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1A Review of Basic 
Statistical Concepts

The record of a month’s roulette playing at Monte Carlo can 
afford us material for discussing the foundations of knowledge.

—Karl Pearson

I know too well that these arguments from probabilities are 
imposters, and unless great caution is observed in the use of them, 
they are apt to be deceptive.

—Plato (in Phaedo)

Introduction

I t is hard to find two quotations from famous thinkers that reflect more 
divergent views of probability and statistics. The eminent statistician 

Karl Pearson (the guy who invented the correlation coefficient) was so 
enthralled with probability and statistics that he seems to have believed that 
understanding probability and statistics is a cornerstone of human under-
standing. Pearson argued that statistical methods can offer us deep insights 
into the nature of reality. The famous Greek philosopher Plato also had 
quite a bit to say about the nature of reality. In contrast to Pearson, though, 
Plato was skeptical of the “fuzzy logic” of probabilities and central tenden-
cies. From Plato’s viewpoint, we should only trust what we can know with 
absolute certainty. Plato probably preferred deduction (e.g., If B then C) to 
induction (In my experience, bees seem to like flowers).

Even Plato seemed to agree, though, that if we observe “great caution,” 
arguments from probabilities may be pretty useful. In contrast, some 
modern nonstatisticians might agree with what the first author’s father, 
Bill Pelham, used to say about statistics and probability theory: “Figures 
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can’t lie, but liars sure can figure.” His hunch, and his fear, was that “you 
can prove anything with statistics.” To put this a little differently, a surpris-
ing number of thoughtful, intelligent students are thumbs-down on statis-
tics. In fact, some students only take statistics because they have to (e.g., to 
graduate with a major in psychology, to earn a second or third PhD). If 
you fall into this category, our dream for you is that you enjoy this book 
so much that you will someday talk about the next time that you get to 
take—or teach—a statistics class.

One purpose of this first chapter, then, is to convince you that Karl 
Pearson’s rosy view of statistics is closer to the truth than is Bill Pelham’s 
jaded view. It is possible, though, that you fully agree with Pearson, but 
you just don’t like memorizing all those formulas Pearson and company 
came up with. In that case, the purpose of this chapter is to serve as a 
quick refresher course that will make the rest of this book more useful. In 
either event, no part of this book requires you to memorize a lot of com-
plex statistical formulas. Instead, the approach emphasized here is heavily 
conceptual rather than heavily computational. The approach emphasized 
here is also hands-on. If you can count on your fingers, you can count 
your blessings because you are fully capable of doing at least some of the 
important calculations that lie at the very heart of statistics. The hands-
on approach of this book emphasizes logic over rote calculation, capital-
izes on your knowledge of everyday events, and attempts to pique your 
innate curiosity with realistic research problems that can best be solved 
by understanding statistics. If you know whether there is any connection 
between rain and umbrellas, if you love or hate weather forecasters, and 
if you find games of chance interesting, we hope that you enjoy at least 
some of the demonstrations and data analysis activities that are contained 
in this book.

Before we jump into a detailed discussion of statistics, however, we 
would like to briefly remind you that (a) statistics is a branch of mathe-
matics and (b) statistics is its own very precise language. This is very fitting 
because we can trace numbers and, ultimately, statistics back to the begin-
ning of human language and thus to the beginning of human written 
history. To appreciate fully the power and elegance of statistics, we need to 
go back to the ancient Middle East.

How Numbers and Language Revolutionized Human History

About 5,000 years ago, once human beings had began to master agricul-
ture, live in large city states, and make deals with one another, an 
unknown Sumerian trader or traders invented the cuneiform writing 
system to keep track of economic transactions. Because we live in a 
world surrounded by numbers and written language, it is difficult for us 
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to appreciate how ingenious it was for someone to realize that writing 
things down solves a myriad of social and economic problems. When 
Basam and Gabor got into their semimonthly fistfight about whether 
Gabor owed Basam five more or six more geese to pay for a newly 
weaned goat, our pet theory is that it was an exasperated neighbor who 
finally got sick of all the fighting and thus proposed the cuneiform writ-
ing system. The cuneiform system involved making marks with a stylus 
in wet clay that was then dried and fired as a permanent record of eco-
nomic transactions. This system initially focused almost exclusively on 
who had traded what with whom—and, most important, in what quan-
tity. Thus, some Sumerian traders made the impressive leap of impress-
ing important things in clay. This early cuneiform writing system was 
about as sophisticated as the scribbles of your 4-year-old niece, but it 
quickly caught on because it was way better than spoken language 
alone.

For example, it apparently wasn’t too long before the great-great- 
great-grandchild of that original irate neighbor got a fantastically bril-
liant idea. Instead of drawing a stylized duck, duck, duck, duck to repre-
sent four ducks, this person realized that four-ness itself (like two-ness 
and thirty-seven-ness) was a concept. He or she thus created abstract 
characters for numbers that saved ancient Sumerians a lot of clay. We 
won’t insult you by belaboring how much easier it is to write and verify 
the cuneiform version of “17 goats” than to write “goat, goat, goat, goat, 
goat, goat, goat, goat, goat, goat, goat, goat, goat, goat, goat, goat . . .” oh 
yeah “. . . goat,” but we can summarize a few thousand years of human 
technological and scientific development by reminding you that incredi-
bly useful concepts such as zero, fractions, p (pi), and logarithms, which 
make possible great things such as penicillin, the Sistine Chapel, and 
iPhones, would have never come about were it not for the development 
of abstract numbers and language.

It is probably a bit more fascinating to textbook authors than to text-
book readers to recount in great detail what happened over the course of 
the next 5,000 years, but suffice it to say that written language, numbers, 
and mathematics revolutionized—and sometimes limited—human scien-
tific and technological development. For example, one of the biggest ruts 
that brilliant human beings ever got stuck into has to do with numbers. If 
you have ever given much thought to Roman numerals, it may have 
dawned on you that they are an inefficient pain in the butt. Who thought 
it was a great idea to represent 1,000 as M while representing 18 as XVIII? 
And why the big emphasis on five (V, that is) in a base-10 number system? 
The short answer to these questions is that whoever formalized Roman 
numbers got a little too obsessed with counting on his or her fingers and 
never fully got over it. For example, we hope it’s obvious that the Roman 
numerals I and II are stand-ins for human fingers. It is probably less obvious 
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that the Roman V (“5”) is a stand-in for the “V” that is made by your 
thumb and first finger when you hold up a single hand and tilt it outward 
a bit (sort of the way you would to give someone a “high five”). If you do 
this with both of your hands and move your thumbs together until they 
cross in front of you, you’ll see that the X in Roman numerals is, essen-
tially, V + V. Once you’re done making shadow puppets, we’d like to tell 
you that, as it turns out, there are some major drawbacks to Roman num-
bers because the Roman system does not perfectly preserve place (the way 
we write numbers in the ones column, the tens column, the hundreds 
column, etc.). 

If you try to do subtraction, long division, or any other procedure 
that requires “carrying” in Roman numerals, you quickly run into seri-
ous problems, problems that, according to at least some scholars, 
sharply limited the development of mathematics and perhaps technol-
ogy in ancient Rome. We can certainly say with great confidence that, 
labels for popes and Super Bowls notwithstanding, there is a good rea-
son why Roman numerals have fallen by the wayside in favor of the 
nearly universal use of the familiar Arabic base-10 numbers. In our 
familiar system of representing numbers, a 5-digit number can never be 
smaller than a 1-digit number because a numeral’s position is even more 
important than its shape. A bank in New Zealand (NZ) got a painful 
reminder of this fact in May 2009 when it accidentally deposited 
$10,000,000.00 (yes, ten million) NZ dollars rather than $10,000.00  
(ten thousand) NZ dollars in the account of a couple who had applied 
for an overdraft. The couple quickly fled the country with the money 
(all three extra zeros of it).1 To everyone but the unscrupulous couple, 
this mistake may seem tragic, but we can assure you that bank errors of 
this kind would be more common, rather than less common, if we still 
had to rely on Roman numerals.

If you are wondering how we got from ancient Sumer to modern New 
Zealand—or why—the main point of this foray into numbers is that life 
as we know and love it depends heavily on numbers, mathematics, and 
even statistics. In fact, we would argue that to an ever increasing degree in 
the modern world, sophisticated thinking requires us to be able under-
stand statistics. If you have ever read the influential book Freakonomics, 
you know that the authors of this book created quite a stir by using statis-
tical analysis (often multiple regression) to make some very interesting 
points about human behavior (Do real estate agents work as hard for you 
as they claim? Do Sumo wrestlers always try to win? Does cracking down 
on crime in conventional ways reduce it? The respective answers appear to 
be no, no, and no, by the way.) So statistics are important. It is impossible 
to be a sophisticated, knowledgeable modern person without having at 
least a passing knowledge of modern statistical methods. Barack Obama 
appears to have appreciated this fact prior to his election in 2008 when he 
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assembled a dream team of behavioral economists to help him get 
elected—and then to tackle the economic meltdown. This dream team 
relied not on classical economic models of what people ought to do but on 
empirical studies of what people actually do under different conditions. 
For example, based heavily on the work of psychologist Robert Cialdini, 
the team knew that one of the best ways to get people to vote on election 
day is to remind them that many, many other people plan to vote (Can you 
say “baaa”?).2

So if you want a cushy job advising some future president, or a more 
secure retirement, you would be wise to increase your knowledge of statis-
tics. As it turns out, however, there are two distinct branches of statistics, 
and people usually learn about the first branch before they learn about the 
second. The first branch is descriptive statistics, and the second branch is 
inferential statistics.

Descriptive Statistics

Statistics are a set of mathematical procedures for summarizing and 
interpreting observations. These observations are typically numerical or 
categorical facts about specific people or things, and they are usually 
referred to as data. The most fundamental branch of statistics is descrip-
tive statistics, that is, statistics used to summarize or describe a set of 
observations.

The branch of statistics used to interpret or draw inferences about a set 
of observations is fittingly referred to as inferential statistics. Inferential 
statistics are discussed in the second part of this chapter. Another way of 
distinguishing descriptive and inferential statistics is that descriptive sta-
tistics are the easy ones. Almost all the members of modern, industrialized 
societies are familiar with at least some descriptive statistics. Descriptive 
statistics include things such as means, medians, modes, and percentages, 
and they are everywhere. You can scarcely pick up a newspaper or listen to 
a newscast without being exposed to heavy doses of descriptive statistics. 
You might hear that LeBron James made 78% of his free throws in 2008–
2009 or that the Atlanta Braves have won 95% of their games this season 
when they were leading after the eighth inning (and 100% of their games 
when they outscored their opponents). Alternately, you might hear the 
results of a shocking new medical study showing that, as people age, 
women’s brains shrink 67% less than men’s brains do. You might hear a 
meteorologist report that the average high temperature for the past 7 days 
has been over 100 °F. The reason that descriptive statistics are so widely 
used is that they are so useful. They take what could be an extremely large 
and cumbersome set of observations and boil them down to one or two 
highly representative numbers.
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In fact, we’re convinced that if we had to live in a world without 
descriptive statistics, much of our existence would be reduced to a hellish 
nightmare. Imagine a sportscaster trying to tell us exactly how well LeBron 
James has been scoring this season without using any descriptive statistics. 
Instead of simply telling us that James is averaging nearly 30 points per 
game, the sportscaster might begin by saying, “Well, he made his first shot 
of the season but missed his next two. He then made the next shot, the 
next, and the next, while missing the one after that.” That’s about as effi-
cient as “goat, goat, goat, goat. . . .” By the time the announcer had docu-
mented all of the shots James took this season (without even mentioning 
last season), the game we hoped to watch would be over, and we would 
never have even heard the score. Worse yet, we probably wouldn’t have a 
very good idea of how well James is scoring this season. A sea of specific 
numbers just doesn’t tell people very much. A simple mean puts a sea of 
numbers in a nutshell.

CENTRAL TENDENCY AND DISPERSION

Although descriptive statistics are everywhere, the descriptive statistics 
used by laypeople are typically incomplete in a very important respect. 
Laypeople make frequent use of descriptive statistics that summarize the 
central tendency (loosely speaking, the average) of a set of observations 
(“But my old pal Michael Jordan once averaged 32 points in a season”; “A 
follow-up study revealed that women also happen to be exactly 67% less 
likely than men to spend their weekends watching football and drinking 
beer”). However, most laypeople are relatively unaware of an equally use-
ful and important category of descriptive statistics. This second category 
of descriptive statistics consists of statistics that summarize the disper-
sion, or variability, of a set of scores. Measures of dispersion are not only 
important in their own (descriptive) right, but as you will see later, they 
are also important because they play a very important role in inferential 
statistics.

One common and relatively familiar measure of dispersion is the range 
of a set of scores. The range of a set of scores is simply the difference 
between the highest and the lowest value in the entire set of scores. (“The 
follow-up study also revealed that virtually all men showed the same 
amount of shrinkage. The smallest amount of shrinkage observed in all 
the male brains studied was 10.0 cc, and the largest amount observed was 
11.3 cc. That’s a range of only 1.3 cc. In contrast, many of the women in 
the study showed no shrinkage whatsoever, and the largest amount of 
shrinkage observed was 7.2 cc. That’s a range of 7.2 cc.”) Another very 
common, but less intuitive, descriptive measure of dispersion is the stan-
dard deviation. It’s a special kind of average itself—namely, an average 
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measure of how much each of the scores in the sample differs from the 
sample mean. More specifically, it’s the square root of the average squared 
deviation of each score from the sample mean, or

S
x m

n
= −∑( )

.
2

S (sigma) is a summation sign, a symbol that tells us to perform the func-
tions that follow it for all the scores in a sample and then to add them all 
together. That is, this symbol tells us to take each individual score in our 
sample (represented by x), to subtract the mean (m) from it, and to square 
this difference. Once we have done this for all our scores, sigma tells us to 
add all these squared difference scores together. We then divide these 
summed scores by the number of observations in our sample and take the 
square root of this final value.

For example, suppose we had a small sample of only four scores: 2, 2, 4, 
and 4. Using the formula above, the standard deviation turns out to be

( ) ( ) ( ) ( )
,

2 3 2 3 4 3 4 3

4

2 2 2 2− + − + − + −

which is simply

1 1 1 1

4

+ + +
,

which is exactly 1.
That’s it. The standard deviation in this sample of scores is exactly 1. If 

you look back at the scores, you’ll see that this is pretty intuitive. The mean 
of the set of scores is 3.0, and every single score deviates from this mean 
by exactly 1 point. There is a computational form of this formula that is 
much easier to deal with than the definitional formula shown here (espe-
cially if you have a lot of numbers in your sample). However, we included 
the definitional formula so that you could get a sense of what the standard 
deviation means. Loosely speaking, it’s the average (“standard”) amount 
by which all the scores in a distribution differ (deviate) from the mean of 
that same set of scores. Finally, we should add that the specific formula we 
presented here requires an adjustment if you hope to use a sample of 
scores to estimate the standard deviation in the population of scores from 
which these sample scores were drawn. It is this adjusted standard devia-
tion that researchers are most likely to use in actual research (e.g., to make 
inferences about the population standard deviation). Conceptually, how-
ever, the adjusted formula (which requires you to divide by n – 1 rather 
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than n) does exactly what the unadjusted formula does: It gives you an idea 
of how much a set of scores varies around a mean.

Why are measures of dispersion so useful? Like measures of central 
tendency, measures of dispersion summarize a very important property of 
a set of scores. For example, consider the two groups of four men whose 
heights are listed as follows:

Group 1 Group 2

Tallest guy 6′2″ 6′9″

Tall guy 6′1″ 6′5″

Short guy 5′11″ 5′10″

Shortest guy 5′10″ 5′0″

A couple of quick calculations will reveal that the mean height of the 
men in both groups is exactly 6 feet. Now suppose you were a heterosexual 
woman of average height and needed to choose a blind date by drawing 
names from one of two hats. One hat contains the names of the four men 
in Group 1, and the other hat contains the names of the four men in 
Group 2. From which hat would you prefer to choose your date? If you 
followed social conventions regarding dating and height, you would prob-
ably prefer to choose your date from Group 1. Now suppose you were 
choosing four teammates for an intramural basketball team and had to 
choose one of the two groups (in its entirety). In this case, we assume that 
you would choose Group 2 (and try to get the ball to the big guy when he 
posts up under the basket). Your preferences reveal that dispersion is a very 
important statistical property because the only way in which the two 
groups of men differ is in the dispersion (i.e., the variability) of their 
heights. In Group 1, the standard deviation is 1.58 inches. In Group 2, it’s 
7.97 inches.3

Another example of the utility of measures of dispersion comes from a 
1997 study of parking meters in Berkeley, California. The study’s author, 
Ellie Lamm, strongly suspected that some of the meters in her hometown 
had been shortchanging people. To put her suspicions to the test, she con-
ducted an elegantly simple study in which she randomly sampled 50 park-
ing meters, inserted two nickels in each (enough to pay for 8 minutes), and 
timed with a stopwatch the actual amount of time each meter delivered. 
Lamm’s study showed that, on average, the amount of time delivered was 
indeed very close to 8 minutes. The central tendency of the 50 meters was 
to give people what they were paying for.

However, a shocking 94% of the meters (47 of 50) were off one way or 
the other by at least 20 seconds. In fact, the range of delivered time was 
about 12 minutes! The low value was just under 2 minutes, and the high 
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was about 14 minutes. Needless to say, a substantial percentage of the 
meters were giving people way less time than they paid for. It didn’t matter 
much that other meters were giving people too much time. There’s an obvi-
ous asymmetry in the way tickets work. When multiplied across the city’s 
then 3,600 parking meters, this undoubtedly created a lot of undeserved 
parking tickets.

Lamm’s study got so much attention that she appeared to discuss it on 
the David Letterman Show. Furthermore, the city of Berkeley responded to 
the study by replacing their old, inaccurate mechanical parking meters 
with much more accurate electronic meters. Many thousands of people 
who had once gotten undeserved tickets were presumably spared tickets 
after the intervention, and vandalism against parking meters in Berkeley 
was sharply reduced. So this goes to prove that dispersion is sometimes 
more important than central tendency. Of course, it also goes to prove that 
research doesn’t have to be expensive or complicated to yield important 
societal benefits. Lamm’s study presumably cost her only $5 in nickels and 
perhaps a little bit for travel. That’s good because Lamm conducted this 
study as part of her science fair project—when she was 11 years old.4 We 
certainly hope she won a blue ribbon.

A more formal way of thinking about dispersion is that measures of 
dispersion complement measures of central tendency by telling you some-
thing about how well a measure of central tendency represents all the 
scores in a distribution. When the dispersion or variability in a set of 
scores is low, the mean of a set of scores does a great job of describing most 
of the scores in the sample. When the dispersion or the variability in a set 
of scores is high, however, the mean of a set of scores does not do such a 
great job of describing most of the scores in the sample (the mean is still 
the best available summary of the set of scores, but there will be a lot of 
people in the sample whose scores lie far away from the mean). When you 
are dealing with descriptions of people, measures of central tendency—
such as the mean—tell you what the typical person is like. Measures of 
dispersion—such as the standard deviation—tell you how much you can 
expect specific people to differ from this typical person.

THE SHAPE OF DISTRIBUTIONS

A third statistical property of a set of observations is a little more dif-
ficult to quantify than measures of central tendency or dispersion. This 
third statistical property is the shape of a distribution of scores. One 
useful way to get a feel for a set of scores is to arrange them in order from 
the lowest to the highest and to graph them pictorially so that taller parts 
of the graph represent more frequently occurring scores (or, in the case 
of a theoretical or ideal distribution, more probable scores). Figure 1.1 
depicts three different kinds of distributions: a rectangular distribution, 
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a bimodal distribution, and a normal distribution. The scores in a rect-
angular distribution are all about equally frequent or probable. An 
example of a rectangular distribution is the theoretical distribution rep-
resenting the six possible scores that can be obtained by rolling a single 
six-sided die. In the case of a bimodal distribution, two distinct ranges 
of scores are more common than any other. A likely example of a 
bimodal distribution would be the heights of the athletes attending the 
annual sports banquet for a very large high school that has only two 
sports teams: women’s gymnastics and men’s basketball. If this example 
seems a little contrived, it should. Bimodal distributions are relatively 
rare, and they usually reflect the fact that a sample is composed of two 
meaningful subsamples. The third distribution depicted in Figure 1.1 is 
the most important. This is a normal distribution: a symmetrical, bell-
shaped distribution in which most scores cluster near the mean and in 
which scores become increasingly rare as they become increasingly 
divergent from this mean. Many things that can be quantified are nor-
mally distributed. Distributions of height, weight, extroversion, self-
esteem, and the age at which infants begin to walk are all examples of 
approximately normal distributions.

The nice thing about the normal distribution is that if you know that 
a set of observations is normally distributed, this further improves your 
ability to describe the entire set of scores in the sample. More specifically, 
you can make some very good guesses about the exact proportion of 
scores that fall within any given number of standard deviations (or frac-
tions of a standard deviation) from the mean. As illustrated in Figure 1.2, 
about 68% of a set of normally distributed scores will fall within one 
standard deviation of the mean. About 95% of a set of normally distrib-
uted scores will fall within two standard deviations of the mean, and well 
over 99% of a set of normally distributed scores (99.8% to be exact) will 
fall within three standard deviations of the mean. For example, scores on 
modern intelligence tests (such as the Wechsler Adult Intelligence Scale) 
are normally distributed, have a mean of 100, and have a standard devi-
ation of 15. This means that about 68% of all people have IQs that fall 
between 85 and 115. Similarly, more than 99% of all people (again, 
99.8% of all people, to be more exact) should have IQs that fall between 
55 and 145.

This kind of analysis can also be used to put a particular score or 
observation into perspective (which is a first step toward making infer-
ences from particular observations). For instance, if you know that a set 
of 400 scores on an astronomy midterm (a) approximates a normal 
distribution, (b) has a mean of 70, and (c) has a standard deviation of 
exactly 6, you should have a very good picture of what this entire set of 
scores is like. And you should know exactly how impressed to be when 
you learn that your friend Amanda earned an 84 on the exam. She 
scored 2.33 standard deviations above the mean, which means that she 
probably scored in the top 1% of the class. How could you tell this? By 
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Figure 1.1  �  A Rectangular Distribution, a Bimodal Distribution, and a Normal 
Distribution
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consulting a detailed table based on the normal distribution. Such a 
table would tell you that only about 2% of a set of scores are 2.33 stan-
dard deviations or more from the mean. And because the normal dis-
tribution is symmetrical, half of the scores that are 2.33 standard 
deviations or more from the mean will be 2.33 standard deviations or 
more below the mean. Amanda’s score was in the half of that 2% that 
was well above the mean. Translation: Amanda kicked butt on the 
exam.

As you know if you have had any formal training in statistics, there is 
much more to descriptive statistics than what we have covered here. For 
instance, we skipped many of the specific measures of central tendency 
and dispersion, and we didn’t describe all the possible kinds of distribu-
tions of scores. However, this overview should make it clear that descrip-
tive statistics provide researchers with an enormously powerful tool for 
organizing and simplifying data. At the same time, descriptive statistics are 
only half of the picture. In addition to simplifying and organizing the data 
they collect, researchers also need to draw conclusions about populations 
from their sample data. That is, they need to move beyond the data them-
selves in the hopes of drawing general inferences about people. To do this, 
researchers rely on inferential statistics.

Figure 1.2  �  Percentage of Scores in a Perfectly Normal Distribution Falling Within 
1, 2, and 3 Standard Deviations From the Mean
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Inferential Statistics

The basic idea behind inferential statistical testing is that decisions about 
what to conclude from a set of research findings need to be made in a 
logical, unbiased fashion. One of the most highly developed forms of logic 
is mathematics, and statistical testing involves the use of objective, math-
ematical decision rules to determine whether an observed set of research 
findings is “real.” The logic of statistical testing is largely a reflection of the 
skepticism and empiricism that are crucial to the scientific method. When 
conducting a statistical test to aid in the interpretation of a set of experi-
mental findings, researchers begin by assuming that the null hypothesis is 
true. That is, they begin by assuming that their own predictions are wrong. 
In a simple, two-groups experiment, this would mean assuming that the 
experimental group and the control group are not really different after the 
manipulation—and that any apparent difference between the two groups 
is simply due to luck (i.e., to a failure of random assignment). After all, 
random assignment is good, but it is rarely perfect. It is always possible that 
any difference an experimenter observes between the behavior of partici-
pants in the experimental and control groups is simply due to chance. In 
the context of an experiment, the main thing statistical hypothesis testing 
tells us is exactly how possible it is (i.e., how likely it is) that someone 
would get results as impressive as, or more impressive than, those actually 
observed in an experiment if chance alone (and not an effective manipula-
tion) were at work in the experiment.

The same logic applies, by the way, to the findings of all kinds of 
research (e.g., survey or interview research). If a researcher correlates a 
person’s height with that person’s level of education and observes a modest 
positive correlation (such that taller people tend to be better educated), it 
is always possible—out of dumb luck—that the tall people in this specific 
sample just happen to have been more educated than the short people. 
Statistical testing tells researchers exactly how likely it is that a given 
research finding would occur on the basis of luck alone (if nothing inter-
esting is really going on). Researchers conclude that there is a true associa-
tion between the variables they have manipulated or measured only if the 
observed association would rarely have occurred on the basis of chance.

Because people are not in the habit of conducting tests of statistical 
significance to decide whether they should believe what a salesperson is 
telling them about a new line of athletic shoes, whether there is intelligent 
life on other planets, or whether their friend’s taste in movies is “signifi-
cantly different” from their own, the concept of statistical testing is pretty 
foreign to most laypeople. However, anyone who has ever given much 
thought to how American courtrooms work should be extremely familiar 
with the logic of statistical testing. This is because the logic of statistical 
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testing is almost identical to the logic of what happens in an ideal court-
room. With this in mind, our discussion of statistical testing will focus on 
the simile of what happens in the courtroom. If you understand court-
rooms, you should have little difficulty understanding statistical testing.

As mentioned previously, researchers performing statistical tests begin 
by assuming that the null hypothesis is correct—that is, that the research-
er’s findings reflect chance variation and are not real. The opposite of the 
null hypothesis is the alternative hypothesis. This is the hypothesis that 
any observed difference between the experimental and the control group 
is real. The null hypothesis is very much like the presumption of innocence 
in the courtroom. Jurors in a courtroom are instructed to assume that they 
are in court because an innocent person had the bad luck of being falsely 
accused of a crime. That is, they are instructed to be extremely skeptical of 
the prosecuting attorney’s claim that the defendant is guilty. Just as defen-
dants are considered “innocent until proven guilty,” researchers’ claims 
about the relation between the variables they have examined are consid-
ered incorrect unless the results of the study strongly suggest otherwise 
(“null until proven alternative,” you might say). After beginning with the 
presumption of innocence, jurors are instructed to examine all the evi-
dence presented in a completely rational, unbiased fashion. The statistical 
equivalent of this is to examine all the evidence collected in a study on a 
purely objective, mathematical basis. After examining the evidence against 
the defendant in a careful, unbiased fashion, jurors are further instructed 
to reject the presumption of innocence (to vote guilty) only if the evidence 
suggests beyond a reasonable doubt that the defendant committed the 
crime in question. The statistical equivalent of the principle of reasonable 
doubt is the alpha level agreed upon by most statisticians as the reasonable 
standard for rejecting the null hypothesis. In most cases, the accepted 
probability value at which alpha is set is .05. That is, researchers may reject 
the null hypothesis and conclude that their hypothesis is correct only 
when findings as extreme as those observed in the study (or more extreme) 
would have occurred by chance alone less than 5% of the time.

If prosecuting attorneys were statisticians, we could imagine them ask-
ing the statistical equivalent of the same kinds of questions they often ask 
in the courtroom: “Now, I’ll ask you, the jury, to assume, as the defense 
claims, that temperature has no effect on aggression. If this is so, doesn’t it 
seem like an incredible coincidence that in a random sample of 40 college 
students, the 20 students who just happened to be randomly assigned to 
the experimental group—that is, the 20 people who just happened to be 
placed in the uncomfortably hot room instead of the nice, comfortable, 
cool room—would give the stooge almost three times the amount of shock 
that was given by the people in the control group? Remember, Mr. Heat 
would have you believe that in comparison with the 20 participants in the 
control group, participants number 1, 4, 7, 9, 10, 11, 15, 17, 18, 21, 22, 24, 
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25, 26, 29, 33, 35, 36, 38, and 40, as a group, just happened to be the kind 
of people who are inherently predisposed to deliver extremely high levels 
of shock. Well, in case you’re tempted to believe this load of bullsh—.” “I 
object, your Honor! The question is highly inflammatory,” the defense 
attorney interrupts. “Objection overruled,” the judge retorts. “As I was say-
ing, in case any one of you on the jury is tempted to take this claim seri-
ously, I remind you that we asked Dr. R. A. Fisher, an eminent 
mathematician and manurist, to calculate the exact probability that some-
thing this unusual could happen due to a simple failure of random assign-
ment. His careful calculations show that if we ran this experiment 
thousands of times without varying the way the experimental and control 
groups were treated, we would expect to observe results as unusual as these 
less than one time in a thousand if the manipulation truly has no effect! 
Don’t you think the defense is asking you to accept a pretty incredible 
coincidence?”

A final parallel between the courtroom and the psychological labora-
tory is particularly appropriate in a theoretical field such as psychology. In 
most court cases, especially serious cases such as murder trials, successful 
prosecuting attorneys will usually need to do one more thing in addition 
to presenting a body of logical arguments and evidence pointing to the 
defendant. They will need to identify a plausible motive, a good reason why 
the defendant might have wanted to commit the crime. It is difficult to 
convict people solely on the basis of circumstantial evidence. A similar 
state of affairs exists in psychology. No matter how “statistically signifi-
cant” a set of research findings is, most psychologists will place very little 
stock in it unless the researcher can come up with a plausible reason why 
one might expect to observe those findings. In psychology, these plausible 
reasons are called theories. It is quite difficult to publish a set of significant 
empirical findings unless you can generate a plausible theoretical explana-
tion for them.

Having made this “friendly pass” through a highly technical subject, 
we will now try to enrich your understanding of inferential statistics by 
using inferential statistics to solve a couple of problems. In an effort to 
keep formulas and calculations as simple as possible, we have chosen 
some very simple problems. Analyzing and interpreting the data from 
most real empirical investigations require more extensive calculations 
than those you will see here, but of course these labor-intensive calcula-
tions are usually carried out by computers. In fact, a great deal of your 
training in this text will involve getting a computer to crunch numbers 
for you using the statistical software package SPSS. Regardless of how 
extensive the calculations are, however, the basic logic underlying infer-
ential statistical tests is almost always the same—no matter which spe-
cific inferential test is being conducted and no matter who, or what, is 
doing the calculations.
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PROBABILITY THEORY

As suggested in the thought experiment with American courtrooms, all 
inferential statistics are grounded firmly in the logic of probability theory. 
Probability theory deals with the mathematical rules and procedures used 
to predict and understand chance events. For example, the important sta-
tistical principle of regression toward the mean (the idea that extreme 
scores or performances are usually followed by less extreme scores or per-
formances from the same person or group of people) can easily be derived 
from probability theory. Similarly, the odds in casinos and predictions 
about the weather can be derived from straightforward considerations of 
probabilities. What is a probability? From the classical perspective, the 
probability of an event is a very simple thing: It is (a) the number of all 
specific outcomes that qualify as the event in question divided by (b) the 
total number of all possible outcomes. The probability of rolling a 3 on a 
single roll with a standard six-sided die is 1/6, or .167, because there is  
(a) one and only one roll that qualifies as a 3 and (b) exactly six (equally 
likely) possible outcomes. For the same reason, the probability of rolling an 
odd number on the same die is 1/2 or .50—because three of the six possible 
outcomes qualify as odd numbers. It is important to remember that the 
probability of any event (or complex set of events, such as the observed 
results of an experiment) is the number of ways to observe that event 
divided by the total number of possible events.

With this in mind, suppose the Great Pumpkini told you that he had 
telekinetic powers that allow him to influence the outcome of otherwise 
fair coin tosses. How could you test his claim? One way would be to ask 
him to predict some coin tosses and to check up on the accuracy of his 
predictions. Imagine that you pulled out a coin, tossed it in the air, and 
asked Pumpkini to call it before it landed. He calls heads. Heads it is! Do 
you believe in Pumpkini’s self-proclaimed telekinetic abilities? Of course 
not. You realize that this event could easily have occurred by chance. How 
easily? Fully half the time we performed the test. With this concern in 
mind, suppose Pumpkini agreed to predict exactly 10 coin tosses. Let’s 
stop and consider a number of possible outcomes of this hypothetical 
coin-tossing test. To simplify things, let’s assume that Pumpkini always 
predicts heads on every toss.

One pretty unremarkable outcome is that he’d make 5 of 10 correct pre-
dictions. Should you conclude that he does, indeed, have telekinetic abilities? 
Or that he is half telekinetic (perhaps on his mother’s side)? Again, of course 
not. Making 5 of 10 correct predictions is no better than chance. To phrase 
this in terms of the results of the test, the number of heads we observed was 
no different than the expected frequency (the average, over the long run) of a 
random series of 10 coin tosses. In this case, the expected frequency is the 
probability of a head on a single toss (.50) multiplied by the total number of 
tosses (10). But what if Pumpkini made six or seven correct predictions 



Chapter 1    A Review of Basic Statistical Concepts	 17

instead of only five? Our guess is that you still wouldn’t be very impressed 
and would still conclude that Pumpkini does not have telekinetic abilities (in 
statistical terms, you would fail to reject the null hypothesis). OK, so what if 
he made a slightly more impressive eight correct predictions? What about 
nine? You should bear in mind that Pumpkini never said his telekinetic pow-
ers were absolutely flawless. Pumpkini can’t always carry a glass of water 
across a room without spilling it, but his friends usually allow him to carry 
glasses of water unassisted. Despite your firmly entrenched (and justifiable) 
skepticism concerning psychic phenomena, we hope you can see that as our 
observations (i.e., the results of our coin-tossing test) depart further and 
further from chance expectations, you would start to become more and 
more convinced that something unusual is going on. At a certain point, 
you’d practically be forced to agree that Pumpkini is doing something to 
influence the outcome of the coin tosses.

The problem with casual analysis is that it’s hard to know exactly where 
that certain point is. Some people might be easygoing enough to say they’d 
accept eight or more heads as compelling evidence of Pumpkini’s teleki-
netic abilities. Other people might ask to see a perfect score of 10 (and still 
insist that they’re not convinced). After all, extraordinary claims require 
extraordinary evidence. That’s where inferential statistics come in. By 
making use of (a) some basic concepts in probability theory, along with 
(b) our knowledge of what a distribution of scores should look like when 
nothing funny is going on (e.g., when we are merely flipping a fair coin  
10 times at random, when we are simply randomly assigning 20 people to 
either an experimental or a control condition), we can use inferential sta-
tistics to figure out exactly how likely it is that a given set of usual or not-
so-usual observations would have been observed by chance. Unless it is 
pretty darn unlikely that a set of findings would have been observed by 
chance, the logic of statistical hypothesis testing requires us to conclude 
that the set of findings represents a chance outcome.

To return to our coin-tossing demonstration, just how likely is it that a 
person would toss 9 or more heads by chance alone? One way to figure 
this out is to use our definition of probability and to figure out (a) all the 
specific ways there are to observe 9 or more heads in a string of 10 coin 
tosses and (b) all the specific outcomes (of any kind) that are possible for 
a string of 10 coin tosses. If we divide (a) by (b), we should have our 
answer. Let’s begin with the number of ways there are to toss 9 or more 
heads. At the risk of sounding like the announcer who was describing 
LeBron James’s scoring history without using statistics, notice that one 
way to do it would be to toss a tail on the first trial, followed by 9 straight 
heads. A second way to do it would be to toss a head on the first trial and 
a tail on the second trial, followed by 8 straight heads. If you follow this 
approach to its logical conclusion, you should see that there are exactly  
10 specific ways to observe exactly 9 heads in a string of 10 coin tosses. 
And in case you actually want to see the 10 ways right in front of you, they 
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appear in Table 1.1—along with all of the unique ways there are to 
observe exactly 10 heads. As you already knew, there is only one of them. 
However, it’s important to include this one in our list because we were 
interested in all of the specific ways to observe 9 or more heads in a series 
of 10 coin tosses.5 So there are 11 ways.

But how many total unique outcomes are there for a series of 10 coin 
tosses? To count all of these would be quite a headache. So we’ll resort to a 
less painful headache and figure it out logically. How many possible ways 
are there for 1 toss to come out? Two: heads or tails—which turns out to be 
21 (2 to the first power). How about 2 tosses? Now we can observe 22 (2 × 2) 
or four possible ways—namely,

HH, HT, TH, or TT.

What about three tosses? Now we have 23 (2 × 2 × 2), or eight possible 
ways:

HHH, HHT, HTH, THH, HTT, THT, TTH, or TTT.

Notice that our answers always turn out to be 2 (the number of unique 
outcomes for an individual toss) raised to some power. The power to 
which 2 is raised is the number of trials or specific observations we are 
making. So the answer is 210 (2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2) or 1,024 
possible unique outcomes for a series of 10 coin tosses. This value of 1,024 
includes every possible number of heads (from 0 to 10) and every possible 
order or position (1st through 10th) for all of these possible numbers of 
heads. So now we have our probability. The probability of observing 9 or 
more heads in a series of 10 truly random coin tosses is thus 11/1,024, or 
.011. So for every hundred times we conducted our coin-tossing study, 
you’d expect to see 9 or more heads only about once. That’s only 1% of the 
time, and it’s pretty impressive. (In fact, it’s exactly as impressive as 
Amanda’s score on the astronomy midterm, and we, for what it’s worth, 
were very impressed with Amanda.) So if we had treated the study like a 
real experiment, if we had set alpha at .05, and if we had observed 9 heads, 
we would have had to conclude that Pumpkini does, in fact, possess the 
ability to influence the outcomes of otherwise fair coin tosses.

Now perhaps you’re the literal type who is saying, “But wait a minute. 
I still wouldn’t believe Pumpkini has telekinetic abilities, and I certainly 
don’t think most scientists would, either.” You are correct, of course, 
because the theory that you have been asked to accept flies in the face of 
everything you know about psychology and physics. A much more reason-
able explanation for the observed findings is that Pumpkini has engaged 
in some form of trickery, such as using a biased coin. However, this simply 
means that, like any scientific practice, the practice of conducting statisti-
cal tests must be carried out using a little common sense. If someone is 
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making a truly extraordinary claim, we might want to set alpha at .001, or 
even .0001, instead of .05. Of course, setting alpha at a very low value 
might require us to design a test with a much greater number of coin 
tosses (after all, 10 out of 10 tosses—the best you can possibly do—has a 
probability higher than .0001; it’s 1/1,024, which is closer to .001), but the 
point is that we could easily design the test to have plenty of power to see 
what is going on. The exact design of our study is up to us (and, to some 
extent, to our critics). If people are sufficiently skeptical of a claim, they 
might also want to see a replication of a questionable or counterintuitive 
finding. If Pumpkini replicated his demonstration several times by cor-
rectly predicting 9 or more heads, and if we enacted some careful control 
procedures to prevent him from cheating (e.g., we let a group of skeptics 
choose and handle the coins), even the most ardent anti-telekinetician 
should eventually be persuaded. And if he or she weren’t, we would argue 
that this person wasn’t being very scientific.

The logic of the coin-tossing experiment is the same as the logic under-
lying virtually all inferential statistical tests. First, a researcher makes a set 
of observations. Second, these observations are compared with what we 
would expect to observe if nothing unusual were happening in the exper-
iment (i.e., if the researcher’s hypothesis were incorrect). This comparison 

  1.	 THHHHHHHHH

  2.	 HTHHHHHHHH

  3.	 HHTHHHHHHH

  4.	 HHHTHHHHHH

  5.	 HHHHTHHHHH

  6.	 HHHHHTHHHH

  7.	 HHHHHHTHHH

  8.	 HHHHHHHTHH

  9.	 HHHHHHHHTH

10.	 HHHHHHHHHT

11.	 HHHHHHHHHH

Table 1.1  �  All the Possible Ways to Toss Nine or 
More Heads in 10 Tosses of a Fair Coin: 
A Single Tail Can Come on Any of the 
10 Trials, or It Can Never Come at All



20	 INTERMEDIATE STATISTICS

is ultimately converted into a probability—namely, the probability that the 
researcher would have observed a set of results at least this consistent with 
his or her hypothesis if the hypothesis were incorrect. Finally, if this prob-
ability is sufficiently low, we conclude that the researcher’s hypothesis is 
probably correct. Because inferential statistics are a very important part of 
the research process, let’s look at another highly contrived but informative 
question that could be answered only with the use of inferential statistics.

A STUDY OF CHEATING

Suppose we offered a group of exactly 50 students the chance to win a 
very attractive prize (say, a large amount of cash, or an autographed copy 
of this textbook) by randomly drawing a lucky orange ping-pong ball out 
of a large paper bag. Assume that each student gets to draw only one ball 
from the bag, that students return the drawn balls to the bag after each 
drawing, and that the bag contains exactly 10 balls, only 1 of which is 
orange. Because our university is trying to teach students the values of 
honesty and integrity, university regulations require us to administer the 
drawing on an honor system. Specifically, the bag of ping-pong balls is 
kept behind a black curtain, and students walk behind the curtain—one at 
a time, in complete privacy—to draw their balls at random from the bag. 
After drawing a ball, each student holds it up above the curtain for every-
one else to see. Anyone who holds up an orange ball is a winner.

Suppose that we’re the curious types who want to find out if there was 
a significant amount of cheating (peeking) during the drawing. At first 
blush, it would seem like there’s nothing we could do. Unless we engage in 
a little cheating ourselves (e.g., by secretly videotaping the drawings), how 
can we figure out whether people were peeking as they selected their balls? 
We’re at a complete loss to observe the unobservable—unless we rely on 
inferential statistics. By using inferential statistics, we could simply calcu-
late the number of winners we’d expect to observe if no one was cheating. 
By making a comparison between this expected frequency and the number 
of winners we actually observed in our drawing, we could calculate the 
exact probability (based on chance alone) of obtaining a result as extreme 
as, or more extreme than, the result of our actual drawing. If the probabil-
ity of having so many winners were sufficiently low, we might reluctantly 
reject the null hypothesis (our initial assumption that the students were all 
innocent until proven guilty) and conclude that a significant amount of 
cheating was happening during the drawing.

Let’s find out. To begin with, we need to assume that our suspicions 
about cheating are completely unfounded and that no one peeked (as usual, 
we begin by assuming the null hypothesis). Assuming that no one was 
peeking, what’s your best guess about how many of the 50 students should 
have selected a winning ball? If you are a little fuzzy on your probability 
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theory, remember that you can figure out the expected frequency of an 
event by multiplying (a) the probability of the event on a single trial by 
(b) the total number of trials in the series of events. This is how we knew 
that 5 was the expected number of observed heads in a series of 10 coin 
tosses. It was .50 × 10. The answer here is also 5 (it’s .10 × 50). Now imagine 
that we had 6 winners. Or 9 winners, or 15—or 50. Hopefully, you can see, 
as you did in the coin-tossing study, that as our observed frequencies depart 
further and further from the frequency we’d expect by chance, we become 
more and more strongly convinced that our observed frequencies are not 
the product of chance.

For the purposes of actually seeing some inferential statistics in action, 
let’s assume that we had exactly 10 winners in our drawing. Because our 
outcome was a categorical outcome (“success” or “failure” at the draw), 
and because we had a pretty large sample, we’d probably want to conduct 
a χ2 (chi-square) test on these data. The formula for this test appears as 
follows:

χ2
2

= ∑ −( )
.

f f
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o e
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Recall that Σ (sigma) is a summation sign that tells you to add together all 
the appropriate examples of the basic calculation.

fo refers to the observed frequencies of each of the events you care about 
(successes and failures when it comes to sampling a lucky orange ball).

fe refers to the expected frequencies for each of these same events.

You could think of a χ2 statistic as a “surprise index.” Notice that the 
most important thing the formula does is to compare expected and 
observed frequencies. Specifically, expected frequencies are compared 
with (i.e., subtracted from) observed frequencies, and then a couple of 
simple transformations are made on these difference scores. The more 
our observed frequencies depart from what you’d expect if chance alone 
were operating (i.e., the more surprising our results are), the bigger our 
χ2 statistic becomes. And as our χ2 statistic grows, it tells us that it’s less 
and less likely that we’re observing a chance process (and, in this case, 
more and more likely that we’re observing cheating).

The χ2 value for 10 winners (out of 50) when only 5 were expected is 
computed as follows:

χ2
2 210 5

5

40 45

45
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The 10 in the first half of the equation is the observed frequency of suc-
cesses, and the two 5s both refer to the expected frequency of successes. 
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The 40 in the second half of the equation is the observed frequency of 
failures, and the two 45s both refer to the expected frequency of failures 
(this has to be the sample size, which is 50, minus the expected number 
of successes). When we do the math, we get 25/5 + 25/45, which works 
out to 5.55. Notice that this isn’t a probability. The way most inferential 
statistics work is that you generate both the statistic itself (e.g., a cor-
relation coefficient, a t value, an F ratio) and then use the exact value of 
the observed statistic to determine a probability value (one that corre-
sponds to the value of your statistic). If you are doing your calculations 
on a computer, the software program you are using will always do this 
for you. That is, it will give you the exact p value (i.e., the exact proba-
bility) that corresponds to your results after they have been converted 
to the unambiguous language of your statistic. However, if you are 
doing your calculations by hand, as we have here, you will need to con-
sult some kind of statistical table to see what the critical values are for 
your statistic. In the case of our study of cheating, the critical χ2 value 
that corresponds to an alpha level of .05 is 3.841. Any χ2 value that 
exceeds this score will have an associated p value that is lower than .05 
and will thus be significant when alpha is set at .05. If we were a little 
bit more stringent, we might set alpha at .02 or .01. Our χ2 table hap-
pens to include critical values for each of these levels of alpha (i.e., for 
each of these probability values). In a study such as ours, the critical χ2 
value for an alpha of .02 is 5.412, and the critical χ2 value for an alpha 
of .01 is 6.635. By these criteria, our result is still significant even if 
alpha is set at .02. However, if we move to the still more stringent alpha 
level of .01, the number of winners we observed would no longer be 
significant (because we’re effectively saying that it’d take more than  
10 winners to convince us).

Suppose we followed standard practice and set alpha at .05. We’d have 
to conclude that some people cheated. Notice, however, that we couldn’t 
draw any safe inferences about exactly who cheated. Presumably about 5 of 
our 10 winners just got lucky, and about 5 cheated. Realizing that only 
about 5 people cheated provides a different sort of perspective on our 
findings. Specifically, it highlights the fact that there is often more than 
one way to look at a set of observations. Notice also that an alternate, and 
equally correct, perspective on our observation is that people are signifi-
cantly honest! It appears to be the case that about 45 of our 50 students 
were completely honest—even in a situation that allowed rampant cheat-
ing. Why did we say 45? Because we just decided that only about 5 people 
are likely to have cheated. In light of how hard it is to win the game by 
playing fairly, these 5 or so cheaters led to a significant amount of cheating. 
However, if we had started out with the hypothesis that 49 of 50, or 98%, 
of all people should be expected to cheat under these conditions, and if we 
had taken 49 (nearly absolute dishonesty) as our standard of comparison 
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rather than 5 (absolute honesty), we would have obtained an extremely 
large χ2 value:

χ2
2 210 49

49

40 1

1
= − + −( ) ( )

,

which is 1552.04, and which corresponds to an infinitesimally small  
p value. Even if we set alpha at a very, very, very low level (say one in a  
billion, or .000000001), this would still be significant. In other words, it’s 
important to keep in mind that we appear to have observed a lot more 
honesty than cheating.6

A final aspect of this exercise about drawing ping-pong balls from a bag 
is that it provides a useful metaphor for thinking about what researchers 
do when they draw inferences about people in their research. Notice that 
in the lottery involving ping-pong balls, we could not directly observe the 
phenomenon in which we were interested. The activities we cared about 
were shrouded behind a black curtain—just as the activities that psycholo-
gists often care about (e.g., dissonance reduction, feelings of passionate 
love, parallel distributed representations of language) are hidden inside 
the black box of people’s minds. Inferential statistics work hand in hand 
with things like operational definitions to allow us to make scientific infer-
ences. Operational definitions allow us to draw inferences about processes 
that we cannot observe (those that occur inside the person), and inferen-
tial statistics allow us to draw inferences about people we can’t observe 
(those we didn’t sample in our study). When we conclude that a research 
finding is significant, we are concluding that it is real and thus that it 
applies to people who did not take part in our study. This is one sense in 
which the ping-pong ball demonstration is a little different from most 
significance tests. Although it would probably be safe to generalize our 
findings about cheating to other college students, what we really cared 
about most in this particular test was finding out what was going on in our 
particular sample.

Virtually every inferential statistic that you will ever come across will 
be based on the logic that was explicated here. Of course, the particular 
distributions of responses that researchers examine vary enormously 
from one study to the next, and this, among other things, influences the 
particular statistics that researchers use to summarize and draw infer-
ences about their data. Moreover, once a researcher has chosen a particu-
lar statistic, the specific calculations that she or he will have to carry out 
(or get a computer to carry out) will typically be a good bit more involved 
than those you have seen here. For example, in a two-way analysis of vari-
ance (ANOVA), there are separate calculations (and separate degrees of 
freedom) for each of the two possible main effects as well as for the two-
way interaction. No matter what statistics they are computing, however, 
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researchers will always rely on the logic of probability theory to help them 
make their case that something significant is at the root of their empirical 
observations.

Things That Go Bump in the Light:  
Factors That Influence the Results of Significance Tests

ALPHA LEVELS AND TYPE I AND II ERRORS

Now that you have a better feel for what it means for a research finding 
to be statistically significant, we feel that it is our duty to warn you that 
when we look at significance testing in the cold, hard light of day, it has a 
couple of limitations. In other words, there are a few things that can go 
wrong when people are conducting statistical significance testing. First of 
all, it is important to remember that when a researcher conducts a statisti-
cal test and obtains a significant result, this does not always mean that his 
or her hypothesis is correct. Even if a study is perfectly executed with no 
systematic design flaws, it is always possible that the researcher’s results 
were due to chance. In fact, the p value we observe in an experiment tells 
us exactly how likely it is that we would have obtained results like ours 
even if nothing but dumb luck were operating in our study. Statisticians 
refer to this worrisome possibility—incorrectly rejecting the null hypoth-
esis when it is, in fact, correct—as a Type I error. The likelihood of making 
a Type I error is a direct function of where we set our alpha level. As sug-
gested earlier, if we think it would be a practical or scientific disaster to 
reject the null hypothesis in error, we might want to set alpha at a very 
conservative level, such as .001. Then we would be taking only one chance 
in a thousand of falsely rejecting the null hypothesis.

So why not set alpha at .001 (or even lower) all the time? Because we 
have to strike a balance between being cautious and being so cautious that 
we become downright foolish. In statistical terms, if we always set alpha 
at an extraordinarily low level, we would decrease the likelihood of com-
mitting a Type I error at the expense of increasing the likelihood of com-
mitting a Type II error. A Type II error occurs when we fail to reject an 
incorrect null hypothesis—that is, when we fail to realize that our study 
has revealed something meaningful (usually that our hypothesis is cor-
rect). The reason it is useful to know about Type I and Type II errors is 
that there are things we can do to minimize our chances of making both 
of these troublesome mistakes. As suggested previously, one of the easiest 
ways to minimize Type I errors is to set alpha at a pretty low level. Over 
the years, most researchers have pretty well agreed that .05 is a reasonable 
level for alpha (i.e., a reasonable risk for making a Type I error). And of 
course, if we want to be a little more cautious, but we don’t want to ask 
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anyone to adjust any alpha levels, we can always insist on seeing a replica-
tion. In the grand scheme of things, replications are what tell us whether 
an effect is real.

EFFECT SIZE AND SIGNIFICANCE TESTING

Although no one wants to make a Type I error, no one really wants to 
make a Type II error either. Several things influence the likelihood that a 
researcher will make a Type II error (and fail to detect a real effect). Some 
of these are things over which researchers have little or no control, and 
some of them are things over which researchers have almost complete 
control. One thing that researchers can’t do too much about is their “effect 
size,” the magnitude of the effect in which they happen to be interested. If 
you collected a sample of 20 people and measured their heights and their 
foot sizes, you could probably expect to observe a statistically significant 
correlation between height and foot size, even though your sample was 
pretty small. This is because there is a pretty robust tendency for big peo-
ple to have big feet. Of course there are exceptions, but they are relatively 
rare. We doubt that you will ever meet a gymnast who squeezes into a size 14 
(or an NBA center who slips comfortably into a size 9). On the other hand, 
if you gave a sample of 20 people a measure of extraversion and a measure 
of self-esteem, you might not necessarily observe a significant correlation. 
Although self-esteem and extraversion do tend to go hand in hand, this 
correlation is much more modest than the substantial correlation between 
height and foot size. To return to our example about peeking and ping-
pong balls, it would have been much easier to detect an effect of cheating 
if cheating had been rampant. In fact, notice that in this study, it was  
quite easy to detect an effect of honesty—precisely because honesty was so 
rampant.

MEASUREMENT ERROR AND SIGNIFICANCE TESTING

Although it’s obviously impossible to change the true size of an effect, 
one thing that researchers can sometimes do to maximize their chances of 
detecting a small effect is to conduct a within-subjects or repeated mea-
sures study. As we argue later in this text, within-subjects designs are usu-
ally more sensitive than between-subjects designs. One of the reasons this 
is the case is that within-subjects designs cut down on extraneous sources 
of variability that can mask an effect. A person in a cool room might 
deliver high levels of shock to a confederate just because this person hap-
pens to be an unusually aggressive person. However, if we could observe 
the behavior of the same person in both a hot and a cool room (and if we 
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could make sure the person didn’t know that she or he was being studied), 
we would presumably see that the person would deliver even higher levels 
of shock when the temperature was cranked up a bit. Of course, another 
reason why within-subjects designs are more powerful than between-
subjects designs is that they simply increase the number of observations in 
a study. If we measure the aggressive behavior of each of our 20 partici-
pants in both a hot and a cool room, it is almost as if we had 40 partici-
pants in our study rather than 20 (see Pelham, 1993, for a further 
discussion of the advantages of within-subjects designs).

SAMPLE SIZE AND SIGNIFICANCE TESTING

When researchers are unable to make use of within-subjects designs, they 
can still do a couple of things to maximize their chances of detecting a real 
effect. One simple, albeit potentially expensive, thing that researchers can do 
is to conduct studies with a lot of participants. Increasing your sample size 
in a study (whether it be an experiment, a quasi-experiment, a survey, or an 
archival study) can greatly increase the chances that you will detect a real 
effect. For example, suppose that the true correlation between extroversion 
and self-esteem among American adults is exactly .32. And suppose that you 
conducted a survey of 27 randomly sampled American adults and observed 
a correlation of exactly .32 in your study. Would this be statistically signifi-
cant? Unfortunately not. In a sample of only 27 people, a correlation of .32 
would have a p value slightly greater than .10—at best a marginally signifi-
cant value. On the other hand, if you had sampled 102 people rather than 
27, and if you happened to hit the nail on the head again by observing 
another correlation of exactly .32, this result would be significant even if you 
had set alpha at .001. That’s because when you have a sample as large as the 
second, it’s quite unusual to observe a correlation as large as .32 when the 
two variables in question are actually unrelated. If this doesn’t quite seem 
right to you, consider your own intuitive conclusions when we asked you 
earlier what you’d think if Pumpkini were able to correctly predict 6 heads 
in 10 coin tosses. If he produced exactly the same proportion of heads (600) 
in 1,000 tosses, you should be much more impressed.

RESTRICTION OF RANGE AND SIGNIFICANCE TESTING

Limits in the range or variability of the variables you are measuring or 
manipulating (i.e., restriction of range) can also limit your ability to detect 
a true effect. Wording your dependent measures carefully, choosing the 
right population, and making sure that your independent variable is as 
potent and meaningful as possible (which means not shooting yourself in 
the foot by artificially diminishing your real effect size) are all potential 
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solutions to the problem of restriction of range, and thus, they are all 
potential solutions to the problem of avoiding Type II errors. The particu-
lar statistical analysis that you conduct can also play an important role in 
whether your research findings are significant. When you have a choice 
between conducting a powerful test (one that can detect even relatively 
small effects) and a less powerful test, you should always perform the more 
powerful of the two. For example, performing a correlation between two 
continuous variables (e.g., self-esteem and the number of minutes people 
spent reading positive feedback about themselves) is usually more power-
ful than performing a median split (e.g., on self-esteem) and then con-
ducting an ANOVA or t test to see if the mean difference between the low 
group and the high group is significant. Similarly, making use of continu-
ous (“How much did you like your partner?”) rather than dichotomous 
(“Did you like your partner?”) dependent measures in an experiment usu-
ally allows for more powerful statistical tests. As a second example, when 
you have a choice of conducting more than one separate between-subjects 
analysis (e.g., three different between-subjects ANOVAs, one on each of 
your three different dependent measures) versus a single within-subjects 
or mixed-model analysis on the same set of research findings (e.g., because 
you asked people to rate a target person on positive, neutral, and negative 
traits), you will usually be better served by the analysis that incorporates 
the within-subjects aspect of your design.

The issues discussed here can help you to conduct better research stud-
ies. Just as important, they can also help you to better interpret the find-
ings of other people’s studies. For example, if a team of experimenters 
claims that they failed to replicate an important effect, you would do well 
to ask a few questions about the nature of their manipulation, the nature 
of their sample, the wording of their dependent measures, and the number 
of participants they included in their between- or within-subjects study 
before you abandon your own research on the same topic. If Dr. Snittle 
noted that he failed to replicate Phillips’s archival research on suicide by 
noting that none of the 23 people in his small Nebraska farming commu-
nity committed suicide after reading about a front-page suicide, this 
wouldn’t be much cause for concern. However, if Dr. Snittle learned to speak 
fluent Mandarin, traveled to China, gained access to media and suicide 
records in several very large Chinese provinces, duplicated Phillips’s analyti-
cal strategies perfectly, and failed to replicate some aspect of Phillips’s find-
ings, we’d want to figure out why. Perhaps some aspect of Chinese culture 
(or Chinese media coverage) is responsible for the difference. This way of 
thinking about how to interpret statistics is consistent not only with com-
mon sense but also with the logic of the scientific method. It is important to 
remember that statistics are simply a tool. When effectively applied to an 
appropriate problem, statistics can be incredibly powerful and effective. 
However, when misapplied or misinterpreted, statistics—like real tools—
can be useless or even dangerous.
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The Changing State of the Art:  
Alternate Perspectives on Statistical Hypothesis Testing

During the past three quarters of a century, statistical hypothesis testing 
has become a methodological touchstone for evaluating specific research 
findings. When a provocative research finding proves to be statistically 
significant, it is considered scientifically meaningful. When an equally 
provocative research finding proves to be nonsignificant, it usually is not 
taken seriously in scientific circles. As we have just seen, however, an abso-
lute reliance on significance testing—when divorced from basic consider-
ations involving things such as effect size or sample size—can often lead 
researchers to inappropriate conclusions. Another way of putting this is 
that there is more to hypothesis testing than simple significance testing. 
Critics of significance testing have pointed out, for example, that even 
when a study is well designed, basing a decision about whether an effect is 
real solely on the basis of statistical “significance” is not always advisable. 
In actual practice, for example, when a researcher conducts a study whose 
results are promising but not significant, the researcher will often run 
additional participants—or modify the design and run the study again—
rather than concluding that the original hypothesis is incorrect. In fact, 
some researchers have argued that the traditional use of significance test-
ing is an inherently misleading process that should be abandoned in favor 
of other approaches (J. Cohen, 1994).

Although it seems unlikely that significance testing will be abandoned 
any time in the near future, most researchers would probably agree that it 
is often useful to complement significance testing with other indicators 
of the validity, meaningfulness, or repeatability of an effect. A complete 
review of the pros and cons of alternate approaches to significance testing 
is beyond the scope of this book. However, it is probably worth noting that 
researchers have recently begun to complement significance testing by 
making use of special statistics to assess the practical or theoretical mean-
ingfulness of research findings. One way in which researchers have done 
this is to compute estimates of effect sizes, that is, indicators of the 
strength or magnitude of their effects. A second way is to compute esti-
mates of (a) the overall amount of existing support for an effect or (b) the 
consistency or repeatability of the effect. The statistical approach most 
suited to this second category of questions is referred to as meta-analysis.

ESTIMATES OF EFFECT SIZE

When researchers want to assess the practical or theoretical rather than 
the statistical significance of a specific research finding—that is, when they 
want to know how big or meaningful an effect is—they typically calculate 
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an effect size. Although there are many useful indicators of effect size, the 
two most commonly reported indicators of effect size are probably r and 
d. The statistic r is the familiar correlation coefficient, and thus, you prob-
ably have had some practice interpreting this frequently used indicator of 
effect size. Psychological effects that are considered small, medium, and 
large correspond respectively to correlations of about .10, .30, and .50. The 
less familiar statistic d is more likely to be used to describe effect sizes from 
experiments or quasi-experiments because d is based on the difference 
between two treatment means. Specifically,

d = (mean 1 − mean 2)/D,

where D is simply the overall standard deviation of the dependent measure in 
the sample being studied (see Rosenthal & Rosnow, 1991, p. 302). Thus, d tells 
us how different two means are in standard deviation units (or fractions 
thereof). Because two means in a study can sometimes be more than one 
standard deviation apart, this means that d, unlike r, can sometimes be larger 
than 1. Otherwise, the interpretation of d is pretty similar to the interpretation 
of r. The respective values of d that correspond to small, medium, and large 
effects are about .20, .50, and .80 (see Rosenthal & Rosnow, 1991, p. 444).

Notice that we used the word about when we listed the specific values of r 
and d that correspond to different effect sizes. The reason we did so is that 
what makes an effect big or small is partly a judgment call. Moreover, how 
“big” an effect must be to qualify as meaningful varies quite a bit from one 
research area to another. If a cheap and easy-to-administer treatment (e.g., a 
daily vitamin C tablet) could reduce the risk of cancer and turned out to have 
a “small” effect size (e.g., r = .10 or less), this could easily translate into mil-
lions of saved dollars in medical expenses (and thousands of saved lives). 
Moreover, as we just noted, the size of an effect that researchers observe in a 
particular study is as much a function of how carefully the study is crafted as 
it is a function of the state of the world. Thus, considerations of effect size, 
like considerations of statistical significance, should reflect the theoretical or 
the practical significance of a given finding—regardless of its absolute mag-
nitude. If our easy-to-administer experimental treatment gets blood from 
only 10% of the turnips that we treat, we will have to consider the relative 
value of blood and turnips before deciding how meaningful the treatment is.

For many years, when researchers wanted to know how strongly two 
variables were related, they would compute a coefficient of determination 
by squaring the correlation associated with a particular effect. So if 
researchers learned, for example, that people’s attitudes about a politician 
correlated .40 with whether people voted for that politician, the research-
ers might note that attitudes about candidates account for only 16% of the 
variance in voting behavior (.40 × .40 = .16, or 16%). Although this is a 
technically accurate way of summarizing the association between two vari-
ables, some researchers have noted that it provides a misleading picture of 
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the true strength of the relation between two variables. In particular, 
Rosenthal and Rubin (1982) developed the binomial effect size display as 
a more intuitive way to illustrate the magnitude and practical importance 
of a correlation. The binomial effect size display is referred to as binomial 
because it makes use of variables that can take on only two values (success 
or failure, survival or death, male or female) to illustrate effect sizes. As 
matters of convenience and simplicity, Rosenthal and Rubin demonstrate 
effect sizes using two dichotomous variables whose two values are equally 
likely. To simplify matters further, they express binomial effect sizes using 
samples in which exactly 100 people take on each of the two values of each 
of the two dichotomous variables.

Consider a hypothetical example involving attendance at a review ses-
sion and performance on a difficult exam. Assume (a) that exactly 100 of 
200 students attended the review session and (b) that exactly 100 of 200 
students passed the exam. If we told you that the correlation between 
attending the review session and passing the exam was .20 (meaning that 
attendance at the review session accounts for only 4% of the variance in 
exam performance), you might not bother to attend the review session. 
However, if you examine the binomial effect size display that appears in 
Table 1.2, you can see that a correlation of .20 corresponds to 20 more 
people passing than failing the exam in the group of attendees (and  
20 more people failing than passing the exam in the group of nonattend-
ees). More generally, when summarized using a binomial effect size display, a 
correlation coefficient corresponds to the difference in success rates that exists 
between two groups of interest on a dichotomous outcome. If the correlation 
summarized in Table 1.2 had been .40, we would have seen that 70% of 
those attending the review (and only 30% of those failing to attend) passed 
the exam (70 – 30 = 40). Similarly, if we had observed a potential cookie 
thief for 200 days, if the person had been present in the kitchen for exactly 
100 of the 200 days, and if cookies had disappeared on exactly 100 of the 
200 days, then a correlation of .66 would mean that when the potential 
thief visited the kitchen, cookies disappeared on 83 out of 100 days (83 – 
17 = 66). Even though the presence of this person accounts for only about 
44% of the variance in cookie thefts (.662 = .436), notice that cookies are 
almost five times more likely to disappear when the person is present than 
when the person is absent (.17 × 5 = .85). 

Regardless of what format researchers use to illustrate effect sizes, 
reporting effect sizes provides a very useful complement to traditional 
significance testing. For example, suppose we know that the effect size for 
a specific research finding corresponds to a d of .43. If a researcher claims 
that he failed to replicate this finding, it would be useful to consider the 
effect size the researcher observed (rather than focusing solely on his 
observed p value) before concluding that his finding is different from the 
original (see Rosenthal & Rosnow, 1991, for a much more extensive 
discussion). In some cases, researchers have claimed that they failed to 
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replicate findings when they observed effects that were just as large as, or 
larger than, those observed by previous researchers (e.g., when the second 
group of researchers had a much smaller sample than the first).

META-ANALYSIS

Estimates of effect size, such as r or d, provide a useful metric for describ-
ing and evaluating the magnitude of specific research findings. Regardless of 
how big a specific finding is, however, researchers are often interested in ques-
tions that have to do with the consistency or repeatability of the finding. 
Questions about the repeatability of a finding almost always have to do with 
a group of studies (and perhaps even an entire literature) rather than a single 
specific study. How many failed studies would have to exist to indicate that a 
set of findings is a statistical fluke rather than a bona fide phenomenon? If a 
phenomenon is bona fide, how consistently has it been observed from study 
to study? Even more important, what are the limiting conditions of the effect? 
That is, when is the effect most and least likely to be observed? Questions such 
as these can rarely be answered by any single study. Instead, researchers need 
systematic ways to summarize the findings of a large number of studies.

Fortunately, researchers have developed a special set of statistical tech-
niques to summarize and evaluate entire sets of research findings. Not 
surprisingly, R. A. Fisher (1938), the person who popularized modern sta-
tistical testing, was one of the first researchers to address the question of 
how to combine the results of multiple studies. In the days since Fisher 
offered his preliminary suggestions, researchers have developed a wide 
array of techniques for summarizing and evaluating the results of multiple 
studies (see Rosenthal & Rosnow, 1991, for an excellent conceptual and 
computational review of such techniques). Statistical techniques that are 
designed for this purpose are typically referred to as meta-analytic tech-
niques. The more commonly used term meta-analysis thus refers to the use 
of such techniques to analyze the results of studies rather than the responses 

Exam Performance

Attendance at review Passed Failed Total

Attended   60   40 100

Did not attend   40   60 100

Total 100 100 200

Table 1.2  �  Performance on an Exam as a Function of Attendance at a Review 
Session
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of individual participants. From this perspective, meta-analyses are to 
groups of studies what traditional statistical analyses are to groups of spe-
cific participants. Literally, meta-analysis refers to the analysis of analyses.

Prior to the development of meta-analysis, the only way researchers could 
summarize the results of a large group of studies was to logically analyze and 
verbally summarize all the studies. Meta-analyses complement such poten-
tially imprecise analyses by providing precise mathematical summaries of 
different aspects of a set of research findings. For example, a meta-analysis of 
effect sizes can provide a good estimate of the average effect size that has been 
observed in all the published studies on a specific topic. Other meta-analytic 
techniques can be used to indicate how much variability in effect sizes has 
been observed from study to study on a specific topic (see Hedges, 1987). 
Finally, meta-analysis can be used to determine the kinds of studies that tend 
to yield especially large or small effect sizes (e.g., studies that did or did not 
make use of a particular control technique, studies conducted during a par-
ticular historical era, studies conducted in a particular part of the country). 
This final kind of meta-analysis can provide very useful theoretical and meth-
odological information about the nature of a specific research finding.

As an example of this third approach, consider a couple of meta-analyses 
conducted by Alice Eagly. Eagly (1978) analyzed findings from a large num-
ber of studies of the effects of gender on conformity and social influence. 
Many researchers had argued that women are more easily influenced than 
men are. When Eagly looked at studies published prior to 1970 (i.e., prior to 
the beginning of the women’s movement), this is exactly what she found. 
However, when she focused on studies published during the heyday of the 
women’s movement (during the early to mid-1970s), Eagly observed very 
little evidence that women were more easily influenced than men. Furthermore, 
in a second meta-analysis, Eagly and Carli (1981) found that (a) the gender 
of the researcher conducting the study and (b) the specific topic of influence 
under investigation were good predictors of whether women were more con-
forming than were men. When studies were conducted by men or when the 
topic of influence was one with which women were likely to be unfamiliar 
(e.g., football), most studies showed that women were more conforming than 
were men. However, when studies were conducted by women or when the 
topic of influence was one with which men were likely to be unfamiliar (e.g., 
fashion), men often proved to be more conforming than were women.

Although meta-analysis may be used for many different purposes, the 
biggest contribution of meta-analysis to psychological research is probably an 
indirect one. The growing popularity of meta-analytic techniques has encour-
aged researchers to think about research findings in more sophisticated 
ways. Specifically, instead of treating alpha as an infallible litmus test for 
whether an effect is real, contemporary researchers are beginning to pay 
careful attention to the question of when a given effect is most (and least) 
likely to be observed. Ideally, when a meta-analysis suggests that an effect 
is magnified or diluted under certain conditions, researchers should 
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conduct a study in which they directly manipulate these conditions. Doing 
so boils down to designing factorial studies in which at least two indepen-
dent variables are completely crossed. An example would be a single 
experiment on persuasion that randomly assigned half of all men and half 
of all women to read about a stereotypically masculine topic before seeing 
how much they conform to others’ opinions on this topic. Of course, the 
other half of men and the other half of women would be randomly 
assigned to read about a stereotypically feminine topic before the research-
ers assessed conformity on this topic. If the results of the experiment con-
firmed the results of the meta-analysis, researchers could be even more 
confident of the conclusion suggested by the meta-analysis.

Summary

This chapter provided a brief review of statistics. We noted that statistical 
procedures can be broken down into descriptive statistics and inferential sta-
tistics. As the name suggests, descriptive statistics simply describe (i.e., illus-
trate, summarize) the basic properties of a set of data. Along these lines, 
measures of central tendency describe the typical or expected score in a 
given data set. In contrast, measures of dispersion reveal how much the 
entire set of scores varies around the typical score. The most common mea-
sures of central tendency are the mean, the median, and the mode, and the 
most common measures of dispersion are the range and standard deviation. 
Of course, psychologists interested in testing psychological theories are 
typically interested in inferential statistics as well as descriptive statistics. 
This second branch of statistics applies probability theory to determine 
whether and to what degree an observed data pattern truly differs from a 
chance pattern. Inferential statistics thus provide a basis for determining 
whether an observed research finding reveals a systematic association that is 
likely to be true in a population of interest or whether it merely reflects noise 
or error. For instance, if a treatment group differs from a control group to a 
degree that would not be expected by chance alone, then researchers will 
view this as evidence that the treatment is actually causing changes in the 
outcome. As another example, if people who tend to score high in self-
esteem also tend to score high on a measure of aggression, inferential statis-
tics can tell us whether this tendency for the scores to go hand in hand could 
have happened easily by chance or whether the tendency is strong and con-
sistent enough that it probably reflects a true association between these two 
variables in the general population (or at least the population that most 
closely resembles the researcher’s sample). Both of these examples reveal the 
logic of significance testing. More recently, statisticians have begun to com-
plement traditional statistical tests with indicators of effect size. Whereas 
statistical significance tells you whether an effect is likely to exist, estimates 
of effect size tell you how large an effect is likely to be.
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Appendix 1.1: Some Common Statistical Tests and Their Uses

In Cervantes’s classic novel Don Quijote, there is a point at which Don 
Quijote expresses tremendous self-satisfaction when he learns that he has 
been speaking prose his entire life. Unlike Don Quijote, most statisticians 
are more impressed with proofs than with prose. Thus, many statistics 
texts offer readers flowcharts, formulae, or decision trees to help them 
decide what kind of statistical analysis to perform on different kinds of 
data. Because of our abiding love of prose as well as our pathological fear 
of decision trees, we offer an alternative in this appendix. That is, instead 
of a decision tree, we offer a series of definitions and concrete examples 
that are much richer than a decision tree. If you spend a little while reading 
over the list of analytic techniques covered in this appendix, we hope that 
you’ll have a good sense of how to analyze most basic data sets while also 
gaining a good sense of all of the major topics we cover in this textbook. 
The one way in which this list does vaguely resemble a decision tree is that 
it is loosely organized in increasing order of the complexity or sophistica-
tion of the research question. It thus begins with a couple of simple 
descriptive statistics and progresses through a series of increasingly com-
plex inferential statistical tests. Readers who are interested in a true deci-
sion tree can find an excellent one in Chapter 2 of Tabachnick and Fidell 
(2007, pp. 28–31).

Mean, median, and mode: Very often, researchers who have collected 
data on a continuous (i.e., interval or ratio) scale simply want to sum-
marize what the typical score is like. When the scores are normally dis-
tributed with very little skew (and modest to high kurtosis), the mean is 
an excellent indicator of the typical score. Height, SAT scores, and the 
highway mileage for one’s car are all normally distributed without too 
much skew or kurtosis (the Hummer and Prius notwithstanding). In 
contrast, variables such as personal income, number of criminal convic-
tions, and number of depressive symptoms only approximate a normal 
distribution because they are typically highly skewed. In such cases, the 
median and/or mode are often better indicators of central tendency 
because the median and the mode are influenced very little by extreme 
outliers. When researches wish to make inferences about populations 
rather than merely summarize a set of scores, they will want to report the 
standard error of the mean and/or a 95% or 99% confidence interval for 
the mean—to give others some idea of how far from the observed sam-
ple mean the true population mean is likely to fall. The standard error of 
the mean is a function of the observed sample standard deviation (see 
below) and the sample size, and it grows smaller as the sample size gets 
larger. All else being equal, this means, for example, that a researcher 
who randomly samples 1,000 people will be able to make a more precise 
statement about the likely range of the population mean than will a 
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researcher who randomly samples only 100 people. We discuss measures 
of central tendency in great detail in Chapter 2. In that same chapter, we 
also discuss the important topic of variability (especially the standard 
deviation) while also covering important topics such as skewness and 
kurtosis. These last two topics set the stage for subsequent chapters on 
inferential statistics and data cleaning.

Standard deviation: The standard deviation is an indicator of the vari-
ability of a set of continuous scores around the mean. Whereas central 
tendency tells us what the typical score is like, the standard deviation tells 
us how well that typical score describes all of the scores in the distribution—
because the standard deviation is an indicator of the average amount by 
which all of the scores in a distribution vary around the mean. We dis-
cuss both traditional and nontraditional (creative) uses of the standard 
deviation in Chapter 2.

Variance: The variance of a set of scores is simply the standard deviation 
of that set of scores squared. 

Pearson’s r: describes the strength and direction of the linear association 
between two continuous (interval or ratio) variables. An r of zero means 
that there is no linear association whatsoever between two variables. 
Absolute values of r closer to 1.0 indicate a stronger association. If r is 
negative, it means that as scores on one variable (X) increase, scores on the 
other variable (Y) decrease. If r is positive, it means that as scores on one 
variable (X) increase, scores on the other variable (Y) also increase. The 
concept of correlation is closely linked to prediction. Thus, for example, if 
height and weight are correlated r  = .70, one can minimize errors of pre-
diction by predicting that a person who is exactly one standard deviation 
above the mean in height is 0.70 standard deviation units above the mean 
in weight. We discuss the correlation coefficient in Chapter 3, including a 
brief discussion of how to assess curvilinear as well as linear associations 
between continuous variables.

Phi coefficient (j): The phi coefficient is very similar to r except it has no 
sign because it is used to describe the strength of association between two 
nominal or categorical variables (variables that do not indicate quantity or 
amount). It thus ranges between zero and 1.0. We discuss both the phi 
coefficient and the chi-square test of association in Chapter 4.

Chi-square test of association: A chi-square (χ2) test of association is 
conceptually identical to a phi coefficient (j) because, like phi, this test of 
association indicates whether two categorical variables are related. In fact, 
it is very easy to convert a chi-square test of association to a phi coefficient

using the simple formula ϕ = χ( / ).obt
2 N
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Single-sample t test: This very simple test is designed to test see whether 
the mean score for a continuous, normally distributed variable (e.g., IQ 
score, height) in a specific sample differs from some known or hypothe-
sized (e.g., theoretically meaningful) population value. For example, the 
SAT scores for the students at a particular high school might be compared 
with the known U.S. population mean for SAT scores to see if the students 
at that high school tend to be more academically prepared than the aver-
age American high school student. We discuss this test in the beginning of 
Chapter 6.

Independent samples t test: This common test is used to assess the reli-
ability (statistical significance) of mean differences on a continuous vari-
able between two independent groups or categories of people. Some 
examples of the use of this test are (a) drawing inferences about the results 
of a lab experiment that has one experimental and one control group,  
(b) assessing gender differences on a continuously measured emotional 
performance test, and (c) comparing people with versus without a disease 
on a suspected health consequence of the disease. The main assumption of 
the test is that the dependent measure is normally distributed (although 
the test is pretty robust to many, but not all, violations of this assumption). 
We discuss this test in some detail in the latter portion of Chapter 6.

One-way analysis of variance (ANOVA): This test is used to assess the 
reliability (statistical significance) of mean differences between three or 
more groups. This test is very similar to an independent samples t test (and 
shares the same assumption of a normally distributed dependent mea-
sure). However, the difference is that a one-way ANOVA controls for the 
experiment-wise error rate that occurs as researchers consider all of the 
many possible comparisons that can be made between specific groups 
when there are multiple experimental or naturally existing groups (three 
or more levels of the independent variable). Some examples of the use of 
this statistic are (a) outcomes in a lab experiment that has three different 
conditions (e.g., three dosage levels of a drug), (b) comparing kids in four 
different grades on an intellectual outcome, and (c) comparing the atti-
tudes of soldiers from five different military ranks. When the researcher 
has a clear a priori reason to expect the various conditions to yield results 
that follow a specific pattern, the researcher can greatly increase statistical 
power by conducting a planned comparison based on this specific expec-
tation. We discuss one-way ANOVA, including planned comparisons, in 
the first half of Chapter 7.

Factorial ANOVA: This technique is used to assess joint effects of two or 
more fully crossed categorical independent variables on a continuously 
scored outcome. It allows for the statistical separation of main effects of all 
independent variables and, if desired, interactions between two or more 
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independent variables. This technique is used frequently to draw conclu-
sions about the results of laboratory experiments. It also assumes a nor-
mally distributed dependent measure. We discuss factorial ANOVA, 
including follow-up comparisons such as simple effects tests, in the second 
half of Chapter 7.

Analysis of covariance (ANCOVA): Sometimes researchers may wish to 
control for a confound or nuisance variable in an ANOVA and—rather 
than reporting the raw, between-groups means—hold the different, natu-
rally occurring or experimental groups constant on that nuisance variable. 
This is both conceptually and mathematically identical to a simultaneous 
multiple regression analysis with at least one categorical variable (the 
independent variable or variables) and at least one continuous variable 
(the covariates in an ANCOVA). The main advantage of ANCOVA over a 
regression analysis is the fact that ANCOVA readily yields covariate-
adjusted means, which look very much like regular means and thus are 
very easy to interpret. 

One of the crucial assumptions of ANCOVA is homogeneity of covari-
ance, meaning that the covariate for which the analysis makes a statistical 
adjustment should have roughly the same association with the dependent 
measure in all of the various experimental conditions. For example, a 
researcher studying gender differences in aggressive behavior in the lab 
might wish to control statistically for the fact that people who more 
strongly believe in the concept of defending one’s honor (reported, say, on 
a 9-point scale) behave more aggressively than people who do not believe 
in the concept of defending one’s honor (e.g., see D. Cohen & Nisbett, 
1994). So long as the association between beliefs about honor and labora-
tory aggressive behavior was about equally strong for women and men, it 
would be appropriate to reduce the noise associated with this belief to see 
if a significant gender difference remained after controlling for the belief. 
The test for a gender difference could thus be more powerful than it would 
have been otherwise after controlling for any effects of this nuisance vari-
able that is more or less independent of gender. In Chapter 11, we compare 
and contrast ANCOVA with ANOVA and with multiple regression analy-
sis.We emphasize that whereas ANCOVA is mathematically identical to a 
simultaneous multiple regression analysis, the two techniques yield very 
different kinds of outputs. For example, it is often much easier for people 
to understand covariate-adjusted means (because they look just like tradi-
tional means) than to understand standardized regression coefficients.

Reliability analysis: A reliability analysis is used to determine the degree 
to which the multiple items in a scale all behave in the same fashion (i.e., 
are positively correlated with one another). Cronbach’s alpha (a) is a very 
useful and easy-to-calculate statistic. However, a very high alpha statistic 
for a scale does not always guarantee that the items in the scale form a 
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single factor. On the other hand, low corrected item-total rs for specific 
items in a scale are a useful indicator that the specific items are not cor-
related with the other scale items (and thus should probably be excluded 
from the scale). Treating individual raters of a specific behavior or judg-
ment as if they were specific items in a scale can allow an assessment of the 
reliability of individual raters. A rater whose item-total correlation is low 
is in disagreement with the average of all of the other raters and can either 
be retrained, if possible, or dropped. We discuss reliability analysis (along 
with principal components analysis and factor analysis) in Chapter 5.

Multiple regression analysis: Multiple regression analysis is used to assess 
the strength and direction of the unique linear association between mul-
tiple, continuous predictors of a continuous outcome (a criterion) and 
that outcome. Because each predictor is controlled statistically for the 
association between that predictor and all other predictors, an assessment 
of the relative strength of each predictor is possible. Each predictor is thus 
assessed controlling for the natural confounds between that predictor and 
all other predictors. The primary statistical indicator is a B or b (an 
unstandardized regression coefficient) or beta (b), a standardized regres-
sion coefficient that is conceptually very similar to r. Each coefficient has 
its own associated p value that indicates the reliability (statistical signifi-
cance) of that unique association. Although both univariate (single-vari-
able) normality and multivariate normality of the continuously measured 
predictors are assumed, this analysis is usually quite robust to the inclu-
sion of one or more categorical variables, especially when these variables 
are not highly skewed. Gender, for example, is often dummy-coded with-
out any problems in a multiple regression analysis that also includes sev-
eral continuous, normally distributed predictors. We discuss the basics of 
multiple regression analysis, with a conceptual emphasis on how multiple 
regression identifies the unique association between different predictor 
variables and a criterion variable, in the first part of Chapter 9.

In most cases of multiple regression analysis, researchers expect the 
zero-order association between a predictor variable and the criterion of 
interest to grow smaller (and sometimes even disappear altogether) when 
all the other predictor variables are statistically held constant. However, a 
multiple regression analysis can also reveal that a predictor variable that 
appeared to be unrelated (at the simple or zero-order level) to a criterion 
variable is actually associated with the criterion variable once statistical 
adjustments are made for the effects of one or more additional predictors. 
This unusual situation is referred to as suppression, and it is discussed in 
great detail in Chapter 12.

Moderator analysis (multiple regression analysis of statistical interac-
tions): If a researcher also wishes to know whether the association between 
a predictor and the criterion differs at different levels of some other predictor, 
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it is possible to conduct a moderator analysis by examining the cross-
product(s) of the two or more predictors of interest and following up a 
significant interaction with simple slopes tests (analogous to simple main 
effect tests in ANOVA). A moderator analysis in multiple regression could 
thus be conducted to see if the association between the number of times 
people moved as children and their physical health as adults is stronger for 
introverts than for extraverts. (Introverts who moved a lot as children 
often have poorer than average adult health, but extraverts seem to show 
no such association.) A moderator variable can also be categorical while 
the other predictor and the criterion variable are both continuous. For 
example, the association between implicit self-esteem and explicit self-
esteem (both continuous variables) seems to be stronger (more positive) 
for women than for men (Pelham, Koole, et al., 2005). We discuss mod-
erator analyses in multiple regression, including simple slopes tests to 
elucidate the exact nature of a significant interaction, in Chapter 10.

Logistic regression: Logistic regression analysis is conceptually identical 
to a standard multiple regression analysis except that the criterion variable 
(and sometimes one or more of the predictors) is categorical rather than 
continuous. The primary output statistic is a predictor-adjusted odds ratio 
that is the rough conceptual equivalent of a B or a b. Unlike a simple odds 
ratio, however, the odds ratio from a logistic regression analysis refers to 
the association between one categorical variable and another while hold-
ing all other predictor variables in the model constant. We discuss the 
basics of logistic regression in the last section of Chapter 9.

Principal components analysis and factor analysis: These two closely 
related techniques are designed to uncover underlying dimensions along 
which a set of many separate responses vary. These numerous individual 
responses might be answers to individual personality questions, specific 
political or social attitudes, or self-reported liking for many different kinds 
of foods or many different specific types of music. For example, contem-
porary research in human personality suggests that hundreds of individual 
personality questions all boil down to five core personality dimensions: 
openness to experience, conscientiousness, extraversion, agreeableness, 
and neuroticism (see Goldberg, 1990). A factor analysis of dozens of spe-
cific personality traits might thus reveal, for example, that trait terms such 
as energetic, friendly, outgoing, outspoken, and loud would all load heavily 
on the basic dimension of extraversion. In contrast, specific trait terms 
such as reliable, punctual, obedient, organized, and honest might all load 
heavily on the core dimension of conscientiousness. One key difference 
between principal components analysis and factor analysis is that princi-
pal components analysis is usually a bottom-up, purely empirical way to 
distill a large set of observations into a smaller number of dimensions. In 
contrast, factor analysis is more likely to be used when the researcher has 
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a clear a priori theory about how the different items ought to load together 
and how many factors there ought to be in a data set. We discuss principal 
components analysis and factor analysis in Chapter 5, including a dis
cussion of how these methods are related to the concept of reliability 
(specifically, the internal consistency of a multiple-item scale).

Paired-samples t test: When two measures come from the same organism 
(or similar organisms), the two different measures are likely to be highly 
correlated with one another. For example, a specific child who excels in 
reading is also likely to excel in spelling. A similar lack of independence in 
specific observations often occurs when genetically related or experimen-
tally yoked members of a pair are tested on the same outcome. When 
exactly two such repeated measures are obtained, a paired-samples t test 
can be used to assess the statistical significance of any observed behavioral 
or performance difference between the two measures. This test is also very 
useful when the same person fills out the same measure or task under dif-
ferent (manipulated) experimental conditions. For example, a child might 
be given the same intellectual measure by two different experimenters, one 
of whom expresses a positive expectancy about her performance and one 
of whom expresses no expectations. If appropriate experimental controls 
are used (e.g., counterbalancing the order of the two expectancies across 
participants), a paired-samples t test can reveal whether performance varies 
reliably with experimental condition, with a very high level of statistical 
power. Like the independent samples t test, this test assumes that the 
dependent measure (which in this case is the difference between two scores) 
is normally distributed. Importantly, the increased power that usually 
comes with this test comes precisely to the degree that the two measures of 
interest are strongly correlated with one another. It is this strong correlation 
between two related measures that effectively reduces the variance that 
serves as the error term for this analysis. We discuss the paired-samples  
t test in Chapter 8, with a special emphasis on how the correlation between 
two repeated measurements plays a crucial role in the power of a repeated 
measures t test to reveal differences between paired means. 

Repeated measures ANOVA: If three or more within-subjects conditions 
(or measurement periods) rather than two are collected from the same (or 
related) participants, a repeated measures ANOVA is the appropriate statisti-
cal test for differences between the means. Just as a one-way ANOVA replaces 
an independent samples t test once you graduate from two to three or more 
groups, the one-way repeated measures ANOVA replaces the paired-samples 
t test once you graduate from two to three or more within-subjects condi-
tions. For example, if children are exposed to three different expectancies 
rather than two, a repeated measures ANOVA could be conducted on the 
mean performance scores in the three within-subjects conditions. Repeated 
measures studies can also involve complete factorial designs. For example, a 
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completely within-subjects experiment might separately study reactions to 
sexist and nonsexist jokes that also vary independently in how funny the 
jokes are pretested to be. In its simplest form, this study would be a 2 (Level 
of Sexism: High vs. Low) × 2 (Level of Humor: High vs. Low) completely 
within-subjects study, analyzed using a within-subjects ANOVA. We discuss 
repeated measures ANOVAs in Chapter 8.

Mixed model ANOVA: If a study includes at least one within-subjects 
variable and at least one between-subjects variable (whether measured or 
manipulated), a mixed model ANOVA can test simultaneously for both 
between-subjects and within-subjects effects. Mixed model ANOVAs can 
also test for statistical interactions between one or more between-subjects 
variables and one or more within-subjects variables. For example, a cogni-
tive psychologist might manipulate cognitive load on a between-subjects 
basis while assessing both implicit and explicit memory for studied mate-
rial. She might predict, for example, that the cognitive load manipulation 
(e.g., rehearsing a 7-digit number) will have a large effect on explicit 
memory (recall memory) while having little or no effect on implicit 
memory (e.g., based on performance on a word fragment completion 
task). Thus, the researcher would expect to observe a Load × Memory–
type interaction in this mixed model design. We discuss mixed model 
ANOVAs in Chapter 8.

Mediation analysis: In both laboratory experiments and passive observa-
tional studies, researchers often wish to know why one variable is related to 
another. For example, research on frustration and aggression suggests that 
one of the main reasons why frustration often leads to aggression is because 
frustration leads to anger, which then leads to aggression. In the language of 
mediation, this is to say that anger mediates the simple association between 
frustration and aggression. Mediation analyses are merely variations on a 
multiple regression analysis with an emphasis on assessing the degree to 
which the association between the original independent variable and the 
dependent variable disappears or gets weaker once you statistically control 
for the significant effects of the mediator on the dependent measure. 
Prototypically, if anger fully mediates the association between frustration 
and aggression, (a) frustration should predict aggression, (b) frustration 
should predict anger, (c) anger should predict aggression, and finally (d) the 
association between anger and aggression should completely disappear once 
you statistically control for the effects of anger on aggression (because frus-
tration affects aggression indirectly through the route of increased anger). 
We discuss both mediation analysis and path analysis in Chapter 13.

Path analysis: Path analysis is a special version of multiple regression 
analysis that is designed to assess the plausibility of a proposed causal chain 
leading from one or more source variables to an ultimate (“downstream”) 
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outcome variable. In fact, the simplest possible kind of path analysis is a 
three-variable mediation model with the mediator representing the causal 
step between just one source variable and just one outcome variable. In 
most cases, however, path analyses involve four or more variables, ideally 
measured at different carefully selected time points (e.g., in a longitudinal 
or prospective design). Moreover, researchers do not always expect every 
variable in the middle of a causal chain to mediate the associations between 
the source variables and the ultimate outcome variable. Instead, some of 
the source variables might be expected to have a direct (nonmediated) as 
well as an indirect (mediated) connection to the downstream variable. Path 
analysis is the historical and conceptual precursor of modern structural 
equation modeling, which can be thought of as a hybrid combination of 
path analysis and factor analysis. In fact, some researchers refer to structural 
equation modeling as confirmatory (aka “theory-driven”) factor analysis. 
A detailed discussion of structural equation modeling is beyond the scope 
of this intermediate text.

Notes

1.	 For more details, see http://www.news.com.au/business/story/0,27753,255 
15799-462,00.html.

2.	 See the Time magazine story at http://www.time.com/time/magazine/arti 
cle/0,9171,1889153,00.html.

3.	 We adapted this example of men of varying heights from an illuminating 
statistics lecture by Daniel Gilbert, who probably adapted it from a lecture by 
Plato.

4.	 http://imgs.sfgate.com/cgi-bin/article.cgi?f=/c/a/1998/12/28/MN9307 
.DTL&type=printable 

5.	 Computing the probability of an event as extreme as or more extreme than 
an observed event (or set of events) is standard practice for most statistical tests. 
At first blush, paying attention to events even more extreme than an observed 
event may seem a little odd. However, if we care about events as unusual as or more 
unusual than our observed event—which we almost always do—it makes a lot of 
sense. If you think of the unusualness of a set of observations (e.g., a lot of heads 
tossed, a pair of means that are noticeably different) as a standard of experimental 
performance that a researcher hopes to meet or exceed, this may help make sense 
of this practice. If we set a high-jump bar at exactly 6 feet and Amanda clears it, 
the set of outcomes that Amanda, the judges, and the fans all care about is jumps 
of exactly 6 feet or higher. Furthermore, if we tried to calculate the probability of 
a specific observation or event, probabilities would almost always be pretty low—
because the probability of any specific event is always quite low. For example, the 
probability of tossing a fair coin 20 times and observing exactly 10 heads is .176, 
even though this is the most likely of all the possible outcomes. Once we move to 
continuous rather than discrete events, this is even truer. The probability that a 
particular high jump would be exactly 6 feet—even for a very good jumper who 
was trying to jump exactly 6 feet—is extremely low.
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6.	 Speaking of cheating, we cheated. Unless we increased our sample size to 
about 250 people, we couldn’t actually conduct this second χ2 analysis. That’s 
because we’re allowed to use the χ2 statistic only in situations in which all our 
expected frequencies have a value of at least 5.0. With values lower than 5, the χ2 
values that are generated can be pretty unstable and pretty inaccurate. In an 
extreme case such as this one, however, it’s safe to say that people were signifi-
cantly honest. If nothing else, we could always choose to make a very conservative 
comparison and set 90% (instead of 98%) dishonesty as our standard of com-
parison. This would yield 5 rather than 1 as the expected number of nonwinners. 
In case you want to practice your calculations, the value you should get if you do 
the analysis this more conservative (but legal) way is χ2 (1, N = 50) = 272.22. The 
1 in the parentheses indicates the degrees of freedom you’d report in an actual 
research report in which you conducted this analysis. We come back to this in the 
section on reporting commonly used statistics.




