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C H A P T E R  4

4.1 Description of the Design

Chapters 1 to 3 introduced some basic concepts and statistical tools that are used in 
experimental design. In this and the following chapters, those designs that appear to have 
the greatest usefulness to researchers in the behavioral sciences, health sciences, and edu-
cation are examined in detail.

One of the simplest experimental designs from the standpoint of data analysis and 
assignment of subjects or experimental units to treatment levels is the completely random-
ized design. The design is denoted by the letters CR-p, where CR stands for completely 
randomized and p is the number of levels of the treatment. The layout for a completely 
randomized design with four treatment levels is shown in Figure 4.1-1.

A CR-p design is appropriate for experiments that meet, in addition to the general assump-
tions of analysis of variance summarized in Section 3.5, the following two conditions:

 1. One treatment with p ≥ 2 treatment levels. The levels of the treatment can differ 
either quantitatively or qualitatively. When the experiment contains only two treat-
ment levels, the design is indistinguishable from the t test for independent-samples 
design that is described in Section 2.2.

 2. Random assignment of experimental units to the treatment levels, with each 
experimental unit designated to receive only one level. The number of experimen-
tal units in each treatment level need not be equal, although this is desirable. 
According to Section 3.5, the F statistic is more robust to violation of some 
assumptions when the sample ns are equal.

It is apparent that the completely randomized design is applicable to a broad range of 
experimental situations. As I discuss in Section 2.2, the design is one of the three building 
block designs that can be used by itself or in combination to form more complex designs. 
An understanding of the completely randomized design is fundamental to understanding a 
number of more complex designs.

Completely Randomized 
Design



126 Experimental Design

Experimental Design Model for a CR-p Design

I describe the model equation for a completely randomized design in Section 2.2 and the 
assumptions for the model in Sections 3.3 and 3.5. Here I elaborate on the assumptions for 
the fixed-effects model.

 1. The model equation ( )ij j i jY = μ + α + ε  (i = 1, . . . , n; j = 1, . . . , p) for a CR-p design 
contains all of the sources of variation that affect observation Yij for subject i in 
treatment level j.

Treat.
Level

 Dep.
Var.

Group1

Subject1
Subject2
     
Subject5

a1
a1

a1

Y11
Y21

Y51

.1Y

Group2

Subject1
Subject2
     
Subject5

a2
a2

a2

Y12
Y22

Y52

.2Y

Group3

Subject1
Subject2
     
Subject5

a3
a3

a3

Y13
Y23

Y53

.3Y

Group4

Subject1
Subject2
     
Subject5

a4
a4

a4

Y14
Y24

Y54

.4Y

Figure 4.1-1 �  Layout for a completely randomized design (CR-4 design) with p = 4 
treatment levels denoted by a1, a2, a3, and a4. The subjects are randomly 
assigned to the treatment levels. The n = 5 subjects in Group1 receive 
treatment level a1, those in Group2 receive treatment level a2, and so on. 
The dependent-variable means for the subjects who receive treatment 
levels a1, a2, a3, and a4 are denoted by 1Y⋅ , 2Y⋅ , 3Y⋅ , and 4Y⋅ , respectively.
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  μ is the grand mean, the mean of the p population means, μj.

  αj is the treatment effect for population j and is equal to μj – μ, the deviation of the 
grand mean from the jth population mean.

  εi( j) is the error effect associated with Yij and is equal to Yij – μj. The error effect 
represents effects unique to subject i, effects attributable to chance fluctuations in 
subject i’s behavior, and any other effects that have not been controlled—in other 
words, all effects not attributable to treatment level aj.

 2. The experiment contains all of the treatment levels, αjs, of interest. As a result, the 
treatment effects sum to zero, 1 0p

jj= α =∑ .

 3. The error effect, εi( j), is normally and independently distributed within each treat-
ment population with mean equal to zero and variance equal to 2

εσ . This assump-
tion is often abbreviated as εi( j) is NID(0, 2

εσ ), where NID(0, 2
εσ ) denotes normally 

and independently distributed with mean = 0 and variance = 2
εσ .

The fixed-effects model is the most commonly used model for a CR-p design. The 
random-effects model in which the p treatment levels are randomly sampled from a 
population of P levels (p < P) is discussed in Section 4.6.

4.2 Exploratory Data Analysis

The emphasis in this book is on confirmatory data analysis—using samples to tell us 
something about the populations from which they came and assessing the precision of our 
inferences concerning the populations. But every confirmatory data analysis should be 
preceded by an exploratory data analysis—looking at data to see what they seem to say. 
Eyeballing data is an important first step in any confirmatory data analysis. Such an explo-
ration may uncover, for example, suspected data recording errors, assumptions that appear 
untenable, and unexpected promising lines of investigation. Several exploratory tech-
niques are described here. For in-depth coverage, the reader should refer to Tukey (1977) 
and Hoaglin, Mosteller, and Tukey (1991).

Checking the Model Assumptions

Suppose that I am interested in the effects of sleep deprivation, treatment A, on hand-steadi-
ness. The four levels of sleep deprivation of interest are 12, 18, 24, and 30 hours, which are 
denoted by a1, a2, a3, and a4, respectively. Suppose that I have conducted an experiment in 
which 32 subjects were randomly assigned to the four levels of sleep deprivation, with the 
restriction that 8 subjects were assigned to each level. The dependent variable is the number 
of times during a 2-minute interval that a stylus makes contact with the side of a half-inch 
hole. The layout for the design is similar to that shown in Figure 4.1-1. The research hypoth-
esis that led to the experiment is based on the idea that sleep deprivation affects hand-
steadiness. A hypothetical set of data for the experiment is shown in Table 4.2-1(i). The 
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descriptive statistics in part (ii) support the research hypothesis: that the sample means for 
the sleep deprivation conditions differ.

In Section 4.1, I described the assumptions of the error effects: The εi( j)s should be 
normally distributed, have equal variances, and be mutually independent. To determine 
whether the assumptions are tenable, it is helpful to examine a plot of standardized 
residuals, denoted by zi( j). A residual (error effect) is given by ( )ˆ i j ij jY Y⋅ε = − . 
Standardization is achieved by dividing the residuals by their standard deviation. For a 
completely randomized design, the standard deviation of the residuals is ˆ zσ  = 

/ ( 1)SSWG N − , where N = n1 + . . . + np. The computation of SSWG is illustrated in 
Section 4.3. A standardized residual for subject i in treatment level j is given by

( ) ( )ˆ ˆ/ ( ) / / ( 1)i j i j z ij jz Y Y SSWG N⋅= ε σ = − −

(i) Data

Treatment Levels

a1 a2 a3 a4

3 4 4 3

2 4 4 5

2 3 3 6

3 3 2 5

1 1 4 6

3 3 7 6

6 6 5 8

4 4 5 9

(ii) Descriptive statistics

a1

12 Hours

a2

18 Hours

a3

24 Hours

a4

30 Hours

. jY 3.00 3.50 4.25 6.00
ˆ jσ 1.51 1.41 1.49 1.85

1
/

n
j ij

i
Y Y n⋅

=
= ∑             

2

12

1ˆ
1

n
ijn i

ij
i

j

Y
Y

n
n

=

=

⎛ ⎞
∑⎜ ⎟⎝ ⎠

−∑
σ =

−

Table 4.2-1 � Summary of Hand-Steadiness Data
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If the assumptions of the model are tenable, the standardized residuals should be 
normally and independently distributed with mean equal to 0 and variance equal to 1; 
zi( j) is NID(0, 1). Hence, to check on the model assumption, one looks for deviations 
from patterns that would be expected of independent observations from a standard 
normal distribution.

Residuals and standardized residuals for the data in Table 4.2-1 are shown in Table 
4.2-2. In Figure 4.2-1(a), the standardized residuals in Table 4.2-2 are displayed in the 
form of frequency distributions. If the model assumptions are tenable, approximately 
68.3% of the standardized residuals should be between –1 and 1, approximately 95.4% 
between –2 and 2, and approximately 99.7% between –3 and 3. Based on the residual 
plots, there is no reason to doubt the tenability of the normality and homogeneity of vari-
ance assumptions. Other procedures for testing the hypothesis of homogeneity of the 
population variances are described in Section 3.5.

Figure 4.2-1(b) displays a different kind of information. Here, the residuals are plotted 
against the order in which the hand-steadiness measurements were collected. If the inde-
pendence assumption is tenable, the standardized residuals should be randomly distributed 
around zero with no discernable pattern. Nonindependence is indicated if the zi( jk)s show 
a consistent downward or upward trend or they have the shape of a megaphone. The inde-
pendence assumption appears to be satisfied for treatment levels a1 through a3. However, 

Treatment Levels

a1 a2 a3 a4

(1)ˆ iε (1)iz (2)ˆ iε (2)iz (3)ˆ iε (3)iz (4)ˆ iε (4)iz

0 0  0.50  0.33 –0.25 –0.17 –3.00 –2.00

–1.00 –0.67  0.50  0.33 –0.25 –0.17 – 1.00 –0.67

–1.00 –0.67 –0.50 –0.33 –1.25 –0.83 0 0

0 0 –0.50 –0.33 –2.25 –1.50 –1.00 –0.67

–2.00 –1.34 –2.50 –1.67 –0.25 –0.17 0 0

0 0 –0.50 –0.33  2.75  1.84 0 0

 3.00  2.00  2.50  1.67  0.75  0.50  2.00  1.34

 1.00  0.67  0.50  0.33  0.75  0.50  3.00  2.00

.( )ˆ ji j ijY Yε = −       ( ) ( )ˆ / / ( 1)i j i jz SSWG N= ε −

( )ˆ / 69.5000 / (32 1)i j= ε −

( )ˆ /1.4973i j= ε

SSWG is computed in Table 4.3-1.

Table 4.2-2 � Residuals and Standardized Residuals for the Data in Table 4.2-1
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4
a1 a2 a3 a4

3

2

1

0

−1

−2

−3

−4

zi( j )

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Treatment level(a)

Frequency Frequency

Frequency distribution of standardized residuals

Frequency Frequency

4
a1 a2 a3 a4

3

2

1

0

−1

−2

−3

−4

zi( j )

1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

Treatment level(b)

Time order of measurements within each
treatment level

Figure 4.2-1 �  (a) Frequency distributions of standardized residuals, 
.( ) ( ) / / ( 1)= − −ji j ijz Y Y SSWG N . (b) Plot of standardized residuals versus 

the order in which measurements within each treatment level were obtained.
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the standardized residuals in treatment level a4 increase as a function of the order in which 
the measurements were collected—strong evidence that the independence assumption is 
violated. A researcher would certainly want to review the data collection procedures for 
this treatment level.

Outliers

Occasionally one encounters data with one or more observations that deviate markedly 
from other observations in the sample. Such observations are called outliers. In a stan-
dardized residual plot, they are observations for which |zi( j)| > 2.5. An examination of 
Figure 4.2-1(a) reveals that there are no outliers. Box plots also are useful for detecting 
outliers and treatment populations that are not symmetrical. Box plots are discussed in 
most introductory statistics books.

When outliers occur, they call for detective work. A researcher must decide whether 
the residuals merely represent extreme manifestations of the random variability inherent 
in data or are the result of deviations from prescribed experimental procedures, recording 
errors, equipment malfunctions, and so on. If they reflect the random variability inherent 
in data, they should be retained and processed in the same manner as the other observa-
tions. If some physical explanation for the outlier can be found, a researcher may 
(1) replace the observation with new data, (2) correct the observation if records permit, or 
(3) reject the observation and Winsorize. Winsorization is described in Section 3.6. After 
performing an exploratory data analysis and deciding that the assumptions of the model 
are tenable, the next step is a confirmatory data analysis.

4.3 Computational Example for CR-4 Design

The statistical hypotheses for the hand-steadiness data in Table 4.2-1 are

H0: μ1 = μ2 = μ3 = μ4    or  H0: αj = 0 for all j

H1: μj ≠ j ′μ  for some j and j′  H1: αj ≠ 0 for some j

The level of significance adopted is α = .05. Procedures for computing the sums of squares 
used in testing the null hypothesis are illustrated in Table 4.3-1. The AS Summary Table is 
so named because variation among the 32 scores reflects the effects of the treatment A and 
the subjects, denoted by S for subjects. The computational scheme in parts (ii) and (iii) of the 
table uses the abbreviated symbols [AS], [A], and [Y] that were introduced in Section 3.2. 
This abbreviated notation simplifies the presentation of the computational formulas.

An ANOVA table summarizing the results of the analysis is shown in Table 4.3-2. The 
mean square (MS) in each row is obtained by dividing the sum of squares (SS) by the 
degrees of freedom (df) in its row. Recall from Section 3.3 that an MS is an estimator of a 
population variance and is given by

2ˆ SSMS
df

= σ =
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 (i)  Data and notation [Yij denotes a score for subject i in treatment level j; i = 1, . . . , n subjects (si); 
j = 1, . . . , p levels of treatment A (aj).]

AS Summary Table
Entry is Yij

a1 a2 a3 a4

3  4  4  3

2  4  4  5

2  3  3  6

3  3  2  5

1  1  4  6

3  3  7  6

6  6  5  8

4  4  5  9

1

n
ij

i
Y

=
=∑

 
24 28 34 48

 (ii) Computational symbols

1 1
3 2 9 134.000

p n
ij

j i
Y

= =
= + + + =∑ ∑

2

21 1 (134)[ ] 561.125
(8)(4)

p n
ij

j i
Y

Y
np

= =

⎛ ⎞
∑ ∑⎜ ⎟⎝ ⎠

= = =

2 2 2 2

1 1
[ ] (3) (2) (9) 672.000

p n
ij

j i
Y AS

= =
= = + + + =∑ ∑

2

2 2 2
1

1

(24) (28) (48)[ ] 602.500
8 8 8

n
ijp i

j

Y
A

n
=

=

⎛ ⎞
∑⎜ ⎟⎝ ⎠

= = + + + =∑

(iii) Computational formulas

SSTO = [AS] – [Y] = 672.000 – 561.125 = 110.875

SSBG = [A] – [Y] = 602.500– 561.125 = 41.375

SSWG = [AS] – [A] = 672.000 – 602.500 = 69.500

Table 4.3-1 � Computational Procedures for a CR-4 Design
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The F statistic is obtained by dividing the mean square in the first row by the mean square 
in the second row. This is indicated symbolically by 1

2
⎡ ⎤
⎢ ⎥⎣ ⎦

. According to Appendix Table E.4, 
the value of F that cuts off the upper .05 region of the sampling distribution for 3 and 28 
degrees of freedom is F.05; 3, 28 = 2.95. Because the obtained F = 5.56 exceeds the table 
value, F > F.05; 3, 28, the null hypothesis is rejected.

It is customary to include in an ANOVA table the p value associated with the F statis-
tic and a measure of effect magnitude. The p value for the F statistic was obtained from 
Microsoft’s Excel FDIST function

FDIST (x,deg_freedom1,deg_freedom2)

To illustrate, I replaced x with 5.56 (the value of the F statistic), deg_freedom1 with 3, and 
deg_freedom2 with 28 as follows

FDIST (5.56,3,28)

Excel returned the p value of .004. The effect magnitude statistic, 2
|ˆ 0.30Y Aω = , in 

Table 4.3-2 is discussed in Section 4.4. A decision to reject or not reject the null 
hypothesis should be based on the researcher’s preselected level of significance, .05 in 
the example. The inclusion of the p value permits readers to, in effect, set their own level 
of significance.

In reports of the results of an experiment, a descriptive summary of the data—means, 
standard deviations, and perhaps a graph—should always precede the reporting of signifi-
cance tests. For the sleep deprivation experiment, the descriptive statistics in Table 4.2-
1(ii) provide an adequate summary. The results of the F significance test can be presented 
either by means of a table like Table 4.3-2 or in the text. For simple designs like the com-
pletely randomized design, it is customary to present the results in the text. Using this 
form, the researcher might say, “We can infer from the analysis of variance that the hand-
steadiness population means differ, F(3, 28) = 5.56, p < .001, 2

|ˆ 0.30Y Aω = .” Notice 
that the degrees of freedom for the F statistic are enclosed in parentheses, followed by 
the value of the F statistic, its p value, and the measure of effect magnitude. If the 

Source SS df MS F p 2ω̂

1.  Between groups 
(sleep deprivation 
levels)

 41.375  p – 1 = 3 13.792 1
2

⎡ ⎤
⎢ ⎥⎣ ⎦  

5.56 .004 0.30

2. Within groups  69.500 p(n – 1) = 28  2.482

3. Total 110.875   np – 1 = 31

Table 4.3-2  ANOVA Table for CR-4 Design
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experimental design is complex and requires reporting numerous F statistics, the 
Publication Manual of the American Psychological Association (American Psychological 
Association, 2010, p. 141) states that a tabular presentation can minimize the need for 
lengthy textual descriptions.

After the omnibus null hypothesis1 is rejected, the next step in the analysis is to decide 
which population means differ. Multiple comparison procedures are used for this purpose 
and are described in Chapter 5.

4.4 Measures of Strength of 
Association and Effect Size

The importance of distinguishing between statistical significance and practical signifi-
cance is discussed in Section 2.5. Statistical significance is concerned with whether an 
observed treatment effect is due to chance. Practical significance is concerned with 
whether an observed effect is large enough to be useful in the real world. As discussed in 
Section 2.5, trivial treatment effects can achieve statistical significance if enough subjects 
are included in an experiment. Small p values—say, .01 or .001—are widely believed to 
indicate large treatment effects and, hence, practical significance. This interpretation of 
p values is incorrect because p values are affected by the size of the treatment effects as 
well as the size of the sample. A p value of .05 for an experiment with 6 subjects per group 
may reflect larger treatment effects than a p value of .0001 for an experiment with 70 
subjects per group. Unfortunately, there is no measure of the practical significance of 
research results. However, measures of effect magnitude can help a researcher make this 
kind of assessment (Kirk, 2003). Most measures of effect magnitude fall into one of two 
categories: (1) measures of effect size (typically, standardized mean differences) and 
(2) measures of strength of association. I describe measures of strength of association first.

Strength of Association

The most widely used measures of strength of association in analysis of variance are 
omega squared, ω2, introduced by William Hays (1994, p. 408) for fixed treatment effects 
and the intraclass correlation, ρI, for random treatment effects. For a completely random-
ized design, both measures are defined as

(4.4-1)  
2

2 2
α

ε α

σ
σ + σ

where 2
ασ  is the variance of the treatment effects and 2

εσ  is the variance of the error 
effects. ω2 and ρI indicate the proportion of the population variance in the dependent 
variable that is accounted for by specifying the treatment-level classification, and thus they 
are identical in general meaning. Both ω2 and ρI are measures of strength of association 
for a qualitative or quantitative independent variable and a quantitative dependent variable.

1The omnibus null hypothesis states that all of the population means are equal. 
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The parameters 2
ασ  and 2

εσ  in equation (4.4-1) are generally unknown, but they can 
be estimated from sample data. In Section 3.3, you learned that

2

12( )
1

p

j
j

n
E MSBG

p
=

ε

α∑
= σ +

−
  and  2( )E MSWG ε= σ

for the fixed-effects model and

2 2( )E MSBG nε α= σ + σ   and  2( )E MSWG ε= σ

for the random-effects model. It follows that unbiased estimators of 2
ασ  and 2

εσ  are given 
by

 

2

1 2
ˆ

1 ˆ( )

p

j
jp MSBG MSWG

np p
=

α

α∑
−

− = = σ   and  2ˆMSWG ε= σ

for the fixed-effects model and by

21 ˆ( )MSBG MSWG
n α− = σ   and  2ˆMSWG ε= σ

for the random-effects model. If the estimators for 2
ασ  and 2

εσ  are substituted in equation 
(4.4-1), the following formulas for 2ω̂  and Iρ̂  can be obtained with the aid of a little 
algebra:

2 ( 1)ˆ SSBG p MSWG
SSTO MSWG

− −
ω =

+
  Iˆ

( 1)
MSBG MSWG

MSBG n MSWG
−

ρ =
+ −

For the hand-steadiness data in Table 4.3-2,

2 41.375 (4 1)2.482ˆ 0.30
110.875 2.482

− −
ω = =

+

Thus, the four levels of sleep deprivation account for 30% of the variance in the hand-
steadiness scores. Not only is the association statistically significant, as is evident from the 
significant F statistic in Table 4.3-2, but also the association is quite strong.

Based on Cohen’s (1988, pp. 284–288) classic work, the following guidelines are sug-
gested for interpreting strength of association:

ω2 = .010 is a small association.

ω2 = .059 is a medium association.

ω2 = .138 or larger is a large association.
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When a sample omega squared is negative, the best estimate of the population value is 0. 
Sedlmeier and Gigerenzer (1989) and Cooper and Findley (1982) reported that the typical 
strength of association in the journals that they examined was around .06—a medium 
association.

Omega squared and the intraclass correlation also can be computed from a knowledge 
of the F statistic, sample size in each treatment level, and number of treatment levels. The 
alternative formula for 2ω̂  and the value of 2ω̂  for the hand-steadiness data are

2ω̂  = ( 1)( 1)
( 1)( 1)

p F
p F np

− −
− − +

 = (4 1)(5.56 1)
(4 1)(5.56 1) (8)(4)

− −
− − +

 = .30

where F, n, and p are obtained from Table 4.3-2. If treatment A represents random effects, 
the intraclass correlation can be computed from

I
1ˆ

( 1)
F

n F
−

ρ =
− +

These formulas for 2ω̂  and Iρ̂  can be used to assess the practical significance of published 
research where only the F statistic and degrees of freedom are provided.

The formulas for 2ω̂  given earlier assume that the sample ns are equal. If the sample 
ns are not too different, Vaughan and Corballis (1969) have suggested the following for-
mula for approximating omega squared:

2 ( 1)ˆ
( 1)

SSBG p MSWG
SSBG p n MSWG MSWG

− −
ω =

+ − +

where n  is the mean of the sample ns.
Omega squared and the intraclass correlation, like the F statistic, are omnibus (over-

all) statistics. Researchers generally are not as interested in this omnibus statistic as they 
are in knowing how much of the variance in the dependent variable is accounted for by the 
difference between selected treatment levels, say, the means for treatment levels a1 and a2. 
One degree-of-freedom omega-squared correlation measures that address this kind of 
question are discussed in Section 6.5.

In interpreting omega squared, it is important to remember that the treatment levels 
are selected a priori rather than by random sampling as is the case for the intraclass cor-
relation. The presence of a truncated range or the selection of extreme values of a quanti-
tative independent variable can markedly affect the value of 2ω̂ . Omega squared applies 
to the treatment levels in the experiment; any generalization to levels not included in the 
experiment is a leap of faith. Note also that 2ω̂  and Iρ̂  are computed from the ratio of 
unbiased estimators; hence, they are biased estimators of the corresponding population 
parameters. In general, the ratio of two unbiased estimators is not itself an unbiased esti-
mator. Carroll and Nordholm (1975) have shown that the degree of bias in 2ω̂  is slight.
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Other statistics such as R2, coefficient of multiple determination or eta squared ( 2η̂ ), 
and 2R  also are used to measure the strength of association between the independent and 
dependent variables. The R2 statistic is given by

2 SSBGR
SSTO

=

and indicates the sample proportion of variance in the dependent variable that is accounted 
for by specifying the treatment-level classification. R2 tends to overestimate the population 
parameter. For the hand-steadiness data in Table 4.2-1, R2 = 41.375/110.87 = .37. An 
adjustment due to Wherry (1931) can be applied to R2 to obtain a better estimate of the 
population parameter. The adjusted (shrunken) coefficient is denoted by 2R  and is 

computed from 2 211 (1 )NR R
N p

−
= − −

−
, where N = n1 + n2 + . . . + np. For the hand-

steadiness data, 2R  = .31.

Effect Size

A second approach to assessing the practical significance of research results is based on 
differences among means. In Section 2.5, I describe a measure popularized by Jacob 
Cohen (1988) called effect size and denoted by d. The effect-size formulas for one- and 
two-sample experiments are, respectively,

0d
ε

μ − μ
=

σ
  and  1 2d

ε

μ − μ
=

σ

In both formulas, a difference among means is expressed in units of the within-groups 
population standard deviation. This idea with modifications can be extended to the case in 
which there are three or more means:

2

1
2

( ) /
p

j
j

p
f =

ε

μ − μ∑
=

σ
  or   

2

1
2

/
p

j
j

p
f =

ε

α∑
=

σ

A sample estimate of f for the hand-steadiness data in Table 4.3-2 is given by

2

1
2

ˆ /
ˆ

ˆ

p

j
j

p
f =

ε

α∑
=

σ
= 1.060

2.482
 = 0.65
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where

2

1
ˆ

1 4 1( ) (13.792 2.482) 1.060
(8)(4)

p

j
j p MSBG MSWG

p np
=

α∑
− −

= − = − =

2ˆ εσ  = MSWG = 2.482

Cohen (1988, pp. 284–288) suggested the following guidelines for interpreting the f̂  
measure of effect size:

f  = .10 is a small effect size.

f  = .25 is a medium effect size.

f  = .40 or larger is a large effect size.

Based on Cohen’s guidelines, the treatment effects for the sleep deprivation experiment are 
classified as large effects. The same conclusion was reached using 2ω̂ . In fact, the two 
indexes are related as follows:

2

2

ˆˆ
ˆ1

f ω
=

− ω

For a discussion of the merits of measures of strength of association and effect size, the 
reader is referred to Cumming (2012), Henson (2006), Huberty (2002), and Kline (2004).

In summary, a significant F statistic for treatment effects in a completely randomized 
design indicates that there is some association between the independent and dependent vari-
ables and that at least one treatment effect is not equal to zero. The 2ω̂  and Iρ̂  statistics 
estimate the population strength of the association between a qualitative or quantitative 
independent variable and a quantitative dependent variable. Cohen’s f̂  and similar measures 
estimate the relative size of treatment effects. Both kinds of measures provide important 
information that is not contained in a test of significance. When the results of significance 
tests are reported, researchers should always include a measure of effect magnitude.

4.5 Power and the Determination of Sample Size

Introduction to the Calculation of Power

Power, denoted by 1 – β, is the probability of rejecting a false null hypothesis. Knowledge 
of power is useful for assessing the sensitivity of a statistical test and for determining the 
sample size to use. If the null hypothesis is true, then F = MSBG/MSWG is distributed as 
a central F distribution. The central F distribution depends on two parameters: ν1 and ν2, 
the degrees of freedom of the F statistic. F values that cut off the upper .25, .10, .05, and 
.01 portions of the central F distribution are given in Appendix Table E.4. If the null 
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hypothesis is false, then F = MSBG/MSWG is distributed as a noncentral F distribution. 
This latter distribution is used in determining the power of a test. The noncentral F distri-
bution depends on three parameters: ν1, ν2, and a noncentrality parameter λ (Greek 
lambda), where

2

1
2 /

p

j
j

n
=

ε

α∑
λ =

σ

The parameter λ is a measure of the degree to which the null hypothesis is false. The value 
of λ is determined by the size of the sum of squared treatment effects relative to 2 / nεσ . 
Tang (1938) prepared charts that simplify the calculation of power. Tang’s charts, which 
are reproduced in Appendix Table E.12, are based on a function of the noncentrality 
parameter. To use the charts, the parameter φ (Greek phi),

(4.5-1) 

2

1
2

/

/

p

j
j

p

p n
=

ε

α∑
λ

φ = =
σ

is entered in the appropriate chart for ν1 = p – 1 and ν2 = p(n – 1) degrees of freedom and 
a significance level of either .05 or .01.

Calculation of Power Using Tang’s Charts

The calculation of power is illustrated for the data summarized in Table 4.3-2. In practice, 
the parameters 2

1
p

jj= α∑  and 2
εσ  in equation (4.5-1) are unknown. However, as you learned 

in Section 3.3, the parameters can be estimated from sample data as follows:

2

1
ˆ

1( ) 1.060

p

j
j p MSBG MSWG

p np
=

α∑
−

= − =  and 2ˆ εσ  = MSWG = 2.482

An estimate of φ is

2

1
2

ˆ /
ˆ

ˆ /

p

j
j

p

n
=

ε

α∑
φ =

σ
 = 1.060

2.482 / 8
= 1.85

with ν1 = p – 1 = 3 and ν2 = p(n – 1) = 4(8 – 1) = 28. Appendix Table E.12 contains eight 
power charts: a chart for ν1 = 1, . . . , 8. Each chart contains power curves for α = .05 and 
α = .01. Use the .05 curves because .05 is the level of significance adopted in the sleep 
deprivation experiment. The value of φ̂ = 1.85 is located along the α = .05 baseline in the 
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ν1 = 3 chart. Extend an imaginary vertical line above φ̂  = 1.85 until it intersects a point 
just to the right of the ν2 = 30 curve; the chart does not contain a ν2 = 28 curve. If you read 
across to the vertical axis, the power of the ANOVA F test is found to be approximately 
.83, which just exceeds the minimum acceptable power of .80.

Cohen (1988, pp. 289–354) provides more extensive tables for determining power 
than those in Appendix E.12. His tables contain values for ν1 = 1 through 6, 8, 10, 12, 15, 
and 24 and α = .10, .05, and .01. To use his tables, a researcher computes Cohen’s f̂  effect 
size. This effect size can be computed from the noncentrality parameter, λ̂ , or Tang’s φ̂ as 
follows: ˆˆ /f np= λ  ˆ / n= φ . Cohen’s tables and those in Appendix E.12 are appropriate 
for fixed effects. Montgomery (2009, pp. 625–628) gives tables for calculating power for 
random effects.

A plethora of free easy-to-use power and sample size calculators can be found on the 
Internet. One of my favorites is G*Power 3.

Estimating Sample Size From a Pilot Study

Choosing a sample size is a bewildering task for many researchers. Researchers want to 
use enough subjects to detect meaningful effects, but they don’t want to use too many 
subjects and squander research resources. Three approaches to estimating sample size are 
illustrated. The procedures differ in terms of the information that a researcher must provide 
and in their simplicity. The first approach requires the most information. A researcher must 
specify the (1) level of significance, α; (2) power, 1 – β; (3) size of the population vari-
ance, 2

εσ ; and (4) the sum of the squared population treatment effects, 2
1

p
jj= α∑ . In practice, 

2
εσ  and 2

1
p

jj= α∑  are unknown. However, there are ways to circumvent this problem. One 
way is to estimate 2

εσ  and 2
1

p
jj= α∑  from a pilot study. Alternatively, estimates of 2

εσ  and 
2

1
p

jj= α∑  may be obtained from research that is similar to that under consideration.
For the purpose of illustration, suppose that the hand-steadiness data in Table 4.2-1 

were obtained in a pilot study to estimate sample size; let α = .05 and 1 – β = .80. This 
choice of values for α and 1 – β is based on the widely accepted conventions that the prob-
ably of making a Type I error should be less than or equal to .05 and the minimum accept-
able power should be greater than or equal to .80. With these conventions and the pilot-
study information from Table 4.3-2, a researcher can use trial and error to estimate the 
required sample size. The process consists of inserting trial sample-size values, denoted by 
n′, in

2

1
2

ˆ /
ˆ

ˆ

p

j
j

p
n =

ε

α∑
φ = ′

σ

and determining from Tang’s charts whether a power of .80 has been achieved. I begin the 
trial-and-error process with n′ = 7.

1.060ˆ 7 (2.646)(0.654) 1.73
2.482

φ = = =
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with ν1 = p – 1 = 3 and ν2 = p(n′ – 1) = 4(7 – 1) = 24. According to Tang’s chart in 
Appendix Table E.12, φ̂  = 1.73 corresponds to a power of .76, which is less than the 
desired power. Substituting n′ = 8 in the formula

1.060ˆ 8 (2.828)(0.654) 1.85
2.482

φ = = =

with ν1 = 3 and ν2 = 4(8 – 1) = 28 gives a power of .83. Thus, if a researcher uses np = (8)
(4) = 32 subjects, the power is approximately .83.

Estimating Sample Size Using d

If accurate estimates of 2
1

p
jj= α∑  and 2

εσ  are not available from a pilot study or previous 
research, the procedure just described for calculating n cannot be used. However, there is 
an alternative approach that does not require this information. The approach does require 
a general idea about the size of the difference between the largest and smallest population 
means that would be useful to detect relative to the size of σε. To use this approach, the 
difference between the largest and smallest population means that a researcher wants to 
detect is specified as some multiple, denoted by d, of the population standard deviation; 
that is, μmax – μmin = dσε. An examination of Figure 4.5-1 should help to clarify the mean-
ing of d. For example, the difference between μmax and μmin that a researcher wants to 
detect might be one and a half times larger than σε, d = 1.5, or the difference might be three 

X

f

μmax − μmin = d σε

μmin μmax

.

.

.

μ

Figure 4.5-1 �  Each treatment mean is represented by a square. The mean of the p 
means, the grand mean, is denoted by μ . Two of the treatment effects, 
αmin = μmin – μ  = / 2d ε− σ  and αmax = μmax – μ  = / 2d εσ , are not 
equal to zero. The remaining p – 2 treatment effects, αj = μj – μ  = 0, are 
equal to zero. It should be apparent that 2

1
p

jj= α∑  is minimal when μmin 
and μmax are not equal to the grand mean and all of the remaining means 
are equal to the grand mean.
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fourths as large as σε, d = 0.75. This approach to estimating sample size requires the 
specification of d but not 2

1
p

jj= α∑ , μmax – μmin, and σε. Obviously, to specify d, it is neces-
sary to have some idea about the size of μmax – μmin that would be worth detecting and to 
be able to express this difference as a multiple of σε.

When there are more than two means in an experiment, many configurations of means 
will produce the same value of μmax – μmin = dσε . It can be shown that the sum of the 
squared treatment effects, 2

1
p

jj= α∑ , is minimal when two of the means, μmin and μmax, are 
not equal and the remaining p – 2 means are equal to the grand mean. This configuration 
of means is illustrated in Figure 4.5-1. It should be apparent from the figure that the treat-
ment effect for μmin is equal to αmin = μmin – μ  = / 2d ε− σ . Similarly, the treatment effect 
for μmax is equal to αmax = μmax – μ  = / 2d εσ . Substituting αmin and αmax for two of the 
αjs in 2

1
p

jj= α∑  
and zero for the remaining αjs gives

2 2 2 2 2 2
2 2 2

1

2
(0) (0)

2 2 4 2

p

j
j

d d d dε ε ε ε

=

σ σ σ σ⎛ ⎞ ⎛ ⎞α = − + + + + = =∑ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Because power increases with an increase in 2
1

p
jj= α∑ , it follows that a choice of values for 

the αjs other than these will always lead to greater power. Hence, if the sample size 
necessary to achieve a given power is computed for these treatment effects, a researcher 
can be certain that any other configuration for which the maximum difference between 
means is equal to dσε will yield a power greater than that specified. The φ formula for 
estimating sample size is obtained by replacing 2

1
p

jj= α∑  with 2 2 / 2d εσ  as follows:

2

1
2

/
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j
j

p
n =

ε

α∑
φ = ′

σ
 = 

( )2 2
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/ 2 /d p
n
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ε

σ
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σ
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2

2
dn

p
′

Assume that an experiment contains four treatment levels and I am interested in 
detecting differences among means such that μmax – μmin is equal to 1.5σε. In this example, 
d = 1.5, α = .05, 1 – β = .80, and ν1 = p – 1 = 3. Various trial sample-size values, n′, can 
be tried in the formula for φ until the desired power is obtained. I begin the trial-and-error 
process with n′ = 8.

2 2(1.5)8 8(0.530) 1.50
2 (2)(4)
dn

p
φ = = = =′

where ν1 = p – 1 = 3 and ν2 = p(n′ – 1) = 4(8 – 1) = 28. According to Appendix Table E.12, 
φ = 1.50 corresponds to a power of .64. Obviously, a larger sample n′ is required. 
Substituting n′ = 11 in the formula gives

2 2(1.5)11 11(0.530) 1.76
2 (2)(4)
dn

p
φ = = = =′
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where ν1 = p – 1 = 3 and ν2 = p(n′ – 1) = 4(11 – 1) = 40. I get a power of .81. Thus, to 
detect a difference between the largest and smallest means that is 1.5 times as large as σε, 
I should use np = (11)(4) = 44 subjects. The advantage of this approach to estimating 
sample size is that it is not necessary to know or estimate 2

1
p

jj= α∑  and σε. However, it is 
necessary to specify d, which is a kind of effect-size measure.

Estimating Sample Size Using �2 and f

The third approach to estimating sample size can be used when a researcher knows nothing 
about 2

1
p

jj= α∑  and σε and is unable to express μmax – μmin as a multiple of σε. This 
approach requires a researcher to specify the (1) level of significance, α; (2) power, 1 – β; 
and (3) either the strength of association, ω2, or the effect size, f, that is of interest. The use 
of ω2 is described first.

In Section 4.4, Cohen’s guidelines for interpreting ω2 are described. Recall that

ω2 = .010 is a small association.

ω2 = .059 is a medium association.

ω2 = .138 or larger is a large association.

Suppose that a researcher is interested in determining the sample size necessary to detect 
a large association, ω2 = .138, for a completely randomized design with p = 4 treatment 
levels. Assume that the researcher has followed the convention of setting α = .05 and 1 – 
β = .80. The sample size can be determined from Appendix Table E.13 for ν1 = 4 – 1 = 3 
and CR

2ν  = 4(n – 1), where ν1 and CR
2ν  denote the degrees of freedom for a completely 

randomized design.2 The value of n is obtained from the column headed by ω2 = .138 and 
the row labeled 1 – β = .80. According to Table E.13, the sample n is 18. The experiment 
requires np = (18)(4) = 72 subjects.

The effect-size index, f, developed by Cohen (1988) also can be used to determine the 
required sample size. Cohen suggested the following guidelines for interpreting f:

f  = .10 is a small effect size.

f  = .25 is a medium effect size.

f  = .40 or larger is a large effect size.

Suppose that a researcher is interested in determining the sample size necessary to detect a 
large effect size, f = .40, for a completely randomized design with p = 4 treatment levels. 
Assume that α = .05 and 1 – β = .80. The required sample size can be determined from 
Appendix Table E.13 for ν1 = 4 – 1 = 3 and CR

2ν  = 4(n – 1), where ν1 and CR
2ν  denote the 

degrees of freedom for a completely randomized design. The value of n is obtained from the 
column headed by f * = f = .400 and the row labeled 1 – β = .80. According to Table E.13, 
the sample n is 18. The experiment requires np = (18)(4) = 72 subjects.

2I am indebted to Barbara Mobley Foster, who developed the sample-size tables from which 
Table E.13 was taken. 
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Appendix Table E.13 can be used to estimate the sample size if α = .05, 1 – β = .70, 
.80, or .90, and the design contains two to four treatment levels. If these conditions are not 
satisfied, Tang’s charts in Appendix Table E.12 can be used to estimate n. The charts are 
entered with

2

21
n ω

φ = ′
− ω

  or  *n fφ = ′  (f * = f )

depending on whether one wants to use a strength of association measure or an effect-size 
measure.

Suppose that a researcher plans to use a completely randomized design and wants to 
detect a large strength of association, ω2 = .138, for an experiment with p = 5 treatment 
levels. Assume that α = .05 and 1 – β = .80. Various n′s can be tried in the formula for φ 
until the desired power is obtained. I begin with n′ = 13.

2

21
n ω

φ = ′
− ω

 = .13813 3.6056(0.4001) 1.44
1 .138

= =
−

with ν1 = 5 – 1 = 4 and ν2 = 5(13 – 1) = 60. According to Appendix Table E.12, a power 
of approximately .70 is obtained if n′ = 13. Obviously, a larger n′ is required. If n′ = 16, a 
power of approximately .80 is obtained.

.13816 4.0000(0.4001) 1.60
1 .138

φ = = =
−

with ν1 = 5 – 1 = 4 and ν2 = 5(16 – 1) = 75. The experiment requires np = (16)(5) = 
80 subjects.

There is a tendency among researchers to underestimate the sample size required to 
obtain practical significance. In the last example, np = (16)(5) = 80 subjects are required to 
detect a large association. Medium and small associations require, respectively, (39)(5) = 
195 subjects and (240)(5) = 1200 subjects.

Three approaches to estimating sample size have been described. The use of ω2 or f 
combined with Cohen’s guidelines for interpreting values of ω2 and f requires the least 
amount of information and is the simplest. Cohen’s guidelines are offered as a useful start-
ing point. Researchers should use their subject-matter knowledge to specify appropriate 
values of ω2 and f. What constitutes small, medium, and large associations, for example, 
can vary from one research area to another. Easy-to-use programs for estimating sample 
size are available on the Internet. Most of the programs require the researcher to specify 
the type of ANOVA design, an effect magnitude measure, α, 1 – β, and the number of 
treatment levels.

An estimate of the sample size necessary to detect effects that are practically signifi-
cant should always be made before an experiment is performed. A researcher may find, for 
example, that the contemplated sample size is wastefully large, in which case the sample 
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size can be reduced. On the other hand, a researcher may find that the contemplated 
sample size is too small and gives less than a 60% chance of detecting treatment effects 
considered of practical significance. In this case, a researcher may (1) attempt to secure 
enough subjects to obtain a power of .80, (2) decide not to conduct the experiment, or 
(3) attempt to modify the experiment so as to reduce the required number of subjects. The 
modification could involve selecting a less stringent level of significance, settling for 
lower power, increasing the size of treatment effects that are of interest, or redesigning the 
experiment to obtain a more precise estimate of treatment effects and a smaller error term.

4.6 Random-Effects Model

The experimental design model equation for a completely randomized design is given in 
Section 4.1 as

Yij = μ + αj + εi( j)       (i = 1, . . . , n; j = 1, . . . , p)

There I assumed that the treatment effects are fixed effects, μ is a constant, and εi( j) is NID(0, 
2
εσ ). This model is called a fixed-effects model or model I. Alternatively, the p treatment 

levels in the experiment may represent a random sample from a population of P levels, where 
P is large relative to p. For this case, the treatment effects are random effects and the αjs are 
assumed to be NID(0, 2

ασ ). As before, μ is a constant and εi( j) is NID(0, 2
εσ ). This model is 

called a random-effects model or model II.
A comparison of the expected values of the mean squares for the two models is given 

in Table 4.6-1. The derivation of E(MS) is given in Section 3.8. For both models, a test of 
the null hypothesis αj = 0 for all j (model I) or 2

ασ  = 0 (model II) is given by

F = MSBG
MSWG

 = ( ) ( )
( )

f f
f

+error effects treatment effects

error effects

where f( ) denotes a function of the effects in parentheses. If any treatment effects exist, the 
numerator of the F statistic should be larger than the denominator. This F statistic adheres to a 
basic principle that is shared by all ANOVA F statistics: The expected value of the numerator 
should always contain one more term than the expected value of the denominator. For the 
random-effects model, E(MSBG) = 2

εσ  + 2n ασ  and E(MSWG) = 2
εσ . The F test can be regarded 

as a procedure for deciding, on the basis of sample data, which of the following model equations

Yij = μ + εi( j)

Yij = μ + αj + εi( j)

underlies observations in the population.3 If the null hypothesis is rejected, the second 
equation is adopted; if not, the first equation remains tenable.

3This view is explored in detail in Chapter 7.
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Source
Model I
E(MS)

Model II
E(MS)

MSBG 2 2

1
/ ( 1)

p
j

j
n pε

=
σ + α −∑ 2 2nε ασ + σ

MSWG 2
εσ 2

εσ

Table 4.6-1 � Comparison of E(MS) for Models I and II

As you have seen, the fixed- and random-effects models are identical except for the 
assumptions about the nature of the treatment effects. This difference is important because 
it determines the nature of the conclusions that can be drawn from an experiment. For the 
fixed-effects model, conclusions are restricted to the p treatment levels in the experiment. 
For the random-effects model, conclusions apply to the P treatment populations from 
which the p treatment levels were randomly sampled.

4.7 Advantages and Disadvantages of CR-p Design

The major advantages of the completely randomized design are as follows:

 1. The layout of the design is simple.

 2. Statistical analysis and interpretation of results are relatively straightforward.

 3. The design does not require equal sample sizes for each treatment level.

 4. It allows for the maximum number of degrees of freedom for the error sum of squares.

 5. The design does not require a subject to participate under more than one treatment 
level or the use of subjects who have been matched on an appropriate variable.

The major disadvantages of the design are as follows:

 1. The effects of differences among subjects are controlled by random assignment of 
the subjects to treatment levels. For this to be effective, subjects should be rela-
tively homogeneous or a large number of subjects should be used.

 2. When many treatment levels are included in the experiment, the required sample 
size may be prohibitive.

4.8 Review Exercises

 1. Terms to remember:

 a. confirmatory data analysis (4.2) b. exploratory data analysis (4.2)

 c. standardized residual (4.2) d. outlier (4.2)

 e. omega squared (4.4) f. intraclass correlation (4.4)
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 g. coefficient of multiple h. central F distribution (4.5)
 determination (4.4)

 i. noncentral F distribution (4.5) j. noncentrality parameter (4.5)

 k. model I (4.6) l. model II (4.6)

 *2. Two approaches to learning problem solving strategies—more specifically, gener-
ating alternative solutions—were investigated. Thirty sixth-graders were randomly 
assigned to one of the two approaches and a control condition. Treatment level a1, 
referred to as the training condition, involved participating in five sessions per 
week during 3 consecutive weeks. Students assigned to this condition observed a 
videotape introduction for 10 minutes, practiced the skill for 15 minutes, observed 
peer models via videotape for 15 minutes, and watched a videotaped review for 10 
minutes. Treatment level a2, a film and discussion condition, was conducted con-
currently with the training condition and for the same amount of time. Films related 
to generating alternative solutions were shown followed by group discussions. The 
students in the control condition, treatment level a3, did not receive any form of 
training. At the conclusion of the experiment, five problem situations were pre-
sented and the students were instructed to write down as many solutions to each 
one as they could. The dependent variable was the number of solutions proposed, 
summed across the five problems. The following data were obtained. (Experiment 
suggested by Poitras-Martin, D., & Steve, G. L. Psychological education: A skills-
oriented approach. Journal of Counseling Psychology.)

a1 a2 a3

11 11  7

12 14 18

19 10 16

13  9 11

17 12  9

15 13 10

17 10 13

14  8 14

13 14 12

16 11 12

 *a. [4.2]  Perform an exploratory data analysis on these data (see Table 4.2-1 and 
Figure 4.2-1). Assume that the observations within each treatment level are listed 
in the order in which the observations were obtained. Interpret the analysis.

 *b. [4.3] Test the null hypothesis μ1 = μ2 = μ3; let α = .05. Construct an ANOVA 
table and make a decision about the null hypothesis.

 *c. [4.4] Compute and interpret 2ω̂  and f̂  for these data.
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 *d. [4.5]  Calculate the power of the test in part (b).

 *e. [4.5] Use the results of part (b) as a pilot study and determine the number of 
subjects required to achieve a power of approximately .80.

 *f. [4.5] Determine the number of subjects required to achieve a power of .80, 
where the largest difference among means is 1.10σε.

 *g. [4.5] Determine the number of subjects required to detect a medium asso-
ciation with power equal to .80.

 h. Prepare a “results and discussion section” appropriate for the Journal of 
Counseling Psychology.

 *3. The effects of instructions-to-learn on performance on a delayed-recall test were 
investigated. Twenty men and women college undergraduate volunteers were ran-
domly assigned to two instructional conditions. The subjects assigned to treatment 
level a1 were informed of a subsequent recall test prior to the presentation of a word 
list and were told to use any kind of rehearsal that they felt would aid their recall. The 
subjects in treatment level a2 were not informed of a subsequent recall test. Thirty 
concrete nouns were shown to the subjects. Each noun was presented for 1 second 
with a 9-second interstimulus interval. As each noun was shown, the subjects were 
required to write it down. Twenty-four hours later, the subjects were given a 10-minute 
written recall test. The dependent variable was the number of nouns recalled. The fol-
lowing data were obtained. (Experiment suggested by McDaniel, Mark A., & Masson, 
M. E. Long-term retention: When incidental semantic processing fails. Journal of 
Experimental Psychology: Human Learning and Memory.) 

 *a. [4.2] Perform an exploratory data analysis on these data (see Table 4.2-1 and 
Figure 4.2-1). Assume that the observations within each treatment level are listed 
in the order in which the observations were obtained. Interpret the analysis.

 *b. [4.3] Use ANOVA to test the hypothesis μ1 = μ2; let α = .05. Construct an 
ANOVA table and make a decision about the null hypothesis.

 *c. [4.4] Compute and interpret 2ω̂  and f̂  for these data.

a1 a2

10 15

 6  8

12 10

 9  7

 8  5

17  4

15  9

11 11

14  9

11 12
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 *d. [4.5]  Calculate the power of the test in part (b).

 *e. [4.5] Use the results of part (b) as a pilot study and determine the number of 
subjects required to achieve a power of approximately .80.

 *f. [4.5] Determine the number of subjects required to detect a large associa-
tion; let 1 – β = .80.

 *g. [4.5] Determine the number of subjects required to achieve a power of .80, 
where the largest difference among means is 1.15σε.

 h. Prepare a “results and discussion section” appropriate for the Journal of 
Experimental Psychology: Human Learning and Memory.

 4. The effects of written instructions designed to maximize subject attention to 
hypnotic facilitative information were investigated. The subjects were 36 hyp-
notically naive male and female college students who scored in the low and 
moderate ranges on the Harvard Group Scale of Hypnotic Susceptibility. The 
subjects were randomly assigned to one of four groups with nine subjects in each 
group. Subjects in the programmed active information group, treatment level a1, 
read a booklet about hypnosis. Interspersed throughout the booklet were incom-
plete sentences designed to test the subject’s knowledge of the material. Answers 
were provided on the following page of the booklet. Subjects in the active infor-
mation group, treatment level a2, read a booklet that covered the same informa-
tion but did not contain the self-testing feature. Subjects in the passive 
information group, treatment level a3, read a booklet about the historical develop-
ment of hypnosis but with no information about how to experience hypnosis. 
Subjects in the control group, treatment level a4, were given several magazines 
and told to browse through them in a relaxed manner. Following this phase of the 
experiment, subjects took the Stanford Hypnotic Susceptibility Scale, Form C. 
The dependent variable was the subject’s score on this scale. The following data 
were obtained. (Experiment suggested by Diamond, Michael Jay, Steadman, 
Clarence, Harada, D., & Rosenthal, J. The use of direct instructions to modify 
hypnotic performance: The effects of programmed learning procedures. Journal 
of Abnormal Psychology.) 

a1 a2 a3 a4

 4 10  4 4

 7  6  6 2

 5  3  5 5

 6  4  2 7

10  7 10 5

11  8  9 1

 9  5  7 3

 7  9  6 6

 8  7  7 4
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 a.  [4.2] Perform an exploratory data analysis on these data (see Table 4.2-1 
and Figure 4.2-1). Assume that the observations within each treatment level 
are listed in the order in which the observations were obtained. Interpret the 
analysis.

 b. [4.3] Test the hypothesis μ1 = μ2 = μ3 = μ4; let α = .05. Construct an ANOVA 
table and make a decision about the null hypothesis.

 c. [4.4] Compute and interpret 2ω̂  and f̂  for these data.

 d. [4.5] Calculate the power of the test in part (b).

 e. [4.5] Use the results of part (b) as a pilot study and determine the number of 
subjects required to achieve a power of approximately .80.

 f. [4.5] Determine the number of subjects required to detect a medium asso-
ciation; let 1 – β = .80.

 g. [4.5] Determine the number of subjects required to achieve a power of .80, 
where the largest difference among means is 0.95σε.

 h. Prepare a “results and discussion section” for the Journal of Abnormal 
Psychology.

 5. An experiment was designed to evaluate the effects of different levels of 
training on children’s ability to acquire the concept of an equilateral triangle. 
Fifty 3-year-old children were recruited from daycare facilities and ran-
domly assigned to one of five groups, with 10 children in each group. Each 
group contained an equal number of boys and girls. Children in treatment 
level a1 (visual condition) were shown 36 blocks, one at a time, and 
instructed to look at them but not to touch them. Children in treatment level 
a2 (visual plus motor condition) looked at the blocks and were permitted to 
play with them. They also were asked to perform specific tactile-kinesthetic 
exercises, such as tracing the perimeter of the blocks with their index finger. 
Children in treatment level a3 (visual plus verbal condition) looked at the 
blocks and were told to notice differences in their shape, color, size, and 
thickness. Children in treatment level a4 (visual plus motor plus verbal con-
dition) used a combination of visual, motor, and verbal means of stimulus 
predifferentiation. Children in treatment level a5 (control condition) engaged 
in unrelated play activity. All training was done individually. The day after 
training, the children were shown a “target” block for 5 seconds and then 
asked to identify the block in a group of seven blocks. This task was repeated 
six times using different target blocks. The dependent variable was the num-
ber of target blocks correctly identified. The following data were obtained. 
(Experiment suggested by Nelson, G. K. Concomitant effects of visual, 
motor, and verbal experiences in young children’s concept development. 
Journal of Educational Psychology.) 
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 a. [4.2] Perform an exploratory data analysis on these data (see Table 4.2-1 and 
Figure 4.2-1). Assume that the observations within each treatment level are listed 
in the order in which the observations were obtained. Interpret the analysis.

 b. [4.3] Test the null hypothesis μ1 = μ2 = . . . = μ5; let α = .05. Construct an 
ANOVA table and make a decision about the null hypothesis.

 c. [4.4] Compute and interpret 2ω̂  and f̂  for these data.

 d. [4.5] Calculate the power of the test in part (b).

 e. [4.5] Use the results of part (b) as a pilot study and determine the number of 
subjects required to achieve a power of approximately .80.

 f. [4.5] Use Appendix Table E.12 to determine the number of subjects required 
to detect a medium association; let 1 – β = .80.

 g. [4.5] Determine the number of subjects required to achieve a power of .80, 
where the largest difference among means is 0.95σε.

 h. Prepare a “results and discussion section” for the Journal of Educational 
Psychology.

 *6. [4.4] With 2 2 2 2ˆ ˆ ˆ ˆ/ ( )α ε αω = σ σ + σ  as the starting point where 2ˆ MSWGεσ =  and 
2ˆ ασ [( 1) / ]( )p np MSBG MSWG= − − , derive the computational formula for 

omega squared:

2 ( 1)ˆ SSBG p MSWG
SSTO MSWG

− −
ω =

+

 *7. [4.4] With 2 2 2
Iˆ ˆ ˆ ˆ/ ( )α ε αρ = σ σ + σ  as the starting point where 2ˆ MSWGεσ =  and 

2ˆ ασ (1/ )( )n MSBG MSWG= − , derive the computational formula for the intra-
class correlation:

Iˆ
( 1)
−

ρ =
+ −

MSBG MSWG
MSBG n MSWG

a1 a2 a3 a4 a5

0 2 2 2 1

1 3 3 4 0

3 4 4 5 2

1 2 4 3 1

1 1 2 2 1

2 1 1 1 2

2 2 2 3 1

1 2 3 3 0

1 3 2 2 1

2 4 2 4 3
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 *8. [4.4] For the following designs, estimate the number of subjects required to 
achieve a power of .80, where the largest difference among means is equal to dσε.

 *a. CR-3 design; let α = .05 and d = 0.8

 *b. CR-4 design; let α = .01 and d = 1.2

 *c. CR-2 design; let α = .05 and d = 1.0

 d. CR-3 design; let α = .01 and d = 1.2

 e. CR-4 design; let α = .05 and d = 1.0

 f. CR-5 design; let α = .01 and d = 1.4

 *9. Section 4.2 described an experiment concerning the effects of sleep deprivation 
on hand-steadiness. Assume that a second sleep deprivation experiment was per-
formed in which the dependent variable was simple reaction time to the onset of 
a light. The following data (in hundredths of a second) were obtained. 

a1 a2 a3 a4

12 hours 18 hours 24 hours 30 hours

20 21 25 25

20 20 23 22

17 21 22 22

19 22 23 20

20 20 21 22

19 20 22 26

21 23 22 23

19 19 23 23

 *a. [4.2] Perform an exploratory data analysis on these data (see Table 4.2-1 and 
Figure 4.2-1). Assume that the observations within each treatment level are listed 
in the order in which the observations were obtained. Interpret the analysis.

 *b. [4.3] Test the null hypothesis μ1 = μ2 = μ3 = μ4; let α = .05. Construct an 
ANOVA table and make a decision about the null hypothesis.

 *c. [4.4]  Compute and interpret 2ω̂  and f̂  for these data.

 *d. [4.5] Calculate the power of the test in part (b).

 *e. [4.5] Use the results of part (b) as a pilot study and determine the number of 
subjects required to achieve a power of approximately .80.

 *f. [4.5] Use Appendix Table E.12 to determine the number of subjects required 
to detect a medium association; let 1 – β = .80.

 *g. [4.5] Determine the number of subjects required to achieve a power of .80, 
where the largest difference among means is 1.5σε.

 h. Prepare a “results and discussion section” for the Review of General 
Psychology.
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 10. The effects of viewing “mug shots” on accuracy of eyewitness identification 
were investigated. Twenty-four subjects observed a videotape of six men who 
they were later asked to identify in a recognition test. The subjects were ran-
domly assigned to one of four groups. Subjects in group a4 searched through a 
sequence of 75 mug shots to identify the suspects, those in group a3 searched 
through 50 mug shots, and those in group a2 searched through 25 mug shots. 
Subjects in a1 spent an equivalent amount of time looking for articles about crime 
in Time magazine. Following this, the subjects were shown pictures that included 
the suspects and asked to identify them. The dependent variable is the number of 
suspects identified. The following data were obtained. 

 a. [4.2] Perform an exploratory data analysis on these data (see Table 4.2-1 and 
Figure 4.2-1). Assume that the observations within each treatment level are listed 
in the order in which the observations were obtained. Interpret the analysis.

 b. [4.3] Test the null hypothesis μ1 = μ2 = . . . = μ4; let α = .05. Construct an 
ANOVA table and make a decision about the null hypothesis.

 c. [4.4] Compute and interpret 2ω̂  and f̂  for these data.

 d. [4.5]  Calculate the power of the test in part (b).

 e. [4.5] Use the results of part (b) as a pilot study and determine the number of 
subjects required to achieve a power of approximately .80.

 f. [4.5] Use Appendix Table E.12 to determine the number of subjects required 
to detect a large association; let 1 – β = .80.

 g. [4.5] Determine the number of subjects required to achieve a power of .80, 
where the largest difference among means is 2.0σε.

 h. Prepare a “results and discussion section” for the Review of General Psychology.

 *11. [4.6] How do model I and model II differ for a CR-p design?

a1 a2 a3 a4

5 4 3 0

6 3 0 1

3 6 1 0

4 3 2 2

5 5 2 1

4 4 1 2




