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T he teaching of geometry has a long, rich history. One of the most important 
works in the discipline, Euclid’s Elements, dates back to approximately 300 
b.c. In it, Euclid compiled and extended the work of his predecessors. Boyer 

and Merzbach (1989) characterized the Elements as the most influential textbook in 
history, and speculated that it may be second only to the Bible in terms of number of 
editions published. Euclid’s Elements reflects the Greek commitment to establishing 
and teaching a deductive system of thought in mathematics. Studying such a system 
can be contrasted with learning geometry for more practical purposes, such as deter-
mining measurements. Even though the Greek word geometria is rooted in geo, 
meaning “earth,” and “metron,” meaning measurement (Rubenstein & Schwartz, 
2000), the Elements does not emphasize the practical measurement aspect. Between 
the time Elements was written and the establishment of modern schools, the question 
of whether to emphasize the theoretical or practical aspects of geometry has per-
sisted (Stamper, 1906).

The first attempts to bring geometry to schools in the United States focused on 
the study of deductive reasoning. Geometry made its way into the high school cur-
riculum in the 1840s as colleges added it to their admissions requirements (Herbst, 
2002). During this period, students were expected to memorize proofs from text-
books with expositions of Euclidean geometry. It was not until near the beginning of 
the 20th century that having students produce their own original geometric proofs 
became a widespread practice. The move toward having students produce original 
proofs was largely catalyzed by Bull Wentworth’s textbook series, which became 
known for its inclusion of “originals” and came to dominate the textbook market 
(Donoghue, 2003).

At the outset of the 21st century, new questions about middle and high school 
geometry exist. Two major questions that have emerged in the past few decades are 
(1) how does geometric thinking develop? and (2) what role should dynamic software 
packages play in teaching and learning geometry? Researchers have devoted a great 
deal of attention to each of these questions. Their findings have important implica-
tions for teachers and, accordingly, will be discussed in detail in this chapter.

Developing StuDentS’ 
geometric thinking

Chapter 10
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What iS geometric thinking?

To understand how to support the development of students’ geometric thinking, it 
can be helpful to begin by considering its nature. Geometric thinking can be exam-
ined from two different perspectives: (1) the thinking of mathematicians as they are 
engaged in doing geometry (hereafter referred to as normative geometric think-
ing), and (2) the thinking exhibited by students as they learn geometry. Since the 
ultimate goal of instruction should be to help students engage in normative geomet-
ric thinking, it is important to understand the maturation process leading to its attain-
ment. To provide perspective on normative thinking, Cuoco, Goldenberg, and Mark’s 
(1996) geometric habits of mind are considered below. Then, work inspired by the 
research of Dina and Pierre van Hiele (van Heile, 1986) is discussed as a means of 
understanding students’ thinking while learning geometry.

Normative Geometric Thinking: Habits of Mind

Geometers exhibit a variety of habits of mind in carrying out geometric investigations. 
These include using proportional reasoning, using several languages at once, using a 
single language for everything, reasoning about systems, studying change and invari-
ance, and analyzing shapes (Cuoco et al., 1996). As a starting point for understanding 
normative geometric thinking, each habit of mind is considered and illustrated below.

Proportional reasoning is a vital element in reasoning about things such as vec-
tors, fractals, and theorems about planar objects. As an illustration of the central role 
of proportional reasoning in geometry, consider the diagram shown in Figure 10.1.

Suppose we know that circle C in Figure 10.1 has a radius of 5, AB  is a diameter,  
BD is a tangent, and mBD  = 7. From that information, it is possible to determine m AE.  

First, note that m AB  = 10 because it is twice the length of the radius. In addition, 
m∠ABD  = 90° because the intersection of a tangent line to a circle and its diameter 

Figure 10.1  Diagram for a geometric proportional reasoning problem.
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forms a right angle. This means that ABD is a right triangle, so the Pythagorean theorem 
can be applied to determine m AD . Proportional reasoning then becomes the key to 
solving the problem if one looks for a triangle similar to triangle ABD that contains AE.   
This sort of proportional reasoning problem often appears on teacher certification 
exams (Educational Testing Service, 2009).

Determine m AE  in Figure 10.1. Show all of your work and explain how you reached your 
conclusion.

S T O P  T O 
R E F L E C T

In addition to using proportional reasoning, Cuoco and colleagues (1996) noted 
that there are times when geometers use several languages at once and times when 
they use a single language for everything. It is often the case that multiple techniques 
can be used to solve a problem. Coordinate geometry and vectors are among the 
languages that can be brought to bear in solving a single geometric problem. While 
these languages often come to the aid of geometers, geometry itself assists many 
other branches of mathematics. Euclidean geometry, for example, provides language 
to talk about algebraic objects such as the coordinate (3, 4) (a point), y = 3x + 1 
(a line), and x + 2y + 3z = 1 (a plane). Other branches of mathematics, such as num-
ber theory, can also be simplified by using the geometric concept of point. Number 
theorists call the points in the Cartesian plane with integer coordinates lattice points. 
Lattice points can be considered fundamental objects of study in number theory. 
Essentially, the relationship between the language of geometry and that of other 
branches of mathematics is reciprocal. Geometry often comes to the aid of other 
branches of mathematics, just as tools from other branches can be useful for geomet-
ric problems.

Another hallmark of geometric reasoning is the richness of the systems that 
geometers construct and work within. Euclid’s geometric system was based on five pos-
tulates. Controversies surrounding the fifth postulate, often called the parallel postu-
late, provoked the creation of several alternative, non-Euclidean systems. Referring to 
Figure 10.2, the parallel postulate essentially states that if m m∠ + ∠CAB DBA< 180° ,  
then CA

� ��
 and DB

� ���
 must eventually intersect on the side of AB

� ���
 where ∠CAB  and 

∠DBA  are situated. Many efforts were made to prove that Euclid’s parallel postu-
late was actually just a consequence of the previous four. One individual who 
attempted such a proof was Nikolai Lobachevsky. In the early 19th century, he 
came to believe that no such proof was possible, and his attention shifted to 
designing a valid geometric system based in part on an axiom directly contradicting 
the parallel postulate (Boyer & Merzbach, 1989). Upon the publication and wide-
spread acceptance of his results, normative modes of geometric reasoning were 
permanently shaken. Euclidean geometry was no longer considered the sole arbi-
ter of absolute truth, since Lobachevsky’s geometry, and several others, proved to 
be logically consistent as well. Geometers henceforth did not restrict their investi-
gations to the Euclidean plane, and they began to study new ideas such as spheri-
cal and hyperbolic geometry.
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As geometers work within systems, they often explore characteristics of geomet-
ric objects that change as well as those that remain invariant. To illustrate the explora-
tion of change, consider the three diagrams shown in Figure 10.3.

Figure 10.2  Illustrating Euclid’s parallel postulate.
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Figure 10.3  Changing the location of the intersection of two segments.
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Geometers are interested in exploring such matters as how the arc lengths and 
angles in Figure 10.3 relate to one another. In the circle farthest to the left, the point 
of intersection between two chords lies in the interior of the circle. In the second 
diagram, the intersection point lies on the circle. Finally, in the third diagram, it lies 
on the exterior. Arc and angle relationships change as the point is moved. Along with 
change, invariance is interesting to geometers. Cuoco and colleagues (1996) noted 
that looking for invariants under geometric transformation is a particular point of 
interest. For example, identifying points that do not move under transformation can 
help one find the location of the center of a rotation.
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Given the preceding examples of normative geometric 
thinking, it probably goes without saying that studying 
shapes is another fundamental geometric habit of mind. 
Three categories pertinent to the study of shape are classi-
fication, analysis, and representation (Cuoco et al., 1996). 
Shapes can be classified into categories based on attributes 
such as congruence, similarity, symmetry, self-similarity, and 
topology (Senechal, 1990). Analysis in geometry regularly 
includes looking for lines of symmetry, using lattices, and 
dissecting shapes (Senechal, 1990). Representations can 
come in the form of physical models of geometric objects, 
maps, shadows and lenses, drawings, and computer graphics (Senechal, 1990). These 
forms of representation support visual thinking needed for advancements in mathe-
matics and science.

Students’ Geometric Thinking: van Hiele Levels

It is important for teachers to know that acquisition of normative geometric habits of 
mind is generally not a rapid process. In their doctoral dissertation work, Dina and 
Pierre van Hiele identified several levels of development through which students tend 
to pass in learning geometry (van Hiele, 1986). These are commonly referred to as 
the van Hiele levels. The van Hiele levels have been used extensively to guide inves-
tigations of students’ geometric thinking. Researchers have invested a great deal of 
time in testing the levels against empirical classroom data. Though some have ques-
tioned the descriptive power of the levels and have proposed refinements to them, 
the van Hiele levels remain one of the most influential lenses for studying the devel-
opment of students’ geometric thinking.

Battista (2009) provided a summary of current thought on the van Hiele model 
and the characteristics of each level. Level 1 is referred to as visual-holistic reason-
ing. At this level, students can name shapes when they are shown to them. However, 
the names are based on the general appearance of the shapes rather than on careful 
analysis of their properties. A student reasoning at level 1, for example, may see rect-
angles and squares as completely different kinds of shapes simply because they per-
ceive rectangles to be “longer” than squares. At this point, students characterize 
shapes by general appearance rather than by carefully comparing components such 
as sides and angles. Many level 1 students are also affected by the orientation of a 
shape. For instance, if a square is rotated from its conventional position, they may 
consider it to be a “diamond” rather than a square (see Figure 10.4).

Battista (2009) called van Hiele level 2 descriptive-analytic reasoning. At this 
level, students begin to differentiate among shapes by analyzing their component 
parts. Hence, rather than considering an object to be a rectangle because it is long 
and skinny, students begin to focus on properties such as angles at intersections of 
segments and how segments are oriented relative to one another. Students’ descrip-
tions of these properties may consist of informal language until the formal terms 
point, segment, and angle are learned in school. Although level 2 students begin to 
describe shapes in terms of their component parts, they do not make connections 

See Homework Task 1 to use dynamic 
geometry software to explore the 
diagrams shown in Figure 10.3, which 
lead students to “understand and 
apply theorems about circles” and 
“find arc lengths” (Content Standard 
G-C).

Implementing the Common Core
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among the descriptions they give. For example, they may give definitions for square 
and rectangle that capture many of the pertinent characteristics of each shape, yet 
not understand how a square can be considered a special type of rectangle.

Students do begin to see relationships among definitions for geometric shapes at 
van Hiele level 3, relational-inferential reasoning (Battista, 2009). Inferences 
about the characteristics of shapes are generally made from observing many exam-
ples. For instance, after constructing and measuring many parallelograms, students 
may conclude that their opposite sides are always congruent because the property 
holds in all of the examples they consider. Constructing definitions for shapes by 
drawing on multiple examples prepares students to reason hierarchically about the 
definitions. Since squares and rectangles can both be described as quadrilaterals with 
four right angles, for instance, students can begin to see the logic of categorizing a 
square as a special type of rectangle. Even those who see this sort of logic, however, 
sometimes initially resist imposing a hierarchy on definitions.

Attainment of van Hiele level 4, formal deductive proof (Battista, 2009), is the 
goal of most high school geometry courses. At level 4, students understand the 
importance of undefined terms, definitions, axioms, and theorems in deductive rea-
soning. They can construct proofs by drawing on given information and using previ-
ous results to build a deductive argument. Common tasks at the high school level that 
require level 4 thinking include proving that two triangles in a diagram are similar or 
congruent by using theorems such as side-angle-side and angle-side-angle. High 
school geometry textbooks are often replete with such exercises.

Battista (2009) called the final van Hiele level rigor. At this level, students are able 
to reason about alternative axiomatic systems. They can understand that more than 
one logically consistent system of geometry exists. Although the study of non-Euclidean 
geometries is usually left to university-level mathematics courses, some mathematics 
educators advocate them as enrichments to conventional high school courses. House 
(2005), for example, provided ideas for teaching taxicab geometry at the secondary 
school level. Taxicab geometry redefines the conventional concept of distance in 
plane geometry. Superimposing a grid on the plane helps illustrate the difference in 
definitions (see Figure 10.5). 

The left side of Figure 10.5 shows how distance is measured in conventional 
plane geometry. The distance between (−4, 3) and (5, −1) is measured “as the crow 
flies” and can be determined using the distance formula ordinarily taught in algebra. 

Figure 10.4  The same square in two different orientations.
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The right side of Figure 10.5 shows the measurement of distance in taxicab geometry. 
The coordinate grid can be thought of in terms of city streets, and distance is mea-
sured by considering the shortest path a taxi could drive in commuting between two 
points on the grid. Counting the number of unit grid lengths traced out by the short-
est path gives the distance. Redefining the concept of distance in this manner can be 
used as a springboard for a task such as asking students to determine the conditions 
under which Euclidean and taxicab distances are the same and when they are differ-
ent. Students may also be asked to describe what a circle would look like in taxicab 
geometry, given that a circle is defined as the set of all points equidistant from a given 
point (House, 2005).

Figure 10.5   Two different ways to measure the distance between (–4, 3)  
and (5, –1).
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Sketch several examples of taxicab geometry circles. Explain how taxicab geometry circles are 
similar to and different from Euclidean circles. Also write a distance formula that can be applied to 
find the distance between any two points in taxicab geometry, and compare and contrast this 
formula with the one for finding the Euclidean distance between two points in the Cartesian plane.

S T O P  T O 
R E F L E C T

Some of those who have challenged the descriptive power of the van Hiele model 
question whether students progress through the levels in a linear fashion. Gutiérrez, 
Jaime, and Fortuny (1991) argued that it is more accurate to speak of students’ think-
ing in terms of degree of acquisition of van Hiele levels rather than as a progression 
of discrete jumps from one level to the next. Their data suggested that students may 
function at several different levels simultaneously. Despite this potential limitation, 
Gutiérrez (1992) found van Hiele levels to be useful for characterizing students’ rea-
soning with three-dimensional objects. In addition, Jaime and Gutiérrez (1995) used 
van Hiele levels to describe students’ reasoning about geometric transformations.

Perhaps the most vivid insights yielded by research on students’ acquisition of 
van Hiele levels are the characterizations of students’ thinking after completion of 
high school geometry courses. Recall that the goal of most high school geometry 
courses is to help students attain van Hiele level 4, deductive reasoning. In a study of 
2,700 students from five different states, Usiskin (1982) found that most students did 
not progress beyond the first two van Hiele levels, even after completing high school 
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geometry. Senk (1985) underscored Usiskin’s results by finding that only 30% of stu-
dents from proof-oriented geometry courses attained 75% mastery in proving. Even 
those who demonstrated mastery often did not know the purpose of constructing 
proofs. Without such understanding, proof becomes a meaningless, mechanistic rit-
ual to perform rather than a means of building knowledge in mathematics. Clearly, 
conventional high school geometry courses have fallen well short of the goal of help-
ing all students attain van Hiele level 4.

The preceding discussion of the van Hiele levels suggests aspects of students’ 
geometric thinking that need teachers’ attention. Students’ reasoning about funda-
mental geometric objects and their definitions is emphasized in the first three van 

Hiele levels. Students’ ability to construct and understand 
proofs compose the core of the fourth level. Reasoning 
about geometric measurement is inherent in understanding 
both shapes and proof. A particular form of geometric mea-
surement emphasized in school curricula is trigonometry. 
Some school geometry curricula are also beginning to 
emphasize more contemporary topics such as transforma-
tions, tessellations, chaos, and fractals. Therefore, students’ 
patterns of thinking in regard to all of the preceding cur-
ricular areas will be explored next.

unDerStanDing FunDamental ShapeS anD their DeFinitionS

Students build their own personal definitions for shapes from examples they see in 
school and in everyday life. Through their experiences, students build prototypes 
that can become quite strong and influential in their thinking. Prototypes can be 
described as mental images that exemplify categories (Lakoff, 1987). Those that cap-
ture many of the relevant aspects of a category can be helpful in learning mathematics, 
and those that are more limited can be detrimental (Presmeg, 1992). Unfortunately, 
students often build limited prototypes for geometric objects, such as (1) an altitude 
always lies inside a triangle, (2) diagonals always lie inside a polygon, (3) right triangles 
have their right angles oriented toward the bottom in a diagram, and (4) the base of 
an isosceles triangle is positioned at the bottom of a diagram (Hershkowitz, Bruckheimer, 
& Vinner, 1987). In regard to numbers 3 and 4, individuals often find it more difficult 
to recognize isosceles and right triangles when presented with nonprototypical 
images. The influence that prototypes exert on individuals’ thinking can make it diffi-
cult for them to understand and accept formal definitions that conflict with their 
entrenched prototypes. When possible, teachers should select unusual examples to 

share with students to challenge and uproot limiting, 
entrenched prototypes.

Another issue to deal with in teaching formal definitions 
for geometric objects is that there exist both hierarchical 
and partitional definitions (de Villiers, 1994). Hierarchical 
definitions, as the term suggests, establish a system in which 
a hierarchy of concepts can be formed. In the case of quad-
rilaterals, many textbooks adopt a hierarchical classification 

See Clinical Task 2 to administer a 
comprehensive assessment of students’ 
ability to construct geometric proofs 
(Content Standards G-CO, G-SRT, and 
G-GPE) and use the assessment data 
to drive instructional decisions.

Implementing the Common Core

See Clinical Tasks 3 and 5 to explore 
students’ attention to precision 
(Standard for Mathematical Practice 6) 
when writing geometric definitions.

Implementing the Common Core
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scheme in which a square is a special type of rectangle, a rectangle is a special type of 
parallelogram, and a parallelogram is a special type of quadrilateral. A primary reason 
for adopting hierarchical definition schemes is that they simplify the process of deduc-
tive proof. For instance, under the hierarchical system suggested above, if one can 
prove that a property is true for all parallelograms, then the property automatically 
applies to all squares as well. Unfortunately, students often resist adopting hierarchical 
definition schemes because of entrenched prototypes that lead them to favor parti-
tional ones. Partitional definitions, as the name suggests, partition concepts into sepa-
rate, mutually exclusive bins. Many students have prototypical images of squares and 
rectangles that suggest one is not a subset of the other. This leads them to favor dis-
tinct definitions for the two concepts rather than overlapping ones. 

IDEA FOR DIFFERENTIATING INSTRUCTION Discussing Prototypes

Encouraging students to discuss the their personal 
prototypes for geometric objects is essential to help-
ing them develop richer prototypes and accept more 
efficient hierarchical definitions. De Villiers, Govender, 
and Patterson (2009) suggested that it is inefficient 
for teachers to simply present definitions to students 
and expect them to commit them to memory. 
Instead, students should be encouraged to trace out 
some of the reasoning that went into the formation 
of the definition. One way to start engaging students 
in this reasoning process is to ask them to draw as 
many examples of a shape as possible. As students 
do this, teachers can gauge the range of personal 
prototypes students hold for the shape. Individual 
prototypes can then be shared and discussed publicly. 
In one instance (Groth, 2006b), this process helped a 
class negotiate a shared definition for trapezoid. Two 

definitions emerged as students shared drawings of 
their personal prototypes: (1) a quadrilateral with at 
least one pair of parallel sides and (2) a quadrilateral 
with exactly one pair of parallel sides. The class dis-
cussed the consequences of each definition in terms 
of which types of shapes would be considered trap-
ezoids and which would not. Such considerations led 
some to favor one definition over the other. In formu-
lating and debating the two definitions, the class 
was able to explore some of the considerations that 
go into creating geometric definitions, rather than 
just seeing the definitions in their finished form. 
Students at many different levels of understanding 
were able to participate in the process because gain-
ing access to the task required reflection on personal 
prototypes rather than complete knowledge of for-
mal definitions.

TECHNOLOGY CONNECTION

Dynamic Geometry Software, Drawings, and Constructions

Dynamic geometry software environments (DGEs) can also be used to help students form more powerful 
prototypes for concepts and understand formal definitions. DGEs such as Geometer’s Sketchpad, Cabri, and 
GeoGebra can be used to prompt students to consider the fundamental characteristics of objects they are 
asked to construct. Consider the task of constructing a square in Geometer’s Sketchpad. When asked to do 

(Continued)
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(Continued)

so, many students produce a drawing of a square rather 
than a construction (Hollebrands & Smith, 2009). That is, 
they often use the segment tool to construct four seg-
ments that appear to be of equal length and perpendicu-
lar at the appropriate intersections. A DGE drawing 
ceases to be a square when dragged, but a DGE construc-
tion remains a square when dragged. See Figure 10.6 for 
an illustration of how a drawing loses its “squareness” when dragged, and see Figure 10.7 for a construc-
tion of a square that remains a square when dragged. In general, objects that are drawn lose their 
properties when dragged, but those that are constructed maintain them. Prompting students  
to make constructions rather than drawings can help them carefully examine the properties of the  
given shape.

D C

B A

D

C

B A

Figure 10.6   A DGE drawing of a square before and after dragging vertex C.

AB

D C

AB

D C

Figure 10.7   A DGE construction of a square before and after dragging vertex C.

The drawing in Figure 10.6 was produced simply by using the segment tool to construct four connected seg-
ments and arranging them into a square-looking object. When producing such a drawing, students may go so far 
as to use the angle and side measurement capabilities of the DGE to ensure that they have four right angles and 
four congruent sides. However, as soon as one of the sides or vertices is dragged, the drawing loses its squareness. 
This problem can be overcome by producing a construction as shown in Figure 10.7. To produce the square figure 

See Homework Task 2 to get a start on 
helping students “use appropriate tools 
strategically” (Standard for Mathe-
matical Practice 5) when dynamic 
geometry software is available.

Implementing the Common Core
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shown, the segment tool was used to produce DC. Then the 
perpendicular line command was used to construct BD. The 
intersection point of circle D was then constructed with  
the appropriate software command, and another perpendicu-
lar line was constructed through point B. One last perpendicular 
line was constructed through point C, and its intersection with 
BA was constructed to form the fourth vertex of the square. 
Since the object of interest was the square, all extraneous por-
tions of the construction were taken away by using the appropriate Hide Objects command. Dragging sides and 
vertices in the construction produces new squares rather than destroying its squareness.

K. Jones (2000) found that asking students to produce constructions, rather than drawings, can help improve 
their understanding of formal definitions and relationships among geometric objects. He began instruction by 
asking students to produce objects in a DGE that could not be “messed up” by dragging. This request prompted 
students to move beyond simply producing drawings of the objects. In one case, students were to construct a 
rhombus and explain why it was a rhombus. In another case, they were asked to produce a rectangle that could 
be dragged to make a square, and then to explain why all squares can be considered rectangles. Later on, they 
were asked to construct a kite that could be dragged to produce a rhombus and explain why rhombi can be 
considered kites. By the point in the instructional sequence when the kite task was given, students had become 
increasingly formal in their use of mathematical statements. Instead of using informal language or the language 
of the software in their explanations, they had transitioned to using formal geometric language. This transition 
was demonstrated by the increasing sophistication of their statements about squares and rectangles. Initially, a 
square was considered to be a type of rectangle simply 
because it “looked like one.” Using the DGE led students to 
refine their justification by stating that a rectangle can be 
“dragged into a square.” Finally, at the end of the unit, stu-
dents discussed the fact that both are “quadrilaterals with 
four right angles.” Producing constructions of objects within 
the DGE led to this gradual adoption of normative geometric 
language and modes of thinking.

Follow-up questions:

1. What other types of quadrilaterals could be constructed in a DGE? Explain how you would construct at 
least one other quadrilateral.

2. Why is it important for teachers to know the distinction between “drawings” and “constructions” in DGEs?

See Clinical Task 4 to assess a stu-
dent’s ability to construct a square 
with dynamic geometry software 
(Content Standard G-CO.12).

Implementing the Common Core

See Homework Task 3 to try your hand 
at making geometric constructions 
with dynamic geometry software 
(Content Standard G-CO.12).

Implementing the Common Core

TECHNOLOGY CONNECTION

Analyzing Premade Dynamic Constructions

Another DGE-based strategy that can facilitate understanding of definitions of shapes and relationships 
among them is having students work with premade constructions rather than producing their own. The 
Shape Makers environment (Battista, 2003) supports such an approach. Shape Makers comes packaged 

(Continued)
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unDerStanDing anD conStructing geometric prooFS

Developing normative, formal definitions for shapes lays a foundation for understand-
ing geometric proofs. Such a developmental progression is suggested by the van 
Hiele levels, since level 4 thinking involves the capability to deal with proof. Unfortu-
nately, as noted earlier, far too few students are successful in understanding proof 
upon completing their high school geometry courses (Senk, 1985; Usiskin, 1982). 
The following discussion describes some of the reasons for the widespread failure to 
understand proof and some steps that can be taken to remedy the situation.

The Intellectual Need for Deductive Proof

A major cause of the difficulty with proof in schools appears to be that students often 
feel no intellectual need to reason deductively (Hershkowitz et al., 2002). Deductive 
reasoning involves incorporating accepted statements such as theorems, postulates, 
and definitions into a logical argument. For example, if one wishes to prove that all 
triangles contain 180 degrees, a deductive argument that involves theorems about 
alternate interior angles could be used as a key aspect. Simply measuring the angles 
in several different triangles would not be sufficient, since it is not possible to measure 
every triangle that could possibly be constructed. However, students are often satis-
fied of the truth of a conjecture after seeing only a few specific cases where it holds 
up. Most of the geometry students Koedinger (1998) interviewed were satisfied that 
the diagonals of kites are perpendicular after seeing a few specific examples. Students 
with this tendency have been called naive empiricists (Balacheff, 1988) because 
they rely entirely on the empirical evidence produced by a finite number of cases.

(Continued)

with premade constructions for shapes such as squares, trapezoids, parallelograms, and rectangles. Yu, 
Barrett, and Presmeg (2009) described two types of tasks they asked students to do when using Shape 
Makers. In one type of task, students experimented with different shape makers to produce given pictures 
made of shapes (e.g., a person made of squares, rectangles, circles, and other shapes). Carrying out these 
tasks prompted students to examine the range of capabilities for each shape maker. In another type of task, 
students experimented with shape makers to see which ones would produce different shapes (a square, a 
rhombus, a trapezoid, etc.). As they worked through the tasks, students were encouraged to write down their 
thoughts and conjectures and share them with the instructor and with each other. Exploring the capabilities 
of each shape maker and making their thinking processes explicit helped students refine personal prototypes 
for the geometric shapes under consideration.

Follow-up questions:

1. In what types of situations would you want your students to work with premade constructions? In which 
situations would you want them to construct their own?

2. What kinds of conjectures about relationships between shapes would you expect students to make when 
interacting with Shape Makers? Which important geometry concepts could they learn in the process?
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Naive empiricism, though a prevalent cause of difficult 
with proof, is not the only cause. Some students do not 
even go so far as to gather empirical evidence to support a 
conjecture. Instead, they exhibit external proof schemes, 
believing that truth is established by appealing to outside 
authority (Harel & Sowder, 1998). In addition, even those 
who know the mechanics of deductive proof may not see an 
intellectual need for it. Some of the students interviewed by 
Koedinger (1998) were actually able to write a deductive 
proof showing that diagonals of a kite are perpendicular. However, these students 
usually only did so when the interviewer used the prompt “Do a proof like you do in 
school.” Furthermore, some students who can follow a deductive proof may not be 
convinced that it covers all cases. Chazan (1993) found that some students wanted 
additional empirical examples to support a deductive proof after it had been written. 
These results support the idea that lack of intellectual need, perhaps even more than 
lack of knowledge of the mechanics of proof, is a key roadblock.

See Clinical Task 6 to probe a student’s 
intellectual need to prove a theorem 
about the sum of the measures of the 
interior angles of a triangle (Content 
Standard G-CO.10).

Implementing the Common Core

TECHNOLOGY CONNECTION

Using DGEs for Proof Activities

DGEs present both challenges and opportunities when it comes to helping students see the need for deduc-
tive proof. DGEs allow users to produce many examples very quickly. For instance, a student may quickly 
become convinced that the interior angles of all triangles sum to 180 degrees while dragging vertices and 
observing that the sum remains constant (Figure 10.8).

Figure 10.8   Empirical examples of triangle measures produced in a DGE.
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(Continued)

m∠BAC = 42.88°
m∠BCA = 85.48°
m∠ABC = 51.64°
m∠BAC + m∠BCA 
+ m∠ABC = 180.00°

m∠BAC = 52.53°
m∠BCA = 90.50°
m∠ABC = 36.97°
m∠BAC + m∠BCA 
+ m∠ABC = 180.00°

m∠BAC = 13.36°
m∠BCA = 20.33°
m∠ABC = 146.31°
m∠BAC + m∠BCA 
+ m∠ABC = 180.00°

m∠BAC = 5.97°
m∠BCA = 150.28°
m∠ABC = 23.75°
m∠BAC + m∠BCA 
+ m∠ABC = 180.00°
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(Continued)

Since empirical examples are so easy to come by in a DGE, the potential exists for students to see even 
less need for deductive proof (Mariotti, 2001). However, it is also true that mathematicians often examine 
many empirical examples in order to become convinced that a proposition is worth attempting to prove (de 
Villiers, 1998). Although students, particularly naive empiricists, may become too confident in conclusions 
gained from analyzing empirical examples, analyzing examples intelligently is part of normative geometric 
thinking. Hence, it does not seem reasonable to prohibit students from using DGEs for proof-oriented 
activities. Instead of asking if students should be allowed to use DGEs, a more productive question is how 
teachers can help students use them appropriately.

One way to help students engage in productive work in a DGE is to carefully choose the questions they 
address with the technology. De Villiers (1998) recommended having students make conjectures about pat-
terns they see when exploring within a DGE, and then asking them to explain why the conjectures are true. 
In one activity, for example, students were asked to construct a triangle and the midpoints on each of its 
sides. They were then to connect the midpoints to their opposite vertices to form the medians of the triangle 
(Figure 10.9) and state a conjecture about the medians. Students tested their conjectures by dragging the 
triangle and observing what happened to the medians as the triangle become obtuse, scalene, and right. 
After drawing tentative conclusions about the situation, students shared with one another. They were then 
asked to explain why the conjecture was true by explaining it “in terms of other well-known geometric 
results” (p. 392). After constructing deductive explanations, students again shared them with one another 
to identify areas of agreement and disagreement as well as the explanations that seemed most satisfactory. 
Such an approach stands in contrast to conventional proof instruction, where students are generally given 
statements and then asked to prove them. In de Villier’s activities, students had roles in formulating the 
conjectures to be proven, which helped create an intellectual need to explain why the conjectures were true.

Hadas, Hershkowitz, and Schwarz (2000) used a 
different approach to establishing an intellectual 
need for deductive proof. They set up a situation 
where conjectures students formed while examining 
empirical examples proved to be incorrect. In an 
introductory activity, students were asked to deter-
mine the sum of the interior angles in a polygon, 
and to notice that the sum changed with the num-
ber of sides. From their observations, they were to 
make a conjecture about the sum of the exterior 
angles. Most students believed that the sum of the 
exterior angles would change with the number of 
sides, just as the sum of the interior angles had 
changed. They were surprised, however, when they 
examined more examples and found that the sum of 
the exterior angles was constant, regardless of the 
number of sides on the polygons they constructed in 
a DGE. This sparked students’ curiosity, and many felt a need to explain why the exterior angle sum 
remained constant. The students did not believe that the DGE constructions provided an explanation of 
why this was the case, so they set about reasoning deductively to form satisfactory explanations. In this 
situation, the conflict between expected and obtained results was a powerful catalyst in moving stu-
dents toward formal geometric proof.
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Figure 10.9   Medians of a triangle.
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Establishing a Classroom Culture of Proof

A DGE is just one possible element of a classroom environment that promotes a cul-
ture of proving. Martin, McCrone, Bower, and Dindyal (2005) studied a geometry 
classroom where students successfully made conjectures, provided justifications, and 
built chains of reasoning. To encourage these behaviors, the teacher posed open-
ended tasks, placed responsibility for reasoning on the students, and analyzed their 
reasoning to determine when further coaching was necessary. In one classroom epi-
sode, the teacher began by giving students the open-ended task of writing down 
everything they knew about a pair of congruent pentagons. The task led one student 
to conjecture that the distances between nonadjacent corresponding vertices in each 
pentagon were equal. The teacher asked students to investigate the conjecture 

Hadas and Hershkowitz (1998) also used the element of 
surprise to help prompt students toward forming deductive 
proofs. They asked students to make a conjecture about a 
diagram where one of the angles of a triangle was trisected 
with two segments (Figure 10.10). Most students believed 
that the side opposite the trisected angle would be split 
into three congruent parts. When students tried to support 
this conjecture by measuring empirical examples, they were not able to produce any examples to support the 
conjecture. Students drew on geometric properties they had learned in the past to begin to explain why the 
conjecture actually was not true. As in the Hadas, Hershkowitz, and Schwarz (2000) study, the elements of 
uncertainty and contradiction of intuitive beliefs provoked an intellectual need for deduction.

Since naive empiricism is deeply ingrained in the 
thinking of many students as they study geometry, 
teachers should not expect rapid mastery of deduc-
tive proof. Moving from empirical observations to 
deductive reasoning is a process that takes time. 
DGE use is likely to be most effective in moving 
students toward proof when adequate instructional 
time is invested (Marrades & Gutiérrez, 2000). 
Though it may seem inefficient at first to allow 
extensive amounts of time for examining examples, 
making conjectures, and explaining why the conjec-
tures are true, such a sequence of activities is opti-
mal for helping students begin to engage in 
normative geometric thinking patterns.

Follow-up questions:

1. Why is the sum of the exterior angles for any polygon 360°? Provide a deductive explanation.

2. Provide your own example of a counterintuitive geometric property that students could investigate in a 
DGE. How would students’ DGE findings for your example conflict with their intuition?

See Homework Task 4 to prove a theo-
rem about the medians of triangles 
(Content Standard G-CO.10).
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Figure 10.10   A triangle with one angle 
trisected by two segments.
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through paper folding, affirmed the truth of the statement, and then asked students 
to explain why it was true. In response, students attempted to construct deductive 
explanations. Some of the attempts at deductive explanation were initially unsuccess-
ful. The teacher introduced counterexamples highlighting the portions of the stu-
dents’ arguments that needed to be rethought. Students persisted in their attempts 
to construct deductive explanations because the teacher’s feedback and interaction 
indicated that their attempts were valued, even if they were not initially correct.

Many teachers believe that providing a specific proof writing format is another way 
to support students’ attempts to construct proofs. The two-column proof format, in 
which statements are written in one column and corresponding reasons in the other, 
is deeply ingrained in the culture of teaching geometric proof in the United States 
(Herbst, 2002). A typical two-column proof from high school geometry is shown in the 
top portion of Figure 10.11. In recent decades, the two-column format has been criti-
cized. Schoenfeld (1988) remarked that constructing geometric proofs can become a 
ritualistic and mechanistic enterprise when the form of a proof is emphasized more 
than its substance. Moreover, mathematicians do not hold themselves to using the 
two-column format when constructing proofs. In an attempt to shift students’ focus 
from the two-column format to the actual substance of proofs, Curriculum and 
Evaluation Standards for School Mathematics (National Council of Teachers of Math-

ematics [NCTM], 1989) identified two-column proof as a 
topic that should receive less attention. Proof itself was still 
to be an important part of the curriculum, but NCTM recom-
mended de-emphasizing the two-column format in an attempt 
to shift attention toward the quality of students’ deductive 
reasoning and away from their ability to adhere to a specific 
format. Two other possible formats for writing proofs, flow-
charts (McMurray, 1978) and paragraphs (Brandell, 1994), are 
shown in Figure 10.11.

Any given format for writing a proof has potential weaknesses and strengths. A 
potential weakness of any form is that students may begin to focus more on form than 
on substance, as noted earlier. The primary strength of paragraph proofs is that they 
closely resemble the types of proofs constructed by mathematicians. Therefore, stu-
dents who can read and construct paragraph proofs may be in better position to suc-
ceed in college mathematics. Nonetheless, other formats may be useful for scaffolding 
students’ thinking so that they can ultimately master paragraph proof. Even the two-
column format, which has been somewhat demonized in the recent past, can serve a 
useful scaffolding role when used appropriately. Weiss, Herbst, and Chen (2009) noted 
that the two-column format can be a useful tool for outlining the general structure of 
a proof. In one classroom they observed, a student sketched a general structure for a 
proof using two columns, initially skipping some of the reasons in the second column 
but returning to fill them out later. When used in this way, the two-column format can 
help students organize their thinking. On the other hand, when teachers insist that 
two-column proofs be filled out in a linear fashion, with each step justified before 
another step may be written, students’ thinking is constrained. In general, any proof 
format is valuable when used to help facilitate thinking rather than impede it.

Under any form of proof, care must be taken to ensure that students interpret the 
accompanying diagrams correctly. Battista (2007) described a variety of ways that stu-
dents misinterpret the intended meanings of geometric diagrams. One common mis-
interpretation is to believe that a deductive proof only covers the specific diagram 

See Clinical Task 7 to inquire about a 
teacher’s strategies for using different 
formats to help students construct proofs  
(Content Standards G-CO, G-SRT, and 
G-GPE).
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accompanying the proof. In reference to Figure 10.11, for example, some students may 
believe that if EG  were lengthened, a new proof would be required, even though the 
essential structure of the situation would remain unchanged. Another common misin-
terpretation is to believe that features of a diagram can disprove a theorem established 
deductively. Suppose, for example, a teacher drew a diagram of a circle and a tangent 
line, and then drew a radius out to the tangent line that appeared to intersect it at an 
acute angle. Such a diagram will lead some students to believe that the intersection of 
a radius and a tangent line does not always form a right angle. To help students avoid 
misinterpretations like these, it is important to explicitly discuss the meanings of geo-
metric diagrams. Students need to understand that diagrams simply serve as (some-
times imperfect) visual props for working toward a deductive proof.

Figure 10.11  The same proof written in three different formats.

∠DGE 
≅ ∠FGF
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Triangles DGE and FGE are congruent by ASA.
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∠DGF
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Statements Reasons

1. EG
—

 bisects ∠DGF 1. Given

2. ∠DGE ≅ ∠FGE 2. The two angles formed by an angle bisector are congruent.

3. GE
— 

 ≅ EG
—

 3. Reflexive property

4. ∠FEG ≅ ∠DEG 4. Given

5. Triangles DGE and FGE are congruent. 5. Angle-side-angle postulate

Suppose we know that EG
—

 bisects ∠DGF and that ∠FEG ≅ ∠DEG. Prove 
that triangles DGE and FGE are congruent.

Two-column proof:

Flowchart proof:

Paragraph proof:

The two triangles can be shown congruent by using the angle-side-angle congruence postulate. First, note that  
∠DGE ≅ ∠FGE because EG

—
  bisects ∠DGF, and the bisector of an angle splits it into two congruent angles. Next, 

we know that GE
— 

 ≅ EG
—

  by the reflexive property. Finally, it was given that ∠FEG ≅ ∠DEG. This shows that two 
corresponding angles in each triangle and their included corresponding sides are congruent. Hence, triangles DGE 
and FGE are congruent by the angle-side-angle (ASA) congruence postulate. Q.E.D.
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geometric meaSurement

Along with the study of shapes and proofs, measurement undergirds most geometry 
courses taught in middle and high schools. As in other areas of the mathematics cur-
riculum, there are many student thinking patterns that should be taken into account 
in planning instruction. Students’ thinking about measurement of length, area, vol-
ume, and angles is discussed below.

Measuring Length

An item from the National Assessment of Educational Progress (NAEP), commonly 
called the “broken ruler problem,” provides a good starting point for discussing stu-
dents’ understanding of length measurement. The version of the problem given to 
students in 2003 is shown in Figure 10.12.

Figure 10.12   Broken ruler problem from 2003 National Assessment of 
Educational Progress.

What is the length of the toothpick in the figure above?

inches

7 8 9 10 11 12

Source: http://nces.ed.gov/nationsreportcard/naepdata/.

Approximately 42% of eighth graders (Blume, Galindo, & Walcott, 2007) and 20% 
of high school seniors (Struchens, Martin, & Kenney, 2003) answer the broken ruler 
problem incorrectly. There are several ways students can go wrong. Some have dif-
ficulty reading fractional lengths. Even those who can do so may say that the tooth-
pick is 10½ inches long because they are accustomed to reading the location of the 

endpoint on the right side of the ruler to determine a 
measurement. Those who do attempt to determine the 
distance between the two endpoints of the toothpick may 
do so incorrectly by counting each mark above a whole 
number as one unit of length. That is, since the whole num-
bers 8, 9, and 10 fall within the length of the toothpick, 
students may incorrectly conclude that the toothpick is 3½ 
inches long.

See Clinical Task 8 to investigate stu-
dents’ attention to precision (Standard 
for Mathematical Practice 6) when 
measuring length with a broken ruler.
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Miscounting the units in the length of an object like the toothpick in the broken 
ruler problem suggests a fundamental misunderstanding of length measurement. 
Students need to understand that the distance between two consecutive whole num-
bers, rather than a mark above a number, represents a unit of length. One strategy for 
helping students understand this important characteristic of measurement involves 
setting aside formal units of measure and rulers. Van de Walle (2001) recommended 
that students measure length by iterating an informal unit along an object. For exam-
ple, students might use their hand spans to measure the length of a table. Doing so 
reinforces the idea that one essentially lays the same unit end to end over and over 
again to measure length. When repeatedly iterating the informal unit becomes 
tedious, students can abbreviate the process by making their own measuring sticks by 
taping together several copies of the unit. This can help them understand how con-
ventional rulers abbreviate the iteration process. Finally, when students obtain differ-
ent measurements for the same table because their hands are different lengths, the 
concept of formal units can be introduced and appreciated for its ability to facilitate 
discussions about the length of an object.

Understanding how the iteration of units composes the foundation of measure-
ment can also be useful when students attempt to estimate. Another problem that 
causes difficulty on the NAEP involves estimating the length of one object with 
another. On the 2003 NAEP, students were asked to estimate the length of the 
882-foot-long cruise ship Titanic. They were to choose the most accurate estimate 
from among several options: 2 moving van lengths, 50 car lengths, 100 skateboard 
lengths, 500 school bus lengths, or 1,000 bicycle lengths. Only 39% of eighth grad-
ers answered correctly (Blume et al., 2007). The low rate of success on the item 
suggests a lack of opportunity to think about measuring an object through the 
iteration of units. Although such opportunities would ideally occur in the lower 
grades, middle and high school teachers may need to address gaps in students’ 
understanding by providing opportunities for measuring via iteration of units in the 
later grades.

Another way to build students’ understanding of length measurement involves 
using a geoboard. A geoboard is essentially a pegboard on which rubber bands can be 
strung to create geometric objects. Dot paper can be used in 
place of a physical geoboard. Some online applets also repli-
cate physical geoboards (Figure 10.13). Ellis and Pagni 
(2008) described an instructional sequence for using the 
geoboard to help students understand lengths not repre-
sented by whole numbers. They asked students to deter-
mine the lengths of the sides of simple objects, such as 
squares and rectangles, formed on the geoboard. Students 
could do so by counting the number of units (rather than 
the number of pegs) along each side. They then asked stu-
dents to determine the lengths of diagonals on the geoboard. This prompted students 
to use the Pythagorean theorem. If a length of 1 is assigned to the distance between 

neighboring pegs on the geoboard, then the shortest diagonal is 1 1 22 2+ = .  Once 
that length has been established, students can take on more complicated problems, 
such as determining how many segments of 10  can be found on the geoboard.

See Homework Task 5 to try your 
hand at a geoboard task that requires 
students to “understand and apply 
the Pythagorean Theorem” (Content 
Standard 8.G).
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Measuring Area

Students’ difficulties in measuring length feed difficulties in measuring area. NAEP 
data indicate that only about 24% of eighth graders can determine the surface area 
of a given rectangular prism (Blume et al., 2007). In addition, teachers are sometimes 
uncertain about relationships between perimeter and area of geometric objects. Ma 

(1999) asked teachers how they would respond to a stu-
dent who claimed that the area of a closed figure always 
increases as its perimeter increases. Many of the teachers 
from the United States responded that they would ask the 
student to produce several examples to verify the claim. 
Few responded that they would guide students toward 
counterexamples that would actually refute the claim, like 
the one shown in Figure 10.14.

One of the prominent portions of the curriculum 
where measurement of length and area interact is the 
Pythagorean theorem. Although the Pythagorean theorem 

is often used simply to determine the length of a side of a right triangle when only 
the other two side lengths are provided, it also expresses an interesting relationship 

Figure 10.13   A geoboard from the National Library of Virtual Manipulatives 
(http://nlvm.usu.edu/en/nav/vLibrary.html).

See Clinical Task 9 to explore how well 
students “construct viable arguments” 
(Standard for Mathematical Practice 3) 
when discussing the relationship 
between area and perimeter of a shape.
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among areas of squares. Essentially, it states that the sum 
of the areas of the squares constructed on the legs of a 
right triangle will equal the area of the square constructed 
on the hypotenuse (Figure 10.15). There are many ways to 
help students understand the Pythagorean theorem in 
terms of area. Yun and Flores (2008), for example, sug-
gested using jelly beans as informal units of area measure-
ment. They constructed several cardboard containers in the shape of the diagram 
shown in Figure 10.15. They then asked students to fill each square portion with a 
layer of jelly beans and describe the relationships among the areas of the squares. 
Yun and Flores recommended extending the activity by having students examine 
containers with circles and other shapes constructed on the sides of the right tri-
angle to conjecture whether or not the relationship between the areas still holds. 
As in length measurement, work with informal units can be followed by work with 
formal units represented by unit squares.

Figure 10.14  Decreasing area while increasing perimeter.

mAB ⋅ mBC = 5.96 cm2

mAB + mBC + mDC + mAD = 9.79 cm

mAB = 2.62 cm
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mAB ⋅ mBC = 4.53 cm2

mAB + mBC + mDC + mAD = 15.03 cm

mAB = 6.85 cm

mAD = 0.66 cm mBC = 0.66 cm

mDC = 6.85 cm

See Homework Task 6 for an opportunity 
to “explain a proof of the Pythagorean 
Theorem” (Content Standard 8.G.6).
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Figure 10.15  Expressing the Pythagorean theorem in terms of area.
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IDEA FOR DIFFERENTIATING INSTRUCTION Measuring Nonrectangular Areas

Encouraging students to measure nonrectangular areas 
with unit squares sets the stage for diverse, rich thinking 
strategies to emerge. Hodgson, Simonsen, Lubek, and 
Anderson (2003) described an activity that required 
students to measure the area of the state of Montana. 
When presented with the task, students suggested 
superimposing a grid of unit squares on a map. They 
then proposed methods to obtain more accurate meas-
urements, such as making the squares progressively 
smaller to minimize empty spaces within the grid. Utley 
and Wolfe (2004) suggested using the unit squares on 
geoboards as a means of measuring the areas of differ-
ent shapes. Since geoboards have unit squares built 
into their structure, they can be used to visualize area 
for a variety of shapes, such as the trapezoid shown in 
Figure 10.16. One might form a rectangle around the 

trapezoid and then cut out two triangles, or cut the 
shape itself into a rectangle and two triangles. Students 
may also devise alternative strategies for determining 
its area. It is important to note that knowing the for-
mula for the area of a trapezoid is not necessary to 
perform the task. Determining the area is actually a 
good precursor to deriving a formula, as students can 

See Homework Task 7 to explore how a 
geoboard can be used for problems 
that require students to solve mathe-
matical problems involving areas of 
unusual shapes (Content Standards 
6.G and 7.G).
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Measuring Volume

As with area measurement, it is important for students to 
develop conceptual knowledge of volume before dealing 
with procedural formulas. Students who are very good at 
memorizing and using formulas to determine volume 
often have little understanding of what the formulas 
mean. NAEP results show that approximately 45% of 12th-
grade students do not know that 48 cubic inches repre-
sents a measure of volume (Battista, 2007). Without 
knowledge of the fundamental unit that composes volume, students have little 
chance to develop conceptual understanding of volume measurement.

Battista (1999) described an instructional sequence for helping students develop 
conceptual understanding of volume. Instruction began by asking students to deter-
mine the number of cubes it would take to fill different boxes represented by two-
dimensional drawings (see, for example, the diagrams in Figure 10.17). Students 
made conjectures, compared them with one another, and then tested the conjec-
tures using actual cubes and boxes. Discrepancies between predicted and actual 
results prompted students to go back and revise their thinking. In some cases, stu-
dents found their predictions to be incorrect because they double-counted cubes or 
omitted cubes in the middle of a box in forming their predictions. Some students 
began the task of counting the number of cubes in each box by using skip counting, 
but gradually moved to multiplication as a more efficient strategy. After working with 

Figure 10.16   A geoboard representation of a trapezoid.
be prompted to find shortcuts for 
calculating area after using more 
time-consuming visual methods 
repeatedly. The formula can then be 
understood and appreciated as an 
abbreviation of the visual methods 
rather than simply as a teacher-
invented recipe for determining area. 
Students who discover a formula for 
the area of a trapezoid in advance of 
others can be encouraged to devise 
additional area formulas for more 
complex geometric shapes.

Describe at least four different ways to determine the area of the trapezoid shown in Figure 10.16. 
Explain your reasoning completely.

S T O P  T O 
R E F L E C T

See Clinical Task 10 to investigate a 
student’s ability to decompose a trap-
ezoid into simpler shapes (Content 
Standard 6.G.1) to determine its area.
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several boxes (i.e., rectangular prisms), students moved on 
to explore other solids, such as pyramids. At the end of the 
instructional sequence, students were able to successfully 
enumerate cubes in 3D arrays. Battista’s instructional 
sequence stands in stark contrast to typical units that begin 
by introducing students to formulas for volume and then 
spend most of the allotted time having students repeatedly 
practice computation with those formulas.

Measuring Angles

Just as volume measurement can be difficult for students to understand conceptually, 
angle measurement often presents a significant cognitive hurdle. Some students 
believe that the lengths of the rays that make up an angle influence its measure (i.e., 
as the rays become longer, the angle measure increases even though the rays remain 
in the same orientation to one another; Struchens et al., 2003). Students also have a 
difficult time conceiving of angle measurement as an amount of turn (Mitchelmore & 
White, 2000). This particular student difficulty can be partially explained by the lan-
guage teachers use to describe angles. Browning and Garza-Kling (2009) found that 
prospective teachers tend to describe angles as “corners” or “something you measure 
in degrees.” Such descriptions of angles fail to emphasize their usefulness for measur-
ing the amount of turn from one position to the next.

Given students’ difficulty in conceiving of angle measurement as an amount of 
turn, geometry instruction should explicitly address this characteristic. Browning and 
Garza-Kling (2009) fostered understanding in this area by asking students to imagine 
that the degree, a standard unit of angle measurement, had not yet been invented. 
Students were to devise their own strategies for measuring angles. They settled on 
forming wedges and iterating them until they had completely measured out an angle. 
Since each group of students began with a different-size wedge, the importance of 

See Clinical Task 11 to assess a stu-
dent’s ability to determine the volume 
of prisms using nets made of rectan-
gles (Content Standards 6.G.4, 7.G, 
8.G, and G-GMD).
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having a standard wedge to measure all angles became 
apparent so that each group would assign the same mea-
sure to a given angle. This led to understanding and appre-
ciation of a degree as a standard “wedge size” used for angle 
measurement. Later on, Browning and Garza-Kling asked 
students to work with a graphing calculator applet showing 
angles being swept out by turning segments. Such experi-
ences highlighted important concepts that compose the 
foundation of angle measurement.

trigonometry

Many of the geometric concepts discussed so far, particularly the idea of angle, 
form the core of secondary school trigonometry. Despite the importance of the 
subject, research on the teaching and learning of trigonometry is in its infancy. 
It will be important for teachers to track developments in this field of research in 
the coming years as it continues to develop. Insights from existing research are 
discussed next.

In recent years, researchers have highlighted potential conceptual difficulties 
with common approaches to teaching trigonometry. P. W. Thompson (2008) 
claimed that the trigonometry of right angles and the trigonometry of periodic 
functions are often treated in isolation. Weber (2008) agreed, noting that the cal-
culation of ratios in static triangles is often overemphasized in comparison to time 
spent building functional understanding. Thompson went on to note that trigo-
nometry is often taught procedurally, with little emphasis on the conceptual 
underpinnings of angle measurement. Because of this, students may be able to 
transition between radians and degrees without understanding that the two are 
essentially just different units for measuring angles. In trigonometry, as in many 
other areas of the mathematics curriculum, fundamental problems with teaching 
and learning appear to be often rooted in an imbalance between emphases on 
procedural and conceptual knowledge.

Weber (2008) described a teaching sequence that departs from conventional 
approaches to trigonometry. He started instruction by asking students to work with a 
circle with a radius of 1 and centered on the point (0, 0) (i.e., a unit circle) on graph 
paper. On the unit circle, students drew angles and approximated the values of differ-
ent trigonometric functions by measuring the coordinates of the intersection of the 
terminal segment and the unit circle. In Figure 10.18, for instance, students could 
estimate sine by estimating the y-coordinate of the intersection and cosine by estimat-
ing the x-coordinate. After associating sine with y-coordinates and cosine with x-coor-
dinates, Weber had students estimate sine and cosine for several different examples. 
Along the way, students were asked to determine the exact values for sine and cosine 
of 0 90 180 270   , , ,  and 360  without measuring. With this background, students 
were prepared to approach conceptual trigonometric tasks, such as determining 
whether or not it is possible to have a situation where sin( )x = 2 , deciding on the sign 
of cos( ),300  and determining if sin( )23  is larger or smaller than sin( )37 . Weber 
(2005) reported that this general approach helped students develop a deep under-
standing of trigonometric functions.

See Homework Task 8 for an opportu-
nity to design a manipulative to help 
students understand the concept  
of angle measurement (Content 
Standard 8.G).

Implementing the Common Core
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Cavey and Berenson (2005) described how teachers can improve their under-
standing of right triangle trigonometry by engaging in a modified version of Japanese 
lesson study. They traced the learning of one preservice teacher, Molly, during the 
process of collaborative planning and modification of lessons. Initially, when asked 
to teach a unit on right triangle trigonometry, all Molly could recall about the topic 
was the mnemonic “SOHCAHTOA.” The acronym provided a means for calculating 

sine, cosine, and tangent, but little else (i.e., the acronym 
states that sine is “opposite [O] over hypotenuse [H],” 
cosine is “adjacent [A] over hypotenuse [H],” and tangent 
is “opposite [O] over adjacent [A]”). Through collaborative 
planning, Molly was able to take her teaching of trigonom-
etry beyond this simple mnemonic. One idea she gained, 
for example, was using a clinometer (Figure 10.19), a tool 
consisting of a protractor, straw, washer, and string that can 
be used to measure angles in real-world situations involv-
ing right triangle trigonometry. In revising and extending 
her lessons, she also enriched her understanding of the 
mathematical concepts of ratio and similarity. Her improved 
content knowledge helped enhance the lessons she taught. 
Thinking about the mathematics within the context of her 
own practice proved to be a crucial element in Molly’s 
development. Sharing her plans with others was a key 
mechanism in helping her identify and address gaps in her 
mathematical and pedagogical knowledge.

Figure 10.18  Unit circle diagram.
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See Clinical Task 12 to assess students’ 
ability to “solve problems involving 
right triangles” (Content Standard 
G-SRT) and “extend the domain of 
trigonometric functions using the unit 
circle” (Content Standard F-TF).

Implementing the Common Core

See Clinical Task 13 to assess students’ 
ability to use trigonometric ratios to 
solve applied problems (Content 
Standard G-SRT.8) with a clinometer.

Implementing the Common Core
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contemporary topicS in geometry

As geometry continues to develop as a discipline, the school curriculum should 
respond accordingly. There has, of course, been much advancement in the discipline 
of geometry since the time of Euclid, yet the study of plane geometry and traditional 
measurement continue to dominate the curriculum. Contemporary topics that can be 
included in secondary curricula are transformation geometry, tessellations, fractals, 
and chaos (National Governor’s Association for Best Practices & Council of Chief State 
School Officers, 2010; NCTM, 2000). As these ideas are relatively new to school cur-
ricula, we are just beginning to investigate optimal ways of teaching and learning 
them. Nonetheless, existing mathematics education research does provide some use-
ful insights.

Transformation Geometry

Isometries can be defined as transformations in the plane 
that preserve the distance between points (Jaime & 
Gutiérrez, 1995). Isometries typically included in the high 
school curriculum include translations, rotations, and reflec-
tions. Isometries can be produced by a variety of methods, 
including paper folding, using dynamic geometry software, 

Figure 10.19  Components of a clinometer.

Straw (used to sight
the tops of tall
objects)

String (attached to center
of the bottom segment
of protractor)

Washer (attached so the
string marks out the
precise angle being
measured)

Protractor

Describe how students could use a clinometer to measure the heights of very tall objects, such as 
the school building or trees surrounding it. Write at least three exercises you would ask students to 
do outside using clinometers. Include a diagram showing proper use of the clinometer to measure 
a tall object.

S T O P  T O 
R E F L E C T

See Homework Task 9 to explore a vari-
ety of transformation geometry prob-
lems (Content Standards 8.G, G-CO, 
and G-SRT) that can be approached 
using a Mira manipulative.

Implementing the Common Core
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using online applets such as those available on the National Library of Virtual 
Manipulatives, and employing a Mira tool. Figure 10.20 shows isometries involving a 
hexagon.

Figure 10.20  Isometries involving a hexagon.

Horizontal translation 120° Rotation about
point P

P

j

Reflection across
segment j

Jaime and Gutiérrez (1995) suggested using the van Hiele levels as a structure for 
determining goals for the study of plane isometries. They identified van Hiele level 3 
as a suitable target for secondary school activities involving isometries, since most 
courses at this level aim to help students construct chains of deductive reasoning. 
Aiming for van Hiele level 3 means going beyond having students produce transfor-
mations. Jaime and Gutiérrez recommended tasks such as asking students to explain 
why the product of rotations is equivalent to a translation when the sum of the rota-
tion angles is a multiple of 360.  Another recommended task was to explain why the 
product of two rotations is either a rotation or translation. Writing explanations for 
why transformations behave as they do can help students build the deductive reason-
ing skills characteristic of the higher van Hiele levels.

Tessellations

Students who have studied some transformation geometry can appreciate tessella-
tions, which are tilings of a plane that do not contain any gaps or overlaps. Three 
regular polygons will tile the plane in this manner: triangles, squares, and hexagons. 
These three tile the plane because the measures of their interior angles are divisors 
of 360. Figure 10.21 shows tilings done using an applet on the National Library of 
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Virtual Manipulatives website. Using applets, software programs, or just paper and 
scissors, students can make and test conjectures about the kinds of shapes that will 
tile the plane.

Figure 10.21  Tessellations using regular polygons.

Perhaps the best-known tessellations occur in the artwork of M. C. Escher. Exam-
ples of how Escher incorporated tessellations in his paintings can be seen on www 
.mcescher.com.

Escher went beyond merely tiling the plane with shapes. He performed transfor-
mations on the shapes to form unique figures and then used them to tile the plane. 
Shockey and Snyder (2007) described an approach to helping students produce 
Escher-like tessellations. They asked students to take a square, cut a design along one 
edge of it (corner to corner), and then translate the design to the opposite side of the 
square (Figure 10.22). When the design is used to tile the plane, an Escher-like picture 
is formed. One could perform the same procedure with the other pair of opposite 
sides of the square to produce a different portrait. Students can also experiment to 
find other shapes and transformations that tile the plane.

Fractals and Chaos

Concepts from fractal geometry have begun to make their way into middle and high 
school curricula. Fractals can be described in the following terms:

Roughly speaking, fractals are complex geometric shapes with fine structure 
at arbitrarily small scales. Usually they have some degree of self-similarity. In 
other words, if we magnify a tiny part of a fractal, we will see features remi-
niscent of the whole. Sometimes the similarity is exact; more often it is only 
approximate or statistical. (Strogatz, 1994, p. 398)

Sierpinski’s triangle (Figure 10.23) is one well-known fractal. Notice the self-
similarity that exists within it. Strogatz noted that other fractals resemble naturally 
occurring objects such as clouds, coastlines, and blood vessel networks. Their ability 
to capture characteristics of natural objects, along with the fact that many discoveries 
in fractal geometry have been made in the very recent past (Devaney, 1998), make 
fractals a potentially exciting addition to school curricula.
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Figure 10.22  Creating a simple Escher-like picture.

1. Cut a curve, 
corner to corner, 
from a shape 
that tiles the 
plane. 

2. Translate the 
resulting object to 
the opposite side 
of the square. 

3. Decorate your
design as 
desired. 

4. Use your design to tile the plane. 

Figure 10.23   Sierpinski’s triangle generated with an online applet (http://
curvebank.calstatela.edu/sierpinski/sierpinski.htm).
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Devaney (1998) described a game that can be used to introduce students to the 
mathematics underlying the construction of Sierpinski’s triangle. He described the 
rules of the chaos game (Barnsley, 1989) in the following terms:

First pick three points—the vertices of a triangle (any triangle works—right, 
equilateral, isosceles, whatever). Name one of the vertices 1,2, the second 3,4, 
and the third 5,6. The reason for these strange names is that we will use the 
roll of a die to determine the moves in the game. To begin the game, choose 
any point in the triangle. This point is the seed for the game. (Actually, the 
seed can be anywhere in the plane, even miles away from the triangle). Then 
roll a die. Move the seed halfway toward the named vertex: If 1 or 2 comes up, 
move the point half the distance to the vertex named 1,2. Now erase the 
original point and repeat this procedure, using the result of the previous roll 
as the seed for the next: Roll the die again to move the new point half the 
distance to the named vertex, and then erase the previous point. (p. 92)

After following the instructions above for a small number of rolls, students should 
connect the points generated. After many trials, regardless of the initial seed used, 
Sierpinski’s triangle will begin to emerge from the pattern. The chaos game can be 
extended by asking students to experiment with changing the rules and observing the 
pattern generated, or by starting with a picture of a fractal and attempting to discover 
the rules that generated it.

CONCLUSION

Geometry presents many interesting ideas to study, dating from the historical era before Euclid to the 
present day. The fundamental goals of school geometry include understanding shapes and their defini-
tions and constructing proofs. Currently, we know that far too few students completing high school 
geometry are able to write and understand proofs. Therefore, teachers must look for opportunities to 
help students move past naive empiricism and develop deductive reasoning. Dynamic geometry soft-
ware can help progression toward this goal when used appropriately. As students move toward deduc-
tive proof, they should also develop an understanding of measurement as the process of iterating a given 
unit. The iteration process applies to the measurement of length, area, volume, and angles. Geoboards, 
rectangular grids, cubes, and wedges are among the physical tools helpful for developing students’ con-
ceptual understanding of measurement. Trigonometry takes angle measurement as one of its central 
objects of study, and at the same time presents an opportunity to further develop students’ understand-
ing of functions. Relatively recent developments in geometry related to transformations, tessellations, 
and chaos help add vibrancy to the subject. Sample four-column lessons are provided at the end of the 
chapter to further spark your thinking about teaching geometry.

VOCABULARY LIST

After reading this chapter, you should be able to offer reasonable definitions for the following ideas 
(listed in their order of first occurrence) and describe their relevance to teaching mathematics:

Euclid’s Elements 307

Normative geometric thinking 308

Geometric habits of mind 308

van Hiele levels 311
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Visual-holistic reasoning 311

Descriptive-analytic reasoning 311

Relational-inferential reasoning 312

Formal deductive proof (van Hiele level) 312

Rigor (van Hiele level) 312

Taxicab geometry 312

Prototype 314

Hierarchical definitions 314

Partitional definitions 314

DGE drawing 316

DGE construction 316

Deductive reasoning 318

Naive empiricists 318

Geoboard 325

Unit circle 331

Clinometer 332

Isometry 333

Tessellation 334

Fractal 335

HOMEWORK TASKS

 1. Describe relationships that exist between the angles and arcs shown in Figure 10.3. Use dynamic 
geometry software and geometry textbooks as resources as necessary. Show all your work and justify 
your reasoning.

 2. Suppose your school is searching for a DGE software program to adopt for its high school geometry 
courses. Examine the websites of at least three DGEs (e.g., Cabri, Geometer’s Sketchpad, GeoGebra; 
do an Internet search to find the official websites). Then write a letter to the high school mathemat-
ics department chair recommending one of the software programs for adoption. Justify your adop-
tion recommendation with details about the unique aspects of the selected DGE.

 3. Use DGE software to construct a rhombus, a rectangle, and a kite that cannot be “messed up” (i.e., 
they retain their defining characteristics when dragged). Show and describe all steps in the construc-
tion. Then hide all portions of the construction extraneous to each shape, as done for the square 
on the right-hand side of Figure 10.7.

 4. State a conjecture about the medians of a triangle (see Figure 10.9). Provide evidence that your 
conjecture may be true by giving paper-and-pencil examples that are carefully constructed or pro-
ducing examples within a DGE. Then prove the conjecture deductively, drawing on other well-
known results from geometry.

 5. Determine how many segments of 10  can be found on a 10 × 10 geoboard. Also describe how to 
determine the number of segment lengths of 10  you can find on an n × n geoboard. Show all of 
your work and justify your answer.

 6. Do an Internet search on “proofs of the Pythagorean theorem.” Choose two proofs you would share 
with a high school geometry class you might teach in the future. Explain the essential similarities 
and differences between the logic of each of the proofs you choose.

 7. Form a nonrectangular shape on a geoboard and describe how to determine its area. Your shape 
should be concave and have at least five sides. Then form another concave, rectangular shape on 
the geoboard and ask a classmate to find its area. The shape you give to your classmate should pre-
sent a significant challenge.

 8. Draw a diagram of a manipulative that would help students understand the idea of angle measure-
ment in terms of the iteration of wedges. Write three progressively more difficult tasks that can be 
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solved by using the manipulative. Explain how your tasks could help students begin to understand 
and appreciate standard units of angle measure (e.g., degrees) and standard instruments for angle 
measurement (e.g., protractors).

 9. Do an Internet search on “Mira geometry tool.” Describe four different types of exercises that can 
be done using a Mira. Be sure to cite the website from which each exercise idea was generated.

10. Describe how students could use a clinometer to measure the heights of very tall objects, such as 
the school building or trees surrounding it. Write at least three exercises you would ask students to 
do outside the classroom using clinometers. Include a diagram showing proper use of the clinom-
eter to measure a tall object.

CLINICAL TASKS

 1. Download the University of Chicago’s van Hiele geometry test (http://ucsmp.uchicago.edu/van_
Hiele.html) and administer it to a class of high school geometry students (be sure to request permis-
sion to do so, as noted on the project website). Score the test using one of the scoring schemes 
provided. Construct a data display that could be given to the teacher of the class to summarize the 
van Hiele levels of the students. Describe how the information in the data display could be used to 
guide decisions about instruction.

 2. Download the University of Chicago’s geometry proof test (http://ucsmp.uchicago.edu/van_Hiele 
.html) and administer it to a class of high school geometry students (be sure to request permission 
to do so, as noted on the project website). Score the test using one of the scoring schemes pro-
vided. Construct a data display that could be given to the teacher of the class to summarize the 
proof construction abilities of the students. Describe how the information in the data display could 
be used to guide decisions about instruction.

 3. Interview at least three students. Ask each one to draw as many examples of trapezoids as he or she 
can. After the students have drawn several examples, ask them to write a definition for the word 
trapezoid. Describe what the students’ drawings and definitions reveal about their personal proto-
types for the concept.

 4. Ask a student to use a DGE to construct a square that cannot be “messed up” when dragged (i.e., 
it remains a square even when portions of it are dragged). Describe how the student responds to 
the task. In your description, be sure to note whether a drawing or a construction is produced.

 5. Ask a student to work with premade constructions in a DGE for a rhombus, a rectangle, and a kite. 
Ask the student to drag each shape and write about how it changes and stays the same under drag. 
After experimenting with each shape, have the student write a definition for each shape. Write a 
report that critiques the student’s reasoning process and final definition. In your report, be sure to 
note whether the final definitions for each shape are hierarchical or partitional.

 6. Interview a student who has completed high school geometry and provide him or her access to a ruler 
and protractor. Ask the student if it is true that all triangles have interior angles whose measures sum 
to 180 degrees. Then ask the student to justify his or her position. If the student does not use a deduc-
tive proof, ask whether he or she can produce a proof like those done in high school geometry classes. 
Write a report describing what you learned about the student’s thinking. In your report, be sure to 
address whether or not the student exhibited an intellectual need to produce a deductive proof.

 7. Interview a geometry teacher to determine which forms of proof he or she encourages students to 
use. In particular, ask if two-column, paragraph, or flowchart proofs are used. Try to determine why 
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the teacher uses the form(s) of proofs mentioned. Ask for specific examples of proof exercises stu-
dents are required to complete. Write a report describing the forms of proof the teacher uses and 
the types of exercises students are expected to complete. Also give a personal reaction to the ration-
ale he or she provides for choosing forms of proof for use in class.

 8. Have a class of students complete the “broken ruler” problem shown in Figure 10.12. In looking 
through students’ work on the item, note how many correctly answered the item and how many 
did not. Then analyze the papers of students who provided incorrect responses. Describe the type 
of mistake each student made. Then select two students who provided incorrect responses for 
interviews. Question the students to understand why they answered incorrectly. Write a report of 
your findings, along with a general strategy you would use to help students overcome misconcep-
tions associated with this type of problem.

 9. Interview three students. Ask each of them to evaluate the truth of the following statement: “As the 
perimeter of a closed shape increases, its area increases as well.” Ask the students to justify their 
reasoning. Write a report on how the students evaluated the statement, including any diagrams or 
work they produced in the process of doing so. Then, based on what you learned about the stu-
dents’ reasoning, write a follow-up task you would ask them to solve. The follow-up task should be 
designed to help extend or correct the thinking patterns you observed.

10. Ask a student to determine the area of the trapezoid shown in Figure 10.16 without using a formula 
learned in school. Write a report that describes the strategies he or she used to determine its area. 
To prepare for the possibility that the student is not able to determine the area, write a set of hints 
you would use to prompt him or her in the right direction.

11. Ask a student to predict how many cubes it would take to fill the box shown in Figure 10.17. Also 
create a pattern picture of your own without an accompanying box picture and ask the student to 
predict how many cubes it would take to fill it if the pattern picture were folded into a box. Have 
the student check each prediction by using physical materials. Write a report that describes the 
student’s initial predictions for each task and any revisions the student made to his or her conjec-
tures  after working with the physical materials.

12. Ask at least three students who have studied trigonometry if it is possible to have a situation where  
sin( )x = 2 . Also ask each student to determine the sign of cos( ),300  (i.e., positive or negative). 
Finally, ask if sin( )23  is larger or smaller than sin( )37 . Have each student explain his or her rea-
soning for each task. If students use a calculator, ask them if they can also solve each task without a 
calculator. Describe how each student responded to the tasks and then identify the conceptual and 
procedural elements implicit in their thinking.

13. Ask a class to do a task of your own design that requires a clinometer. Have them show all work involved 
in solving the task and then hand it in. Referring to the students’ work, the level of challenge the tasks 
presented, and logistical issues, suggest ways to improve the activity the next time you use it.

14. Play the chaos game with a class of students. Split students into several small groups and have them 
record their results on clear overhead transparencies. Each transparency should have the three 
initial vertices for the game in the same location. Consider giving each group a movable dot so they 
do not have to erase points while playing the game. When the students are finished playing in small 
groups (let them do approximately 10 trials per group), overlay the transparencies on one another 
and note how closely they resemble a Sierpinski’s triangle. Drawing on your experiences of playing 
the chaos game in class, take a position on the appropriateness of fractal geometry for middle and/
or high school students. Defend your position by drawing on the observations you made while play-
ing the chaos game with your students.
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V I G N E T T E  
A N A L Y S I S 
A C T I V I T Y

Focus on CCSS Standards for Mathematical Practice 1–8

Items to Consider Before Reading the Vignette

1. Reread each of the CCSS Standards for Mathematical Practice in Appendix A. Which of these stand-
ards have you seen most often in classes you have observed? Which have you seen least often?

2. Provide a statement of the triangle inequality. Describe a strategy you could use to help students 
understand the inequality.

3. Suppose that in triangles ABC and DEF, side AB is congruent with side DE and side AC is congruent 
with side DF. We also know that the measure of angle A is greater than the measure of angle D. What 
can we conclude about the lengths of sides BC and EF? Why?

4. Item 3 above suggests a geometric theorem commonly called the “hinge theorem.” Why do you think 
it has this name? How would you help students understand the connection between the name of the 
theorem and its content?

Scenario

Mr. Martz was just beginning his student teaching semester. He had serious misgivings about embarking on 
a career in teaching. During his classroom observations, he had noticed that many students did not have 
what he considered “basic skills,” such as the ability to solve simple equations and to factor and multiply 
polynomials. They also seemed indifferent about studying mathematics, whereas he loved the subject. Now 
he would be responsible for teaching the students he observed. Nervous about how he would be effective 
as their classroom teacher, he had frequent conversations with his mentor teacher and university supervisor 
about strategies he could employ. Mr. Martz was not completely convinced that the strategies they suggested 
would work, but nonetheless did try to take some of their advice into account. In one of the first geometry 
lessons he was responsible for teaching, students were to learn the geometric “hinge theorem” (see items 2 
and 3 in the previous section). In teaching the lesson, Mr. Martz relied on a combination of his own intuition 
about students and the advice he received from his mentor and university supervisor.

The Lesson

The lesson began with a warm-up activity intended to review the triangle inequality, an idea taught the 
previous day. Mr. Martz put three sets of segment measurements on the board and asked students to 
determine whether or not they would form a triangle. The sets were the following:

 a. 1, 5, 7

 b. 3, 6, 8

 c. 4, 3, 7

In part a, students were to notice that 5 + 1 < 7, so the sides could not form a triangle. In part b, 
they were to see that any combination of two side lengths added together would be greater than the 
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remaining side length. Therefore, the side lengths in part b would form a triangle. In part c, students 
needed to reason that since 4 + 3 = 7, the segments could not form a triangle. Mr. Martz felt these three 
cases would be adequate for reviewing the main aspects of the triangle inequality.

After about five minutes of socializing with one another, students settled in and began to write the 
warm-up activity in their notebooks. As Mr. Martz circulated about the room, he was surprised to see that 
many did not know how to start. As he answered students’ questions, he felt as if he were reteaching the 
previous day’s lesson on an individual basis to each of the 25 students in the classroom. He was especially 
disheartened because the previous day’s lesson had involved using a concrete manipulative, popsicle sticks, 
to teach the triangle inequality. This strategy was recommended by both his university supervisor and men-
tor teacher. Sensing Mr. Martz’s frustration, his mentor teacher asked the class to stop working on the warm-
up problems and direct their attention to her. The mentor teacher reminded students of the previous day’s 
popsicle stick activity and asked students to think of the segment lengths in terms of the popsicle sticks. 
Questions about how to start the activity then subsided as students seemed to connect the work done with 
the popsicle sticks to the task at hand. Some students requested rulers so they could draw the popsicle 
sticks to scale to solve the review exercises. Within 10 minutes, students were ready to move on.

Next, Mr. Martz started what he considered to be the main part of the lesson: teaching the hinge 
theorem. He asked students to pair up. After milling about for a couple of minutes, each student seemed 
to have found a partner. The pairs of students were directed to use protractors to obtain two angles. 
One pair member was to produce a 50˚ angle, and the other was to produce a 30˚ angle. Popsicle sticks 
were to be used to indicate the side lengths in each angle. After the angles had been formed with the 
popsicle sticks, students were to measure the distance from the tip of one stick to the other in each 
angle. Mr. Martz had originally planned to have students do these measuring and constructing activities 
on their own, but now decided to show students how to do each step in the process at the document 
camera in front of the room, fearing that students left to their own devices might do some steps incor-
rectly. When Mr. Martz finished demonstrating the steps in the activity, he told students to notice that 
the distance between popsicle stick tips was greater for the 50˚ angle than for the 30˚ angle.

After doing the popsicle stick demonstration for the class, Mr. Martz asked students to break up 
from their pairs and return to individual work. Students noisily gathered their protractors, popsicle 
sticks, and pencils to return to their original seats. When most students had settled in once again, Mr. 
Martz distributed a set of class work exercises. In each exercise, the students were given a pair of trian-
gles. In each triangle, the length of two sides and the measure of their included angle was given. From 
this information, students were to determine whether the length of the nonincluded side was greater in 
the first triangle or the second. Mr. Martz showed students how to do the first exercise and then directed 
them to finish the remaining exercises on their own.

Within 10 minutes, all students had either finished or stopped doing the class work problems and 
begun to socialize. A few had their heads down and were sleeping. Mr. Martz had not anticipated that 
his students would finish this portion of the lesson so quickly. He considered starting the next day’s les-
son, but there were only seven minutes left in the class period. Instead of starting something new, he 
opted to give them their homework assignment. Mr. Martz loudly announced the page number and 
exercise numbers for the homework. Some students wrote the information down while others contin-
ued to talk. A few opened their books to begin the assignment, but most kept talking. Mr. Martz had a 
sinking feeling that his lesson had ended with a thud.

Questions for Reflection and Discussion

1. Which CCSS Standards for Mathematical Practice are most evident in the vignette? Which are least 
evident? In regard to those that are least evident, how could the lesson be improved to help students 
better work toward the standards?
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2. Comment on the numbers Mr. Martz chose for the warm-up exercises. Is his number choice helpful 
for bringing out the main aspects of the triangle inequality? What improvements could be made?

3. How could the review of the triangle inequality have gotten off to a smoother start? Suggest specific 
steps to be taken.

4. Comment on Mr. Martz’s use and organization of group/pair work. Were there times he should have 
used it and did not? How could the process of forming groups be made more effective and efficient? 
What kinds of tasks would be meaningful for pairs or groups to do in the context of learning the hinge 
theorem?

5. How could Mr. Martz get students more involved in discovering the hinge theorem?

6. Did the structure of the lesson give Mr. Martz good opportunities to assess students’ geometric 
understanding? Why or why not?

7. Would dynamic geometry software be helpful for enhancing any portions of this lesson? Why or why not?

RESOURCES TO EXPLORE

Books

Albrecht, M. R., Burke, M. J., Ellis, W., Kennedy, D., & Maletsky, E. (2005). Navigating through measurement in 
Grades 9–12. Reston, VA: NCTM.

Description: The authors provide a collection of activities for teaching measurement in an inquiry-oriented 
manner to high school students. Activities address the process of measurement, using formulas to measure 
complex shapes, discovering and creating measurement formulas, and measuring with technology.

Battista, M. T. (2003). Shape Makers. Emeryville, CA: Key Curriculum Press.

Description: This book supports students’ work with Shape Makers in the Geometer’s Sketchpad 
dynamic geometry environment. As students manipulate preconstructed shapes, they develop deeper 
understanding of a hierarchy of quadrilaterals.

Clements, D. H. (Ed.). (2003). Learning and teaching measurement (Sixty-fifth yearbook of the National Council 
of Teachers of Mathematics). Reston, VA: NCTM.

Description: This yearbook contains a number of articles relevant to teaching and learning measurement 
in secondary school. Articles for secondary school teachers focus on estimating areas of irregular shapes, 
exploring measurement through literature, and using geoboards to teach measurement.

Craine, T. V. (Ed.). (2009). Understanding geometry for a changing world (Seventy-first yearbook of the National 
Council of Teachers of Mathematics). Reston, VA: NCTM.

Description: This yearbook consists of a collection of articles useful for teaching various aspects of 
geometry. Articles address topics such as teaching geometry for conceptual understanding, using 
interactive geometry software, having students discover geometric theorems, and exploring fractals 
in nature.

Day, R., Kelley, P., Krussel, L., Lott, J .W., & Hirstein, J. (2002). Navigating through geometry in Grades 9–12. Reston, 
VA: NCTM.
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Description: The authors provide activities that can be used to teach geometry in an inquiry-oriented 
manner to high school students. Activities address geometric transformations, similarities, and fractals.

Pugalee, D. K. Frykholm, J., Johnson, A., Slovin, H., Malloy, C., & Preston, R. (2002). Navigating through geometry 
in Grades 6–8. Reston, VA: NCTM.

Description: The authors provide activities that can be used to teach geometry in an inquiry-oriented 
manner to middle school students. Activities address characteristics of shapes, coordinate geometry, 
transformations, and visualization.

Websites

Learning Math: Geometry: http://www.learner.org/resources/series167.html#program_descriptions

Description: This website contains videos relevant to teaching geometry in the middle school. Programs 
of interest to middle school teachers deal with proof, the Pythagorean theorem, similarity, and solids.

van Hiele Levels and Achievement in Secondary School Geometry: http://ucsmp.uchicago.edu/resources/ 
van-hiele/

Description: This website describes the work of the Cognitive Development and Achievement in 
Secondary School geometry project. It provides insight on a large sample of secondary students’ under-
standing of geometry, and it also contains tests that can be used to assess students’ van Hiele levels and 
proof writing abilities.
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FOUR-COLUMN LESSON PLANS TO HELP DEVELOP  

STUDENTS’ GEOMETRIC THINKING

Lesson Plan 1

Based on the following NCTM resource: Groth, R. E. (2006). Expanding teachers’ understanding of 
geometric definition: The case of the trapezoid. Teaching Children Mathematics, 12, 376–380.

Primary objective: To help students understand two commonly accepted definitions of trapezoid and the 
consequences of each for quadrilateral classification schemes.

Materials needed: Paper, pencil, chalkboard, computers with Internet access

Steps of the lesson
Expected student 
responses

Teacher’s responses  
to students

Assessment strategies 
and goals

1. Put the following 
writing prompt on a 
screen or chalkboard  
at the beginning of the 
lesson: “Give an 
example of a word that 
has more than one 
definition. The word 
does not have to be 
from mathematics. 
Write at least two 
different definitions  
for it.”

Students may list 
words whose different 
meanings can be 
determined from the 
context in which they 
are used (e.g., hack 
can mean to 
physically strike 
something or to break 
into a computer). 
Some may list words 
that can be either 
nouns or verbs (e.g., 
storm). 

Emphasize that words can 
often be assigned a variety 
of definitions. Mention 
that even some words in 
mathematics, such as 
trapezoid, can take on 
different meanings in 
different definitional 
systems.

After students have 
written for a few 
minutes, have some of 
them share their 
responses with the rest 
of the class. Ask 
students for examples 
of mathematical words 
that can be defined in 
different ways. This 
will help assess 
whether or not they 
believe that only one 
definition can be 
“right” in 
mathematics.

2. Have students work in 
small groups to produce 
as many examples of 
trapezoids as possible. 
After working for a few 
minutes, each group 
should send a 
representative to the 
chalkboard to post the 
examples they 
generated.

Some groups will 
restrict their examples 
to quadrilaterals with 
exactly one pair of 
parallel sides.

Other groups will 
include examples of 
quadrilaterals with at 
least one pair of 
parallel sides.

Some groups will 
produce shapes that 
are not quadrilaterals.

At this point in the lesson, 
do not censor the shapes 
on the chalkboard. The 
purpose of this portion of 
the lesson is to engage 
students in brainstorming, 
not to formalize their 
thinking. The shapes on 
the board will serve as a 
catalyst for discussions 
throughout the rest of the 
lesson.

Ask students which 
shapes on the board 
should be considered 
trapezoids and which 
should not. This 
should help elicit 
students’ current ideas 
about how trapezoids 
are to be defined. It 
will also get students 
thinking about how 
they might formally 
define a trapezoid so 
that the definition 
includes shapes they 
believe to be 
trapezoids.

(Continued)
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How This Lesson Meets Quality Control Criteria

 • Addressing students’ preconceptions: This lesson connects to school-based and experiential 
knowledge of defining concepts and expands on students’ previous knowledge of geometry by 
introducing the idea of the existence of more than one legitimate definition.

 • Conceptual and procedural knowledge development: The lesson addresses the concept that dif-
ferent consequences follow different definitions of a shape and introduces two different defini-
tions that essentially specify procedures to produce trapezoids.

 • Metacognition: Students are encouraged to compare their thinking with that of classmates at sev-
eral different points in the lesson, particularly during group discussion. Students are encouraged 
to compare their thinking to information found online.

Steps of the lesson
Expected student 
responses

Teacher’s responses  
to students

Assessment strategies 
and goals

3. Have students return to 
small-group work. Give 
them the task of writing 
a formal definition for 
the word trapezoid 
based on the discussion 
and on examples that 
have been given up to 
this point.

Some groups will 
write definitions with 
more detail than 
necessary. Others will 
not include enough 
detail to guide the 
reader to produce an 
example of something 
they would consider a 
trapezoid.

Draw attention to 
weaknesses in students’ 
definitions. For those that 
include too much detail, 
use just the necessary 
components of the 
definition to produce 
examples. For those that 
do not include enough 
detail, produce examples 
that are based on the 
definition to highlight the 
inadequacy.

Ask students to write 
second drafts of their 
group definitions 
based on the class 
discussion that 
occurred after the first 
drafts were shared. 
The second drafts will 
become their working 
definitions for the next 
step in the lesson.

4. In groups, students 
should do Internet 
searches on “define 
trapezoid.” Have each 
group use a different 
search engine (e.g., 
Google, Yahoo!, Bing) 
so they obtain slightly 
different results. They 
should be prepared to 
share their results with 
the rest of the class.

Students will likely 
find three types of 
definitions for 
trapezoid: a 
quadrilateral with 
exactly one pair of 
parallel sides, a 
quadrilateral with at 
least one pair of 
parallel sides, and 
nonmathematical 
definitions.

Ask each group to report 
the definitions they found. 
After they have reported, 
point out the three types of 
definitions. Emphasize the 
two mathematical types of 
definitions as being 
commonly used in 
mathematics curriculum 
materials.

As students report on 
the definitions they 
have found, assess 
whether or not they 
found the two types 
of mathematical 
definitions. If they 
did not find both 
types, be sure to 
introduce the missing 
type of definition  
into the class 
conversation.

5. Based on the discussion 
of definitions found 
online, have students 
once again produce as 
many examples of 
trapezoids as possible.

Some will still resist 
the idea that more 
than one legitimate 
definition can exist, 
and others will use 
both definitions to 
produce examples.

Emphasize the importance 
of consistency within a 
system rather than one 
absolutely “correct” 
definition for every 
possible system.

Give a writing 
exercise: “Can 
squares, rhombi, and 
parallelograms ever be 
considered trapezoids? 
Why or why not?”

(Continued)
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Lesson Plan 2

Based on the following NCTM resource: Britton, B. J., & Stump, S. L. (2001). Unexpected riches from 
a geoboard quadrilateral activity. Mathematics Teaching in the Middle School, 6, 490–493. 

Primary objective: To help students develop and use strategies for sorting quadrilaterals into families

Materials needed: One geoboard for each student, one piece of dot paper for each student

Steps of the lesson
Expected student 
responses

Teacher’s responses to 
students

Assessment strategies 
and goals

1. Have students work in 
groups and attempt to 
find all possible 
quadrilaterals that can 
be formed on a 3 × 3 
section of a geoboard. 
They should keep track 
of the quadrilaterals they 
find by sketching them 
on a piece of dot paper.

Students will discuss 
what it means to have 
different quadrilaterals. 
Some will interpret 
“different” to mean 
noncongruent. Others 
will think that two 
shapes that are the 
same except for size 
are not different.

While working with 
groups, encourage them 
to think of “different” as 
meaning “noncongruent.” 
Congruence and 
noncongruence can be 
determined by laying one 
shape on top of another 
and trying to line the two 
up.

Ask students if a large 
square and a smaller 
square can be considered 
“different.” If they do 
understand that the two 
squares are considered 
different in the context of 
this activity, they are 
ready to engage fully in 
the lesson.

2. Have groups share the 
results of their 
geoboard explorations. 
Begin by having each 
group share one 
quadrilateral they 
formed. Continue 
having groups share 
one quadrilateral at a 
time until they have no 
new different ones to 
share.

In some cases, groups 
will present shapes 
that are congruent to 
a shape already 
presented. Groups 
may not consider the 
possibility of having 
concave 
quadrilaterals.

When groups present 
shapes congruent to 
those already presented, 
ask if a transformation 
could be performed on 
the shape to make it the 
same as another.

If concave quadrilaterals 
are not presented, show 
an example of one and 
have students look for 
the rest of the possible 
concave quadrilaterals.

Keep track of all 
examples presented to 
determine if students 
have identified all 16 
possible quadrilaterals. 
In classes where some of 
the quadrilaterals are not 
identified, provide hints 
that will guide students 
to discover them (as with 
the concave 
quadrilaterals mentioned 
in the cell to the left).

3. Take all 16 possible 
geoboard quadrilaterals 
and sort them into two 
groups. In one group, 
place all shapes that 
have an obtuse interior 
angle. Place the rest of 
the shapes in a second 
group. Tell students that 
all of the quadrilaterals 
in one group have an 
attribute that is shared 
by none of the 
quadrilaterals in the 
other group. Ask them 
to identify the attribute.

Some students may 
immediately notice 
that obtuse angles set 
one group apart from 
the other. Some may 
have difficulty 
expressing their 
thoughts in formal 
geometric language.

Some may identify 
attributes that are 
actually shared by 
both groups.

If a student immediately 
identifies obtuse angles 
as the relevant attribute, 
do not immediately 
comment on the 
correctness of the answer. 
Instead, encourage the 
class to look for 
additional possible 
differentiating attributes.

When students use 
informal language (e.g., 
“pointy” rather than 
“acute”), introduce the 
corresponding formal 
term.

When students have 
difficulty expressing their 
thinking in terms of 
formal geometric 
language, look for 
opportunities during the 
discussion to assess their 
acquisition of the 
language. For example, 
students who originally 
do not use the formal 
term acute should be 
asked to provide 
descriptions of shapes 
that contain acute angles 
at various points in the 
class discussion.

(Continued)
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How This Lesson Meets Quality Control Criteria

 • Addressing students’ preconceptions: The informal language and sorting strategies students have 
learned outside of school are connected to formal language and sorting strategies commonly used 
in geometry.

 • Conceptual and procedural knowledge development: Procedurally, students encounter defini-
tions for different geometric shapes; conceptually, they come to understand and appreciate the 
thinking processes involved in sorting and defining.

 • Metacognition: Students are asked to examine their thinking to determine whether or not they 
have produced all possible shapes on a 3 × 3 section of a geoboard; they are asked to examine their 
use of the word different in reference to shapes.

Lesson Plan 3

Based on the following NCTM resource: Kaufmann, M. L., Bomer, M. A., & Powell, N. N. (2009). Want 
to play geometry? Mathematics Teacher, 103, 190–195. 

Steps of the lesson
Expected student 
responses

Teacher’s responses to 
students

Assessment strategies 
and goals

4. Give students a 
worksheet that shows 
all 16 possible 
quadrilaterals on 
dotpaper. Have 
students cut the shapes 
apart and classify them 
in at least two different 
ways. They should be 
prepared to present 
their classification 
schemes to the rest of 
the class.

Students may use 
various different 
properties to form 
different 
classifications, 
including: number of 
sets of parallel sides, 
number of right 
angles, and type of 
symmetry. For 
example, some may 
put all quadrilaterals 
with one right angle 
into one group and 
the rest of them into 
another.

Encourage students to go 
beyond the stated 
requirements of the task 
by finding as many ways 
as possible to sort the 
quadrilaterals. Encourage 
and support their use of 
formal language in 
describing their 
categorization ideas to 
one another.

Assess whether or not 
students use 
classification schemes 
different from those 
discussed during class. 
In cases where students 
do not come up with 
their own original 
categorization schemes, 
prompt them to devise 
some.

5. As an extension to the 
main activity for the 
day, encourage students 
who finish early to 
determine the areas of 
the 16 different shapes 
introduced during the 
lesson.

Some students will 
be eager to take on 
the task, having 
exhausted interesting 
ways to categorize 
the shapes. Others 
will need time to 
continue to 
categorize the 
shapes.

Encourage students who 
work on the area task to 
share their strategies with 
one another. Time 
permitting, choose a few 
students to present 
strategies to the entire 
class.

As students present their 
area measurement 
strategies, look for 
evidence of original 
thought rather than mere 
use of previously learned 
formulas for determining 
area.

(Continued)
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Primary objective: To help students understand and appreciate the axiomatic structure of geometry

Materials needed: A sheet of poster board for each group of students, markers, household objects to be used 
for games (see Step 1)

Steps of the lesson
Expected student 
responses

Teacher’s responses 
to students

Assessment strategies 
and goals

1. Students should be 
divided into groups of 
two to four each. Give 
each group a 
miscellaneous set of 
household objects (e.g., 
buttons, pins, egg 
cartons, dice, balls, 
marbles). Tell each group 
to devise a game that 
uses the objects and 
consists of at least five 
rules.

Students will be able to 
draw on their out-of-
school knowledge of 
games to construct 
rules. However, for 
some games, it is likely 
that some rules may 
contradict each other. It 
may also be that some 
rules are not complete. 
Some rules may also be 
repetitive.

Allow students to 
work freely in groups 
at this point in the 
lesson. Do not 
intervene to correct 
them at this point, 
since the next step of 
the lesson involves 
peer review. One of 
the objectives of peer 
review is to develop 
skill at noticing 
possible mistakes.

Observe and listen to 
students as they work 
and take note of which 
games have rules that are 
contradictory, 
incomplete, or repetitive. 
Also note the specific 
flawed rules. This 
information will be 
needed later in the 
lesson. 

2. Tell students that they will 
be reviewing one 
another’s games before 
they will be marketed. 
Lead a whole-class 
discussion about how to 
determine if the rules for 
a game are reasonable.

Some students will give 
ideas that correspond 
to the three main 
categories of interest: 
contradictory, 
incomplete, and 
repetitive rules. Others 
will give ideas not 
related to these 
categories.

List all student ideas 
on the board or a 
screen as they are 
given. Near the end 
of the discussion, 
highlight the student 
suggestions that 
correspond to the 
three main categories 
of interest.

Monitor student 
contributions for 
evidence of suggestions 
aligning with the three 
categories of interest. 
Encourage further 
discussion until all three 
categories have arisen. 

3. Have each group 
construct a poster to 
display the title of their 
game and its rules. 
Posters will then be sent 
out for review by 
classmates.

Since the previous 
portion of the lesson 
dealt with identifying 
contradictory, 
incomplete, and 
repetitive rules, 
examples of such rules 
should be identified by 
students.

Draw upon the 
assessment 
information gained in 
Step 1 in the lesson 
to try to ensure that 
students are not 
missing important 
flaws in the games 
they are reviewing. 
Draw attention to 
flaws that students do 
not identify if they 
incorrectly believe 
they have spotted 
them all. 

Assess the students’ 
critiques against the 
observations you made in 
assessing Step 1. If 
students missed a 
substantial number of 
flaws while doing peer 
reviews, choose sample 
games to critique 
together during whole-
class discussion.

4. Build the analogy 
between the games the 
students constructed and 
axiomatic systems. To do 
this, ask questions such 

Students with some 
previous knowledge of 
geometric proof may 
connect the rules of a 
game to axioms, and

Scaffold students’ 
learning by asking for 
specific examples of 
if-then statements, 
conjunctions, and the

By listening to students’ 
responses, assess whether 
or not they have difficulty 
understanding the role of 
if–then statements or the

(Continued)
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Steps of the lesson
Expected student 
responses

Teacher’s responses 
to students

Assessment strategies 
and goals

as the following: “What 
role do the rules play?” 
“What role do if–then 
statements play?” “What 
happens if you change 
conjunctions like and or 
or?” “What happens if 
you remove one of the 
rules?” “What elements 
of the game correspond 
to geometric theorems 
and undefined terms?”

understand that 
removing one rule 
changes the system 
substantially. These 
students may also 
speak of objects used 
to play the game as 
undefined terms, and 
of plays that occur 
during the game as 
theorems. Even those 
without much proof 
experience may 
recognize the role of 
if-then statements and 
how a rule is often 
changed substantially 
when a conjunction is 
changed.

effect of removing a 
rule from the game or 
changing a 
conjunction. Have 
them draw examples 
from their own games 
or from the games 
they reviewed. 
Introduce formal 
geometric language 
as necessary if it does 
not arise in the 
conversation.

impact of changing a 
conjunction. If so, have 
them play the game 
again, this time with one 
of the rules containing an 
if–then statement or 
conjunction changed. 
They can then report 
back on their 
observations.

5. Ask students to compare 
the U.S. government to 
an axiomatic system. 
Lead a brainstorming 
session about how the 
U.S. government is 
axiomatically different 
from other forms of 
government.

Students will offer 
various ideas. They 
may compare the U.S. 
Constitution to a set of 
postulates, compare 
legislation to theorems, 
and give reasons for 
adhering to different 
axiomatic systems. 

Record student ideas 
on the board as they 
are offered. 
Encourage students to 
construct analogies 
about postulates, 
theorems, and 
axiomatic systems if 
they do not arise 
naturally.

Assess the strengths and 
weaknesses of the 
analogies students offer. 
In cases where analogies 
are greatly stretched, ask 
if a different analogy that 
uses the same formal 
terminology can be 
constructed.

(Continued)

How This Lesson Meets Quality Control Criteria

 • Addressing students’ preconceptions: Students’ out-of-school experiences with rules of games are 
drawn on to build the idea of an axiomatic system. Students’ school-based knowledge of govern-
ment provides another analogous situation for study.

 • Conceptual and procedural knowledge development: The activities develop the overall concept 
of an axiomatic system. Students work with the set of permissible procedures within the systems 
they investigate.

 • Metacognition: After receiving classmates’ critiques, students are prompted to reexamine the rules 
they established for the games at the beginning of class. Students reexamine the rules they estab-
lished by comparing them to geometric axioms.

Lesson Plan 4

Based on the following NCTM resource: Buhl, D., Oursland, M., & Finco, K. (2003). The legend of 
Paul Bunyan: An exploration in measurement. Mathematics Teaching in the Middle School, 8, 441–448.
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Primary objective: To model length, area, and volume measurement and connect them to scale factor and 
proportion

Materials needed: Cardboard replica of an ax; dimensions of length, breadth, average depth, maximum 
depth, and volume for a local lake; modeling clay for student use; a piece of grid paper for each student; a 
set of cubes for each student

Steps of the lesson
Expected student 
responses

Teacher’s responses to 
students

Assessment strategies 
and goals

1. Read a version of the 
legend of Paul Bunyan to 
the class (see www 
.paulbunyantrail.com/). Be 
sure to emphasize (1) the 
size of Paul Bunyan’s blue 
ox, Babe; (2) the 
dimensions of Paul 
Bunyan’s skillet; and (3) the 
volume of the lake in 
which Paul Bunyan worked. 
After reading the story, ask 
students to identify 
connections to geometric 
measurement.

Students may 
identify length, area, 
and volume as 
important elements 
in the story. These 
elements pertain to 
Babe’s height, Paul’s 
skillet, and Paul’s 
length, respectively.

Students may 
identify additional 
elements in the 
story that may be 
measured.

List all student 
responses as they are 
offered. To summarize 
their responses and lead 
into the next portion of 
the lesson, emphasize 
ideas that include 
measurement of length, 
area, and volume. 
Acknowledge the 
validity of geometric 
measurement ideas that 
fall outside these three 
aspects as well.

As students offer ideas, 
start asking which units 
are commonly used to 
measure length, area, 
and volume. Also ask 
them to explain why 
these measures are 
used. Students’ 
responses will begin to 
provide a sense of 
whether they 
understand geometric 
measurement 
conceptually.

2. Show students a cardboard 
replica of an ax. Mention 
that the distance between 
Babe’s horns was 42 ax 
handles. Then ask students 
to estimate the following 
lengths in terms of ax 
handles and also in terms 
of the distance between 
Babe’s horns: (1) the length 
of the school building and 
(2) the distance from school 
to home.

NAEP data show 
that students often 
have difficulty 
measuring one 
distance in terms of 
another. Students 
may want to use a 
standard unit of 
measurement 
instead of trying to 
estimate lengths 
using nonstandard 
units of measure.

Remind students that 
length measurement, 
whether using standard 
or nonstandard units, 
consists of iterating the 
units end to end so 
there are no gaps or 
overlaps. If they struggle 
to begin the tasks, have 
them take the 
cardboard ax and 
measure out 42 ax 
handles to understand 
the size of the unit of 
measure being used.

Assess students’ work 
for reasonable estimates 
at this point. It is not 
necessary that they 
know the exact length 
of the school building 
or the exact distance 
from school to home. 
However, before 
moving on to the next 
few tasks, make sure 
their estimates reflect 
reasonable 
approximations.

3. Tell students that Paul 
Bunyan’s skillet covered an 
acre of land (43,560 ft2). 
Ask them to determine its 
radius. 

Setting up the 
proportion 
incorrectly can 
produce an answer 
of 50,824 feet for 
the radius.

If students obtain 
50,824 feet, ask them to 
draw a diagram of a 
circle with such a 
radius and determine its 
area.

Ask students who 
obtain 50,824 feet for 
the radius why this 
cannot be a correct 
answer. 

4. Tell students that Paul 
Bunyan was supposed to 
have created lakes by 
stomping through muddy 
land. The students’ task will 
be to examine data 
regarding the dimensions of

Students may take 
several factors into 
account, including 
the possible 
dimensions of Paul’s 
foot, the amount 
one would expect a

Encourage students to 
think about the 
dimensions of a foot in 
terms of area. If 
necessary, have students 
trace out a foot on grid 
paper and then think

A broad range of 
answers are possible, 
but the key thing to 
assess is whether or not 
the answers are justified 
by mathematics and the 
context of the story.

(Continued)
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How This Lesson Meets Quality Control Criteria

 • Addressing students’ preconceptions: Students’ out-of-school experiences with legends and tall 
tales are engaged as they evaluate the sizes of objects from one particular tale. Students begin to 
make connections among the previously learned concepts of distance, area, volume, ratio, and 
proportion.

 • Conceptual and procedural knowledge development: Students are prompted to explore the con-
cept of measurement in terms of the foundational principle of iteration of a unit. Students draw 
on procedural knowledge in solving proportions.

 • Metacognition: Students are prompted to evaluate the reasonableness of their measurements by 
checking their results against the description of events provided in the legend. The teacher plays 
a role in prompting students to rethink their estimations when they are not reasonable.

Steps of the lesson
Expected student 
responses

Teacher’s responses to 
students

Assessment strategies 
and goals

a lake to argue whether or 
not this is a reasonable 
extension to the legend. 
Choose a local lake and 
provide data on its length, 
breadth, average depth, 
maximum depth, and 
volume. For dimensions of 
the Great Lakes, do an 
Internet search on “Great 
Lakes dimensions.”

foot to sink in mud, 
and whether or not 
the dimensions of 
Paul’s foot would 
line up with the 
dimensions of a 
lake. They might 
also consider 
whether or not 
several footprints 
end to end would 
measure out the 
given dimensions of 
a lake.

about how many pieces 
of grid paper would be 
needed for Paul’s foot. If 
it is necessary to help 
students think about the 
reasonableness of 
volume measurement, 
have cubes available 
that they can use to 
create a scale model of 
the chosen lake.

Students may come to 
different conclusions 
about whether or not it 
is a reasonable 
extension of the legend 
to say that Paul created 
lakes with his 
footprints, but their 
justifications must be 
reasonable.

5. To conclude the activity, 
have students use modeling 
clay to construct scale 
models of several of the 
objects of the lesson, 
including Paul, Babe, and 
Paul’s frying pan. 

Students will draw 
on measurements 
done earlier in the 
lesson to construct 
Paul and Babe. The 
frying pan may be 
constructed as a 
square and then 
molded into a 
circle. Some 
students will finish 
early.

Ask students who finish 
the task before others to 
construct a scale model 
of the lake explored 
earlier. Those still 
working can check their 
models by comparing 
them with one another.

At the end of the 
lesson, have students 
share their scale 
models with the rest of 
the class. As they 
present, check to see 
whether the dimensions 
they have chosen are 
reasonable.
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