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3.1. INTRODUCTION

This chapter focuses on the analysis of ordinal and
nominal multivariate data, using a special variety of
principal components analysis that includes nonlinear
optimal scaling transformation of the variables. Since
the early 1930s, classical statistical methods have been
adapted in various ways to suit the particular char-
acteristics of social and behavioral science research.
Research in these areas often results in data that are
nonnumerical, with measurements recorded on scales
having an uncertain unit of measurement. Data would
typically consist of qualitative or categorical variables
that describe the persons in a limited number of cate-
gories. The zero point of these scales is uncertain, the
relationships among the different categories is often
unknown, and although frequently it can be assumed
that the categories are ordered, their mutual distances
might still be unknown. The uncertainty in the unit
of measurement is not just a matter of measurement

error because its variability may have a systematic
component.

For example, in the data set that will be used through-
out this chapter as an illustration, concerning feelings
of national identity and involving 25,000 respondents
in 23 different countries all over the world (Inter-
national Social Survey Programme [ISSP], 1995),
there are variables indicating how close the respon-
dents feel toward their neighborhood, town, and
country, measured on a 5-point scale with labels rang-
ing from not close at all to very close. This response
format is typical for a lot of behavioral research and
definitely is not numerical (even though the categories
are ordered and can be coded numerically).

3.1.1. Optimal Scaling Transformations

An important development in multidimensional data
analysis has been the optimal assignment of quantita-
tive values to qualitative scales. This form of optimal
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quantification (optimal scaling, optimal scoring) is
a very general approach to treat multivariate (cate-
gorical) data. Taking the linear regression model as
a leading case, we may wish to predict a response
variable from a number of predictor variables. This
objective is achieved by finding a particular linear
combination of the predictor variables that correlates
maximally with the response variable. Incorporating
optimal scaling amounts to further maximization of
this correlation, not only over the regression weights
but also over admissible nonlinear functions of the
predictor variables. For instance, in the National Iden-
tity Study data, we may try to find nonlinear scale
values of the response categories of the closeness
variables that improve the multiple-correlation co-
efficient for predicting willingness to move because it
may be that some response categories equally predict
high willingness, whereas other categories strongly
differentiate between small steps in low willingness.
These nonlinear functions are called transformations,
optimal scalings, scorings, or quantifications. In this
chapter, we will use both the terms nonlinear optimal
scaling transformations and optimal quantifications.
The optimal scaling process turns qualitative variables
into quantitative ones. Optimality is a relative notion,
however, because it is always obtained with respect to
the particular data set that is analyzed.

The nonlinear optimal scaling transformations of
ordered categorical or continuous (ordinal) data can
be handled by means of monotonic transformations,
which maintain the order in the original data. Cate-
gorical (nominal) data in which the categories are not
ordered will be given an optimal quantification (scor-
ing). Nonmonotonic functions can also be used for
continuous (numeric) and ordinal variables when non-
linear relationships among the variables are assumed.
In these cases, it is often useful to collapse the data
in a limited number of categories (sometimes called
binning) and find an optimal quantification for the cat-
egories (see Section 3.6.2). However, if we do not want
to lose the fine gradings, we can also fit a monotonic
or nonmonotonic spline. A spline is a function that
consists of piecewise polynomials of a low degree
that are joined at particular points, called knots. Of
course, special software is required to simultaneously
transform and analyze the data.

3.1.2. Software for Nonlinear
Principal Components: CATPCA

A state-of-the-art computer program, called
CATPCA, that incorporates all the features that will

be described in this chapter is available from SPSS
Categories 10.0 onwards (Meulman, Heiser, & SPSS,
1999). In CATPCA, there is a large emphasis on graph-
ical display of the results, and this is done in joint plots
of objects' and variables, also called biplots (Gower &
Hand, 1996). In addition to fitting points for individ-
ual objects, additional points may be fitted to identify
groups among them, and graphical display can be in a
triplot, with variables, objects, and groups of objects.
Special attention will be given to particular properties
that make the technique suited for data mining. Very
large data sets can be analyzed when the variables are
categorical at the outset or by binning.

Because CATPCA incorporates differential weight-
ing of variables, it can be used as a “forced clas-
sification” method (Nishisato, 1984), comparable to
“supervised learning” in machine learning terminol-
ogy. Objects and/or variables can be designated to be
supplementary; that is, they can be omitted from the
actual analysis but fitted into the solution afterwards.
When a prespecified configuration of points is given,
the technique may be used for property fitting (exter-
nal unfolding), that is, fitting external information
on objects, groups, and/or variables into the solution
(see Section 3.6.1). The information contained in the
biplots and triplots can be used to draw special graphs
that identify particular groups in the data that stand out
on selected variables.

Summarizing, CATPCA can be used to analyze
complicated multivariate data, consisting of nominal,
ordinal, and numerical variables. A straightforward
spatial representation is fitted to the data, and dif-
ferent groups of objects can be distinguished in the
solution without having to aggregate the categori-
cal data beforehand. We will discuss the various
aspects of the analysis approach, giving attention to its
data-analytical, graphical, and computational aspects.

3.1.3. Some Historic Remarks
on Related Techniques

Historically, the idea of optimal scaling originated
from different sources. On one hand, we find the
history of the class of techniques that is nowadays
usually called (multiple) correspondence analysis, a
literal translation of Benzécri’s L’analyse des corre-
spondances (multiples) (Benzécri, 1973, 1992). This
history can be traced in the work of Fisher (1948),

1. In the CATPCA terminology, the units of analysis are called objects;
depending on the application, these can be persons, groups, countries, or
other entities on which the variables are defined.



Guttman (1941), Burt (1950), and Hayashi (1952),
among others, and in the rediscoveries since the 1970s
(among others, see Benzécri, 1992; de Leeuw, 1973;
Greenacre, 1984; Lebart, Morineau, & Warwick,
1984; Saporta, 1975; Tenenhaus & Young, 1985). The
class of techniques is also known under the names
dual scaling (Nishisato, 1980, 1994) and homogene-
ity analysis (Gifi, 1981/1990). In the course of its
development, the technique has been given many
different interpretations. In the original formulation
of Guttman (1941), the technique was described as a
principal components analysis of qualitative (nominal)
variables. There is also an interpretation as a form of
generalized canonical correlation analysis (Lebart &
Tabard, 1973; Masson, 1974; Saporta, 1975), based on
earlier work by Horst (1961a, 1961b), Carroll (1968),
and Kettenring (1971).

Another major impetus to optimal scaling was given
by work in the area of nonmetric multidimensional
scaling (MDS), pioneered by Shepard (1962a, 1962b),
Kruskal (1964), and Guttman (1968). In MDS, a set
of proximities between objects is approximated by a
set of distances in a low-dimensional space, usually
Euclidean. Optimal scaling of the proximities was
originally performed by monotonic regression; later
on, spline transformations were incorporated (Ramsay,
1982). Since the so-called nonmetric breakthrough in
MBDS in the early 1960s, optimal scaling has subse-
quently been integrated in multivariate analysis tech-
niques that hitherto were only suited for the analysis
of numerical data. Some early contributions include
Kruskal (1965), Shepard (1966), and Roskam (1968).
In the 1970s and 1980s, psychometric contributions
to the area became numerous. Selected highlights
from the extensive psychometric literature on the sub-
ject include de Leeuw (1973); Kruskal and Shepard
(1974); Young, de Leeuw, and Takane (1976); Young,
Takane, and de Leeuw (1978); Nishisato (1980);
Heiser (1981); Young (1981); Winsberg and Ramsay
(1983); Van der Burg and de Leeuw (1983); Van der
Burg, de Leeuw, and Verdegaal (1988); and Ramsay
(1988). Attempts at systematization resulted in the
ALSOS system by Young et al. (1976), Young et
al. (1978), and Young (1981) and the system devel-
oped by the Leiden “Albert Gifi” group. Albert Gifi’s
(1990) book, Nonlinear Multivariate Analysis, pro-
vides a comprehensive system, combining optimal
scaling with multivariate analysis, including statis-
tical developments such as the bootstrap. Since the
mid-1980s, the principles of optimal scaling have
gradually appeared in the mainstream statistical lit-
erature (Breiman & Friedman, 1985; Buja, 1990;
Gilula & Haberman, 1988; Hastie et al., 1994,
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Ramsay, 1988). The Gifi system is discussed among

traditional statistical techniques in Krzanowski and
Marriott (1994).

3.2. GRAPHICAL REPRESENTATION

The way we will treat principal components analysis
(PCA) is more like a multidimensional scaling (MDS)
technique than a technique from the classic multivari-
ate analysis (MVA) domain. The central concept in
classical multivariate analysis is the covariance or cor-
relation among variables. Consequently, the modeling
of the covariance or correlation matrix is the main
objective of the analysis; therefore, the persons on
which the variables are defined are usually regarded
merely as a replication factor. Thus, the role of the
persons is confined to acting as intermediaries in
obtaining covariance or correlation measures that
describe the relationships among the variables. In
the multidimensional scaling domain, techniques have
been developed for the analysis of a (not necessarily)
symmetric square table, with entries representing the
degree of dissimilarity among any kind of objects,
which may be persons. The objective, then, is to
map the objects in some low-dimensional space, in
which the distances resemble the initial dissimilarities
as closely as possible. To make distinctions between
MDS and classical MVA more explicit than they
would be from a unifying point of view, consider
factor analysis, one of the major data-analytic con-
tributions to statistics originating from the behavioral
sciences. Unfortunately, from a visualization point
of view, the representation of persons became very
complicated in the process. The factor-analytic model
aggregates observations on persons into an observed
covariance matrix for the variables, and the model
involved for representing this covariance matrix is
focused on the fitting of a matrix incorporating the
common covariances among the variables and another
(diagonal) matrix that displays the unique variance of
each variable. By formulating the data-analytic task
through this particular decomposition, the factor scores
that would order the persons with respect to the under-
lying latent variables are undetermined: Although
various approaches exist to have the persons reap-
pear, their scores cannot be determined in a unique
manner.

In contrast, principal components analysis can be
discussed by focusing on the joint representation of
persons and variables in a joint low-dimensional space.
The variables in the analysis are usually represented as
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vectors (arrows) in this low-dimensional space. Each
variable is associated with a set of component loadings,
one for each dimension, and these loadings, which
are correlations between the variables and the prin-
cipal components, give coordinates for the variables
to represent them as vectors in the principal com-
ponent space. The squared length of such a vector
corresponds to the percentage of variance accounted
for and thus equals the sum of squares of the com-
ponent loadings across the dimensions. If we sum the
squared component loadings in each dimension over
the variables, we obtain the eigenvalues. In the CAT-
PCA approach discussed in the sequel of this chapter,
a variable can also be viewed as a set of category
points. When a variable is visualized as a vector, these
category points are located on a line, where the direc-
tion is given by the component loadings. There is,
however, an alternative to representing the category
points on a straight line, which is by displaying them
as points in the middle, the centroid, of the cloud of
associated object points in the low-dimensional rep-
resentation space. These two ways of representing a
variable will be called the vector and the centroid
model, respectively.

3.2.1. The Vector Model

A very first description of the vector model can
be found in Tucker (1960); Kruskal (1978) used the
term bilinear model, and Gabriel (1971) invented the
name biplot. A comprehensive book on biplots is by
Gower and Hand (1996). The prefix bi- in bilinear and
biplot refers to two sets of entities, the objects and the
variables (and not to two dimensions, as is sometimes
erroneously assumed). In PCA, the observed values on
the M variables are approximated by the inner product
of the P-dimensional component scores and compo-
nent loadings for the variables, with P much smaller
than M. Usually, the classic reference to lower rank
approximation is Eckart and Young (1936), but it might
be worthwhile to note that this reference is challenged
by Stewart (1993), who remarks that the contribution
of Schmidt (1907) was much earlier, which is also
noted by Gifi (1990). Because the fit is defined on an
inner product, one has to make a coherent choice of
normalization.? Usually, the component scores are nor-
malized to have means of zero and variances equal to 1;

2. Because the inner product between two vectors a and b is defined as
a’b, it remains unchanged if we transform a into a = Ta and bintob =
Sb, with § = (T')~!, because a’b = a’T’Sb = &’b. Choosing principal
axes and a coherent normalization settles the choice of T and S (also see
Section 3.2.4).

the coherent normalization implies that the component
loadings are correlations between the variables and
the P dimensions of the space fitted to the objects.
Component loadings give coordinates for a variable
vector in the space, and the angles between the
vectors then approximate the correlations between the
variables. The inner product of the matrix of com-
ponent scores and a variable vector approximates a
column of the data matrix, and the length of the variable
vector in the space equals the correlation between the
variable and its approximation.

In the classical PCA biplot, persons are represented
as points, and variables are represented as vectors in
the same low-dimensional space. In contrast, in the
analysis of preference data, in which Tucker’s (1960)
vector model originated, the persons are represented
as vectors and the items are represented as points (for
an extended treatment of the vector model in the con-
text of preference analysis, see Carroll, 1968, 1972;
Heiser & de Leeuw, 1981). Because we include non-
linear optimal scaling transformations for the variables
in principal components analysis, the vector/bilinear
model represents not the original categorical variable
but the transformed variable, which is given optimal
(non)monotonic quantifications for its categories.

3.2.2. The Centroid Model

Unlike the vector model that is based on projec-
tion, the centroid model is most easily viewed in
terms of distances between object points and category
points. In the centroid model, each category obtains
coordinates that represent the category in the same
space as the objects. The centroid model originates
from multiple-correspondence analysis (MCA), where
a nominal variable is represented as a set of category
points, which are in the centroids of the associated
objects. The categories of a particular variable partition
the cloud of object points into subclouds. When these
subclouds overlap considerably, we say that the corre-
sponding variable is a relatively bad discriminator. On
the other hand, well-separated subclouds are associ-
ated with a good discriminator. When we have chosen
the centroid model for two or more variables, and when
the solution has a decent fit, the category points that are
associated with the same objects will be close together,
whereas categories of the same variable will be far
apart (each representing a subcloud of object points
through its centroid). The weighted mean squared
distance of the category points toward the origin gives
a measure similar to variance accounted for and has
been called the discrimination measure (Gifi, 1990).



A special feature of the CATPCA approach is the
possibility to fit the vector (bilinear) model and the
centroid (distance) model for different variables (or
even for the same variable) in a single analysis, a
feature not available in other software programs that
perform nonlinear principal components analysis.

3.2.3. Clustering and Forced Classification

The CATPCA method accommodates differential
weights for separate variables. In this way, the cen-
troid model can be used for forced classification (a
term coined by Nishisato, 1984), which can also be
called supervised learning. Forced classification is
obtained by applying a (very) large weight for the
particular variable that we have selected for the clas-
sification. Applying this large weight in combination
with the centroid model will cause the object points
that belong together to cluster into subclouds in the
low-dimensional space. The larger the weight that is
given, the tighter the clustering will be. This feature
is especially attractive when the number of objects is
very large and when they can be identified as members
of a particular subgroup, such as citizens of different
countries (as in the example given below) or members
of a particular social group. In these cases, we would
not be so much interested in the individual results but in
the results for the groups. Because we are dealing with
categorical data, it would not make sense to average
the data beforehand. The use of a weighted classi-
fication variable takes care of this averaging during
the analysis, and the size of the weight controls the
subsequent clustering of the object points around their
centroid.

In this way, we make certain that the classifica-
tion variable plays a significant role in the first few
dimensions of the principal components analysis solu-
tion. This property is extremely useful when we would
use PCA as a first step in a discriminant analysis to
diminish the number of predictors. Such a particular
strategy is often used when the number of predictors
exceeds the number of objects in the data matrix, as
is the case, among others, in genometrics (the analysis
of microarray gene expression data), proteometrics,
and chemometrics but also in Q-sort data, with judges
acting as variables, and with a classification variable
available for the objects. In the same manner, CATPCA
can be used as a prestep in a multiple regression
analysis when the number of predictors exceeds the
number of objects. In the latter case, the response
variable is included in the analysis, with a much larger
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weight than the other variables and with the application
of the vector model.

3.2.4. Different Normalizations

Different normalization options are possible for the
display of objects and variables in the low-dimensional
Euclidean space. The most commonly used normal-
ization option in principal components analysis is
to display the objects in an orthonormal cloud of
object points, in which the dimensions themselves
have equal variance. Then, the representation of the
variables accounts for the differential fit in subse-
quent dimensions, with the first dimension accounting
for most of the variance and subsequent dimensions
displaying the variance accounted for (VAF) in a
decreasing order. When the object scores are normal-
ized, however, one loses a straightforward distance
interpretation with respect to the objects. To attain
the latter, one should normalize the component load-
ings and leave the object scores free (but keeping the
inner product fixed). Therefore, an alternative option
is provided that should be used if we wish CATPCA to
perform a principal coordinates analysis as described
in Gower (1966), which is equivalent to the classical
MDS method usually attributed to Torgerson (1958).
In principal coordinates analysis, the emphasis is on
the representation of the objects, and the cloud of
object points displays the differential fit in subsequent
dimensions (the cloud is not orthonormal but shows a
definite shape). The interpretation of nonlinear PCA
in terms of distances between objects is given, among
others, in Heiser and Meulman (1983) and Meulman
(1986, 1992). Whether the object points or the (cate-
gory points of the) variables are normalized depends
algebraically on the allocation of the eigenvalues in
the use of the singular-value decomposition to repre-
sent both sets of entities in the low-dimensional space.
Therefore, in CATPCA, the impact of the eigenvalues
(symbolizing the fit) could also be distributed sym-
metrically over objects and variables (enhancing the
joint display, especially when the overall fit is not very
large) or handled in a completely customized way to
optimize the quality of the joint representation.

3.2.5. Different Biplots and a Triplot

For the display of the results, a variety of biplots
is available in CATPCA. A biplot can display the
objects (as points) and the variables (as vectors),
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the objects and groups among them (represented by
centroids), or the variables with groups of objects
(represented by centroids). Combining these three
options reveals relationships between objects, groups
of objects, and variables, and we call this display a
triplot. The ultimate summary of the analysis combines
the information in the biplots and triplots in one-
dimensional displays. These are obtained by taking
centroids of the objects, according to a particular (clas-
sification) variable, and projecting these centroids on
the vectors representing variables of particular inter-
est in the analysis. In this way, the graph identifies
particular groups in the data that stand out on the
selected variables. The use of the projected centroids
representation is demonstrated in Section 3.4.6.

3.3. MVA WITH DIFFERENT NONLINEAR
OPTIMAL SCALING TRANSFORMATIONS

In the nonlinear transformation process in CATPCA,
an appropriate quantification level has to be chosen
for each of the variables. The most restricted transfor-
mation level is called numerical; it applies a linear
transformation to the original integer scale values,
so that the resulting variables will be standardized.
The numerical scaling level fits category points on a
straight line through the origin, with equal distances
between the points. Instead of a linear transformation,
we have the choice between different nonlinear trans-
formations, and these can either be monotonic with the
original order of the categories or nonmonotonic.

3.3.1. Nominal Transformation
and Multiple Nominal Quantifications

When the only fact we will take into account is that
a particular subset of the objects is in the same cate-
gory (whereas others are in different ones), we call the
transformation nominal (or nonmonotonic); the quan-
tifications only maintain the class membership, and the
original categories are quantified to give an optimal
ordering. The nonlinear transformation can be carried
out either by a least squares identity regression (which
amounts to averaging over objects in the same cate-
gory) or by fitting a nonmonotonic regression spline.
Geometrically, the nominal scaling level fits category
points in an optimal order on a straight line through
the origin. The direction of this straight line is given
by the corresponding component loadings.

What has been labeled the centroid model above
(a categorical variable represented by a set of points
located in the centroid of the objects that are in
the associated categories) is also called a multiple
nominal quantification. The quantification is called
multiple because there is a separate quantification for
each dimension (the average of the coordinates of the
objects in the first dimension, the second dimension,
etc.) and nominal because there is no prespecified order
relationship between the original category numbers
and the order in any of the dimensions. An example of
the difference between a nominal and a multiple nom-
inal quantification will be given later on. We choose
a nominal transformation when we wish the category
points to be represented on a vector and a multiple
quantification when we wish them to be in the centroids
of the associated objects.

3.3.2. Monotonic and Nonmonotonic Splines

Within the domain of either monotonic or non-
monotonic transformations, two approaches are avail-
able: optimal least squares transformations or optimal
spline transformations. As indicated above, the class
of monotonic transformations has its origin in the
nonmetric multidimensional scaling literature (Kruskal,
1964; Shepard, 1962a, 1962b), in which original dis-
similarities were transformed into pseudo-distances
to be optimally approximated by distances between
object points in low-dimensional space. Free mono-
tonic transformations have been implemented since
then to generalize multivariate analysis techniques as
well (e.g., see Gifi, 1990; Kruskal, 1965; Kruskal &
Shepard, 1974;Young et al., 1978). We call these
transformations free monotonic because the number of
parameters that is used is free. Because this freedom
could lead to overfitting of the MVA model over the
transformation of the variables, a more restricted class
of transformations was introduced into the psychome-
tric literature. The most important ones form the class
of regression splines, and these were introduced in
multiple regression analysis and principal components
analysis in Winsberg and Ramsay (1980, 1983; for a
nice overview, see Ramsay, 1988). For splines, the
number of parameters is determined by the degree of
the spline that is chosen and the number of interior
knots. Because splines use fewer parameters, they usu-
ally will be smoother and more robust, albeit at the cost
of less goodness of fit with respect to the overall loss
function that is minimized.



3.3.3. Goodness of Fit: Component
Loadings, Variance Accounted For,
Eigenvalues, and Cronbach’s «

Principal components analysis studies the inter-
dependence of the variables. Nonlinear transforma-
tions maximize the average interdependence, and this
optimality property can be expressed in various forms.
When variables obtain an ordinal (monotonic spline)
transformation or a nominal (nonmonotonic spline)
transformation, the technique maximizes the sum of
the P largest eigenvalues of the correlation matrix
between the transformed variables (where P indi-
cates the number of dimensions that are chosen in
the solution). The sum of the eigenvalues, the over-
all goodness-of-fit index, is equal to the total variance
accounted for (in the transformed variables). The vari-
ance accounted for in each dimension for each variable
separately is equal to the squared component loading,
and the component loading itself is the correlation
between the transformed variable and a principal com-
ponent (given by the object scores) in a particular
dimension.

There is a very important relationship between
the eigenvalue (the total sum of squared component
loadings in each dimension) and probably the most
frequently used coefficient for measuring internal con-
sistence in applied psychometrics: Cronbach’s « (e.g.,
see Heiser & Meulman, 1994; Lord, 1958; Nishisato,
1980). The relationship between « and the total vari-
ance accounted for, as expressed in the eigenvalue
A, 1S

a=M0O—1)/(M— 12, (1)

where M denotes the number of variables in the
analysis. Because A corresponds to the largest eigen-
value of the correlation matrix, and because CATPCA
maximizes the largest eigenvalue of the correlation
matrix over transformations of the variables, it fol-
lows that CATPCA maximizes Cronbach’s «. This
interpretation is straightforward when the CATPCA
solution is one-dimensional. Generalized use of this
coefficient in more-dimensional CATPCA is described
in Section 3.4.2.

3.4. CATPCA 1IN ACTION, PART 1

Throughout this chapter, the principles behind cate-
gorical principal components analysis (CATPCA),
or principal components analysis with nonlinear
optimal scaling transformations, will be illustrated
by using a large-scale multivariate data set from the
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ISSP (1995) that can be considered exemplary for
data collected in the social and behavioral sciences.
The ISSP is a continuous annual cross-national data
collection project that has been running since 1985.
It brings together preexisting social science projects
and coordinates research goals, thereby adding a cross-
national perspective to the individual national studies.
Since 1985, the ISSP grew from 6 to 30 participating
countries in 1998. The ISSP Internet pages give access
to detailed information about the ISSP data service
provided by the Zentral Archiv, Cologne. The home-
page of the ISSP-Secretariat provides information on
ISSP history, membership, publications, and the ISSP
listserver.

The original data concern feelings of national iden-
tity from about 28,500 respondents in 23 different
countries all over the world. Because the number of
respondents in the sample in each of the participating
countries is not proportional to the population size, a
random sample from the original data was taken so
that all countries have the same weight in the analysis,
with all being represented by 500 respondents. This
selection makes the total number of individuals in our
examples equal to 11,500.

For the first application, we have selected three
groups of variables from the National Identity Study.
The first group of five variables indicates how close the
respondents feel toward their neighborhood (CL-1),
their town (CL-2), their county (CL-3), their country
(CL-4), and their continent (CL-5). (The data were
recoded so that a score of 1 indicates not close at all
and a score of 5 indicates very close.) The next five
variables indicate whether the respondents are willing
to move from their neighborhood to improve their work
or living conditions, either to another neighborhood
(MO-1), another city (MO-2), another county (MO-3),
another country (MO-4), or another continent (MO-5),
with the score 1 indicating very unwilling and the
score of 5 indicating very willing. The third set of
variables concerns statements about immigrants, ask-
ing the respondents on a scale from 1 to 5 whether
they strongly disagree (1) or strongly agree (5) with
the following statements: “Foreigners should not be
allowed to buy land [in this country]” (I-Land), “Immi-
grants increase crime rates” (I-Crime), “Immigrants
are generally good for the economy” (I-Econ), “Immi-
grants take jobs away from people who were born [in
this country]” (I-Jobs), and “ Immigrants make [this]
country more open to new ideas and cultures” (I-Ideas).
Also, respondents were asked to scale themselves with
respect to the statement, “The number of immigrants to
[my country] nowadays should be reduced a lot (1) . . .
increased a lot (5).” More than 50% of the respondents
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have one or more missing values on these 16 variables;
therefore, a missing data treatment strategy other than
deleting all cases with missing data is required, and
it was decided to use the straightforward CATPCA
option of imputing the modal category for each of the
variables. (See Section 3.6.3 on the treatment of miss-
ing data for more sophisticated approaches available
in the optimal scaling framework.)

3.4.1. VAF and Cronbach’s «

The results of a two-dimensional solution with
monotonic spline transformations will be presented
that explains 41% of the variance of the scores of
the 11,500 respondents on the 16 variables. The
percentage of variance accounted for (PVAF) in
the first dimension (26.7%) is almost twice the
PVAF in the second dimension (14.4%). The VAF
in the first dimension equals .267 x 16 (number of
variables) = 4.275, and in the second dimension,
144 x16 = 2.305. As explained above, the VAF is
closely related to Cronbach’s «.

As illustrated in Heiser and Meulman (1994), the
relationship between « and the VAF (eigenvalue) is not
linear but monotonically increasing, and it is severely
nonlinear when M, the number of variables, grows.
For M = 16, as in our example, the VAF in the
first dimension corresponds to a value of « = .817,
and the VAF in the second dimension corresponds to
a value of « = .604. If we take the total variance
accounted for (6.580) as the value of A in equation (1),
o = .905 (the maximum is 1). This use of equation (1)
clearly gives a much more general interpretation of «
than was originally intended but provides an indica-
tion of the global fit of the CATPCA solution. The
VAF per dimension is equal to the sum of squares of
the component loadings and equal to the associated
eigenvalue of the correlation matrix between the opti-
mally transformed variables. Note that the value of
« for a particular dimension becomes negative when
the associated eigenvalue is less than 1.0. The largest
eigenvalue of the correlation matrix between the orig-
inal variables is 4.084, so the increase in VAF is
1 — 4.084/4.275 = 4.5%, which is not a dramatic
overall increase. For most of the individual variables,
however, the transformation is clearly nonlinear, as
shown in Figure 3.1.

3.4.2. Nonlinear Transformations

In Figure 3.1, the transformations for CL-1 unto
CL-5, MO-1 unto MO-5, and I-Land unto I-Incr are

displayed in its columns; the optimal quantifications
are given on the vertical axes versus the original values
on the horizontal axes. The nonlinear transforma-
tions for CL-1 unto CL-5 show convexity, indicating
that there is less distinction between the not close at
all = ncl(1) and not close = ncl(2) categories, which
are contrasted to the very close = ncl(4) category;
the close = ncl(3) category is almost always near to
the mean of 0. The MO-1 unto MO-5 quantifications
show the opposite pattern: The nonlinear transforma-
tions approximate a concave function, grouping the
willing, very willing categories, which are contrasted
to the very unwilling category. The unwilling cate-
gory has quantifications close to the mean, except for
MO-4 and MO-5, which show the most concave func-
tions. When we then inspect the quantifications for
I-Land, I-Crime, and I-Jobs (the statements in which a
high score expresses a negative attitude toward immi-
grants), we see that the transformations are convex
again, contrasting the flat part for the (strongly) dis-
agree categories at the lower end from the steep part
toward the strongly agree category at the upper end.
So these transformations resemble those for the CL
variables. Looking at the quantifications for I-Econ
and I-Incr, which express a positive attitude toward
immigrants, we see that their quantifications give con-
cave functions, just as for the MO variables: strongly
disagree (at the lower end) is contrasted with agree
and strongly agree (at the upper end) for I-Econ, and
reduced a lot is contrasted with increase and increase
a lot at the upper end for I-Incr (“the number of
immigrants should be . . ). The overall conclusion
is that the steep parts of each of the transformations
express negative feelings toward immigrants because
they occur at the upper end for the negatively stated
attitudes and at the lower end for the positively stated
attitudes. Simultaneously, this pattern is reflected in
the transformations for the CL variables, with the steep
part indicating that one feels very close to one’s living
environment, and the MO variables, with the steep part
indicating that one is very unwilling to move.

3.4.3. Representing Variables as Vectors

The optimal quantification process turns a qualitative,
nominal (or ordinal) variable into a quantitative,
numerical variable. The resulting nonlinearly trans-
formed variable can be represented as a vector in the
space that is determined for the objects. The coordi-
nates for such a vector are given by the associated
component loadings that give the correlation between
the transformed variable and the dimensions of the
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Figure 3.1 Spline Transformation of CL Variables (First Column), MO Variables (Second Column), and IM
Variables From the CATPCA of the 1995 ISSP National Identity Study
CL-1 MO-1 I-Land
3 3 3
2 2 2
1 1 1
0 0 0
-1 -1 -1
) -2 -2
-3 -3 -3
notcl(1) notcl(2) close(3) vclose(4)  unwill(1) unwill2) nn(3) will(4) will(5) disagr(1) disagr(2) nn(3) agr(4) agr(5)
CL-2 MO-2 I-Crime
3 3 3
2 2 2
1 1 1
0 0 0
-1 -1 -1
) -2 -2
-3 -3 -3
notcl(1) notcl(2) close(3) vclose(4)  unwill(1) unwill2) nn(3) will(4) will(5) disagr(1) disagr(2) nn(3) agr(4) agr(5)
CL-3 MO-3 |-Jobs
3 3 3
2 2 2
1 1 1
0 0 0
-1 -1 -1
) -2 -2
-3 -3 -3
notcl(1) notcl(2) close(3) vclose(4)  unwill(1) unwill2) nn(3) will(4) will(5) disagr(1) disagr(2) nn(3) agr(4) agr(5)
CL-4 MO-4 I-Econ
3 3 3
2 2 2
1 1 1
0 0 0
-1 -1 -1
-2 -2 -2
-3 -3 -3
notcl(1) notcl(2) close(3) vclose(4) unwill(1) unwill2) nn(3)  will(4) will(5) disagr(1) disagr(2) nn(3) agr(4) agr(5)
CL-5 MO-5 I-Incr
3 3 3
2 2 2
1 1 1
0 0 0
-1 -1 -1
-2 -2 -2
-3 -3 -3
notcl(1) notcl(2) close(3) vclose(4) unwill(1) unwill2) nn(3)  will(4)  will(5) redu(1) redu(2) remain incr(4) incr(5)

object space. The graph of the component loadings
is given in Figure 3.2 (left-hand panel), which shows
vectors going in four different directions from the

origin (the point 0, 0). Going clockwise, the first
group of vectors points in the north-northeast direc-
tion, containing I-Econ, I-Incr, and I-Idea; the second
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Figure 3.2 Loadings for MO, CL, and IM Variables (Left-Hand Panel) and Category Points for Country
(Right-Hand Panel) From the CATPCA Analysis
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NL = Netherlands; NZ = New Zealand; CD = Canada.

group points to the east-southeast, comprising the
MO variables. The I-Land, I-Crime, and I-Jobs
variables point in the south-southwest direction, and
the CL variables, finally, point toward the west-
northwest. From the transformation plots described
above, we know that these directions indicate posi-
tive attitudes toward immigrants, willingness to move,
very negative attitudes toward immigrants, and feel-
ing very close to one’s environment, respectively. It
should be noted that each of these four groups of
vectors has starting points representing the opposite
meaning extending at the opposite side of the origin.
So very close to the I-Econ, I-Incr, and I-Idea vectors,
we should also envision the starting points of I-Land,
I-Crime, and I-Jobs representing positive attitudes, as
in the flat parts of the corresponding transformation
plots. The reverse, therefore, is also true: The lower,
very negative sides of the vectors for I-Econ, I-Incr,
and I-Idea are very close to the plotted very negative
sides of the vectors for I-Land, I-Crime, and I-Jobs.
This whole story can be repeated for the MO and CL
vectors that extend either to the right or to the left from
the origin (also, see Figure 3.3).

The very unwilling to move lower endpoints are close
to the very close upper endpoints, whereas the not
close lower endpoints are near the willing to move
upper endpoints. Now that we have interpreted the
extremes of the optimally scaled categories depicted
in the transformation plots, we can also interpret
the full range of quantifications with respect to their

Figure 3.3 Joint Category Points for Country,

MO-1, and I-Crime
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original category labels. Before this will be done
in Section 3.4.5, however, we will first inspect a



different type of variables that can be introduced into
the analysis described thus far.

3.4.4. Supplementary Variables

In the analysis of the CL, MO, and IM variables,
we added a supplementary variable labeled country.
This variable indicates from which of the 23 different
countries the respondent originates. A supplementary
variable has no influence on the actual analysis, but
its quantifications are computed afterwards to estab-
lish its relationship with the solution obtained. In
the case of the National Identity Study data, the
number of respondents is too large to inspect the
object scores on an individual level. Having the Coun-
try variable as a supplementary variable, however,
gives the opportunity to display clusters of respon-
dents from the same country by a single point. When
the respondents from a particular country are very
heterogeneous, their individual points will be scat-
tered all over the two-dimensional space, and their
associated country point, computed as the centroid
of the appropriate individual points, will be located
close to the origin of the configuration. To obtain
these centroids for the 23 different countries in the
National Identity Study, we have to specify that the
country variable should obtain multiple nominal quan-
tifications. The result is shown in the right-hand
panel of Figure 3.2. In this graph, we see various
clusters of points in three different directions, start-
ing from the origin, which itself is close to Italy
(IT) and Poland (PL) (and Slovenia [SL] and East
Germany [GE]). First, a cluster of points contains
Hungary (HU), Bulgaria (BG), Latvia (LV), Russia
(RU), the Czech Republic (CZ), and the Slovak
Republic (SK) in the lower left corner. Going in the
upper left direction, we see Austria (AU), Japan (JP),
Spain (SP), and Ireland (IR). Finally, going from the
origin straight to the right, we have West Germany
(GW), Norway (NO), Sweden (SW), Great Britain
(GB), the Philippines (PH), the United States (US), and
the Netherlands (NL). New Zealand (NZ) and Canada
(CD) are almost on a straight line from the origin
toward the upper right corner of the graph. Having
these coordinates for the 23 countries, we can construct
a biplot of the country points and the vectors for the
CL, MO, and IM variables.

3.4.5. A Biplot of Centroids and Vectors

As described above, the CATPCA methodology
allows a variety of different biplots. Because the
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number of objects in the National Identity Study
is too large to inspect the relationship between the
objects and the variables on the individual level, we
represent the individual points by the centroids that
are obtained by the supplementary country variable.
There are two different ways for joint representation
of country points and the vectors for the variables.
The most straightforward one is a graph with the
centroids from the right-hand panel of Figure 3.2
superimposed on the component loadings depicted
in the left-hand panel. Elements of this plot (not
shown) can be highlighted by the joint representa-
tion of the centroids and category points for selected
variables. For illustration in our case, MO-1 and
[-Crime were chosen, and the resulting plot is given
in Figure 3.3. Here we notice the three most important
clusters: Cluster 1 contains HU, BG, RU, LV, SK, and
CZ; Cluster 2 contains AU, JP, SP, and IR; and Cluster
3 contains GW, NO, SW, GB, PH, US, and NL, located
between the vectors given for MO-1 and I-Crime. In
contrast to the component plot in Figure 3.2, a variable
is now represented by the full set of category points
on a straight line through the origin. For I-Crime,
the category points “disagr(l) = strongly disagree”
and “disagr(2) disagree” are both located at the side
of the vector that points toward the north, whereas
“agr(5) = strongly agree” is located at the opposite
end, pointing to the south. The category “agr(4) =
agree” is located close to the origin (compare the
quantification close to zero in the transformation plot).
The vector for the MO-1 variable contrasts “unwill(1)
= very unwilling” on the left with “will(4) = will-
ing” and “will(5) = very willing” on the right; here,
the category “unwill(2) = unwilling” is close to the
origin.

From the location of the country points with respect
to the vectors for the variables, we can derive the rela-
tive positions by projection; for example, Ireland (IR)
and Canada (CD) score high on the disagree end of
the “Immigrants increase crime” vector. With respect
to the cluster structure described above, the first clus-
ter (with Russia [RU] in the center) agrees with the
statement that immigrants increase the crime rate, and
it is unwilling to move. Cluster 2, containing Japan,
is also unwilling to move but (strongly) disagrees with
the I-Crime statement. The third cluster, containing the
United States, mildly disagrees but is willing to move
(from its neighborhood).

3.4.6. Projected Centroids

The relative joint position of countries on statements
is most clearly represented in the “projected centroids”
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Figure 3.4 Projected Centroids for Country on
Selected Variables (From Right to Left)
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plot, shown in Figure 3.4. Here the 23 countries have
been projected on the vectors for the statements as
in the biplot, but now these projections themselves
are shown on straight parallel lines representing the
statements. From left to right, the following statements
were used: CL-1, MO-1, I-Crime, and I-Econ. As
we know from Figure 3.2 (left-hand panel), CL-1 and
MO-1 are each other’s opposite, and so this is also seen
in Figure 3.4, with HU, AU, IR, JP, and BG scoring
high on CL-1 (and low on MO-1) and NL, PH, CD,
US, and the other countries from Cluster 3 scoring high
on MO-1 (and low on CL-1). The two other variables
represented show contrasts between Cluster 1 (scor-
ing high on I-Crime and low on I-Econ) and CD, IR,
NZ, SP, and NL (scoring low on I-Crime and high on
I-Econ).

We should remind ourselves, however, that the data
analyzed are from 1995 and that points of view will
most probably have changed since then for at least
some of the countries in this study.

3.5. TECHNICAL BACKGROUND
OF NONLINEAR PRINCIPAL
COMPONENTS ANALYSIS

3.5.1. Indicator Matrices

The nonlinear transformation approach deals
with categorical variables in the following way.
A categorical variable h,, defines a binary indicator
matrix G,, with N rows and C,, columns, where C,,
denotes the number of categories. Elements #;, then
define elements gic(n) as follows:

Lif hjyy = cpm

8ic(m) = {O if hzm:/‘é Cn s (2)

where ¢,, = 1,...,C,, is the running index indi-
cating a category number in the mth variable. If
category quantifications are denoted by the vector y,,
(with C,, elements), then a transformed variable q,,
can be written as G,y,. For instance, in a stan-
dard linear model, with M predictor variables in X
and b,, denoting the regression weight for the mth
variable, the linear combination of the predictors
that correlates maximally with the response z can be
written as Z = Zf:f: 1 buXp. Incorporating the non-
linear scaling of the predictor variables ¢, (x,,), for
m = 1,..., M with ¢, (x,) an admissible nonlin-
ear function of x,,, the optimal linear combination is
now written as Z = ng D (X)) = ng b GLYm-
By mapping a categorical variable into an indicator
matrix, invariance is ensured under the one-to-one
nonlinear transformation of the original variable. The
idea to replace a categorical variable by an indica-
tor matrix can already be found in Guttman (1941).
The term indicator matrix was coined by de Leeuw
(1968); other names used are attribute or trait matrix
(Lingoes, 1968), response-pattern table (Nishisato,
1980), incidence matrix, or dummy variables (in
experimental design).

3.5.2. The Joint Objective Function

In this section, we will describe the objective func-
tion that jointly fits the vector model and the cen-
troid model. We suppose that there are My variables
fitted according to the vector model and My variables
fitted according to the centroid model; thus, we have
My + Mp = M. We start by defining the follow-
ing terminology. The N x M matrix Q contains
the scores for the N objects on M variables. The
nature of the individual variables q,, will be discussed
shortly. The N x P matrix X contains the coordinates



for the N objects in a P-dimensional representation
space, and the matrix A (of size My x P) gives
the coordinates in the same space for the endpoints
of the vectors that are fitted to the variables in the
bilinear (vector) model. Thus, a,, contains the coor-
dinates for the representation of the mth variable.
Consequently, the part of the objective function that
minimizes the value of the objective function with
respect to the bilinear/vector model can be written
as follows:

Ly(QX; A) =M Y g —Xa,l’, 3

mekKy

where Ky denotes the index set that contains the
indices of the variables that are fitted with the vector
model, and || - ||> means taking the sum of squares
of the elements. Assuming the data in q,, to have C,,
different values, we can also write

Ly(yv:Xi A) = My" Y 1Guym — Xaul,  (4)

mekKy

where G,, is an indicator matrix that classifies each
of the objects in one and only one category. The opti-
mal category quantifications that will be obtained are
contained in the C,, vector y,,, where C,, denotes the
number of categories for the mth variable. The vector
yy collects the quantifications for the My different
variables and has length > _x C,,.

The projection of the object points X onto the
vector a,, gives the approximation of the nonlinearly
scaled (optimally quantified) variable q,, = G,y in
P-dimensional Euclidean space. Minimization of the
loss function Ly for the bilinear/vector model can be
shown to be equivalent to the minimization of

Ly(yv: AsX) = My' Y IGuyma, —XI* (5)

mekKy

(see Gifi, 1990). Here a P-dimensional matrix X is
being approximated by the inner product G, y,a),,
which gives the coordinates of the categories of the mth
variable located on a straight line through the origin in
the joint P-dimensional space. The major advantage
of this reformulation of the objective function is its
capacity of capturing the centroid model in the same

framework. The latter can simply be written as

Lg(Yp:X)=Mz" Y G Yn —XIP,  (6)

mekKp

where Kp denotes the index set of the variables for
which a centroid model is chosen. The C,, x P matrix
Y,, contains the coordinates of the categories in the
P-dimensional space, and Y collects the quantities
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for the Mp variables stacked upon each other. The
objective function for the centroid model implies that
to obtain perfect fit, an object point in X should coin-
cide with its associated category point in one of the
rows of Y,,,.

At this point, we can write the joint objective
function for CATPCA as a weighted linear combina-
tion of the separate losses:

L(Y;A;X) = (My + M)~ '[MyLy(yy; A; X)
+ MpLp(Yp; X)], )

where the first part is minimized for variables indexed
by m for which a vector representation is chosen,
and the second part is minimized for the represen-
tation of categorical variables. The optimal X is
found as

X=m" { Y Guynay, + ) GmYm} ,
meKy meKp

after which the object scores are orthonormalized as
X'X = NI (thus, they are uncorrelated).

3.5.3. Quantifications and Geometry

In this section, we will describe the iterative pro-
cess that turns multiple quantifications Y into vector
coordinates y,,a,,, possibly incorporating ordinal and
numerical information from the original variables.
Recall that in Figure 3.3, a joint representation was
given for centroids (for the categories of the country
variable) and for vector coordinates (for the cate-
gories of the MO-1 and I-Crime variables). The very
same representation can also be given for one and
the same variable. This idea is illustrated by includ-
ing a copy of the supplementary Country variable in
the analysis as well and giving this supplementary
copy not multiple nominal quantifications but a nom-
inal transformation that positions category points on
a vector. The result is illustrated in Figure 3.5, in
which the uppercase labels are for the centroids from
the previous analysis, and the lowercase labels are for
the additional vector coordinates. We see that in the
cloud of the country points, the dominant direction
is from northeast to southwest, from CD to HU and
through Clusters 1 and 3. Computationally, the transi-
tion from centroids into vector coordinates involves the
following steps.

3.5.3.1. From Centroids to
Unordered Vector Coordinates

For each variable, we start with fitting a centroid
model according to (6), which gives the minimum over
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Figure 3.5 Centroids (Multiple Nominal Quan-
tification) and Vector Coordinates
(Nominal Transformation) for Country

in CATPCA
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Y,as Y, = D;L'G,/nX, where D,, = G/, G,, contains
the marginal frequencies of the categories of the mth
variable. Next, for the vector model, the centroids Y,,
are projected on a best-fitting line, denoted by a,,, a
vector through the origin. The least squares fit that is
the minimum of

”GmYm - GmYIna;n ”2
=tr(Yy — y;na,,n)/Dm Y, — yma;n) ®)

over both y,, and a,, determines the category quan-
tifications y,, and (the orientation of) the vector a,,.
The coordinates y,,a,, ,the outer product of the cate-
gory quantifications y,, and the vector a,,, represent
the category points on this line, which represents the
mth variable in the joint space of objects and variables.
The a,, are also called the component loadings, and
they give the correlations between the variables and
the dimensions of the principal components space.
Setting the partial derivatives in (8) with respect to

the component loadings a,, to zero gives the optimal

a,, as

_ Y:y, Dm Ym
¥ Dmym)

A

m

(€))

Next, setting the partial derivatives in (8) with respect
to y,, to zero shows that the optimal unnormalized ¥,
is found as

Ya,

ym = ( 10)

aa,
To satisfy the normalization conventions q/,q,, = N,
the standardized variable q,, should contain quantifi-
cations ¥, that are rescaled:

Y = N5 §,,DnF) 2. (11

Note that the length of the vector a,, has to be dimin-
ished to the same extent as the size of the quantifica-
tions §,, is increased to keep y,,a,, the same. Equation
(10) symbolizes the projection of the centroids Y,, on
the vector a,, and defines the category coordinates for
a nominal transformation. It is very unlikely that the
category quantifications in y,, will be proportional to,
or even only in the same order as the original integer
scale values 1, ..., C,. In many cases, however, we
would like to maintain the original numeric and/or
rank-order information in the transformation, which
can be dealt with as follows.

3.5.3.2. From Nominal to
Ordinal and Numerical Transformations

If the ordinal, rank-order information should be
maintained, an ordinal, monotonic transformation is
chosen for variable m, and the quantifications y,, have
to be constrained to be monotonic with the order of the
original categories. As described above, this require-
ment can be satisfied by the use of one of two major
classes of monotonic transformations. The first, also
historically, is the class of least squares monotonic
transformations, obtained by a monotonic regression
of the values in §, upon the original scale values
1, ..., Cy, taking the marginals on the diagonal of D,,
into account. The second class is defined by monotonic
regression splines. As indicated in Section 3.3.2, trans-
formations by regression splines use fewer parameters
than transformations obtained by monotonic regres-
sion. For monotonic regression, the number of param-
eters to be fitted is C,, — 2; for regression splines, the
number of parameters is determined by the degree of



the spline that is chosen and the number of interior
knots. If the number of categories is small, monotonic
regression and regression splines will basically give the
same result. When the number of categories is large,
it is usually advised to use regression splines because
monotonic regression may result in overfitting:
The variance accounted for will increase, but so will
the instability. (Note: There is a trade-off between the
number of categories and the number of objects in those
categories. If the number of objects is large, and all
categories are sufficiently filled, monotonic regression
will usually not result in overfitting.)

When it is decided to give the mth variable a numeri-
cal transformation, the implication is that the distances
between the category points y,,a,, have to be equal, and
the category quantifications y,, will be proportional to
the original category numbers. This can be done by
linear regression of the y,, on the original scale values
and will result in a standardized version of the set of the
integer scale values 1, ..., Cy, Guyn = ahy + B,
where the multiplicative constant and the intercept
are fitted taking into account the marginal frequen-
cies. If the distances between the categories have to
be stretched very much to obtain unit variance, the
VAF (expressed in the squared length of the vector
a,,) will be very small. It is important to realize that
this also applies to ordinary PCA with continuous
variables (which can be considered as a CATPCA
with N categories, where N is the number of objects,
as usual).

3.6. SOME ADDITIONAL OPTIONS
OF THE PROGRAM CATPCA

3.6.1. External Fitting of Variables

The CATPCA program not only provides an option
for the analysis of supplementary variables, as we
saw in Section 3.4.4, but for supplementary objects
as well. As was true for supplementary variables,
supplementary objects are not active in the analysis
but enter into the representation afterwards. Another
interesting application for the supplementary variables
option is the following. CATPCA offers the possibil-
ity of reading a fixed configuration of object points,
and thus the CATPCA method may be used for so-
called property fitting or external unfolding (Carroll &
Chang, 1967; Meulman, Heiser, & Carroll, 1986). In
this way, external information on objects (contained
in so-called external variables) is fitted into the fixed
representational space by the use of the vector model
(or the centroid model). The option accommodates the
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same variety of transformation levels as a standard
CATPCA analysis (with nominal, ordinal, and numer-
ical treatment of the variables, including the use of
splines).

3.6.2. Making Continuous
Variables Discrete—Binning

Although the CATPCA algorithm is tuned to the
analysis of categorical variables, continuous variables
can be introduced into the analysis as well, and this
is after they have been made discrete using one of a
variety of options provided. This process is compara-
ble to fitting a histogram to a continuous distribution.
The grouping options described below can also be
used to merge a large initial number of categories into
less, which is especially warranted when the distribu-
tion of the objects over the original categories is very
skew or when some of the categories have very few
observations.

3.6.2.1. Grouping in a Specified
Number of Categories for a Uniform
or Normal Distribution

In Max (1960), optimal discretization points were
computed to transform a continuous variable into a
categorical one, in which the number of categories
can vary from 2 to 36. These discretization points
are optimal with respect to an assumed distribution,
particularly a univariate standard normal distribution
or a univariate uniform distribution. As an illustration,
we use the age variable from the National Identity
Study: Respondents varied in age from 14 to 98; the
modal age category is 30. When this variable is made
discrete with seven categories, assuming the popu-
lation distribution is normal, the following ranges (with
corresponding marginal frequencies in parentheses)
are obtained: 14-17 (107), 18-30 (2,596), 31-40
(2,335), 41-49 (2,002), 50-59 (1,794), 60-72 (1,916),
and 73-98 (699). If, on the other hand, a uniform dis-
tribution would be assumed, the following categories
and marginal frequencies result: 14-25 (1,653), 26-33
(1,691), 34-39 (1,444), 40-46 (1,657), 47-55 (1,731),
56-65 (1,639), and 66-98 (1,634).

3.6.2.2. Grouping in Equal
Intervals With Specified Size

When it is preferred to have a continuous variable
replaced by a categorical variable in which the original
values are grouped into intervals of equal size, this
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is a feasible option as well. Of course, the choice
of a specific range for the interval determines the
number of categories (bins in a histogram). For the age
variable, choosing intervals of 10 years gives the fol-
lowing: 14-23 (1,216), 24-33 (2,128), 34-43 (2,394),
44-53 (2,066), 54-63 (1,669), 64-73 (1,397), 74-83
(493), 84-93 (79), and 94-98 (7). With this option,
the groupings for the higher age ranges have rather
low marginal frequencies. Comparing this distribu-
tion with the two previous ones, we would prefer the
uniform option.

3.6.2.3. Ranking

This particular form of preprocessing is appropriate
for at least two different situations. In the first place, it
should be noted again that the optimal scaling frame-
work guarantees that any ordinal transformation of the
original data, among which is replacing numeric values
by ranks, will leave the analysis results the same when
variables are treated ordinally. When there are no ties
in the original variable, the number of categories in
the new variable will be N, the number of objects.
However, such an ordinal analysis might involve too
many parameters to be fitted. When the number of
categories approaches the number of objects, it is often
abetter choice to fit a monotonic spline of a low degree
with a limited number of knots. Another use of ranking
is to give the resulting rank-order variables a numerical
transformation level. In the latter case, the principal
components analysis amounts to the analysis of the
Spearman rank correlations. If the ranking operation
is applied to a variable that contains a unique identifi-
cation for the objects in the analysis, then the resulting
variable, defined as supplementary, can be used to
identify individual objects in various plots (e.g., in the
projected centroids). Of course, this labeling is only
feasible and useful when the number of objects is not
too large.

3.6.2.4. Multiplying

The distributional properties of a continuous
variable that contains noninteger values can be main-
tained as closely as possible by the particular linear
transformation that transforms the real-valued variable
into a discrete variable containing integers. The result
of this process is a variable that could be treated as
numerical; when all the variables in the analysis are
treated this way, we are back to classical principal
components analysis. However, when one assumes
monotonic (instead of linear) relationships between

such a variable and other variables in the analysis, it is
advised to fita monotonic spline transformation. When
relationships are completely nonlinear, nonmonotonic
splines should be fitted to allow these relationships to
be revealed in the analysis.

3.6.3. Missing Data

To handle incomplete data in the analysis, a sophisti-
cated option is available that only takes into account the
nonmissing data when the loss function is minimized.
The indicator matrix for a variable with incomplete
data will, in this case, contain rows with only zeros
for an object having a missing observation. The loss
function in Section 3.5.2 is extended by the use of
(internally generated) object weights, collected in a
diagonal matrix in which the diagonal elements indi-
cate the number of nonmissing observations for each
of the objects. Although this option is very attractive
(missing data are completely ignored), it also has a
number of drawbacks that need not be severe, however
(see Meulman, 1982). Because objects have a differ-
ent number of observations, the weighted mean of the
object scores is now equal to 0, and because the mean
itself is not 0, various optimality properties of nonlin-
ear PCA are no longer valid. The maximum/minimum
value of the component loadings is no longer equal
to 1.0 and -1.0, and therefore a component loading
can no longer be interpreted as a correlation. (We can
still project a transformed variable in the space of the
objects, however.) Also, the property that nonlinear
PCA optimizes the sum of the P largest eigenval-
ues of the correlation matrix between the transformed
variables is no longer true. (However, when this cor-
relation matrix is computed, there are various choices
available for imputing values for the missing data.)
Indications on how many data elements can be missing
without too much disturbance are given by Nishisato
and Ahn (1994).

Alternatively, there are other straightforward strate-
gies for treating the missing data in the primary
analysis. The first is to exclude objects with miss-
ing values; the second provides a very straightforward
imputation method, using the value of the modal cate-
gory. Also, a separate, additional category can be fitted
for all objects having a missing value on a particu-
lar variable. For all transformation levels, this extra
category is positioned optimally with respect to the
nonmissing categories. If other, more advanced, miss-
ing data strategies are called for (such as the imputation
strategy of Van Buuren & Van Rijckevorsel, 1992),
these would have to be part of a preprocessing process
performed before the actual CATPCA analysis.



3.7. CATPCA 1IN ACTION, PART 2

Having the CATPCA methodology available gives
various interesting possibilities compared to a standard
correspondence analysis in which two variables are fit-
ted according to the centroid model (Gifi, 1990). First,
consider the nominal variables, country and employ-
ment status (Emp-Stat), from the National Identity
Study. A standard correspondence analysis would dis-
play the category points for both variables in a joint
low-dimensional space. An extended correspondence
analysis may include the same two multiple nominal
variables but with a third ordinal variable included as
well. This idea will be illustrated by using the Country
and Emp-Stat variables, which are now joined with
the Democ variable (also from the National Identity
Study). The Democ variable indicates, on a scale from
1 to 4, whether the respondent is very proud (4), some-
what proud (3), not very proud (2), or not proud at
all (1) with respect to his or her country’s democracy.
The distribution of the original variable shows that the
modal respondent is “somewhat proud” (n =4,140);
the smallest category is “very proud” (n = 1,361),
followed by the category “not proud atall” (n = 1,606),
with “not very proud” the second largest category (n =
3,496). Where does this variable fit into the country x
Emp-Stat space? The answer is given in Figure 3.6,
the joint plot of the categories for Country, Emp-Stat,
and Democ. Moreover, we added in this plot the vec-
tor representations for Country and Emp-Stat as well,
obtained by including copies of these as supplementary
variables to be fitted with the vector model.

The centroid representation for Country and Emp-
Stat shows their relationship in terms of their category
points. The vector representation for Emp-Stat shows
that the two extreme categories on a one-dimensional
scale would be “Retired” and “Unemployed” at the
north-northwest endpoint and “Housewives” at the end
pointing south-southeast. From the vector represen-
tation, it is easy to see that the category “House =
house wives” scores relatively high in the Philippines
(PH), Spain (SP), Ireland (IR), Japan (JP), Italy (IT),
and the Netherlands (NL). The categories “Retired”
and “Unemployed” score high in East Germany
(GE), Bulgaria (BG), and Sweden (SW). The one-
dimensional projection of the country category points
shows that the major direction goes from west to east.
The relationship between Country and Emp-Stat in
an ordinary correspondence analysis changes when
Democ is taken into account. The ordinal transforma-
tion of Democ (not shown) turned out to be close to
linear but gives emphasis to the modal category “some-
what proud,” which is quantified with a higher value
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Figure 3.6 Use of CATPCA: Extended Correspon-
dence Analysis of Country and Em-Stat
With Democ (nproud(1) = not proud at
all to proud(4) = very proud) as an Extra
Ordinal Variable
1.0 7
5 1
0.0 A
-5
-1.0 1
-1.5 1
-2.0 1
2.5 . . .

-20 15 10 -5 00 5 1.0 15 20

NOTE: Countries are identified as follows: IT = Italy; PL =
Poland; SL = Slovenia; GE = East Germany; HU = Hungary;
BG = Bulgaria; LV = Latvia; RU = Russia; CZ = Czech
Republic; SK = Slovak Republic; AU = Austria; JP = Japan;
SP = Spain; IR = Ireland; GW = West Germany; NO =
Norway; SW = Sweden; GB = Great Britain; PH = Philippines;
US = United States; NL. = Netherlands; NZ = New Zealand;
CD = Canada.

than its numeric counterpart if the original variable
containing the scores 1 to 4 had been standardized. The
vector for Democ is orthogonal to the direction that
connects the categories “Retired” and “Housewives”
and is mostly related to the vector representation
of Country, contrasting the “very proud of demo-
cracy” countries of Canada, the United States, and the
Netherlands with the “not proud at all” countries of
Italy, Russia, the Slovak Republic, and Hungary.

3.8. DISCUSSION

3.8.1. Optimal Scaling and (Multiple)
Correspondence Analysis

Although we stated earlier that it is beyond the
scope of the present chapter to discuss the technique
called multiple correspondence analysis (MCA), we
need to mention explicitly the relationship between
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principal components with nonlinear optimal scaling
transformations and MCA. When the transformation
level is chosen to render multiple nominal quan-
tifications for all variables, the two techniques are
completely equivalent. So the current CATPCA pro-
gram, with all its special options for discretization,
missing data, supplementary objects and variables, and
a variety of plots, can be used to perform MCA as well.
In terms of the loss function in Section 3.5.2, we have
My = 0 and Mg = M, and we minimize (6) for all
variables.

The classic case of simple correspondence analysis
concerns two categorical variables, displayed in a cross
table, with the categories of the first variable in the
rows and the categories of the second variable in the
columns. The cells of the table then contain the fre-
quencies of the joint occurrence of category C4 from
variable A and category Cp from variable B, and
correspondence analysis displays the residuals from
independence between the two variables (their interde-
pendence). There are some details that should be taken
into account with respect to normalizing the dimen-
sions of the space, but a standard correspondence
analysis and a CATPCA are basically equivalent when
the two variables are given multiple nominal quantifi-
cations. The similarity is largest when the object scores
in CATPCA are standardized so that the categories are
the average of the object scores, and geometrically the
category points will be in the centroid of the object
points.

When we have rwo variables, a number of optimal
scaling techniques are in fact equivalent. CATPCA
with two nominal variables, combined with opti-
mization in one dimension, is equivalent to simple
regression with optimal scaling, and maximizes the
Pearson correlation coefficient over all possible nom-
inal quantifications (Hirschfeld, 1935). When the two
variables have a nonlinear relationship, the regres-
sion is linearized because categories are allowed
to be reordered (permuted), and distances between
them are optimally scaled. The term optimal scal-
ing, in this context, is due to Bock (1960); also,
see Fisher (1940, 1948) for the maximal mutual dis-
crimination principle, as well as the overview in de
Leeuw (1990). Applying ordinal (spline) transfor-
mations maximizes the correlation coefficient under
monotonicity restrictions. When one of the variables
is treated as numeric, and the other is given a
nominal transformation, the CATPCA technique
would be equivalent to linear discriminant analysis
but with one single predictor. Obviously, allowing
an ordinal transformation instead of the numerical
transformation level generalizes the latter technique,

maximizing the between to total variation ratio under
monotonic transformation of the predictor variable.

3.8.2. Special Applications

In the following subsections, we will briefly discuss
some special types of applications of CATPCA. For
a selection of concrete applications, sometimes using
the precursor program PRINCALS, the user is referred
to the following: Arsenault, Tremblay, Boulerice,
and Saucier (2002); Beishuizen, Van Putten, and
Van Mulken (1997); de Haas, Algera, Van Tuijl, and
Meulman (2000); de Schipper, Tavecchio, Van
IJzendoorn, and Linting (2003); Eurelings-Bontekoe,
Duijsens, and Verschuur (1996); Hopman-Rock, Tak,
and Staats (2001); Huyse et al. (2000); Theunissen
et al. (2003); Vlek and Stallen (1981); Zeijl, te Poel,
du Bois-Reymond, Ravesloot, and Meulman (2000);
and Van der Ham, Meulman, Van Strien, and Van
Engeland (1997).

3.8.2.1. Preferential Choice Data

In preferential choice data, respondents give a rank-
ing of objects (sometimes called stimuli) according
to some attribute, giving an explicit comparison.
Consumers, for example, can be asked to rank a set
of product brands, or psychologists may be asked to
rank a number of psychology journals (see Gifi, 1990,
pp- 183-187). Such rankings are usually collected in a
data matrix, with the stimuli, options, or objects in the
rows and the persons (judges) in the columns acting as
the variables of the analysis. This situation was actually
the very same one in which Tucker’s (1960) vector
model was applied in Carroll (1972) to preference data.
In the latter mentioned application, the analysis was
metric because no optimal scaling of the rankings was
possible. Because rankings are ordinal by definition,
optimal scaling by monotonic (spline) transformations
appears most appropriate.

3.8.2.2. Q-Sort and Free-Sort Data

Another situation for which the persons act as
variables is in the so-called analysis of Q-sort data.
Here, anumber of judges have to group N given objects
in a predetermined number of piles (categories), in
which the categories have a particular order and the
frequencies have to follow a normal distribution
as closely as possible. Again, this is a very
natural situation for a CATPCA analysis with ordinal
transformations. When the M judges are merely given
a set of objects and have the liberty to group them



in as many categories as they like, without any given
order of the categories, we use the term free-sort data.
Nominal quantification options are called for in this
case, either in the form of nominal (nonmonotonic
spline) transformations, when the judges seem to group
on one (unknown) dimension, or in the form of mul-
tiple nominal quantifications, when judges use more
than one latent dimension and when different order-
ings of the categories are allowed for each dimension.
(Nominal or nonmonotonic spline transformations will
give the same reordering in each dimension.) Examples
of multiple nominal quantifications in free-sort data
can be found, among others, in Van der Kloot and Van
Herk (1991) and Meulman (1996). In the latter paper,
groupings were analyzed in the form of a free-sort of
statements about the so-called rape myth.

3.8.2.3. The Analysis
of Ratings Scales and Test Items

The application of CATPCA in one dimension
is extremely useful because it explores the homo-
geneity between a set of variables that are assumed
to measure the same property (latent characteristic).
Optimal scaling minimizes the heterogeneity and max-
imizes the largest eigenvalue of the correlation matrix.
For an extensive treatment of this particular applica-
tion with its relationship to differential weighting of
variables and classical psychometrics, see Heiser and
Meulman (1994).

3.8.3. CATPCA and the Correlation
Matrix Between the Transformed Variables

In ordinary PCA, the results in a two-dimensional
solution are identical to those in the first two dimen-
sions of a three-dimensional solution. This property
is called nestedness. When quantifications have been
chosen to be optimal in one dimension, the largest
eigenvalue of the correlation matrix is maximized.
When they are optimal for P dimensions, the sum of
the first P eigenvalues is optimized. The latter does
imply that the first eigenvalue, by itself, does not need
to be as large as possible, and because this is true by
definition for the one-dimensional solution, it implies
that CATPCA solutions with different dimensionalities
are not necessarily nested. Inspection of the eigen-
values of the transformed correlation matrix shows
the distribution of the total sum of the eigenvalues
(which is equal to M, the number of variables) over
the optimized and nonoptimized dimensions. When
the CATPCA includes variables with multiple nominal
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quantifications and a more-dimensional solution is
obtained, the situation is somewhat more compli-
cated. The first CATPCA dimension optimizes the
largest eigenvalue between the transformed variables,
including the first set of the multiple nominal quantifi-
cations, whereas the second dimension optimizes the
largest eigenvalue of the same correlation matrix, but
now including the second set of the multiple nominal
quantifications. Therefore, if the primary objective is
to maximize the homogeneity, either in one dimen-
sion for all variables together or in two dimensions,
when the variables seem to form two groups (as in
our example in Section 3.4.3), unordered variables
should be given a nominal (or nonmonotonic spline)
transformation.

3.8.4. Prospects

Because unordered or ordered categorical
variables are so common in the behavioral sciences, the
prospects for nonlinear principal components analysis
seem to be good, especially in contexts where a rela-
tively large number of responses have been collected
and their mutual relationships have to be sorted out,
as in survey research. Another clear application area
for CATPCA is instrument development, where it can
supplement the usual factor analysis and Cronbach’s
a calculations for item selection. Because CATPCA
directly analyzes the data matrix and not the derived
correlation matrix, there need not be the usual concern
to have at least 15 times as many observations as the
number of variables. In fact, CATPCA is eminently
suited for analyses in which there are (many) more
variables than objects.

Finally, we would like to mention that there is
similar optimal scaling software in the SPSS
Categories module for related multivariate analysis
techniques. Among these are CATREG for (multi-
ple) regression analysis with optimal scaling,
CORRESPONDENCE for correspondence analysis,
and OVERALS for nonlinear canonical correlation
analysis (Meulman et al., 1999). Like CATPCA, these
methods allow one to pursue classic objectives of
multivariate analysis when the data do not satisfy
the classic quantitative measurement requirements but
are qualitative.
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