 
specified: It is the t sampling distribution for n – 1 = 60 degrees of freedom.

When a decision about a population is based on information from a sample, there is 
always the risk of making an error. I might decide that μ > 115 when in fact μ ≤ 115. The 
fourth step in the hypothesis-testing process is to specify an acceptable risk of making this 
kind of error—that is, rejecting the null hypothesis when it is true. According to hypothesis-
testing conventions, a probability of .05 is usually the largest risk a researcher should be 
willing to take of rejecting a true null hypothesis—deciding, for example, that μ > 115 when 
in fact μ ≤ 115. Such a probability, called a level of significance, is denoted by the Greek 
letter α. For α = .05 and H1: μ > 115, the region for rejecting the null hypothesis, called the 
critical region, is shown in Figure 2.5-3. The location and size of the critical region are 
determined, respectively, by the alternative hypothesis and α. A decision to adopt the .05, 
.01, or any other level of significance is based on hypothesis-testing conventions that have 
evolved since the 1920s. I return to the problem of selecting a significance level later.

The final step in testing H0: μ ≤ 115 is to obtain a random sample of size 61 from the 
population of students who are active in student government at Big Ten universities, com-
pute the test statistic, and make a decision. The decision rule is as follows:

Reject the null hypothesis if the test statistic falls in the critical region; otherwise, 
do not reject the null hypothesis. If the null hypothesis is rejected, conclude that 
the mean IQ of students who are active in student government at Big Ten 
universities is higher than that of college students who are not involved; if the 
null hypothesis is not rejected, do not draw this conclusion.
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The procedures just described for testing H0: μ ≤ 115 can be summarized in five steps 
and a decision rule:

Step 1. State the statistical hypotheses:  H0: μ ≤ 115
  H1: μ > 115

Step 2.  Specify the test statistic:  0 ˆ( ) / ( / )t Y n= − μ σ   because I want 
to test μ ≤ 115, σ is unknown, the sam-
ple is random, and I assume that the 
population of Y is approximately normal

Step 3.   Specify the sample size: n = 61
  and the sampling distribution:  t distribution with ν = n – 1 = 60 because 

σ is unknown and must be estimated 
from a sample, and I assume that the 
population distribution of Y is approxi-
mately normal

Step 4. Specify the level of significance: α = .05

Step 5.  Obtain a random sample of size n, 
compute t, and make a decision.

Decision rule:

Reject the null hypothesis if t falls in the upper 5% of the sampling 
distribution of t; otherwise, do not reject the null hypothesis. If the null 

−2 −1 0
t

1−3 2 3

Don’t reject H0 Reject H0

Critical region
α = .05

f (t )

Critical value, t.05,60 = 1.671

Figure 2.5-3  Sampling distribution of the t statistic, given that the null hypothesis is 
true. The critical region, which corresponds in this example to the upper 
.05 portion of the sampling distribution, defines values of t that are 
improbable if the null hypothesis μ ≤ 115 is true. Hence, if the t statistic 
falls in the critical region, the null hypothesis is rejected. The value of t for 
61 – 1 = 60 degrees of freedom that cuts off the upper .05 portion of the 
sampling distribution is called the critical value and is denoted by t.05,60. 
This value can be found in the t table in Appendix Table E.3 and is 1.671.
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hypothesis is rejected, conclude that the mean IQ of students who are 
active in student government at Big Ten universities is higher than that 
of college students who are not involved; if the null hypothesis is not 
rejected, do not draw this conclusion.

Computational Example for t Test

I now illustrate the use of

0
ˆ /
Yt

n
− μ

=
σ

where
2

1
( – )

ˆ
–1

n
i

i
Y Y

n
=
∑

σ =

to test the hypothesis μ ≤ μ0. Recall that Y  is the mean of a random sample from the 
population of interest, μ0 is the hypothesized value of the population mean, σ̂  estimates 
the unknown population standard deviation, n is the size of the sample used to compute 
Y  and σ̂ , and μ is the unknown mean of the population.

Assume that a random sample of 61 students who are active in student government 
has been obtained from the population of college students at the Big Ten universities and 
that the sample estimates of the population mean and standard deviation are, respectively, 
117 and 12.5. The number 117 is called a point estimate of μ; it is the best guess I can 
make about the unknown value of μ. How improbable is a sample mean of 117 if the 
population mean is really 115? Would a mean of 117 occur five or fewer times in 100 
experiments by chance? Stated another way, is it reasonable to believe that the population 
mean is really less than or equal to 115 if I have obtained a sample mean of 117? To answer 
this question, I compute a t statistic. If the t falls in the upper 5% of the sampling distribu-
tion of t, I have reason to believe that μ is not equal to 115. Such a result would occur five 
or fewer times in 100 by chance.

The t statistic for the example is

0 117 115 2 1.25
ˆ 1.60/ 12.5 / 61
Yt

n
− μ −= = = =

σ

According to the t table in Appendix E.3, the value of t that cuts off the upper .05 region 
of the sampling distribution for 61 – 1 = 60 degrees of freedom is 1.671. This value of t, 
called the critical value, is denoted by t.05, 60, where the subscript .05 refers to the 
proportion of the sampling distribution that lies above the critical value and 60 is the 
degrees of freedom associated with the denominator of the t statistic. Because t = 1.25 is 
less than t.05, 60 = 1.671, the observed t falls short of the upper .05 critical region. The 
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critical region is shown in Figure 2.5-3. According to my decision rule, I fail to reject the 
null hypothesis and therefore conclude that the sample data do not support the hypothesis 
that the mean IQ of students who are active in student government at Big Ten universities 
is higher than that of college students who are not active in student government. Two 
points need to be emphasized. First, I have not proven that the null hypothesis is true—
only that the evidence does not warrant its rejection. Second, my conclusion has been 
restricted to the population from which I sampled, namely, college students at Big Ten 
universities.

Three explanations can be advanced to account for my failure to reject the null 
hypothesis: (1) The null hypothesis is true and shouldn’t be rejected; (2) the null hypoth-
esis is false, but the t test lacked sufficient power to reject the null hypothesis; or (3) the 
null hypothesis is false, but the particular sample belied this fact—I obtained an unrepre-
sentative sample from the population of students who are active in student government. In 
the following sections, I examine the second explanation for not rejecting the null hypoth-
esis and discuss a number of concepts that round out my review of hypothesis testing.

One-Tailed and Two-Tailed Tests

A statistical test for which the critical region is in either the upper or the lower tail of the 
sampling distribution is called a one-tailed test. If the critical region is in both the upper 
and lower tails of the sampling distribution, the statistical test is called a two-tailed test.

A one-tailed test is used whenever the researcher makes a directional prediction 
about the phenomenon of interest—for example, that the mean IQ of students who are 
active in student government is higher than that of noninvolved students. The statistical 
hypotheses associated with this scientific hypothesis are

H0: μ ≤ μ0

H1: μ > μ0

These hypotheses are called directional hypotheses or one-sided hypotheses. The region 
for rejecting the null hypothesis is shown in Figure 2.5-3. If the scientific hypothesis stated 
that students who are active in student government have lower IQs than noninvolved 
students, the following statistical hypotheses would be appropriate:

H0: μ ≥ μ0

H1: μ < μ0

The region for rejecting this null hypothesis is shown in Figure 2.5-4(a). To reject the null 
hypothesis, an observed t statistic would have to be less than or equal to the critical value 
–t.05,60 = –1.671.

Often researchers do not have sufficient information to make a directional prediction 
about a population parameter; they simply believe the parameter is not equal to the value 
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specified by the null hypothesis. This situation calls for a two-tailed test. The statistical 
hypotheses for a two-tailed test have the following form:

H0: μ = μ0

H1: μ ≠ μ0

These hypotheses are called nondirectional hypotheses or two-sided hypotheses. For 
two-sided hypotheses, the regions for rejecting the null hypothesis are in both the upper 

−2 −1 0

(a)

t
1−3 2 3

Don’t reject H0Reject H0

Critical region
α = .05
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−t.05,60 = −1.671
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1−3 2 3

Don’t reject H0Reject
H0
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H0

Critical region
α/2 = .025

Critical region
α/2 = .025
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−t.05/2,60 = −2.000 t.05/2,60 = 2.000

Figure 2.5-4   (a) Critical region of the t statistic for a one-tailed test; H0: μ ≥ μ0; H1: 
μ < μ0; α = .05. (b) Critical regions for a two-tailed test; H0: μ = μ0; H1: 
μ ≠ μ0; α = .025 + .025 = .05.
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and the lower tails of the sampling distribution. The two-tailed critical regions are shown 
in Figure 2.5-4(b).

In summary, a one-sided or directional hypothesis is called for when the researcher’s 
original hunch is expressed in such terms as “more than,” “less than,” “increased,” or 
“decreased.” Such a hunch indicates that the researcher has quite a bit of knowledge about 
the research area. This knowledge could come from previous research, a pilot study, or 
perhaps a theory. If the researcher is interested only in determining whether the indepen-
dent variable affects the dependent variable without specifying the direction of the effect, 
a two-sided or nondirectional hypothesis should be used. Generally, significance tests in 
the behavioral sciences are two-tailed because most researchers lack the information nec-
essary to formulate directional predictions.

One- and Two-Tailed Tests and Power

How does the choice of a one- or two-tailed test affect the probability of rejecting a false 
null hypothesis? A researcher is more likely to reject a false null hypothesis with a one-
tailed test than with a two-tailed test if the critical region has been placed in the correct 
tail. A one-tailed test places all of the α area, say .05, in one tail of the sampling distribu-
tion. A two-tailed test divides the α = .05 area between the two tails with .025 in one tail 
and .025 in the other tail. To illustrate, assume that α = .05 and the following hypotheses 
for a two-tailed test have been advanced:

H0: μ = μ0

H1: μ ≠ μ0

If the t statistic falls in either the upper or lower .025 region of the sampling distribution, 
the result is said to be significant at the .05 level of significance because .025 + .025 = .05. 
The values of t for 60 degrees of freedom that cut off the upper and lower .05/2 = .025 
regions are t.05/2, 60 = 2.000 and .05/2, 60t−  = –2.000, respectively. An observed t statistic is 
significant at the .05 level if its value is greater than or equal to 2.000 or less than or equal 
to –2.000 or, more simply, if its absolute value, | |t , is greater than or equal to 2.000.

Now consider the hypotheses for a one-tailed test where the researcher believes that 
the population mean is less than μ0.

H0: μ ≥ μ0

H1: μ < μ0

Again, let α  = .05. If the t statistic falls in the lower tail of the sampling distribution—that 
is, if t is less than or equal to –1.671—the result is said to be significant at the .05 level of 
significance. The critical regions and critical values for the one- and two-tailed tests are 
shown in Figures 2.5-4(a) and (b), respectively. From an inspection of these figures, it 
should be apparent that the difference Y  – μ0 necessary to reach the critical region for a 
two-tailed test is larger than that required for a one-tailed test. Consequently, a researcher 
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is less likely to reject a false null hypothesis with a two-tailed test than with a one-tailed 
test.

The term power refers to the probability of rejecting a false null hypothesis. A one-tailed 
test is more powerful than a two-tailed test if the researcher’s hunch about the true difference 
μ – μ0 is correct—that is, if the alternative hypothesis places the critical region in the correct tail 
of the sampling distribution. If the directional hunch is incorrect, the rejection region will be in 
the wrong tail, and the researcher will most certainly fail to reject the null hypothesis even 
though it is false. A researcher is rewarded for making a correct directional prediction and penal-
ized for making an incorrect directional prediction. In the absence of sufficient information for 
using a one-tailed test, the researcher should play it safe and use a two-tailed test.

Type I and Type II Errors

When the null hypothesis is tested, a researcher’s decision will be either correct or incor-
rect. An incorrect decision can be made in two ways. The researcher can reject the null 
hypothesis when it is true; this is called a Type I error. Alternatively, the researcher can 
fail to reject the null hypothesis when it is false; this is called a Type II error. Likewise, 
a correct decision can be made in two ways. If the null hypothesis is true and the researcher 
does not reject it, a correct acceptance has been made; if the null hypothesis is false and 
the researcher rejects it, a correct rejection has been made. The two kinds of correct deci-
sions and the two kinds of errors are illustrated in Table 2.5-1.

The probability of making a Type I error is determined by the researcher when the 
level of significance, α, is specified. If α is specified as .05, the probability of making a 
Type I error is .05. The level of significance also determines the probability of a correct 
acceptance of a true null hypothesis because this probability is equal to 1 – α.

The probability of making a Type II error is denoted by β. The probability of making a 
correct rejection, the power, is denoted by 1 – β. These two probabilities are determined by 
a number of variables: (1) the level of significance adopted, α; (2) the size of the sample, n; 
(3) the size of the population standard deviation, σ; and (4) the magnitude of the difference 
between μ and μ0. The two probabilities also are affected by the researcher’s decision to use 

 True Situation

H0 true H0 false

Researcher’s
Decision

Fail to reject H0

Correct acceptance

Probability = 1 – α

Type II error

Probability = β

Reject H0

Type I error

Probability = α

Correct rejection

Probability = 1 – β

Table 2.5-1  Decision Outcomes Categorized
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a one- or two-tailed test. To compute the probability of making a Type II error and power, it 
is necessary either to know μ, the true population mean, or to specify a value of μ that is 
sufficiently different from μ0 to be of practical value. The latter approach is usually necessary 
because in any practical hypothesis-testing situation, μ is unknown. Also, the population 
standard deviation is rarely known. Sample data can be used to estimate this parameter.

Hypothesis testing involves a number of conventions. As you have seen, one conven-
tion is to set the probability of a Type I error equal to or less than .05. Another convention 
is to design an experiment so that the probability of a Type II error is equal to or less than 
.20. If β = .20, the power of the test is 1 – β = .80. A power of .80 is considered by many 
researchers to be the minimum acceptable power. If the probability of rejecting a false null 
hypothesis is less than .80, many researchers would choose not to perform the experiment 
or would redesign the experiment so that its power is greater than or equal to .80. As you 
will see, there are ways to increase power. Before examining these, I compute the power 
of the test of the hypothesis that the mean IQ of college students who are active in student 
government is higher than that of students who are not involved. The statistical hypotheses 
are H0: μ ≤ 115 and H1: μ > 115.

To compute the power of the t test in the student government example, it is necessary 
to know μ, the value of the population mean, or specify a value of μ that is sufficiently 
different from μ0 to be worth detecting. I’ll denote the value of the population mean that I 
am interested in detecting by μ′ . Suppose that this value is μ′  = 117.5. I am saying in 
effect that any IQ difference less than | μ′  – μ0 | = | 117.5 – 115 | = 2.5 IQ points is too 
small to be of practical significance. Recall that for this example, σ̂  = 12.5, n = 61, and 
t.05, 60 = 1.671. To compute an estimate of power, I need one more bit of information—the 
value of Y  that cuts off the upper .05 region of the null hypothesis sampling distribution. 
I’ll denote this mean by .05Y . I can compute .05Y  by rearranging the terms in the formula 

.05, 60t  .05 0 ˆ( ) / ( / )Y n= − μ σ  as follows: 

.05 0 .05, 60 ˆ( / )Y t n= μ + σ
                                      = 115 + (1.671)(12.5/ 61)

 = 117.67

Thus, a mean of 117.67 cuts off the upper .05 region of the null hypothesis sampling 
distribution. In Figure 2.5-5, .05Y  = 117.67 falls on the boundary between the reject and 
nonreject regions.

Estimates of the sizes of the regions corresponding to a Type II error and a correct 
rejection (labeled β̂  and 1 – β̂ in Figure 2.5-5) can be obtained by computing a t statistic 
for the difference .05Y  – μ′  = 117.67  – 117.5. The t statistic is

.05 117.67 117.5 0.17 0.11
ˆ 1.60/ 12.5 / 61

Xt
n

− μ −′= = = =
σ
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The size of the area above t = 0.11, the 1 – β̂  region, can be obtained with the aid of a 
statistical calculator or computer. A simple way to find this area is to use Microsoft’s Excel 
TDIST function. To access this function, select “Insert” in Excel’s Menu bar and then the 
menu command “Function.” You then select the TDIST function from the list of functions. 
After you access the TDIST function,

TDIST(x,deg_freedom,tails)

Y.05 = 117.67

Y.05 = 117.67

Sampling distribution under
the null hypothesis, H0

1 − α = .95 α = .05

μ = 115

μ′ = 117.50

t

β
^
 = .54

1 − β
^
 = .46

Sampling distribution under
the alternative hypothesis when
μ′ = 117.50

f (t )

Don’t reject H0 Reject
H0

Figure 2.5-5  Regions that correspond to making a Type I error, α, and a Type II error, 
β̂ , if μ′ = 117.50. The mean that cuts off the upper .05 region of the 
sampling distribution under H0 is denoted by .05Y  and is equal to 117.67. 
The value of .05Y  is obtained by rearranging the terms in the t formula as 
follows: .05 0 .05,60 ˆ( / )Y t n= μ + σ  115 1.671 (12.5 / 61) 117.67= + = . If for a 
given n, H0, and true H1, the size of the α region is made smaller, the size 
of the β̂  region increases.
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you replace “x” with the absolute value of the t statistic, “deg_freedom” with the degrees 
of freedom for the t statistic, and “tails” with 1 because the 1 – β̂  area always lies in only 
one of the distribution tails. The size of the 1 – β̂  area for the one-tailed t = 0.11 with 
60 degrees of freedom is obtained from

TDIST(0.11,60,1)

and is equal to .46. Thus, if the mean IQ of students who are active in student government 
is  μ′  = 117.5, the probability of making a correct rejection (power) is 1 – β̂  = .49. The 
probability of making a Type II error ( β̂ ) is 1 – (1 – β̂ ) =  1 – .46 = .54. Figure 2.5-5 
shows the regions corresponding to these two probabilities. A power of .46 is 
considerably less than .80, the minimum acceptable power according to convention. 
Table 2.5-2 summarizes the possible decision outcomes when μ = 115 and when μ′ = 
117.5. In this example, the size of the region corresponding to making a correct 
decision is larger when the null hypothesis is true (1 – α = .95) than when the null 
hypothesis is false (1 – β̂  = .46). It also is apparent that the size of the region 
corresponding to making a Type I error (α = .05) is much smaller than the probability 
of making a Type II error ( β̂  = .54). In most research situations, the researcher 
follows the convention of setting α = .05 or α = .01. This convention of choosing a 
small numerical value for α is based on the notion that making a Type I error is bad 
and should be avoided. Unfortunately, as the probability of a Type I error is made 
smaller and smaller, the probability of a Type II error increases and vice versa. This 
can be seen from an examination of Figure 2.5-5. If the vertical line cutting off the 
upper α region is moved to the right or to the left, the region designated β̂  in the 
lower distribution is made, respectively, larger or smaller.

True Situation

μ = 115 μ′ = 117.5

Researcher’s
Decision

μ ≤ 115 

Correct acceptance

1 – α = 1 – .05

 = .95

Type II error

β̂  = .54

μ > 115 

Type I error

α = .05

Correct rejection

1 – β̂  = 1 – .54

 = .46

Table 2.5-2  Decision Outcomes Categorized
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As you have seen, four factors determine the power of a test: (1) the level of signifi-
cance, α; (2) the size of the sample, n; (3) estimate of the population standard deviation, 
σ̂ ; and (4) the magnitude of the difference between μ′ and μ0. The power of a test can be 
increased by making an appropriate change in any of these factors. For example, power 
can be increased by adopting a larger value for α, say .10 or .20; increasing the sample 
size; refining the experimental design or measuring procedure so as to decrease the popu-
lation standard deviation estimate; and increasing the difference between μ′ and μ0 that is 
considered worth detecting. Often the simplest way to increase the power of a statistical 
test is to increase the sample size.

Hypothesis testing involves a number of conventions. I hope that this discussion has 
dispelled the magical aura that surrounds the .05 level of significance; its use in hypothesis 
testing is simply a convention. A level of significance is the probability of committing an 
error in rejecting a true null hypothesis. It says nothing about the importance or practical 
significance of a result.9

Effect Magnitude

Researchers want to answer two basic questions from their research: (1) Is an observed 
treatment effect real, or should it be attributed to chance? and (2) If the effect is real, 
how large is it? The first question concerning whether chance is a viable explanation for 
an observed treatment effect is usually addressed with a null hypothesis significance 
test. A significance test tells the researcher the probability of obtaining the effect or a 
more extreme effect if the null hypothesis is true. The test does not address the question 
of how large the effect is. This question is usually addressed with descriptive statistics 
and measures of effect magnitude. The most widely used measures of effect magnitude 
fall into one of two categories: measures of effect size and measures of strength of asso-
ciation. I describe Cohen’s and Hedge’s measures of effect size here and defer a discus-
sion of measures of effect magnitude to Section 4.4.

In 1969, Cohen introduced the first effect-size measure that was explicitly labeled as 
such. His measure, denoted by d, expresses the size of the absolute difference μ – μ0 in 
units of the population standard deviation,

0d
μ − μ

=
σ

Cohen recognized that the size of the difference μ – μ0 is influenced by the scale of 
measurement of the means. Cohen divided the difference between the means by σ to 
rescale the difference in units of the amount of variability in the data. What made Cohen’s 
contribution unique is that he provided guidelines for interpreting the magnitude of d.

d = 0.2 is a small effect.

d = 0.5 is a medium effect.

d = 0.8 is a large effect.

9For an in-depth examination of practical signifi cance, see Kirk (1996). 
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According to Cohen (1992), a medium effect of 0.5 is visible to the naked eye of a careful 
observer. Several surveys have found that 0.5 approximates the average size of observed 
treatment effects in various fields. A small effect of 0.2 is noticeably smaller than medium but 
not so small as to be trivial. A large effect of 0.8 is the same distance above medium as small is 
below it. These operational definitions turned his measure of effect size into a much more useful 
statistic. A sample estimator of Cohen’s d is obtained by replacing μ with Y and σ with σ̂ .

0
ˆ

Y
d

− μ
=

σ

For experiments with two sample means, Larry Hedges proposed a modification of 
Cohen’s d as follows:

1 2

ˆ
Y Y

g
−

=
σPooled

where

2 2
2 1 1 2 2

1 2

ˆ ˆ( 1) ( 1)ˆ
( 1) ( 1)

n n
n n
− σ + − σ

σ =
− + −Pooled

is a pooled estimator of the unknown population standard deviation. Hedges’s g is 
interpreted the same as Cohen’s d.

From Cohen’s rule of thumb, a small effect for the student IQ data is one for which 
| μ – μ0 | = | 117.5 – 115 | = 2.5, because

117.5 115 2.5 0.2
12.5 12.5

d
−

= = =

Similarly, medium and large effects correspond to | 121.25 – 115 | = 6.25 and | 125 – 115 | = 
10, respectively, because

121.25 115 6.25 0.5
12.5 12.5

d
−

= = =

125 115 10 0.8
12.5 12.5

d
−

= = =

An effect size is a valuable supplement to the information provided by a null hypothesis 
significance test. It helps to provide a context for interpreting research results. A test that is 
significant at the .0001 level of significance loses its luster if the effect turns out to be trivial.

Reporting p Values

Most research reports and computer printouts contain a statistic called a probability 
value, or simply p value. A p value is the probability of obtaining a value of the test 



66 Experimental Design

statistic that is equal to or more extreme than the one observed, given that the null hypoth-
esis is true. Usually p values are obtained with the aid of a statistical calculator or com-
puter statistical program. p values for a variety of sampling distributions also can be 
obtained with Microsoft’s Excel program. To illustrate, I use the Excel TDIST function

TDIST(x,deg_freedom,tails)

described earlier to obtain the p value of the t statistic for the students who are active 
in student government. After the TDIST function has been accessed, I replace x with 
the value of t, which is 1.25, degrees of freedom with 60, and tails with 1 as follows:

TDIST(1.25,60,1)
Excel returns the p value of .108.

In reporting the results of hypothesis tests in the text portion of publications, the 
Publication Manual of the American Psychological Association (American Psychological 
Association, 2010) recommends reporting in order the test statistic that was used, the 
degrees of freedom (in parentheses) associated with the test statistic, the value of the test 
statistic, the exact p value to two or three decimal places, and effect size. For example, in 
describing the results of the college student experiment, I could report that “the difference 
between the means of students who are active in student government and those who are 
not active, 117 – 115 = 2, was not statistically significant, t(60) = 1.25, p = .108, d = 0.16.” 
The Publication Manual says to “report p value less than .001 as p < .001” (American 
Psychological Association, 2010, p. 114).

Earlier, I formulated a hypothesis-testing decision rule in terms of the test statis-
tic and the critical region: Reject the null hypothesis if the test statistic falls in the 
critical region; otherwise, do not reject the null hypothesis. A decision rule also can 
be formulated in terms of a p value and a level of significance. The rule is as follows:

Decision rule:

Reject the null hypothesis if the p value is less than or equal to the preselected 
level of significance, that is, reject the null hypothesis if p ≤ α; otherwise, do not 
reject the null hypothesis.

The inclusion of a p value in a research report provides useful information because it 
enables a reader to discern those significance levels for which the null hypothesis could 
have been rejected. The p values provided in computer printouts are usually appropriate 
for two-sided hypotheses. If your null hypothesis is directional, the two-tailed p value 
given in the computer printout should be divided by 2. Of course, the p value for a one-
sided hypothesis is only meaningful if the data are consistent with the alternative hypoth-
esis. Before leaving the subject of p values, I want to emphasize that a p value is related 
to statistical significance; it says nothing about practical significance.
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Confidence Interval Estimation

Null hypothesis significance testing is the dominant approach to statistical inference in 
psychology, education, and the medical sciences. There is a growing awareness among 
researchers that this approach has some shortcomings.10 A null hypothesis significance test 
addresses the question, Is chance a likely explanation for the results that have been 
obtained? The test does not address the question, Are the results important or useful? There 
are other criticisms. For example, null hypothesis significance testing and scientific infer-
ence address different questions. In scientific inference, what you want to know is the 
conditional probability that the null hypothesis (H0) is true, given that you have obtained 
a set of data (D); that is, Prob(H0|D). What null hypothesis significance testing tells you is 
the conditional proba bility of obtaining these data or more extreme data if the null hypoth-
esis is true, Prob(D|H0). Obtaining data for which Prob(D|H0) is low does not imply that 
Prob(H0|D) also is low.

A third criticism of null hypothesis significance testing is that it is a trivial exer-
cise. John Tukey (1991) said, “All we know about the world teaches us that the 
effects of A and B are always different—in some decimal place. Thus asking ‘Are the 
effects different?’ is foolish” (p. 100). Hence, because all null hypotheses are false, 
Type I errors cannot occur and statistically significant results are ensured if large 
enough samples are used. Bruce Thompson (1998) captured the essence of this view 
when he wrote, “Statistical testing becomes a tautological search for enough subjects 
to achieve statistical significance. If we fail to reject, it is only because we’ve been 
too lazy to drag in enough subjects” (p. 799). In the real world, all null hypotheses 
are false. Hence, a decision to reject simply means that the research methodology had 
adequate power to detect a true state of affairs, which may or may not be a large 
effect or even a useful effect.

The list of criticisms goes on. I mention one more. By adopting a fixed signifi-
cance level such as α = .05, a researcher turns a continuum of uncertainty about a true 
state of affairs into a dichotomous reject/do-not-reject decision. Researchers ordinar-
ily react to a p value of .06 with disappointment and even dismay, but not p values of 
.05 or smaller. Rosnow and Rosenthal’s (1989) comment is pertinent: “Surely, God 
loves the .06 nearly as much as the .05.” Many psychologists believe that an empha-
sis on null hypothesis significance tests and p values distracts researchers from the 
main business of science—understanding and interpreting the outcomes of research. 
An alternative approach to statistical inference using confidence intervals is described 
next.

A confidence interval is a segment or interval on the real number line that has a high 
probability of including a population parameter. Confidence intervals can be either one- or 
two-sided. A one-sided confidence interval is constructed when the researcher has made a 
directional prediction about the population mean; otherwise, a two-sided interval is 
constructed.

10Cumming (2012), Kline (2004), and Nickerson (2000) provide in-depth discussions of these 
shortcomings. 
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The computation of a one-sided confidence interval is illustrated for the mean IQ of 
college students who are active in student government at Big Ten universities. Recall that 
the null hypothesis is

H0: μ ≤ 115

Also, Y  = 117, σ̂  = 12.5, n = 61, and α = .05. A one-sided 95% confidence interval for 
the population mean is11

.05,60 ˆt
Y

n
σ

− < μ

1.671(12.5)117
61

− < μ

114.33 < μ

The number 114.33 is the lower limit of the open confidence interval12 and is denoted by 
LL. I can be fairly confident that the population mean is greater than 114.33. The degree 
of my confidence is represented by the confidence coefficient 100(1 – .05)% = 95%, 
where α = .05 is the level of significance. It helps to visualize the confidence interval as a 
segment on the number line as follows:

115 120 125110

LL = 114.33

                                                         μ

The confidence interval indicates values of the parameter μ that are consistent with the 
observed sample statistic. It also contains a range of values for which the null hypothesis 
is nonrejectable at the .05 level of significance. To put it another way, the confidence 
interval can be used to test all one-sided hypotheses of interest, not just H0: μ ≤ 115. For 
example, I know that H0: μ ≤ 113 and H0: μ ≤ 112 would be rejected, but not H0: μ ≤ 115 
or H0: μ ≤ 116. These decisions follow because 113 and 112 are not included in the confi-
dence interval, whereas 115 and 116 are included.

11See Kirk (2008, pp. 294–295) for the derivation of the confi dence interval. 
12An interval in which the endpoint is not included is called an open interval. 



69CHAPTER 2  Experimental Designs: An Overview

A two-sided confidence interval can be constructed that is analogous to a two-tailed 
test of significance. The interval is given by

/2, /2,ˆ ˆt t
Y Y

n n
α ν α νσ σ

− < μ < +

Suppose that I had proposed a two-sided null hypothesis, H0: μ = 115, for the students who 
are active in student government. A two-sided 100(1 – .05)% = 95% confidence interval 
for the population mean is

2.000(12.5) 2.000(12.5)117 117
61 61

− < μ < +

 113.80 < μ < 120.20

where the lower and upper confidence limits are, respectively, LL = 113.80 and UL = 
120.20. I can be 95% confident that the open interval 113.80 to 120.20 contains the 
population mean. The Publication Manual of the American Psychological Association 
(American Psychological Association, 2010) says to express the confidence interval in the 
text portion of a publication as 95% CI[113.80, 120.20].

I could increase my confidence that the interval includes the population mean by 
replacing t.05/2,60 with t.01/2,60. The resulting interval

2.660(12.5) 2.660(12.5)117 117
61 61

− < μ < +

 112.74 < μ < 121.26

is a 100(1 – .01)% = 99% confidence interval. Notice that as my confidence that I have 
captured μ increases, so does the size of the interval. This is illustrated in the following 
figures.

115 120 125110

LL = 113.80 UL = 120.20

   115 120 125110

LL = 112.74LL = 112.74 UL = 121.26

 95% confidence interval for μ 99% confidence interval for μ

Confidence interval procedures and hypothesis-testing procedures involve the same 
assumptions. And both procedures can be used to test null hypotheses. However, 
confidence interval procedures provide more information about one’s data than do 
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hypothesis-testing procedures. A sample mean and confidence interval provide an estimate 
of the population parameter and a range of values—the error variation—that qualifies the 
estimate. A 100(1 – α)% confidence interval for μ contains all the values of μ0 for which 
the null hypothesis would not be rejected at an α level of significance. All values of μ0 
outside the confidence interval would be rejected.

2.6 Review Exercises

 1. Terms to remember:

  a. t test for independent samples (2.2) b. completely randomized 
      design (2.2)

  c. experimental design model d. linear model (2.2)
  equation (2.2)

  e. repeated measures (2.2) f. subject matching (2.2)

  g. t test for dependent samples (2.2) h. block (2.2)

  i. randomized block design (2.2)  j. Latin square design (2.2)

  k. building block design (2.2) l. completely randomized facto-
    rial design (2.2)

  m. treatment combination (2.2) n. completely crossed treatments  
    (2.2)

  o. randomized design (2.3) p. scientific hypothesis (2.5)

  q. statistical inference (2.5) r. statistical hypothesis (2.5)

  s. null hypothesis (2.5) t. alternative hypothesis (2.5)

  u. hypothesis testing (2.5) v. statistical test (2.5)

  w. random variable (2.5) x. sampling distribution (2.5)

  y. central limit theorem (2.5) z. test statistic (2.5)

 aa. degrees of freedom (2.5) ab. z statistic (2.5)

 ac. t statistic (2.5)  ad. level of significance (2.5)

 ae. critical region (2.5) af. decision rule (2.5)

 ag. point estimate (2.5) ah. critical value (2.5)

 ai. one- and two-tailed tests (2.5) aj. directional prediction (2.5)

 ak. directional hypothesis (2.5) al. nondirectional hypothesis (2.5)
 am. power (2.5)  an. Type I and II errors (2.5)
 ao. correct acceptance (2.5) ap. correct rejection (2.5)
 aq. practical significance (2.5) ar. probability (p) value (2.5)
 as. confidence interval (2.5) at. confidence coefficient (2.5)
 au. open interval (2.5)
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 *2. [2.2] For each of the following experiments or investigations, indicate (i) the type 
of experimental design, (ii) the null hypothesis (exclude nuisance variables), and 
(iii) the experimental design model equation.

 *a. The effects of three kinds of instruction on first-grade students’ tendency to 
help another child were investigated. Forty-two boys were randomly 
assigned to the three kinds of instructions denoted by a1, a2, and a3 with the 
restriction that 14 boys were assigned to each kind of instruction. Boys in the 
a1 instruction group (indirect responsibility group) were told that there was 
another boy alone in an adjoining room who had been told not to climb on a 
chair. Boys in the a2 group were told the same story and in addition were told 
that they were being left in charge and to take care of anything that happened 
(direct responsibility group). All of the boys were given a simple task to 
perform. Shortly after the researcher left the room, there was a loud crash in 
the adjoining room followed by a minute of crying and sobbing. Boys in the 
a3 group were given the same instructions as those in group a2, but the 
sounds from the adjoining room included calls for help (second direct 
responsibility group). The behaviors of the boys were observed from behind 
a one-way mirror and rated in terms of the amount of help offered: 1 = 
offered no help, . . . , 5 = went to the adjoining room. (Experiment suggested 
by Staub, E. A child in distress: The effect of focusing of responsibility on 
children on their attempts to help. Developmental Psychology.)

 *b. Forty-five executives were assigned to one of nine categories on the basis of 
their years of experience (b1 is less than 3 years, b2 is 3 to 6 years, b3 is more 
than 6 years) and educational attainment (c1 is less than 3 years of college, c2 
is a college graduate, c3 has some graduate work). Five executives were in 
each category. The independent variable was type of training used to increase 
speed in composing complex business letters (a1 is preparing an outline of a 
letter prior to dictating it, a2 is making a list of the major points to be covered 
prior to dictating a letter, and a3 is silently dictating a letter prior to dictating 
it). Treatment level a1 was paired with b1 and c1, b2 and c3, and b3 and c2; a2 
was paired with b1 and c2, and so on. The dependent variable was the average 
time taken to dictate five letters following 2 weeks of practice with the 
assigned practice procedure.

 *c. The effects of isolation at 90, 120, 150, and 180 days of age on subsequent 
combative behavior of Mongolian gerbils (Meriones unguiculatus) were 
investigated. Eighty gerbils were randomly assigned to one of the four isola-
tion conditions with 20 in each condition. The number of combative encoun-
ters was recorded when the gerbils were 2 years old. It was hypothesized that 
the number of combative encounters would increase with earlier isolation.

 d. Scores on the Conforming-Compulsive scale of the Millon Clinical Multiaxial 
Inventory are known to be positively correlated with the dependent variable in 
Exercise 2(a). Suppose that this scale was used to form blocks of three boys 
who had similar Conforming-Compulsive scores and that the three boys in 
each block were randomly assigned to the three treatment conditions.
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 e. Dreams of a random sample of 50 English-Canadian and 50 French-Cana-
dian students were analyzed in terms of the proportion of achievement-ori-
ented elements such as achievement imagery, success, and failure. The 
students were matched on the basis of reported frequency of dreaming. It was 
hypothesized that the French-Canadian students’ dreams would contain a 
higher proportion of achievement-oriented elements.

 f. Pictures of human faces posing six distinct emotions (treatment A) were 
obtained. The faces and their mirror reversals were split down the midline, 
and left-side and right-side composites were constructed. This resulted in 12 
pictures. Six hundred introductory psychology students were randomly 
assigned to one of the 12 groups with 50 in each group. Each student rated 
one of the 12 pictures on a 7-point scale in terms of the intensity of the emo-
tion expressed. It was hypothesized that the left-side composites would 
express the most intense emotion.

 g. Ninety Sprague-Dawley rats performed a simple operant barpress response 
and were given partial reinforcement, partial reinforcement followed by 
continuous reinforcement, or partial reinforcement preceded by continuous 
reinforcement. The dependent variable was rate of responding following the 
training condition. The rats were randomly assigned to the experimental 
conditions; there were 30 rats in each condition.

 3. [2.2] In your own words, describe what is meant by the terms (a) grand mean, (b) 
treatment effect, and (c) error effect.

 *4. [2.2] *(a) Under what conditions is the sum of the squared error effects for the 
randomized block and Latin square designs less than the sum for the completely 
randomized design?

 (b) Discuss the relative merits of completely randomized, randomized block, 
and Latin square designs.

 *5. [2.2] List the treatment combinations for the following completely randomized 
factorial designs.

 *a. CRF-24 *b. CRF-222

 c. CRF-33 d. CRF-42

 e. CRF-322

 *6. [2.2] Construct block diagrams similar to those in Figures 2.2-1 through 2.2-7 for 
the following designs.

 *a. t test for independent samples, n = 10 *b. CR-3 design, n = 10

 *c. CRF-32 design, n = 3  d. CR-5 design, n = 6

 e. t test for dependent samples, n = 7  f. RB-4 design, n = 6

 g. CRF-222 design, n = 3  h. LS-3 design, n = 3

 *7. [2.2] Construct block diagrams similar to those in Figures 2.2-1 through 2.2-7 for 
the designs in Exercise 2a–c.
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 8. [2.2] Construct block diagrams similar to those in Figures 2.2-1 through 2.2-7 for 
the designs in Exercise 2d–g.

 9. [2.2] The following data on running time (in seconds) in a straight-alley maze were 
obtained in a CRF-33 design.

a1 a1 a1 a2 a2 a2 a3 a3 a3

b1 b2 b3 b1 b2 b3 b1 b2 b3

. jkY =
 
9 8 5 7 7 5 6 5 5

Magnitude of reinforcement Hours of deprivation

 a1 = small b1 = 10

 a2 = medium b2 = 15

 a3 = large b3 = 20

 a. Graph the interaction.

 b. Give a verbal description of the interaction.

 *10. [2.3] What is the major difference between systematic designs and randomized 
designs?

 *11. [2.3] Criticize the statement: The subjects were randomly assigned to the eight 
treatment combinations in a two-treatment factorial design.

 12. [2.5] (a) Distinguish between a scientific hypothesis and a statistical hypothesis.

(b) According to convention,

 i.  Which of the statistical hypotheses corresponds to the researcher’s 
scientific hunch?

 ii. Which of the statistical hypotheses is actually tested?

 *13. [2.5] Distinguish among the following concepts.

 *a. Sample distribution, population distribution, and sampling distribution

 *b. Sample statistic and test statistic

 *14. [2.5] Suppose that a researcher has a hunch that pregnant women who use drugs 
have babies who weigh less at birth than do drug-free women. Let μ1 and μ2 denote 
the two population means, respectively.

 *a. List the steps that you would use to test the null hypothesis. Let α = .05 and n1 =

n2 = 50. The two-sample test statistic is 
2

1 2 1 2ˆ( ) / (1/ 1/ )t Y Y n n= − σ +Pooled , 

where 2 2 2
1 1 2 2 1 2ˆ ˆ ˆ[( 1) ( 1) ] / [( 1) ( 1)]n n n nσ = − σ + − σ − + −Pooled  and ν = n1 + n2 – 2.

 *b. State the decision rule.
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 *c. Draw the sampling distribution associated with the null hypothesis and indi-
cate the region or regions that lead to rejection and nonrejection of the null 
hypothesis.

 *d. Suppose that the researcher has obtained the following statistics: 1 5.5Y = , 
2 7.0Y = , and ˆ 3.0σ =Pooled . Compute a t statistic and use Microsoft’s Excel 

TDIST function to determine the p value of the statistic. Write a sentence that 
summarizes the results of the research.

 *e. Compute and interpret the effect size where 1 2 ˆ/g Y Y= − σPooled.

 *f. Use the formula

2
1 2 1 2 .05,98

1 2

1 1ˆ( )Y Y t
n n

⎛ ⎞
μ − μ < − + σ +⎜ ⎟

⎝ ⎠
Pooled

  to compute a one-sided 95% confidence interval for μ1 – μ2; let t.05, 98 = 1.66. 
Interpret the confidence interval. What does the confidence interval tell you 
about the tenability of the null hypothesis μ1 – μ2 ≥ 0?

 *g. If the researcher believed that the minimum difference between the popula-
tion means that was worth detecting was 0 1 2 1.5δ = μ − μ = −′ ′ ′ , estimate the 

power of the research methodology. Let 2
.05 0 .05,98

1 2

1 1ˆY t
n n

⎛ ⎞
= δ − σ +⎜ ⎟

⎝ ⎠
Pooled

and .05 0

2

1 2

1 1ˆ

Yt

n n

′− δ=
⎛ ⎞

σ +⎜ ⎟
⎝ ⎠

Pooled

 where δ0 = μ1 – μ2 = 0.

 *h. Make a table like Table 2.5-2 that summarizes the sizes of the regions of 
the sampling distributions associated with the four possible decision out-
comes.

 15. [2.5] For the past several years, the mean arithmetic achievement score for ninth-
graders has been 45 with a standard deviation, σ̂ , equal to 15. After participating 
in an experimental teaching program, a random sample of 27 students had a mean 
score of 52.5 Let μ denote the population mean of the children who participated in 
the experimental program.

 a. List the steps that you would use to test a two-sided null hypothesis. Let 
α = .05.

 b. State the decision rule.

 c. Draw the sampling distribution associated with the null hypothesis and indi-
cate the region or regions that lead to rejection and nonrejection of the null 
hypothesis. Compute and interpret the effect size.

 d. Compute a t statistic and use Microsoft’s Excel TDIST function to determine 
the p value of the statistic. Write a sentence summarizing the results of the 
research.
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 e. Compute and interpret the effect size where 0 ˆ/d Y= − μ σ .

 f. Use the formula

.05/2,26 .05/2,26ˆ ˆt t
Y Y

n n
σ σ

− < μ < +

  to compute a two-sided 95% confidence interval for μ. Interpret the confi-
dence interval. What does the confidence interval tell you about the tenabil-
ity of the null hypothesis μ1 – μ2 = 0?

 g. If the researcher believed that the minimum population mean that was worth 
detecting was μ′ = 52.5, estimate the power of the research methodology.

 h. Make a table like Table 2.5-2 that summarizes the sizes of the regions of the 
sampling distributions associated with the four possible decision outcomes.

 *16. [2.5] Indicate the type of error or correct decision for each of the following.

 *a. A true null hypothesis was rejected.

 *b. The researcher failed to reject a false null hypothesis.

 c. The null hypothesis is false and the researcher rejected it.

 d. The researcher did not reject a true null hypothesis.

 e. A false null hypothesis was rejected.

 f. The researcher rejected the null hypothesis when he or she should have failed 
to reject it.

 17. List the ways that a researcher can increase the power of an experiment. What are 
their relative merits?

 18. [2.5] The effect of playing video racing games or neutral games on cognitions 
associated with risk taking was investigated. The games were played on a Sony 
PlayStation. Sales rankings in computer magazines were used to select the most 
popular games in each category. Forty-seven men at Ludwig-Maximilians 
University, Munich, Germany, were randomly assigned to the two types of games. 
The dependent variable was a paper-and-pencil measure of risk-related cognitions. 
The means, standard deviations, and sample sizes for the men who played the 
video racing games and the neutral games were, respectively, 1 1ˆ7.54, 1.3Y = σ = , 
and n1 = 24 and 2 6.41Y = , 2ˆ 1.2σ = , and n1 = 23. (Suggested by Fletcher, P., & 
Kubitzki, J. Virtual driving and risk taking: Do racing games increase risk-taking 
cognitions, affect, and behaviors? Journal of Experimental Psychology, Applied.)

 a. List the steps that you would use to test the hypothesis that playing video 
racing games increases risk-related cognitions. Let α = .05.

 b. State the decision rule.

 c. Draw the sampling distribution associated with the null hypothesis and indicate 
the region or regions that lead to rejection or nonrejection of the null hypothesis.
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 d. Compute a t statistic and use Microsoft’s Excel TDIST function to determine 
the p value of the statistic. Write a sentence that summarizes the results of 
the research.

 e. Compute and interpret the effect size where 1 2 ˆ/g Y Y= − σPooled .

 f. Use the formula

2
1 2 .05,45 1 2

1 2

1 1ˆ( )Y Y t
n n

⎛ ⎞
− − σ + < μ − μ⎜ ⎟

⎝ ⎠
Pooled

  to compute a one-sided 95% confidence interval for μ1 – μ2. Interpret the 
confidence interval. What does the confidence interval tell you about the 
tenability of the null hypothesis μ1 – μ2 ≤ 0?

 g. If the researcher believed that the minimum difference between the popula-
tion means that was worth detecting was 0 1 2 1.0δ = μ − μ =′ ′ ′ , estimate the 

power of the research methodology. Let 2
.05 0 .05,45

1 2

1 1ˆY t
n n

⎛ ⎞
= δ + σ +⎜ ⎟

⎝ ⎠
Pooled  

and .05 0

2

1 2

1 1ˆ

Yt

n n

′− δ=
⎛ ⎞

σ +⎜ ⎟
⎝ ⎠

Pooled

 where δ0 = μ1 – μ2 = 0 .

 h. Make a table like Table 2.5-2 that summarizes the sizes of the regions of the 
sampling distributions associated with the four possible decision outcomes.

 *19. [2.5] Use Microsoft’s Excel TDIS function, TDIS(x,deg_freedom,tails), to deter-
mine the p value for the following t statistics.

 *a. t = 2.463, n = 32, H0: μ ≤ μ0 *b. t = 2.761, n = 39, H0: μ = μ0

 c. t = 3.553, n = 46, H0: μ ≤ μ0   d. t = 1.659, n = 42, H0: μ = μ0

 *20. [2.5] Use Microsoft’s Excel TINV function, TINV(probability,deg_freedom), to 
determine the value of t that cuts off the critical region for the following signifi-
cance levels. The TINV function provides two-tailed t values. For one-tailed sig-
nificance levels, use 2α in place of α.

 *a. α = .05, n = 48, H0: μ ≤ μ0  *b. α = .01, n = 33, H0: μ = μ0

 c. α = .01, n = 52, H0: μ ≤ μ0 d. α = .001, n = 35, H0: μ = μ0

 *21. [2.5] What advantages do confidence interval procedures have over null hypothesis-
testing procedures?




