DUAL SCALING

SHIZUHIKO NISHISATO

1.1. WHY DUAL SCALING?

Introductory and intermediate courses in statistics are
almost exclusively based on the following assump-
tions: (a) the data are continuous, (b) they are a random
sample from a population, and (c) the population dis-
tribution is normal. In the social sciences, it is very
rare that our data satisfy these assumptions. Even if
we manage to use a random sampling scheme, the data
may not be continuous but qualitative, and the assump-
tion of the normal distribution then becomes irrelevant.
What can we do with our data, then? Dual scaling
will offer an answer to this question as a reasonable
alternative.

More important, however, the traditional statistical
analysis is mostly what we call linear analysis, which
is a natural fate of using continuous variables, for
which such traditional statistical procedures as analysis
of variance, regression analysis, principal component
analysis, and factor analysis were developed. In tra-
ditional principal component analysis, for example,
we can look into such a linear phenomenon as “blood
pressure increases as one gets older” while failing to
capture a nonlinear phenomenon such as “migraines
occur more frequently when blood pressure is very
low or very high.” When we look at possible forms of
relations between two variables, we realize that most
relations are nonlinear and that it is not advantageous

to restrict our attention only to the linear relation. Dual
scaling captures linear and nonlinear relations among
variables, without modeling the forms of relations for
analysis.

Dual scaling is also referred to as “optimal scaling”
(Bock, 1960) because all forms of relations among
variables are captured through optimally spacing cate-
gories of variables. The main purpose of data analysis
lies in delineating relations among variables, linear
or nonlinear, or, more generally, in extracting as
much information in data as possible. We will find
that dual scaling is an optimal method to extract
a maximal amount of information from multivariate
categorical data. We will see later that dual scaling can
be applied effectively to many kinds of psychologi-
cal data such as observation data, teacher evaluation
forms, attitude/aptitude data, clinical data, and all
types of questionnaire data. This chapter contains a
minimal package of information about all aspects of
dual scaling.

1.2. HISTORICAL BACKGROUND

1.2.1. Mathematical Foundations in Early Days

Two major contributions to the area from the
past are (a) algebraic eigenvalue theory, pioneered
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by mathematicians (e.g., Euler, Cauchy, Jacobi,
Cayley, and Sylvester) in the 18th century, and
(b) the theory of singular value decomposition
(SVD) by Beltrami (1873), Jordan (1874), and
Schmidt (1907).

The eigenvalue decomposition (EVD) was for
orthogonal decomposition of a square matrix, put into
practice as principal component analysis (Hotelling,
1933; Pearson, 1901). SVD was for the joint orthog-
onal decomposition of row structure and column
structure of any rectangular matrix and reappeared
much later in metric multidimensional scaling as the
Eckart-Young decomposition (Eckart & Young, 1936).
Both EVD and SVD are based on the idea of princi-
pal hyperspace, that is, space described in terms of
principal axes.

1.2.2. Pioneers in the 20th Century

With these precursors, Richardson and Kuder
(1933) presented the idea of what Horst (1935)
called the method of reciprocal averages (MRA)
for the analysis of multiple-choice data. Hirschfeld
(1935) provided a formulation for weighting rows
and columns of a two-way table in such a way
that the regression of rows on columns and that of
columns on rows could be simultaneously linear,
which Lingoes (1964) later called simultaneous linear
regressions. Fisher (1940) considered discriminant
analysis of data in a contingency table, in which
he, too, suggested the algorithm of MRA. Most
important contributions in the early days were by
Guttman (1941) for his detailed formulation for the
scaling of multiple-choice data and Maung (1941) for
elaborating Fisher’s scoring method for contingency
tables. Guttman (1946) further extended his approach
of internal consistency to rank-order and paired-
comparison data. Thus, solid foundations were laid
by 1946.

1.2.3. Period of Rediscoveries
and Further Developments

We can list Mosier (1946), Fisher (1948), Johnson
(1950), Hayashi (1950, 1952), Bartlett (1951),
Williams (1952), Bock (1956, 1960), Lancaster
(1958), Lord (1958), Torgerson (1958), and many
other contributors. Among others, there were four
major groups of researchers: the Hayashi school in
Japan since 1950, the Benzécri school in France since

the early 1960s, the Leiden group in the Netherlands
since the late 1960s, and the Toronto group in Canada
since the late 1960s.

Because of its special appeal to researchers in
various countries and different disciplines, the
method has acquired many aliases, mostly through
rediscoveries of essentially the same technique—
among others, the method of reciprocal averages
(Horst, 1935; Richardson & Kuder, 1933), simulta-
neous linear regressions (Hirschfeld, 1935; Lingoes,
1964), appropriate scoring and additive scoring
(Fisher, 1948), principal component analysis of
categorical data (Torgerson, 1958), optimal scaling
(Bock, 1960), correspondence analysis (Benzécri,
1969; Escofier-Cordier, 1969), biplot (Gabriel, 1971),
canonical analysis of categorical data (de Leeuw,
1973), reciprocal averaging (Hill, 1973), basic struc-
ture content scaling (Jackson & Helmes, 1979), dual
scaling (Nishisato, 1980), homogeneity analysis (Gifi,
1980), centroid scaling (Noma, 1982), multivariate
descriptive statistical analysis (Lebart, Morineau, &
Warwick, 1984), nonlinear multivariate analysis (Gifi,
1990), and nonlinear biplot (Gower & Hand, 1996).
Because all of these are based on singular value
decomposition of categorical data, they are either
mathematically identical or not much different from
one another.

1.2.4. Dual Scaling

The name dual scaling (DS) was coined by Nishisato
(1980) as a result of the discussion at the symposium
on optimal scaling during the 1976 annual meeting of
the Psychometric Society in Murray Hill, New Jersey
(see Nishisato & Nishisato, 1994a). With the general
endorsement among the participants, he adopted it in
the title of his 1980 book. Franke (1985) states that
he “uses Nishisato’s term for its generality and lack of
ambiguity” (p. 63).

Under the name dual scaling, Nishisato has
extended its applicability to a wider variety of cat-
egorical data, including both incidence data and
dominance data. This aspect of DS is reflected in
Meulman’s (1998) statement that “dual scaling is
a comprehensive framework for multidimensional
analysis of categorical data” (p. 289). For those
interested in the history of quantification theory,
see de Leeuw (1973), Benzécri (1982), Nishisato
(1980), Greenacre (1984), Gifi (1990), Greenacre and
Blasius (1994), and van Meter, Schiltz, Cibois, and
Mounier (1994).
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Table 1.1 Sleeping and Sleeping Pills

Never Rarely Sometimes Often Always Sum Score

1.3.1. Is Likert Scoring Appropriate?

Suppose subjects were asked two multiple-choice
questions. '

Q1: What do you think of taking sleeping pills?
(1) strongly disagree, (2) disagree, (3) indifferent,
(4) agree, (5) strongly agree

Q2: Do you sleep well every night? (1) never,
(2) rarely, (3) sometimes, (4) often, (5) always

The data are in Table 1.1. Likert scores are often used
for ordered sets of categories (Likert, 1932). Suppose
we assign —2, —1, 0, 1, 2 to the five ordered categories
of each set in the above example. Our question here is
if these Likert scores are appropriate. There is a simple
way to examine it.

First, we calculate the mean of each category, using
Likert scores. For example, the mean of category
neveris [15 x (=2) +5x (=) +6x0+0x 1 +
1x2]/27 = —1.2. Likewise, we calculate the means of
row categories and those of column categories, which
are summarized in Table 1.2. We now plot those aver-
ages against the original scores (—2, —1, 0, 1, 2), as
seen in Figure 1.1. The two lines are relatively close to
a straight line, which indicates that the original scores
are “pretty good.” Suppose we use, instead of those
subjective category weights, the weights derived by
DS and calculate the weighted category means and
plot these against the DS weights. We then obtain
Figure 1.2.

Notice that the two lines are now merged into a
single straight line. This is “mathematically optimal,”
as seen later. We will also see shortly that the slope
of the line in Figure 1.2 is equal to the maximal
“nontrivial” singular value for this data set.

But how do we arrive at the DS weights? It is
simple: Once we obtain the mean category scores as in
Figure 1.1, replace the original scores (e.g., —2, —1,
etc.) with the corresponding mean scores, and then
calculate the new mean category scores in the same
way as before and plot the new category scores against
the first mean scores, replace the old mean scores with
the new mean scores, and calculate new mean category
scores and plot them. This is a convergent process
(Nishisato, 1980, pp. 60-62, 65-68). Horst (1935)
called the above process the method of reciprocal

1. With permission from Nishisato (1980).

Strongly
against 15 8 3 2 0 28 -2
Against 5 17 4 0 2 28 —1
Neutral 6 13 4 3 2 28 0
For 0 7 5 9 28 1
Strongly
for 1 2 6 3 16 28 2
Sum 27 47 24 13 29 140
Score -2 -1 0 1 2
Table 1.2 Likert Scores and Weighted Means
Score Mean Score Mean
-2 —-12 -2 —-1.3
-1 —0.5 -1 —0.8
0 0.4 0 —0.6
1 0.5 1 0.6
2 1.3 2 1.1
Figure 1.1 Likert Scores
Mean
T T T T T
-2 -1 0 1 2

Likert Score

averages (MRA), used by Richardson and Kuder
(1933), also suggested by Fisher (1940), and fully
illustrated by Mosier (1946). MRA is one of the
algorithms for DS.

1.3.2. The Method
of Reciprocal Averages (MRA)

Let us illustrate the process of MRA.? Suppose three
teachers (White, Green, and Brown) were rated on their
teaching performance by students (see Table 1.3).

2. With permission from Nishisato and Nishisato (1994a).
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Figure 1.2 Dual-Scaling Optimal Weights
Mean

Optimal Weight
Table 1.3 Evaluating Teachers
Teacher Good Ave Poor Total
White 1 3 6 10
Green 3 5 2 10
Brown 6 3 0 9
Total 10 11 8 29

The MRA is carried out in the following way:

Step 1: The MRA starts with assigning arbitrary
weights to columns (or rows, if preferred). Although
such values are arbitrary, one must avoid identical
weights for all columns (or rows), including zero. It
is always a good strategy to use “reasonable” values.
As an example, consider the following:

x1(good) =1,
x;(average) = 0,
x3(poor) = —1. (1)
Step 2: Calculate the weighted averages of the rows:

I1xx1+3Xx+6xx3

y1(White) =

10
1x1+3x0+6 —
_ X14+3x04+6x( 1):_0.57
10
(@)
3x1+5x0+2 -1
yGreem) = 22 LFIXATZXED g 100,
3)
6x1+3x0+0 —1
y3(Brown) = x 1+ X9+ x( )=0.6667.
“4)

Step 3: Calculate the mean responses weighted by
Vi, Y2, ¥3:

10y + 10y, + 9y3
29
10 x (=0.5) + 10 x 0.1 +9 x 0.6667
- 29
= 0.0690. ®))

M =

Step 4: Subtract M from each of yy, y,, y3, and
adjusted values should be indicated again by y;, y», y3,
respectively:

y1 = —0.5000 — 0.0690 = —0.5690, ©6)

y2 = 0.1000 — 0.0690 = 0.0310, @

y3 = 0.6667 — 0.0690 = 0.5977. ®

Step S: Divide y;, y,, y3 by the largest absolute
value of yi,y2, y3, say, g,. At this stage, g, =

0.5977. Adjusted values should again be indicated by
Vi, Y2, y3:

~0.5690
= %Y 09519,
M= 705977
0.0310
Yo =~ = 0.0519,
0.5977
0.5977
= — 1.0000. 9
Y3 = 05977 ©)

Step 6: Using these new values as weights, calculate
the averages of the columns:

Iyr +3y2 + 6y3
10
I x (—0.9519) +3 x 0.0519+6 x 1.0
10

= 0.5204, (10)

~ 3x(=0.9519) 4+ 5 x 0.0519 + 3 x 1.0000
- 11

=0.0367, 1)

6 x(=0.9519) +2 x 0.0519 + 0 x 1.0000
N 8

= —0.7010. (12)

X1 =

X2

X3

Step 7: Calculate the mean responses weighted by
X1, X2, X3:

N 10 x 0.5204 + 11 x 0.0367 + 8 x (—0.7010)
- 29
=0. (13)

Step 8: Subtract N from each of x1, x;, x3.
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Table 1.4 Iterative Results
Iter2 y Iter2 x Iter3 y Iter3 x Iterd y Iterd x Iter5 y Iter5 x
1 —0.9954 0.7321 —0.9993 0.7321 —0.9996 0.7311 —0.9996 0.7311
2 0.0954 0.0617 0.0993 0.0625 0.0996 0.0625 0.0996 0.0625
3 1.0000 —1.0000 1.0000 —1.0000 1.0000 —1.0000 1.0000 —1.0000
g 0.5124 0.7227 0.5086 0.7246 0.5083 0.7248 0.5083 0.7248
Step 9: Divide each element of xi, x;, x3 by the Table 1.5 Two Types of Optimal Weights
largest absolute value of the three numbers, say, N 4 N 4 Proected Projected
orme. ormed x rojecte rojected x
gx. Because —0.7010 has the largest absolute value, Y 4 Y 4
g» = 0.7010. Adjusted values are indicated again by 1 —1.2320 1.0760 —0.7478 0.6531
X1, X2, X3! 2 0.1228 0.0920 0.0745 0.0559
0.5204 3 1.2325 —1.4718 0.7481 —0.8933
X = — = 0.7424,
"7 0.7010
0.0367 The final weights are obtained by multiplying
Y2 = 07010 = 0.0524, Y1, ¥2, y3 by ¢, and xy, x2, x3 by c.. These weights
0.7010 are called normed weights. The normed weights,
X3 = W = —1.0000. (14) multiplied by the singular value—that is, py; and

Reciprocate the above averaging processes (Steps 2
through 9) until all the six values are stabilized.
Iteration 5 provides the identical set of numbers as
Iteration 4 (see Table 1.4). Therefore, the process has
converged to the optimal solution in four iterations.
Notice that the largest absolute values at each iteration,
gy and g, also converge to two constants, 0.5083 and
0.7248. Nishisato (1988) showed that the eigenvalue,
02, is equal to the product, gy8x = 0.5083 x0.7248 =
0.3648, and the singular value, p, is the geometric
mean,

p = singular value = ,/g, g«
= 4/0.5083 x 0.7248 = 0.6070.

If we start with the cross-product symmetric table,
instead of the raw data (the present example), the
process will converge to one constant of g, which is the
eigenvalue, and its positive square root is the singular
value (Nishisato, 1980). See Nishisato (1994, p. 89)
for why the final value of g is the eigenvalue.

Step 10: In the DUALS3 for windows (Nishisato &
Nishisato, 1994b), the unit of weights is chosen in such
a way that the sum of squares of weighted responses
is equal to the number of responses. In this case, the
constant multipliers for adjusting the unit of y (say, c¢,)
and x (c.) are given by

5)

29
= | 12305,
10y, + 10y; +9y3

= 14718.  (16)

29
Ce =
10)(21 + 11)622 + 8x32

pxj—are called projected weights, which reflect the
relative importance of categories. The distinction
between these two types of weights will be discussed
later. In the meantime, let us remember that normed
weights and projected weights are what Greenacre
(1984) calls standard coordinates and principal co-
ordinates, respectively, and that projected weights
are the important ones because they reflect relative
importance of the particular solution (component,
dimension). The final results are in Table 1.5. These
weights thus obtained are scaled in such a way that
(a) the sum of responses weighted by y is zero, and
the sum of responses weighted by x is zero; (b) the
sum of squares of responses weighted by y is the total
number of responses, and the same for x. Once the first
solution is obtained, calculate the residual frequencies,
and apply the MRA to the residual table to obtain
the second solution. This process will be discussed
later.

1.4. TwO TYPES OF CATEGORICAL DATA

Nishisato (1993) classified categorical data into two
distinct groups, incidence data (e.g., contingency
tables, multiple-choice data, sorting data) and domi-
nance data (e.g., rank-order, paired-comparison data).

1.4.1. Incidence Data

Elements of data are 1 (presence), 0 (absence),
or frequencies, as we see in contingency tables,
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multiple-choice data, and sorting data. DS of incidence
data is characterized by (a) the use of the ‘“chi-
square metric” (Greenacre, 1984; Lebart et al., 1984;
Nishisato & Clavel, 2003), (b) a lower rank approx-
imation to input data, (c) “a trivial solution” (Gifi,
1990; Greenacre, 1984; Guttman, 1941; Nishisato,
1980, 1994), and (d) more than one dimension needed
to describe the data (Nishisato, 2002, 2003). This
last point is true even when all variables are perfectly
correlated to one another. Correspondence analysis
and multiple correspondence analysis were originally
developed in France specifically for incidence data
for the contingency table and multiple-choice data,
respectively.

1.4.2. Dominance Data

Elements of data are greater than, equal to, or
smaller than, as we see in rank-order data and paired-
comparison data. Because the information is typically
given in the form of inequality relations, without
any specific amount of the discrepancy between the
two attributes or stimuli indicated, it is not possi-
ble to approximate the value of the data directly as
is done with the incidence data. Instead, the objec-
tive here is to derive new measurements for objects
in such a way that the ranking of the measurements
best approximates the corresponding ranking of the
original dominance data. DS of dominance data is
characterized by (a) the use of the Euclidean metric
(Nishisato, 2002), (b) a lower rank approximation
to the ranks of the data (Nishisato, 1994, 1996),
(c) no trivial solution (Greenacre & Torres-Lacomba,
1999; Guttman, 1946; Nishisato, 1978; van de Velden,
2000), and (d) one dimension to describe the data when
all variables are perfectly correlated to one another
(Nishisato, 1994, 1996).

1.4.3. Scope of Dual Scaling

DS is applicable not only to the incidence data but
also to the dominance data. The DUAL3 for Win-
dows (Nishisato & Nishisato, 1994b), a computer
program package for DS, handles both types of cate-
gorical data. Recently, Greenacre and Torres-Lacomba
(1999) and van de Velden (2000) reformulated corre-
spondence analysis for dominance data, which were
not much different from Nishisato’s (1978) earlier
study. After all, they are all based on singular-value
decomposition.

1.5. SCALING OF INCIDENCE DATA

1.5.1. Contingency Tables

Contingency tables are often used to summarize
data. For example, a small survey on the popularity of
five movies, collected from three age groups, can be
summarized into a 5 x 3 table of the number of people
in each cell. Similarly, we often see a large number of
tabulation tables on voting behavior, typically on two
categorical variables (e.g., age and education). These
are contingency tables.

1.5.1.1. Some Basics

Consider an n-by-m contingency table with typical
element fj;. DS first eliminates from this table the
frequencies expected when rows and columns are sta-
tistically independent, that is, f; f;/f;, where f; is
the total frequency in the table. This is called a trivial
solution. Then, the residual table, consisting of typical
elements for row i and column j, say,

it
fi

is decomposed into independent components, called
solutions. Let min(n, m) be the smaller value of n
and m. Then the n-by-m residual table can be exhaus-
tively explained by at most [min(n, m) — 1] solutions.
In other words, the total number of nontrivial solutions,
that is, proper solutions 7 (sol), is given by

fij = fij — hy, a7

T (sol) = min(n, m) — 1. (18)

The variance of solution k is called the eigenvalue,
p?, which is a measure of information conveyed by
solution k. The total information contained in the resid-
ual matrix, 7 (inf), is the sum of the [min(n, m) — 1]
eigenvalues, which is equal to

P XZ
T(inf) = Y p; = =, where
P Ji
e (fi = hy)?
x2=227f’h/ : (19)
i j y

and h; is the frequency expected when the ith row and
the jth column are statistically independent. The per-
centage of the total information explained by solution
k is indicated by & and is given by

~100p;
© T(inf)’

Sk (20)



1.5.1.2. Example: Biting Habits
of Laboratory Animals

The biting habits of four laboratory animals were
investigated. The following data were obtained from
Sheskin’s (1997) book.? Because this is a small exam-
ple, let us list the main output from the program
DUALS3 (Nishisato & Nishisato, 1994b) (Table 1.7).

Because this data setis a4 x 3 table, T'(sol) = 2, and
the analysis shows that §; and §, are 94.2% and 5.8%,
respectively. The order-O approximation is the trivial
solution. The trivial solution is removed from the data,
and the residual table is analyzed into components. The
order-1 approximation is what one can predict from the
trivial solution and Solution 1:

ﬁ%>='égbﬂ-%pw”xnl 2

Because the value of 8; is 94.2% (the contribution
of Solution 1), this approximation to the input data is
very good, and the residual table does not contain much
more information to be analyzed. In the current exam-
ple, the order-2 approximation perfectly reproduces
the input data:

fi.f.
i = #[1 + pryirxji + payixjal. (22)

See also the residual table (Table 1.7), which shows
no more information left to be analyzed. Notice that
it is not clear what relations between the animals and
biting habits are from the input table, but see the graph
based on DS: The two-dimensional graph (Figure 1.3)
shows, among other things, that (a) guinea pigs are
flagrant biters, (b) mice are between flagrant biters
and mild biters, (c¢) mild biters and nonbiters are rel-
atively closely located, (d) gerbils are nonbiters, and
(e) hamsters are between mild biters and nonbiters. The
graph is much easier to understand than the original
table.

1.5.2. Multiple-Choice Data

Multiple-choice data are ubiquitous in psycholog-
ical research, particularly in personality, social, and
clinical research. We should question, however, how
arbitrarily such data are typically analyzed. When
response options are ordered (e.g., never, sometimes,
often, always), researchers often use the integer scores
1, 2, 3, and 4 for these ordered categories and ana-
lyze the data. This practice of using the so-called
Likert scores is by no means effective in retrieving

3. Reprinted with permission from Sheskin (1997).
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Table 1.6 Sheskin’s Data on Biting Habits of
Laboratory Animals

Animals Not a Biter Mild Biter Flagrant Biter

Mice 20 16 24

Gerbils 30 10 10

Hamsters 50 30 10

Guinea pigs 19 11 50

information in data. We will see this problem very
shortly. In contrast, dual scaling can analyze such
multiple-choice data in a very effective way in terms
of information retrieval. We will see an example of
dual-scaling analysis shortly.

1.5.2.1. Some Basics

Consider n multiple-choice items, with item j
having m; options. Consider further that each of N
subjects is asked to choose one option per item. Let
m be the total number of options of n items. For DS,
multiple-choice data are expressed in the form of (1,0)
response patterns (see the example in 1.5.2.2) and also
have a trivial solution. The aforementioned statistics
of multiple-choice data are as follows:

T(sol) = m —n or N — 1, whichever is smaller.
(23)

L, Tam

T(inf) = Y pf = —l=m—1. (4
k=1

n

The definition of §; is the same as the contingency
table, but in practice we will modify it as we dis-
cuss later. Option weights are determined, as Lord
(1958) proved, to yield scores with a maximal value
of the generalized Kuder-Richardson internal consis-
tency reliability, or Cronbach’s « (Cronbach, 1951),
which can be inferred from the following relations
(Nishisato, 1980):

a=1-— 1_'02 =" erzt_l since
n—1Dp?2 n-1 Zrﬁ
n 2
2 2T

pr=— (25)
n

where r]% is the square of correlation between item j
and the total score. It is known (Nishisato, 1980, 1994)
that the average information in multiple-choice data,
that is—T7 (inf)/ T (sol)—is 1/n and that o« becomes
negative when p? is smaller than the average infor-
mation. Therefore, Nishisato (1980, 1994) suggests
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Table 1.7 Approximation to Input

ORDER 0 APPROXIMATION RESIDUAL MATRIX

25.5 144 20.1 —6.5 1.6 3.9

21.3 12.0 16.8 8.8 2.0 —6.8

383 21.5 30.2 11.8 8.5 —20.2

34.0 19.1 26.9 —15.0 —8.1 23.1

ORDER | APPROXIMATION RESIDUAL MATRIX SOLUTION 1

22.7 13.1 242 2.7 29 —-0.2 Eigenvalue = 0.20

26.1 14.2 9.7 3.9 —4.2 0.3 Singular value = 0.45

52.1 27.8 10.2 -2.1 2.2 —0.2 Delta = 94.2%

18.1 12.0 49.9 0.9 -1.0 0.1 CumDelta = 94.2

ORDER 2 APPROXIMATION RESIDUAL MATRIX SOLUTION 2

20.0 16.0 24.0 0.0 0.0 0.0 Eigenvalue = 0.01

30.0 10.0 10.0 0.0 0.0 0.0 Singular value = 0.11

50.0 30.0 10.0 0.0 0.0 0.0 Delta = 5.8%

19.0 11.0 50.0 0.0 0.0 0.0 CumDelta = 100.0
PROJECTED WEIGHTS PROJECTED WEIGHTS

Sol-1 Sol-2 Sol-1 Sol-2

Mice 0.14 0.12 Not a biter —0.34 —0.10

Gerbils —0.30 —0.21 Mild biter —0.27 0.19

Hamsters —0.47 0.06 Flagrant biter 0.63 —0.01

Guinea pigs 0.61 —0.03

Figure 1.3 Biting Habits of Four Animals

Mild Biter

[ Hamst/er

Nonbiter

o Gerbils

stopping the extraction of solutions as soon as p?
becomes smaller than 1/n. Accordingly, we redefine
the statistic 8 as the percentage of p? over the sum of
p]z greater than 1/n.

1.5.2.2. Example: Blood Pressure,
Migraines, and Age

As mentioned earlier, Torgerson (1958) called DS
“principal component analysis of categorical data.”
Because principal component analysis (PCA) is a
method to find a linear combination of continuous
variables (PCA) and that of categorical variables
(DS), it would be interesting to look at differences
between them. The following example is adopted from
Nishisato (2000):

1. How would you rate your blood pressure? (Low,
Medium, High): coded 1, 2, 3

2. Do you get migraines? (Rarely, Sometimes,
Often): 1, 2, 3 (as above)

3. What is your age group? (20-34, 35-49, 50-65):
1,2,3

4. How would you rate your daily level of anxiety?
(Low, Medium, High): 1, 2, 3

5. How would you rate your weight? (Light,
Medium, Heavy): 1, 2, 3

6. What about your height? (Short, Medium, Tall):
1,2,3

Suppose we use the traditional Likert scores for
PCA—that s, 1, 2, 3 as scores for the three categories
of each question. DS uses response patterns of 1s and
0s. See the two data sets from 15 subjects in Table 1.8
and the product-moment correlation matrix for PCA
in Table 1.9. Examine the correlation between blood
pressure (BP) and age (Age) (r = 0.66) and that
between BP and migraines (Mig) (r = —0.06) using
the data in the contingency table format (Table 1.10).

Notice a linear relation between BP and Age and a
nonlinear relation between BP and Mig. It seems that
the nonlinear relation between BP and Mig is much
clearer than the linear relation between BP and Age:
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Table 1.8 Likert Scores for PCA and Response Patterns for DS
PCA DS
Bpr Mig Age Anx Wgt Hgt Bpr Mig Age Anx Wgt Hgt
Subject 01 02 03 04 05 06 123 123 123 123 123 123
1 1 3 3 3 1 1 100 001 001 001 100 100
2 1 3 1 3 2 3 100 001 100 001 010 001
3 3 3 3 3 1 3 001 001 001 001 100 001
4 3 3 3 3 1 1 001 001 001 001 100 100
5 2 1 2 2 3 2 010 100 010 010 001 010
6 2 1 2 3 3 1 010 100 010 001 001 100
7 2 2 2 1 1 3 010 010 010 100 100 001
8 1 3 1 3 1 3 100 001 100 001 100 001
9 2 2 2 1 1 2 010 010 010 100 100 010
10 1 3 2 2 1 3 100 001 010 010 100 001
11 2 1 1 3 2 2 010 100 100 001 010 010
12 2 2 3 3 2 2 010 010 001 001 010 010
13 3 3 3 3 3 1 001 001 001 001 001 100
14 1 3 1 2 1 1 100 001 100 010 100 100
15 3 3 3 3 1 2 001 001 001 001 100 010
Table 1.9 Product-Moment Correlation Based on Figure 1.4 Two Solutions From Principal
Likert Scores Component Analysis
BP Mig  Age Anx  Wgt Hgt
Migraines
Blood
'preésure (BP) 1.00 Age
Migraine (Mig) —.06 1.00
Age (Age) .66 23 1.00 . Apxisty
Anxiety (Anx) .18 21 22 1.00 Height o
Weight (Wgt) 17 —-58 —-.02 26 1.00
Height (Hgt) —-21 10 —-30 -23 —31 1.00 Blood Pressure
Weight
)
Table 1.10 Relation of Blood Pressures to Age and
Migraines
Age Migraine combinations of categories of items. This means that
) DS yields an inter-item correlation matrix for each
20-34 35-49 50-65 Rarely Sometimes Often . . .
solution, rather than one for the entire data set as in
High BP 0 0 4 0 0 4 PCA.
Mid BP 1 1 3 3 0 The current data yield four solutions associated
Low BP 3 1 1 0 0 5

“If you have frequent migraines, your blood pressure is
either high or low.” The first two principal components
of Likert scores are plotted in Figure 1.4. Notice that
it captures only linear relations. The data for DS are
expressed in terms of chosen response patterns, and
the units of analysis are response options, not items
as in the case of PCA. PCA is a method to determine
the most informative weighted combinations of items,
whereas DS looks for the most informative weighted

with positive values of reliability coefficient « (see
Table 1.11).

The adjusted delta is the one redefined in
terms of solutions associated with positive values of
reliability . CumDelta and CumAdjDelta are cumu-
lative values of delta and adjusted delta, respectively.
For the limited space, we will look at only the first
two solutions and their projected option weights (see
Table 1.12). Notice that the weights for options of BP
and Mig for Solution 1 are weighted in such a way that
the nonlinear relation is captured. Study the weights
to convince yourself. Using these weights, inter-item
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Table 1.11 Four Solutions
Solution 1~ Solution 2 Solution 3 Solution 4
Eigenvalue 0.54 0.37 0.36 0.31
Singular value 0.74 0.61 0.59 0.55
Delta 27 19 17 15
CumDelta 27 46 63 79
Adjusted delta 34 24 22 20
CumAdjDelta 34 58 80 100
Table 1.12 Projected Option Weight of Two
Solutions
Solution 1 Solution 2

Blood Pressure

Low —0.71 0.82

Medium 1.17 -0.19

High —0.86 —0.74
Anxiety

Low 1.55 1.21

Medium 0.12 0.31

High —-0.35 -0.33
Migraine

Rarely 1.04 —1.08

Sometimes 1.31 0.70

Often —0.78 0.12
Weight

Light -0.27 0.46

Medium 0.32 0.01

Heavy 0.50 —1.40
Age

20-34 0.37 0.56

35-49 1.03 0.22

50-65 —0.61 —0.56
Height

Short —0.56 —0.63

Medium 0.83 —0.35

Tall —-0.27 0.98

correlation matrices are obtained for the two DS
solutions (see Table 1.13).

BP and Mig are now correlated at 0.99 in Solution 1.
This was attained by assigning similar weights to high
BP, low BP, and frequent migraines, which are very
different from the weights given to medium BP, rare
migraines, and occasional migraines. The same cor-
relation for Solution 2 is 0.06. Characteristics of the
first two DS solutions can be obtained by putting
options of similar weights together (see Table 1.14).
“Nonlinear combinations” of response categories are
involved in each solution. In DS, linear correlation is
maximized by transforming categories linearly or non-
linearly, depending on the data, whereas PCA filters
out all nonlinear relations in the process of analysis,
which is why it is called linear analysis. The first two

DS solutions are plotted in Figure 1.5. Unlike PCA
solutions, three categories of a single variable are not
forced to be on a single line but usually form a tri-
angle, the area of which is monotonically related to
the contribution of the variable to these dimensions.
PCA can never reveal a strong relation between BP
and Mig, but this relation is the most dominant one in
DS. In DS, high and low BP are associated with fre-
quent migraines, but the second dimension identifies
a different association between low and high BP—the
former with young, skinny, and tall subjects and the
latter with old, heavy, and short subjects.

1.5.3. Sorting Data

Sorting data are not as popular as contingency tables
and multiple-choice data, but in some areas, such
as cognitive psychology, we often see references to
sorting data. So, in this section, we will learn how
sorting data are collected and optimally analyzed by
dual scaling.

1.5.3.1. Some Basics

Sorting data are collected in the following way.
Consider the first object to be a member of the first pile
and assign 1 to it; go down the list, and each time you
find an object similar to the first object, assign 1 to it.
When you finish identifying all the objects with 1, go to
the next object that has not been chosen so far and give
it 2; go down the list and identify all the objects that are
similar to the object with number 2. In this way, you
classify all objects on the list into piles. Takane (1980)
demonstrated that DS can be used to analyze sorting
data by transposing the data or exchanging the roles of
subjects and item options in multiple-choice data with
objects and subject piles in sorting data, respectively.
With this understanding, 7 (sol) and 7 (inf) are the
same as those of multiple-choice data.

1.5.3.2. Example: Sorting
19 Countries Into Similar Groups

The data in Table 1.15 were collected from
Nishisato’s class in 1990. The last two columns of
the table indicate the optimal (projected) weights of
the countries on the first two solutions. Note that
prior to DS analysis, the data are first transformed to
(1, 0) response patterns, as was the case of multiple-
choice data. One of the outcomes is the inter-subject
correlation matrix, just like the inter-item correlation
matrix in multiple-choice data. Table 1.16 shows the
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Table 1.13 Correlation Matrices From Two DS Solutions

Solution 1 Solution 2

BP Mig Age Anx Wgt Hgt BP Mig Age Anx Wgt Hgt
BP 1.0 1.0
Mig .99 1.0 .06 1.0
Age .60 .58 1.0 .59 —.31 1.0
Anx A7 .52 .67 1.0 .07 .35 .35 1.0
Wgt 43 .39 .08 —-.33 1.0 28 .62 —.01 .19 1.0
Hgt .56 .57 13 .19 .20 1.0 31 .29 32 17 .38 1.0

Table 1.14 Characteristics of Two DS Solutions

Solution 1 Solution 2
One End The Other End One End The Other End
Low BP Medium BP High BP Low BP
High BP Rare migraine Rare migraine Occasional migraine
Frequent migraine Middle age Old Young
Old age group Low anxiety Heavy Tall
High anxiety Medium height Short
Short
Figure 1.5 First Two Dual-Scaling Solutions

\%
Low Anxiety

L 4

Occasional Migraines
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Table 1.15 Sorting of 19 Countries by Five Subjects
Country S1 S2 S3 S4 S5 Solution 1 Solution 2
Britain 1 1 1 1 1 —0.50 —0.69
Canada 5 2 2 2 1 1.06 —0.81
China 2 3 3 3 2 1.53 0.52
Denmark 1 1 1 1 3 —-0.73 —0.71
Ethiopia 3 5 5 4 4 —1.00 2.15
Finland 1 4 1 1 3 —0.81 —0.71
France 1 1 1 1 5 —0.73 -0.71
Germany 1 4 1 5 8 —0.50 —0.60
India 4 3 4 3 6 1.02 0.81
Italy 1 4 5 5 7 —0.93 —0.17
Japan 2 3 6 2 8 1.21 —0.01
New Zealand 4 1 6 1 1 0.24 —0.31
Nigeria 3 5 4 4 4 —0.76 2.34
Norway 1 4 1 1 3 —0.81 —0.71
Singapore 4 3 6 3 8 1.12 0.24
Spain 1 5 5 1 7 —-0.92 0.34
Switzerland 1 4 1 5 5 —0.85 —0.71
Thailand 4 3 6 3 6 1.20 0.46
United States 5 2 2 2 8 1.17 —0.73
Table 1.16 Inter-Subject Correlation for Two DS Solutions

Solution 1 Solution 2
Subject 1 1.00 1.00
Subject 1 0.90 1.00 0.63 1.00

Subject 3 0.93 0.82 1.00
Subject 4 0.88 0.99 0.81 1.00
Subject 5 0.77 0.87 0.75 0.85

0.60 0.90 1.00
0.98 0.67 0.63 1.00
1.00 0.90 0.87 0.82 0.90 1.00

inter-subject correlation matrices associated with
the two solutions. In both solutions, the correlation
between subjects is relatively high. Figure 1.6 shows
only the configuration of 18 of the 19 countries (France
is missing because it occupies the same point as
Denmark) captured by the first two solutions. The
graph clearly shows geographical similarities of the
countries.

One commonly observed characteristic of sorting
data is that there are often too many dominant solutions
to interpret. It must be a reflection of the freedom that
the subjects can enjoy in terms of the number of piles
and the sizes of piles that are completely in the hands
of the subjects. The § values of the first eight solutions
are 19%, 18%, 16%, 11%, 9%, 7%, 6%, and 5%, an
unusually gradual drop in percentage from solution to
solution. This poses in practice a problem of how many
solutions to extract and interpret.

1.6. SCALING OF DOMINANCE DATA

We will discuss only rank-order data and paired-
comparison data. As for DS of successive categories
data, see Nishisato (1980, 1986,1994), Nishisato and
Sheu (1980), and Odondi (1997).

1.6.1. Rank-Order Data

Ranking is a very popular task in psychological
research. For instance, we ask people to rank a number
of candidates for a committee and choose the winner in
terms of the average ranks of the candidates. Although
this popular method for processing ranking data looks
reasonable, it is far from even being good and is rather
misleading. Why? We will see why such averaged
ranks should not be used to evaluate candidates or
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voters, which becomes obvious once we analyze the
same ranking data with dual scaling.

1.6.1.1. Some Basics

Suppose that each of N subjects ranks all of n
objects, according to the order of preference, with 1
being the first choice and n being the last choice.
Assuming that the number of subjects is greater than
that of the objects, the total number of solutions and
the total information from the data are given by the
following:

. n+1
T(sol)=n—1and T(inf) = ——. (26)
3(n—1)

When dominance data are subjected to DS, the
original rank-order data are first converted to a dom-
inance table. Let us indicate by R;; the rank given to
object j by subject i. Then, assuming that each subject
ranks n objects, the corresponding dominance number,
ejj, is given by the formula

¢j=n +1-— ZRU‘, (27)

where e;; indicates the number of times subject i ranked
object j before other objects minus the number of times
the subject ranked it after other objects. So it indicates
relative popularity of each object within each subject.
The sum of dominance numbers for each subject is
always zero, and the dominance number is bounded
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between —(n — 1) and (n — 1). Because dominance
numbers are ipsative (i.e., each row sum is a constant),
we must modify the process of MRA by redefining
each row marginal to be n(n — 1) and that of column
N (n — 1). The total number of responses in the dom-
inance table is Nn(n — 1). These numbers are based
on the fact that each element in the dominance table is
the result of (n — 1) comparisons between each object
and the remaining (n — 1) objects (Nishisato, 1978).
Using these redefined marginals, we may use MRA for
analysis.

The ipsative property of dominance numbers has
another implication for quantification: There is no
centering constraint on weights for subjects. Thus, the
weights for subjects can be all positive or negative.
This aspect of quantification of dominance data is very
different from that of incidence data, in which both
weights for subjects and those for stimuli are centered
within each set.

1.6.1.2. Example: Ranking
of Municipal Services

Table 1.17 contains ranking of 10 municipal ser-
vices by 31 students, collected from Nishisato’s class
in 1982, together with the dominance table. If there
were no individual differences, the reasonable scale
values or satisfaction values of the 10 government
services would be given by the average dominance
numbers of the services over subjects. However, in DS,
we assume that individual differences are worthwhile
variates. The scale values of the services are calcu-
lated as averages differentially weighted by subjects’
weights. Its main task is to determine appropriate
weights for subjects, appropriate in the sense that
the variance of the weighted means be a maximum.
Individual differences are responsible for multidimen-
sional data structure. T (sol) is 9, and the § values are
in Table 1.18. Considering a relatively sharp drop from
Solution 2 to Solution 3, one may decide to look at two
solutions, as is done here.

For dominance data, there exists a strict rule for
plotting (Nishisato, 1996), namely, plot-normed
weights of subjects and projected weights of objects.
Then, in the total space, we obtain a configuration
such that each subject ranks the closest object first,
second closest second, and so on for all subjects and
objects—that is, a solution to the Coombs problem of
multidimensional unfolding (Coombs, 1964).

Figure 1.7 (p. 18) shows a plot of the first two solu-
tions. A large number of subjects are furthest from
postal service, which indicates that postal service is
the least satisfactory. This is partly due to the fact that
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Table 1.17

Ranking of 10 Government Services in Toronto and Dominance Table

A B cC D E F G H I J

A B C D E F

Q
X
~
~

1 1 7 9 10 2 6 3 8 5 4 9 -3 -7 -9 7 -1 5 =5 1 3
2 6 10 9 5 3 1 7 2 4 8 -1 -9 -7 1 5 9 =3 7 3 -5
3 9 8 4 3 5 6 10 2 1 7 =7 =5 3 5 1 -1 -9 7 9 =3
4 2 10 5 6 3 1 4 8 7 9 7 -9 1 -1 5 9 3 -5 -3 -7
5 2 10 6 7 4 1 5 3 9 8 7 -9 -1 -3 3 9 1 5 -7 -5
6 1 3 5 6 7 8 2 4 10 9 9 5 1 -1 -3 =5 7 3 -9 -7
7 7 10 1 6 5 3 8 4 29 -3 -9 9 -1 1 5 =5 3 7 =1
8 2 10 6 7 4 1 5 3 9 8 7 -9 -1 -3 3 9 1 5 -7 =5
9 2 10 5 8 4 1 6 3 7 9 7 -9 1 -5 3 9 -1 5 =3 -7
10 2 10 5 9 8 7 4 1 3 6 7 -9 1 -7 =5 =3 3 9 5 -1
11 9 10 7 6 5 1 4 2 38 -7 -9 -3 -1 1 9 3 7 5 =5
12 6 10 7 4 2 1 3 9 8§ 5 -1 -9 -3 3 7 9 5 -7 =5 1
13 1 10 3 9 6 4 5 2 7 8 9 -9 5 =7 -1 3 1 7 -3 =5
14 8 6 5 3 10 7 9 2 1 4 -5 -1 1 5 -9 -3 -7 7 9 3
15 8 10 9 6 4 1 3 2 5 7 -5 -9 -7 -1 3 9 5 7 1 -3
16 3 5 10 4 6 9 8 2 1 7 5 1 -9 3 -1 -7 =5 7 9 =3
17 1 10 8 9 3 5 2 6 7 4 9 -9 -5 -7 5 1 7 -1 -3 3
18 5 4 9 3 10 8 7 2 1 6 1 3 -7 5 -9 -5 -3 7 9 -1
19 2 10 6 7 8 1 5 4 3 9 7 -9 -1 -3 =5 9 1 3 5 -7
20 1 4 2 10 9 7 6 3 5 8 9 3 7 -9 -7 -3 -1 5 1 -5
21 2 10 5 7 3 1 4 6 8§ 9 7 -9 1 -3 5 9 3 -1 -5 -7
22 6 3 9 4 10 8 7 2 1 5 -1 5 -7 3 -9 -5 -3 7 9 1
23 6 9 10 4 8 7 5 2 1 3 -1 -7 -9 3 =5 =3 1 7 9 5
24 5 2 1 9 10 4 8 6 3 7 1 7 9 -7 =9 3 =5 -1 5 =3
25 2 10 6 7 9 1 3 4 5 8 7 -9 -1 -3 -7 9 5 3 1 -5
26 17 10 9 5 2 6 3 1 4 8 -3 -9 -7 1 7 -1 5 9 3 =5
27 8 7 10 3 5 9 4 2 1 6 -5 -3 -9 5 1 -7 3 7 9 -1
28 3 8 6 7 5 10 9 2 4 1 5 =5 -1 -3 1 -9 -7 7 3 9
29 2 10 7 9 4 1 5 3 6 8 7 -9 =3 -7 3 9 1 5 -1 -5
30 2 10 9 1 4 7 5 3 6 8 7 -9 -7 9 3 =3 1 5 -1 -5
31 4 10 9 7 5 1 3 2 6 8 3 -9 -7 =3 1 9 5 7 -1 -5
Table 1.18 Nine Solutions and Their Contributions
Solution
1 2 3 4 5 6 7 8 9
Delta 37.9 224 134 10.6 49 4.2 2.7 2.2 1.9
CumDelta 37.9 60.2 73.6 84.2 89.0 93.2 95.9 98.1 100.0

the data were collected shortly after a major postal
strike. There are groups who prefer theaters first and
restaurants second, or vice versa, suggesting that those
who go to theaters must go to good restaurants near the
theaters. The most dominant group considers public
libraries most satisfactory. One important message of
this graphical analysis is that it is very difficult, if
not impossible, to interpret the configuration of only
services. When we plot subjects and see they are all
scattered in the space, the configuration of the services
suddenly becomes meaningful because they provide
us with how they view those services in terms of
satisfaction.

One can calculate the distance from each subject
(normed) to each service (projected) in the two-
dimensional graph and see if indeed the ranking of
distances between each subject and each of the 10
services is close to the ranking in the input data.
The ranking thus derived from the first two solutions
is called rank-2 approximation to the input ranking.
The DUAL3 (Nishisato & Nishisato, 1994b) pro-
vides these distances and approximated ranks. The
distances between each of the first five subjects and
the 10 services and the rank-2 and rank-8 approxi-
mations to input ranks are in Tables 1.19 and 1.20.
The rank-9 approximation perfectly reproduces the
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Table 1.19 Rank 2: Distances and Ranks of Distances

Service
1 2 3 4 5 6 7 8 9 10

Distances

Subject 1 0.20 2.05 0.66 1.32 0.26 0.13 0.29 1.29 1.81 1.29

Subject 2 2.05 5.42 3.65 2.79 243 1.81 2.33 1.14 2.09 3.64

Subject 3 3.03 3.48 3.40 1.76 3.08 3.35 2.94 1.08 0.94 2.49

Subject 4 1.33 4.82 2.48 3.56 1.57 0.95 1.63 2.97 4.10 3.60

Subject 5 1.31 5.26 2.81 3.40 1.65 0.87 1.66 2.29 3.55 3.72
Ranks of distances

Subject 1 2 10 5 8 3 1 4 7 9 6

Subject 2 3 10 9 7 6 2 5 1 4 8

Subject 3 6 10 9 3 7 8 5 2 1 4

Subject 4 2 10 5 7 3 1 4 6 9 8

Subject 5 2 10 6 7 3 1 4 5 8 9
Table 1.20 Rank 8: Distances and Ranks of Distances

Service
1 2 3 4 5 6 7 8 9 10

Distances

Subject 1 13.90 16.75 17.42 17.76 14.20 16.15 14.63 16.91 15.67 15.02

Subject 2 5.79 8.16 6.69 4.99 4.40 4.03 5.49 4.36 4.49 6.78

Subject 3 11.29 11.02 9.04 8.48 9.36 9.98 11.58 8.07 7.73 10.18

Subject 4 4.99 8.49 6.52 6.75 5.24 4.32 6.05 7.30 7.44 7.71

Subject 5 2.70 6.79 4.09 4.59 3.52 2.66 3.36 343 5.45 5.42
Ranks of distances

Subject 1 1 7 9 10 2 6 3 8 5 4

Subject 2 7 10 8 5 3 1 6 2 4 9

Subject 3 9 8 4 3 5 6 10 2 1 7

Subject 4 2 10 5 6 3 1 4 7 8 9

Subject 5 2 10 6 7 5 1 3 4 9 8
Table 1.21 Average Squared Rank Discrepancies

Rank k
1 2 3 4 5 6 7 8 9 Solution 1 Solution 2

Subject 1 8.8 7.8 9.0 4.6 4.2 14 1.6 0.0 0.0 0.65 —0.51
Subject 2 6.2 2.8 14 0.2 0.4 0.4 0.2 0.4 0.0 1.15 1.08
Subject 3 19.6 8.0 8.0 1.2 1.2 0.0 0.0 0.0 0.0 —-0.16 1.51
Subject 4 1.4 1.0 1.2 1.6 1.6 1.6 0.6 0.2 0.0 1.39 —-0.73
Subject 5 1.2 0.8 1.4 1.4 1.4 1.0 0.8 0.6 0.0 1.54 —0.21

input ranks. It is useful to look at average squared thus showing no discrepancies. Table 1.21 also lists
rank discrepancies between these approximated ranks normed weights for those five subjects, which should
and the original ranks (see Table 1.21). Notice that be all equal to 1.00 if no individual differences were
the rank-9 approximation reproduced the input ranks,  involved.
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Figure 1.7 Ten Government Services

Transit sys ~—

Police
protection

@

Restay

Street

Libraries cleaning

1.6.2. Paired-Comparison Data

The method of paired comparison (see Bock &
Jones, 1968) has been one of the pillars in the history
of psychological scaling. For a unidimensional prefer-
ence scale to be constructed from paired-comparison
data, we must avoid intransitive judgments (e.g., A
is preferred to B, B to C, and C to A), and we must
consider individual differences as random fluctuations
of judgments. But in real data, we see many intransi-
tive judgments and substantial individual differences.
For us to analyze such paired-comparison data, there-
fore, we must consider a multidimensional scale and
treat individual differences as legitimate variates for
analysis. This mode of more realistic analysis than
the traditional method of paired comparisons is what
dual scaling offers. There is no need to worry about
unidimensionality, for dual scaling yields as many
dimensions as data dictate. We will see how paired-
comparison data can be effectively analyzed by dual
scaling.

1.6.2.1. Some Basics

For n objects, create all n(n — 1)/2 possible pairs,
present each pair to N subjects, and ask which object
in the pair they like better. Collected in this way,
such paired-comparison data have mathematically the
same structure as the N-by-n rank-order data: 7T (sol)
and T (inf) are identical to those of rank-order data.
The only difference is that in rank order, one must
arrange all objects in a single order, whereas in paired

comparisons, one can anticipate so-called intransitive
choices (e.g., A is preferred to B, B is preferred to
C, and C is preferred to A). For subject i and pair
(X, X&), Nishisato (1978) defined a response variable
as follows:

1 ifX; > X,
ifi=1 0 ifX;=X.. (28)
-1 ifX; < Xy

The subjects-by-objects dominance table can be
obtained by transforming ; fjx to e; by the following
formula:

ei= Y ifw (29)
k=1

k)

Recall that the dominance numbers were easily
obtained for rank-order data by a simpler formula than
this. The meaning is the same; that is, e;; is the number
of times subject i preferred X ; to X minus the number
of times subject i preferred other objects to X ;.

1.6.2.2. Wiggins’s Christmas Party Plans

Asacourse assignment, [an Wiggins, now a success-
ful consultant in Toronto, collected paired-comparison
data* from 14 researchers at a research institute on his
eight Christmas party plans:

A potluck at someone’s home in the evening

A potluck in the group room

A pub/restaurant crawl after work

A reasonably priced lunch in an area restaurant
Keep to one’s self

An evening banquet at a restaurant

A potluck at someone’s home after work

A ritzy lunch at a good restaurant (tablecloths)

P NN R LD

Table 1.22 contains data in the form of subjects (14)
by pairs (28 pairs), with elements being 1 if the subject
prefers the first plan to the second one and 2 if the
second plan is preferred to the first (“2” will be later
changed to “—1” for analysis). Dominance numbers
are in Table 1.23. As is the case with rank-order data,
each element of the 14 x 8 dominance table is based on
seven comparisons. Or, more generally, for the N x n
dominance table, each element is based on (n — 1)
comparisons. Therefore, the marginal frequency of
responses for each row is n(n — 1) and that of each
columnis N(n — 1).

4. Data used with permission from Ian Wiggins.



Table 1.22 Wiggins’s Christmas Party Plans Data
j 1111111 222222 33333 4444 555 66 7
k 2345678 345678 45678 5678 678 78 8
1 1121121 222222 21121 1121 121 21 2
22221212 121212 21112 1112 222 12 2
3 1111121 111121 11121 1121 222 21 1
4 2121112 111112 21222 1112 222 22 2
5 2221212 221222 21212 1111 222 12 2
6 1111111 221222 21222 1111 222 22 1
7 1111121 121121 21121 1121 222 22 1
8 1111121 121221 21221 1221 221 21 1
9 1221121 221122 11121 1121 222 22 1
10 1211222 221222 11111 1222 222 11 2
11 1211111 222222 11111 11 222 22 2
122222122 121111 21111 1111 11 22 1
13 1211212 222222 11111 1212 222 11 2
14 2222121 211111 11111 2121 121 21 1
Table 1.23 Dominance Table
j 1 2 3 4 5 6 7 8
1 3 -7 1 5 —1 -3 5 -3
2 -3 1 -1 5 —7 1 =5 7
3 5 3 1 —1 —7 -3 7 =5
4 1 5 -5 3 -7 -3 —1 7
5 -3 -3 1 7 -7 3 -3 5
6 7 -5 -3 5 -7 —1 3 1
7 5 1 —1 3 -7 =5 7 -3
8 5 —1 -3 1 =5 3 7 -7
9 1 -3 5 3 —7 =5 7 —1
10 -1 =5 7 -3 —7 5 1 3
11 5 -7 7 3 -5 -3 —1 1
12 -5 5 3 7 1 -7 —1 -3
13 1 -7 7 —1 -5 5 -3 3
14 -3 5 7 -1 1 =5 3 -7

From the dominance table, it is clear that Plan 5 is
not very popular because the corresponding elements
from 14 subjects are mostly negative. If we calculate
the mean dominance numbers of the eight columns,
they may provide good unidimensional estimates of
preference values of the party plans, provided that
individual differences are negligible. In DS, we weight
subjects differentially in such a way that the variance
of the eight weighted averages be a maximum. For
the present data set, 7 (sol) is 7, and the correspond-
ing 6 values are in Table 1.24. Although weights are
not listed here, Solution 4 is dominated only by one
variable, that is, “pub/restaurant crawl.” In contrast,
the first three solutions present a variety of prefer-
ence patterns. Therefore, let us look at the first three
solutions. Figures 1.8 and 1.9 show the following:
Dimension 1 divides party plans into the convivial
side and the “Keep to one’s self” side, Dimension 2
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Table 1.24 Contributions of Seven Solutions to
Total Information
Solution
1 2 3 4 5 6 7
Delta 34 26 16 13 7 3 1
CumDelta 34 60 76 89 96 99 100
Figure 1.8 Solutions 1 and 2
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Sol.1 (34%) Sol.2 (26%)

separates plans into expensive and nonexpensive, and
Dimension 3 divides party plans into daytime parties
and evening parties. Note that the weights of subjects
on Solution 1 are mostly positive, but that those on
Solutions 2 and 3 are much more evenly distributed
than those on Solution 1. This is a reflection of the
property of dominance data that the weights for sub-
jects are not centered, due to the row-ipsative nature
of dominance data, and are free to vary.

That subjects are scattered in the three-dimensional
space means that different subjects prefer different
party plans. As noted earlier, each subject in total
space ranks the closest plan first. The graphs offer
an interesting way to look at individual differences
in judgment: DS can accommodate any patterns or
combinations of different aspects of the party, such
as daytime-inexpensive, daytime-expensive, evening-
inexpensive, and evening-expensive.
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Figure 1.9 Solutions 1 and 3
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1.7. FORCED CLASSIFICATION
FOR MULTIPLE-CHOICE DATA

We have seen dual scaling of multiple-choice data, and
it was noted that dual scaling maximizes the average
of all possible inter-item correlation coefficients. There
are occasions, however, when we are not interested in
all the items but only one item. For instance, if we col-
lect children’s background medical and psychological
information in addition to whether or not they have
allergy problems, we would be interested in finding
which of the medical and psychological variables may
be related to the allergy problems. In this case, we
are no longer interested in scaling data to maximize
the average inter-variable correlation, but our interest
now lies in the scaling method that maximizes the
correlation between the allergy variable and the other
variables. This task is carried out by the procedure
called forced classification.

Nishisato (1984) proposed a simple procedure to
carry out the above task, which is nothing but dis-
criminant analysis with categorical data. It is based on
two principles: principle of internal consistency (PIC)
and principle of equivalent partitioning (PEP). Let us
denote the data of n multiple-choice questions from N
subjects as

F=[Fl,Fz,...,F_i,...,Fn], (30)

where F; is an N-by-m; matrix, in which the row i
consists of subject i’s response to item j, with 1 being
the choice and Os the nonchoices out of m; options.
Each subject chooses only one option per item. Sup-
pose that we repeat F; k times in the data matrix. As
k increases, the response patterns in F; become more
dominant in the data set, and eventually we will see
that the response patterns in the repeated F; determine
the first solution (PIC). Instead of repeating F; k times,
it is known that the same dual-scaling results can be
obtained from analysis of the following matrix (PEP):
[Fi,Fo, ... kF;, ..., F,]. 31)
This matrix is obtained from the original matrix by
replacing each 1 in F; with a k. Thus, the computation
involved here is ordinary DS with an altered data matrix
by multiplying the chosen submatrix by a large enough
scalar k. Possible applications of this procedure are, for
instance, the following:

1. to identify personality traits that are closely
related to the school dropout,

2. to find out if academic performance is influenced
by some environmental factors (school buildings,
computers, etc.),

3. to see if the high blood pressure is related to the
regions where people live,

4. to collect questions related to anxiety for the
construction of an anxiety scale

5. to eliminate age effects, if any, from consumer
data on purchase patterns of cosmetics after
finding significant age effects.

Due to the limited space for this chapter, a numeri-
cal example of forced classification is not given here.
Please refer to Nishisato and Gaul (1990) for its appli-
cations to marketing research and to Nishisato and
Baba (1999) for the latest development.

1.8. MATHEMATICS OF DUAL SCALING

1.8.1. Structure of Data

Given a two-way table of data with typical element
fij» singular-value decomposition can be described as
bilinear decomposition:
fi.f.

7 L1+ pryixji + payinxj

+ -+ ok YiXied, (32)

fi=



where py is the kth largest singular value, yj is the
ith element of singular vector y; for the rows, and
Xjx is the jth element of singular vector x; for the
columns of the table. These singular vectors can be
viewed as weight vectors for the rows and the columns.
The first term inside the bracket—that is, the element
1—is called a trivial solution associated with the case
in which the rows and the columns are statistically
independent. Another well-known expression of the
singular-value decomposition is what Benzécri et al.
(1973) call transition formulas and Nishisato (1980)
refers to as dual relations:

1 Ef;jxjk 1 Ef,‘jy,‘k
—_—— X = — . (33)
ok fi ok fj

Yik =

These weights, yi, xj, are called normed weights
(Nishisato, 1980) or standard coordinates (Greenacre,
1984). If we multiply the formulas by pi, the resul-
tant weights are called projected weights (Nishisato,
1980) or principal coordinates (Greenacre, 1984). The
projected weights are

n m

Sixin JiiYic
PrYik = Z L prxp = Z T (34)
j=1 fi i=1 fj

The above sets of formulas hold for any data
matrix (f;).

To arrive at these formulas, one can define the task
in many ways, which is probably one of the reasons
why so many researchers have discovered the method
independently and coined their own names. For exam-
ple, one may state the problem in any of the following
ways:

o Determine xj; and y; in such a way that the data
weighted by xj, and the data weighted by yj; attain
the maximal product-moment correlation.

e Determine xj to make the between-row sum of
squares, relative to the total sum of squares, be
a maximum; determine y; so as to make the
between-column sum of squares to the total sum
of squares be a maximum.

e Determine those two sets of weights to make
the regression of the rows on the columns and
the regression of the columns on the rows be
simultaneously linear.

e Determine those two sets of weights in such a
way to make the sum of the squared differences

between fj; and I sz i XPYirXjc be a minimum.

All of these lead to the identical solution
set (o, Yit, Xjx). For detailed mathematical deriva-
tions, see Benzécri (1973), Nishisato (1980, 1994),
Greenacre (1984), and Gifi (1990).
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1.8.2. Row Space and
Column Space Are Different

We are interested in the relations between rows and
columns of a two-way table, for example, relations
between subjects and chosen objects. Unfortunately,
the space for row variables and the space for column
variables are different, the discrepancy of which is
related to the cosine of the singular values. In other
words, when singular values are relatively large, the
discrepancy between the row space and the column
space is comparatively small. When we want to put
both row and column variables in the same space,
we must plot normed weights of rows (or columns)
and projected weights of columns (or rows). Then,
both sets of weights span the same space. We often
talk about symmetric scaling to indicate that both pro-
jected row and projected column weights are plotted,
in which case care must be exercised in judging their
distances because of the discrepancy of the two spaces.
Or, rather, symmetric scaling may be justified only
when singular values are close to 1. Nonsymmetric
scaling of one set of weights to be projected to the
other setis the mathematically correct one, but we must
often deal with a rather nasty problem of a large differ-
ence between the spread of normed weights and that
of projected weights, the latter being often too much
smaller than the former, making comparisons between
them difficult. See Nishisato and Clavel (2003) for a
discussion on the discrepant spaces and the calculation
of distances between points in two different spaces.

1.8.3. Chi-Square Metric and Data Types

One of the difficult problems in quantifying inci-
dence data lies in its use of the chi-square metric, which
is necessitated by the sheer characteristics of the data.
When Point A has one observation and Point B nine
observations, the midpoint between them is 9 units
away from A and one unit away from B. This is an
example of a chi-square metric, which is a reciprocal
function of the number of observations. In the above
example, the distance between A and the midpoint
times 1 (observation) is equal to the distance between
the midpoint and B times 9. Thus, the point with more
observations has a stronger pull than the point with
fewer observations.

In contrast, each cell in the dominance table is rep-
resented by a constant number of observations (i.e.,
n — 1). Therefore, the chi-square metric is reduced to
the Euclidean metric, where the midpoint between A
and B is located halfway between A and B. It should
be remembered, however, that the way in which DS
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handles dominance data is to treat dominance numbers
as cardinal numbers, rather than ordinal. At the present
moment, we have not developed an ordinal way of
handling dominance numbers. This is one problem for
future research. Another point of caution is that both
chi-square metric and Euclidean metric are defined for
the Euclidean space.

1.9. LINEAR ANALYSIS
AND DUAL SCALING

In the principal coordinate system, each continuous
variable is expressed as a straight line (axis), whereas
categories of each variable in DS no longer lie on a
straight line. In consequence, when data are in mul-
tidimensional space, the contribution or information
of each variable in PCA is expressed by the length
of its vector, which increases as the dimensionality
increases, whereas the contribution of each variable
in DS increases as the dimensionality increases in a
distinctively different way from PCA. The DS con-
tribution of each variable to the given space is not
expressed by the length of any vector but by the area
or volume formed by connecting the points of those
categories of the variable.

If an item has three categories, the information of
the variable in the given dimension is the area of a tri-
angle obtained by connecting the three category points
in the space. The area of the triangle monotonically
increases as the dimensionality of the space for the
data increases. If a variable has four categories, the
information of the variable in three-dimensional or
higher dimensional space is given by the volume of
the form created by connecting four-category points.
If the variable has n categories, the information of the
variable in n—1 or higher dimensional space is given by
the volume of the form created by connecting n points.

Thus, by stretching our imagination to the con-
tinuous variable, where the number of categories is
considered very large but finite, we can conclude that
the information of the variable in the given space must
be expressed by the volume of a shape and not by the
length of a vector. This conjecture can be reinforced
by the fact that many key statistics associated with
dual scaling are related to the number of categories
of variables. Some of the examples are given below.

The total number of dimensions required to accom-
modate a variable with m ; categories is

The total number of dimensions needed for n
variables is

Nr=3 =D =2 m - =m = GO
j= J=

The total amount of information in the data—that
is, the sum of the squared singular values, excluding
1—is given by

K n
k=

. M
pr:L—l=m—l. (37)
1 n

Therefore, as the number of categories of each
variable increases, so does the total information in
the data set. The information of variable j with m;
categories is given by

m-—n

> o =mi—1. (38)
k=1

These are all related to the number of categories of
each variable. Thus, we can imagine what will happen
as m j increases to infinity or, in practice, to the number
of observations (subjects) N. Aninevitable conclusion,
then, seems to be that the total information in the data
set is much more than the sum of the lengths of vectors
of the variables in multidimensional space: It is the
sum of the volumes of hyperspheres associated with
categories of individual variables.

The above conclusion (Nishisato, 2002) suggests
how little information popular linear analyses such
as PCA and factor analysis capture. Traditionally, the
total information is defined by the sum of the eigen-
values associated with a linear model. But we have
just observed that it seems inappropriate unless we are
totally confined within the context of a linear model.
In a more general context, in which we consider both
linear and nonlinear relations among variables, DS
offers the sum of the eigenvalues as a reasonable statis-
tic of the total information in the data. As the brain
wave analyzer filters a particular wave such as alpha,
most statistical procedures—particularly PCA, factor
analysis, other correlational methods, and multidimen-
sional scaling—play the role of a linear filter and filter
out most of the information from the data, that is, anon-
linear portion of the data. In this context, dual scaling
should be reevaluated and highlighted as a means for
analyzing both linear and nonlinear information in the
data, particularly in the behavioral sciences, where it
seems that nonlinear relations are more abundant than
linear relations.
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