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Discoveries with item response theory (IRT)
principles, since the 1960s, have led to major
breakthroughs in psychological and educa-

tional assessment. For example, using IRT principles,
it is possible to determine the relative standing of an
examinee on the latent continuum by administering any
sample of items from a given domain of knowledge.
This is possible through the principle of invariance
in IRT, which means that item properties such as
difficulty and discrimination can be determined irre-
spective of the ability level of the examinee. Hence,
any set of items from a given domain can be used
to estimate an examinee’s position along the latent
continuum. This is in sharp contrast to the traditional
classical test theory (CTT), in which item statistics are
a function of the specific group of examinees who took
the item, and the examinee’s performance is a function
of the items on the test. That is, in CTT, the same item
may have different p-values depending on the level of
the examinees’ ability taking the item. Similarly, in
CTT, it is not possible to generalize the performance
of an examinee beyond a given set of test items.

The advantages of IRT techniques are associated
with strong models used to characterize examinee
performance on a test, as opposed to the weak models
of CTT that are tautologies and not testable. One can
realize the potentials of IRT modeling and its conse-
quences only if there is a close match between the
model and data. Application of IRT techniques to data

without ensuring the model-data fit can lead to unfair
and unjustified ranking of examinees on the latent
continuum of domain of interest.

The fundamental underlying assumptions of item
response models are monotonicity, dimensionality,
and local independence. Monotonicity implies that
item performance is monotonically related to the
ability. That is, a high-ability examinee has a greater
probability of responding correctly to the item than
a low-ability examinee. Because achievement test
items inherently satisfy this assumption, it is implicitly
assumed.1 Local independence (LI) implies that item
responses are conditionally independent. The condi-
tional ability vector that ensures item independence
is key to determining the dimensionality of data. For
example, if local independence is achieved by con-
ditioning on a unidimensional latent trait, then the
response data are said to be unidimensional. If local
independence is achieved by conditioning on a two-
dimensional latent trait vector, then the response data
are said to be two-dimensional. Hence, local indepen-
dence and dimensionality assumptions are intertwined.
One can only statistically test either of the assumptions
assuming the other.

In addition to these basic foundational assump-
tions, a given model may have other assumptions. For

1. Normally, during the test construction process, if an item does not
satisfy the assumption of monotonicity, it is deleted from the test.
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example, among parametric models, there are models
associated with different item types, such as dichoto-
mous items (item is scored correct vs. incorrect) and
polytomous items (arising from scoring essays and
performance-type tasks). Each model has a set of
assumptions associated with it. For a list of IRT models
for different item formats and their development, refer
to van der Linden and Hambleton (1997). To date, a
great majority of tests are intended to be unidimen-
sional (d = 1). That is, the purpose of the test is to
assess an examinee’s trait level based on his or her
responses to unidimensional test items. Examinee test
performance on a unidimensional test can be summa-
rized with a single scale score. It is also well known
that any unidimensional test is typically influenced
by transient dimensions (abilities) common to just a
few of the items. It is well documented (Hambleton &
Swaminathan, 1985; Humphreys, 1985, 1986; Stout,
1987) that summarizing examinees’ performance with
a single scale score in the presence of transient abilities
is harmless. However, when transient abilities are not
insignificant, such as a paragraph comprehension test,
or when a test is intentionally multidimensional, then
a single scale score is not a meaningful format to sum-
marize examinee performance. A multidimensional or
other appropriate model is needed to summarize exam-
inee performance. Hence, given test data, we need
to empirically determine if unidimensional modeling
and the resulting single-scale score summary is mean-
ingful. If unidimensional modeling is not appropriate,
ways to go about selecting an appropriate model are
needed.

The focus of this chapter is to illustrate modeling
of dichotomous data. Both unidimensional and multi-
dimensional modeling are considered. In the follow-
ing sections, assumptions of local independence and
dimensionality are defined; several tools for assessing
these assumptions will be described, and these tools
will be illustrated with several realistic data sets. Based
on these tools and indices, guidelines for determining
an appropriate model for given data will be delineated.

5.1. Definition of Local

Independence and Dimensionality

The purpose of a majority of standardized tests is
to measure a single construct, ability, or dimen-
sion. Hence, a major question facing any test devel-
opment, analysis, and interpretation is whether it
is appropriate to summarize the performance of an
examinee to test items using a single scaled score.
That is, can the test be modeled using a monotone,

locally independent, unidimensional model? The
answer is simple. If the test items are tapping a single
construct or one dominant dimension, and if the exam-
inee subpopulation taking the test is homogeneous
with respect to the construct being measured, then a
single scaled score will summarize examinees’ per-
formance on the test. Although the answer is simple,
ways of determining that the test indeed is measur-
ing a dominant construct is not so simple. Assuming
that the assumption of monotonicity is checked and
satisfied during the test development process,2 let us
examine the definitions of local independence and
dimensionality.

Let Un = (U1, U2, . . . , Un) denote the item
response pattern of a randomly sampled examinee on a
test of length n. The random variable Ui takes a value
of 1 if the item is correctly answered and 0 if the item
is incorrectly answered. Let� denote the latent ability,
possibly multidimensional, underlying item responses.

Definition 1. The test items Un are said to be
locally independent if

Prob(Un = un|Θ = θ) =
n∏
i=1

Prob(Ui = ui |θ) (1)

for each response pattern un = (u1, u2, . . . , un) and
for all θ. That is, conditional on examinee ability,
responses to different items are independent.

The dimensionality d of a test Un is the minimal
dimensionality required for Θ to produce a model
that is both monotone and locally independent (Stout,
Habing, Douglas, Kim, Roussos, & Zhang, 1996).
When Θ consists of a single component, θ, then the
test is said to be unidimensional. The definition of
local independence provided above is referred to as the
strong local independence (SLI) as it involves complete
independence among items conditioned on examinee
ability. On the other hand, weak local independence
(WLI) involves conditional item pair covariance to be
zero for all items pairs. That is, cov(Ui, Uj |θ) = 0.

Definition 2. The test items Un are said to be
weakly locally independent if

Prob(Ui = ui, Uj = uj |� = θ) = Prob(Ui =
ui |� = θ)Prob(Uj = uj |� = θ) (2)

for all n(n−1)/2 items pairs and for all θ . WLI is also
referred to as pairwise local independence (McDonald,
1994, 1997). Obviously, SLI implies WLI. It is

2. Monotonicity of items is established by high positive point-biserial
correlation between the item score and the test score.
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commonly accepted that, if the unidimensionality can
be achieved through pairwise local independence, then
unidimensionality is closely approximated through
SLI (Stout, 2002).

From a factor-analytic point of view, it is not realistic
to construct a strictly unidimensional test. In any test,
it is not uncommon to find transient abilities common
to one or more items (Humphreys, 1985; Tucker,
Koopman, & Linn, 1969). In this sense, unidimen-
sionality refers to the dominant ability measured by
the test. The WLI, although very useful for empiri-
cal investigation of a dimensional structure underlying
test data, does not capture the concept of dominant
dimensions underlying data.

Stout (1987, 1990, 2002) theoretically conceptu-
alized the separation of dominant dimensions from
inessential or transient dimensions and referred to
them as essential dimensions, meaning what the test
is essentially measuring. Stout (1987) also developed
a statistical test of essential unidimensionality. In
his conceptual formulation and definition of essential
dimensionality, Stout (1990) used the “infinite-length
test” abstraction. That is, to understand the structure
underlying test data resulting from administering a
finite test to a finite group of examinees, Stout derived
theoretical foundational results based on the abstrac-
tion of an infinite-length test U∞ administered to a
large group of examinees. Using this conceptual frame-
work of infinite-length test, essential dimensionality is
defined as follows.

Definition 3. A test U∞ is essentially unidimen-
sional with respect to the unidimensional latent random
variable � if, for all θ ,∑

1≤i<j≤n |Cov(Ui, Uj |� = θ)|(
n

2

) → 0, (3)

as n → ∞. The above definition implies that the
average covariance, in the limit, approaches 0 as the
test length increases to∞. In other words, transient or
nonessential traits common to one or more items may
result in nonzero conditional covariance. However, the
average covariance approaches 0. Essential dimension-
ality is a weaker form of strict dimensionality based on
either SLI or WLI.

The definition of essential dimensionality has further
led to theoretical results establishing the usefulness
of number-correct score as a consistent estimator of
unidimensional ability on the latent true-score scale
(Stout, 1990) and to nonparametric estimation of item
response functions (Douglas & Cohen, 2001).

5.2. Geometrical Representation

of Multidimensional Structure

Although, in reality, dimensionality is determined by
test items together with the examinee population tak-
ing the test, the geometrical description of items in
the latent space provides an intuitive understanding of
how item direction with respect to the test direction
contributes to the dimensional structure underlying test
data. In explaining the dimensional structure of test
items geometrically, only two-dimensional test items
are considered.

An item can be geometrically represented by a
vector, which, if extended, passes through the origin
of a coordinate system. The coordinate axes represent
the two dimensions, θ1 and θ2, underlying test data.
The origin of the coordinate system is the population
multidimensional trait-level mean. The direction of the
vector represents the θ1, θ2−, composite that has
the maximum discrimination, which is appropriately
defined for the model in use. The length of the vector
is a measure of the magnitude of the item’s discrim-
ination, denoted by MDISC = (a2

1 + a2
2)

1/2, where
a1 and a2 are the discriminating parameters associ-
ated with the two dimensions. The location of the
base of the item vector corresponds to that level of
multidimensional ability at which the probability of
correct response to the item is 0.5. The item vector
is orthogonal to the p = .5 equiprobability contour
(Ackerman, 1996; Reckase, 1997). For example, in a
two-dimensional space, items are located only in the
first or third quadrants. This is because item discrim-
inations can only take positive values. Easy items are
located in the third quadrant and difficult items in the
first quadrant. Figure 5.1 shows vector representation
of items in a two-dimensional space. Item 1 is an easy
item with low discrimination, whereas Item 2 and Item
3 are more difficult and high-discriminating items.
The angle direction of the item measured from the
θ1-axis represents a composite of dimensions that
the item is best measuring. For example, in a two-
dimensional space, if the angle distance of an item from
the θ1-dimension is small, then the item is measuring
mostly the θ1-dimension (Item 3 in Figure 5.1). On
the other hand, if the item vector is at 45 degrees, then
the item’s ability composite measures both dimensions
equally (Item 1 in Figure 5.1).

Intuitively speaking, a test of items whose vectors
cluster in a narrow sector (i.e., where all the items are
measuring similar ability composites) is considered to
be essentially unidimensional. If all test items lie on the
coordinate axis (as opposed to a narrow sector), then
the test would be considered strictly unidimensional.
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Figure 5.1 Vector Representation of
Two-Dimensional Items
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The way item vectors cluster together with respect
to the coordinate axes, in a multidimensional space,
determines the dimensional structure of the test. For
the two-dimensional latent space, Figure 5.2 provides
an example of a test with two clusters, whose direc-
tion of best measurement is represented by vectors
�d1 and�d2.3 The direction of best-measurement vec-
tor �d1 is a weighted average of item discrimination
vectors comprising its cluster. The same is true for
�d2. The direction of best measurement of the total
test comprising the two clusters is represented by the
vector �TT.

A test is considered to have simple structure if all
items in the test lie along the coordinate axes. In this
case, although the dimensional clusters may be corre-
lated, each is an independent item cluster. If, on the
other hand, test items are spread along a narrow sec-
tor surrounding the coordinate axes, then each narrow
sector of items is considered exhibiting an approximate
simple structure. Figure 5.2 illustrates an example of an
approximate simple structures test with two item clus-
ters. Mathematically speaking, approximate simple
structure can be defined as a k-dimensional latent co-
ordinate axis existing within a d-dimensional latent
space (d ≥ k) such that items only lie within narrow
sectors surrounding the coordinate axis. In such a case,
there are k-dominant dimensions (Stout et al., 1996).

Zhang and Stout (1999a) have proved theoret-
ical results for using conditional covariances as

3. Coordinate axes are not necessarily orthogonal. For example, if
cov(�i ,�j ) > 0, then the coordinate axes are not orthogonal.

Figure 5.2 An Example of an Approximate Simple
Structure Test
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the basis for determining the dimensional structure
underlying multidimensional data. The central theme
of their results is that the dimensional structure of
test data can be completely discovered using item pair
conditional covariances (CCOV), conditional on the
test vector represented by �TT, provided there is an
approximate simple structure underlying test data. The
pattern of CCOVij is positive if items i and j measure
similar ability composites, negative if items i and j
measure different ability composites, and 0 if one of
the items measures the same composite as �TT. For
example, in the case of a two-dimensional structure,
as in Figure 5.2, the CCOV of an item pair is positive
if the item vectors in the pair lie on the same side of the
conditioning variable’s direction of best measurement,
�TT (e.g., Items 3 and 4). The CCOV is negative if
the item vectors lie on the opposite sides of �TT (e.g.,
Items 1 and 2). The CCOV is zero if one of the items
lies near the direction of best measurement, �TT. This
reasoning has been generalized to higher dimensions
by Zhang and Stout through d − 1 dimensional hyper-
planes orthogonal to �TT and by projecting each item
onto this hyperplane.

The magnitude of CCOV indicates the degree of
closeness of items’ directions of best measurement
to each other and their closeness to the conditional
vector, �TT. CCOV increases as the angle between
item pair vectors decreases and as the angle either
of the items makes with the �TT-axis increases. The
CCOV also relates to the degree of discrimination of
the vectors. The CCOV increases in proportion to the
items’ discrimination vectors. Hence, CCOVs form
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the basis for establishing the dimensional structure
underlying given data. Methods for assessing dimen-
sional structure based on CCOVs are described and
illustrated below.

5.3. Methods to Assess

the Dimensional Structure

Underlying Test Data

This section describes nonparametric methodologies
for empirically determining the dimensional structure
underlying test data based on CCOVs. It is assumed
that one would use these procedures after the test is
well developed and its reliability and validity have been
established. As explained earlier, it is very important to
assess the dimensional structure of the test to determine
the test scoring and related issues such as equating
and differential item functioning. If the unidimensional
model is not appropriate, then recommendations will
be made about finding an appropriate model.

Nonparametric tools DIMTEST and DETECT will
be used to illustrate the steps involved in determining
the correct model for data. We chose these methods
because they are not dependent on any particular
parametric model for scoring and describing data,
and they are simple and easy to use. DIMTEST and
DETECT are described below, followed by a flowchart
to correctly determine the appropriate model for
given data.

5.3.1. DIMTEST

DIMTEST (Stout, 1987; Nandakumar & Stout,
1993; Stout, Froelich, & Gao, 2001) is a nonparametric
statistical procedure designed to test the hypothesis
that the test data were generated from an LI, d = 1
model. The procedure for testing the null hypothesis
consists of two steps. In Step 1, n test items are par-
titioned into two subtests, AT and PT. The AT subtest
is of length m(4 ≤ m < half the test length), and
the PT subtest is of length n − m. The AT subtest
consists of items that are believed to be dimension-
ally homogeneous, and the PT subtest consists of the
remaining items of the test. One way to select items
for AT and PT subtests is through linear factor analysis
of the tetrachoric correlation matrix (Froelich, 2000;
Hattie, Krakowski, Rogers, & Swaminathan, 1996;
Nandakumar & Stout, 1993). This is an automated
procedure that uses part of the sample to select items
for AT and PT subtests. Items loading on the same

dimension are selected into the AT subtest. Expert
opinion is another way to select items into these sub-
tests (Seraphine, 2000). Because of the manner in
which items are selected, when multidimensionality
is present in test data, items in the AT subtest will
be predominantly measuring the same unidimensional
construct, whereas the remaining items in the PT sub-
test will be multidimensional in nature. If, on the other
hand, the test is essentially unidimensional, then items
in both the AT and PT subtests will be measuring the
same valid unidimensional construct.

In Step 2, the DIMTEST statistic, T , is computed as
follows. Examinees are grouped into subgroups based
on their score on the PT subtest consisting of n − m
items. The kth subgroup consists of examinees whose
total score on the PT subtest, denoted by XPT, is k.
In each subgroup k, two variance components, σ̂ 2

k and
σ̂ 2
U,k, are computed using items in the AT subtest:

σ̂ 2
k =

1

Jk

Jk∑
j=1

(Y
(k)
j − Ȳ (k))2

and

σ̂ 2
U,k =

m∑
i=1

P̂
(k)
i (1− p̂(k)i ),

where

Y
(k)
j =

m∑
i=1

U
(k)
ij , Ȳ (k) = 1

Jk

Jk∑
j=1

Y
(k)
j ,

p̂
(k)
i =

1

Jk

Jk∑
j=1

U
(k)
ij ,

andUk
ij denotes the response of the j th examinee from

subgroup k to the ith assessment item in AT, and Jk
denotes the number of examinees in the subgroup k.
After eliminating sparse subgroups containing too few
examinees, letK denote the total number of subgroups
used in the computation of the statistic T .

For each examinee subgroup k, compute

TL,k = σ̂ 2
k − σ̂ 2

U,k = 2
∑

i < l ∈AT

Ĉov(Ui, Ul |XPT = k),

where Ĉov(Ui, Ul |XPT = k) is an estimate of the
covariance between items Ui and Ul for examinees
whose score on the PT subtest is k.

The statistic TL is given by

TL =
∑K

k=1 TL,k√∑K
k=1 S

2
k

,
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where S2
k is the appropriately computed asymptotic

variance (Nandakumar & Stout, 1993; Stout et al.,
2001) of the statistic TL,k. For finite test lengths, the
statistic TL is known to exhibit positive bias (Stout,
1987). The positive bias in TL is eliminated using
a bootstrap technique as follows: For each item, an
estimate of its unidimensional item response function
(IRF) is computed using a kernel-smoothing procedure
(Douglas, 1997; Ramsay, 1991). Using the estimated
IRFs, examinee responses are generated for each of
the items. Using the generated data and the original
AT and PT subtest partition, another DIMTEST statis-
tic is computed, denoted by TG (see Froelich, 2000,
for details). This process of the random generation of
unidimensional data with kernel-smoothed estimates
of items and the computation of TG is repeated N
times, and the average is denoted by T̄G.T̄G denotes the
inflation or bias in TL that is due to the finite test length
administered to a finite sample of examinees. The final
bias-corrected DIMTEST statistic T is given by

T = TL − T̄G√
(1+ 1/N)

. (4)

The statistic T follows the standard normal dis-
tribution as the number of items and the number of
examinees tend to infinity. The null hypothesis of
unidimensionality is rejected at level α if T is larger
than the 100(1−α)th percentile of the standard normal
distribution.

A number of studies have found the DIMTEST to
be a reliable and consistent methodology for assessing
unidimensionality. It is also extremely powerful com-
pared to other methodologies in its power to detect
multidimensionality (Hattie et al., 1996; Nandakumar,
1993, 1994; Nandakumar & Stout, 1993). The current
version of DIMTEST, with recent revisions by Stout
et al. (2001), is even more powerful than the former
version and can be applied on test sizes as small as
15 items.

5.3.2. DETECT

DETECT (Kim, 1994; Zhang & Stout, 1999a,
1999b) is a statistical methodology for determining
the multidimensional structure underlying test data. It
partitions the test items into clusters in such a manner
that items within clusters are dimensionally cohesive.
The DETECT methodology uses the theory of condi-
tional covariances to arrive at the partitioning of test
items into clusters. As a result, items within a clus-
ter have positive CCOVs with each other; and items
from different clusters have negative CCOVs. The

DETECT procedure also quantifies the degree of
multidimensionality present in given test data. It is
important to note that the number of dimensions and
the degree of multidimensionality are two distinct
pieces of information. For example, one could have
a two-dimensional test in which the two item clusters
are dimensionally far apart or close together. In the
former case, the degree of multidimensionality is more
than in the latter case. For example, in Figure 5.2,
clusters represented by vectors �d1 and �d2 are the
two dimensions underlying test data comprising all
test items. The angle between these two vectors deter-
mines the degree of multidimensionality present in
test data. If the angle between vectors �d1 and �d2

is small, the degree of multidimensionality present in
test data is small, implying that the two clusters are
dimensionally similar. If, on the other hand, the angle
between the vectors is large, then two item clusters are
dimensionally apart.

The theoretical computation of the DETECT index
is briefly described here (for details, see Zhang &
Stout, 1999b). Letndenote the number of dichotomous
items of a test. Let P = {A1, A2, . . . , Ak} denote a
partition of the n test items into k clusters. The theo-
retical DETECT index D(P ), which gives the degree
of multidimensionality of the partition P, is defined as

D(P ) = 2

n(n− 1)

×
∑

1≤i≤j≤N
δijE[Cov(Xi,Xj |�TT = θ)], (5)

where�TT is the test composite, Xi and Xj are scores
on items i and j , and

δij =



1 if items i and j are in the
same cluster of P

−1 otherwise.
(6)

The index D(P ) is a measure of the degree of
multidimensionality present in the partition P. It is
obvious that numerous ways exist to partition items of
a test into clusters, and each partition produces a value
of D(P ). Let P ∗ be a partition such that D(P ∗) =
max{D(P )|P is a partition}. Then P ∗ is treated as the
optimal simple dimensionality structure of the test, and
D(P ∗) is treated as the maximum amount of multidi-
mensionality present in the test data. For example, for
a purely unidimensional test, the optimal dimension-
ality structure of the test is that all the items will be
partitioned into one single cluster, and D(P ∗) for the
test will be close to 0. It has been shown by Zhang and
Stout (1999b) that when there is a true simple structure
underlying test data,D(P )will be maximized only for
the correct partition.
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To determine if the partitionP ∗, which produced the
maximum DETECT indexD(P ), is indeed the correct
simple structure of the test, we can use the following
ratio:

R(P ∗) = D(P ∗)

D̃(P ∗)
, (7)

where

D̃(P ∗) = 2

n(n− 1)

×
∑

1≤i≤j≤n
|E[Cov(Xi,Xj |�TT = θ)]|. (8)

When there is an approximate simple structure
underlying test data, then the ratioR(P ∗) is close to 1.
The extent to which R(P ∗) differs from 1 is indicative
of the degree to which the test structure deviates from
the simple structure.

Because the true ability of an examinee is unob-
servable, E[Cov(Xi,Xj |�TT = θ)] of equation (5)
cannot be computed directly but must be estimated
using observable data. There are two natural estimates
of E[Cov(Xi,Xj |�TT = θ)]:

Ĉovij(T ) =
N∑
m=0

Jm

J
Ĉov(Xi,Xj |T = m), (9)

where the conditional score T = ∑N
l=1Xl is the total

score of all test items, J is the total number of exam-
inees, and Jm is the number of examinees in subgroup
m with the total score T = m. The other is the esti-
mator based on the total score of remaining items
given by

Ĉovij(S) =
N−2∑
m=0

Jm

J
Ĉov(Xi,Xj |S = m), (10)

where the score S = ∑N
l=1,l=/ i,j Xl is the total score

of the remaining items, other than items i and j, and
Jm is the number of examinees in subgroupmwith the
conditional score S = m.

When a test is unidimensional, Ĉovij(T ) tends to
be negative because items Xi and Xj are part of T .
Therefore, Ĉovij(T ) as an estimator ofE[Cov(Xi,Xj |
�T = θ)] results in a negative bias (Junker, 1993;
Zhang & Stout, 1999a). On the other hand, Ĉovij(S)

tends to be positive and results in a positive bias
(Holland & Rosenbaum, 1986; Rosenbaum, 1984;
Zhang & Stout, 1999a).

Because Ĉovij(T ) tends to have a negative bias and
Ĉovij(S) tends to have a positive bias as estimators
of E[Cov(Xi,Xj |�T = θ)] in the unidimensional
case, Zhang and Stout (1999b) proposed an aver-
age of these two estimates, resulting in the following

index as an estimator of the theoretical DETECT
index D(P ):

DZS(P ) = 2

n(n− 1)

∑
1≤i≤j≤N

δijĈov
∗
ij, (11)

where

Ĉov
∗
ij =

1

2
[Ĉovij(S)+ Ĉovij(T )]. (12)

An estimate of R(P ) can be similarly obtained. The
DETECT software adopts a special technique, called
the genetic algorithm, to divide items of a test into
different dimensional clusters. The genetic algorithm
iteratively mutates items to different dimensional clus-
ters until the maximum degree of multidimensionality
of the test Dmax, an estimate of D(P ∗), is obtained.
The dimensional cluster pattern that produces Dmax

is treated as the final dimensionality structure of the
test. The process is accelerated when the initial clus-
ter solution for the genetic algorithm is obtained via
cluster analysis developed by Roussos, Stout, and
Marden (1993).

To interpret the results of DETECT in applications,
Zhang and Stout (1999b) provided the following rule of
thumb based on simulation studies. Divide the exam-
inee sample into two parts: sample1 and sample2 (cross
validation sample). Using sample1, find item partition,
P ∗1 , that maximizes the detect index for sample1, called
Dmax. Using sample2, find P ∗2 , that maximizes the
detect index for sample2. Then using the item parti-
tion P ∗2 , from the cross validation sample, compute
the detect value for sample1, called Dref . Generally
is less than or equal to Dmax. A test is judged to be
essentially unidimensional if Dref is less than 0.1 or
Dmax−Dref

Dref
> .5.

5.4. Data Modeling

An algorithm is proposed below to model test data.
As emphasized hitherto, the goal is to determine if
unidimensional scoring is meaningful for given data.
Although any appropriate methodology can be used
to carry out the steps of the algorithm, DIMTEST
and DETECT are recommended, as they are specif-
ically developed for this purpose, easy to use, and
nonparametric.

The flowchart in Figure 5.3 details the steps for
test modeling, which are described in the algorithm
following the flowchart. These steps are illustrated
through the analyses of simulated data in the following
section.
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Figure 5.3 Flowchart Describing Steps for Test Modeling
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5.4.1. An Algorithm for Test Modeling

Step 1. Use DIMTEST to determine if dimension-
ality, d, underlying test data is essentially 1.

Step 2. If d = 1, then fit a unidimensional model
to data. Choose an appropriate unidimensional
model. Exit.

Step 3. If d > 1, then investigate if test items can be
decomposed into unidimensional clusters using
DETECT.

Step 4. Test each cluster using DIMTEST to deter-
mine if d = 1.

Step 5. Combine clusters, if necessary, based on
expert opinion and item content of the AT subtest
of DIMTEST. Again test the hypothesis d = 1.

Step 6. If d = 1, go to Step 2. If d > 1 for any
of the clusters, either delete them from the test or
explore multidimensional modeling.

If unidimensional modeling is appropriate either on
the whole test or on subtests (Step 2), one can fit
either a parametric model or a nonparametric model.
If a parametric model is desired, there are several
models to choose from. Some of the commonly used
models are the one-parameter logistic model (1PL),
the two-parameter logistic model (2PL), or the three-
parameter logistic model (3PL). Parameters of these
models can be estimated using standard computer
software such as BILOG (Mislevy & Bock, 1989),
MULTILOG (Thissen, 1991), and RUMM (Sheridan,
Andrich, & Luo, 1998). For more detailed information
about fitting various parametric models, estimating
parameters, and scoring, refer to Embretson and
Reise (2000) and Thissen and Wainer (2001). An

alternative is nonparametric modeling. Nonparametric
estimation of item response functions can be carried
out using the software TESTGRAF (Douglas & Cohen,
2001; Ramsay, 1993). If unidimensional modeling
is not appropriate either for the whole test or after
splitting into subtests (Step 6), multidimensional mod-
eling of data is necessary. Currently, multidimensional
models and estimation of their parameters are lim-
ited. One program that has shown a lot of promise in
estimating multidimensional parameters is NOHARM
(Fraser, 1986). For details about fitting multidimen-
sional models, see Reckase (1997), McDonald (1997),
and Ackerman, Neustel, and Humbo (2002).

5.4.2. Illustration of Test Modeling

Data modeling will be illustrated using simulated
data. Unidimensional and two-dimensional data were
simulated. All data sets had 30 items and 2,000
examinees, which are typical values usually encoun-
tered in applications. One unidimensional test and
four two-dimensional tests were generated. Unidi-
mensional data were generated using a unidimen-
sional two-parameter logistic model (Hambleton &
Swaminathan, 1985).

Pi(θj ) = 1

1+ exp[−1.7[ai(θj − bi)]] , (13)

where Pi(θj ) is the probability of a correct response
to the dichotomous item i by an examinee with ability
(θj ), ai is the discrimination parameter of the dichot-
omous item i, and bi is the difficulty parameter of
item i.
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Figure 5.4 Item Vectors Representing the Simple
Structure Test
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Examinee abilities were randomly generated from
the standard normal distribution with mean 0 and the
standard deviation 1. Item parameters were randomly
selected from a pool of parameter estimates from
several nationally administered standardized achieve-
ment tests.

Two types of two-dimensional data were generated:
simple structure and complex structure. Item param-
eters for the simple structure were such that items of
each dimension were located within 15 degrees from
the respective axes, as illustrated in Figure 5.4. Item
parameters for the complex structure were selected
from a two-dimensional calibration of an American
College Test (ACT) mathematics test in which items
span the entire two-dimensional space, as illustrated in
Figure 5.5.

Two levels of correlation between dimensions
(ρθ1,θ2)were considered: .5 and .7. This resulted in four
two-dimensional tests: simple structure with ρ = .5,
simple structure with ρ = .7, complex structure with
ρ = .5, and complex structure with ρ = .7. For
each two-dimensional test, the first half of the items
(Items 1 to 15) measured predominantly the first
dimension, and the second half measured predomi-
nantly the second dimension. Each examinee’s abil-
ities θ1 and θ2 were randomly generated from a
bivariate normal distribution with an appropriate
correlation coefficient between the abilities. Two-
dimensional data were generated using the following

Figure 5.5 Item Vectors Representing the Complex
Structure Test
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two-dimensional, two-parameter compensatory model
(Reckase, 1997; Reckase & McKinley, 1983):

Pi(θ1j , θ2j ) = 1

1+ exp[−1.7(a1iθ1j + a2iθ2j + bi)] ,
(14)

where Pi(θ1j , θ2j ) is the probability of a correct
response to the dichotomous item i by an exami-
nee j with ability (θ1j , θ2j ), a1i is the discrimination
parameter of the dichotomous item i on dimension
θ1, a2i is the discrimination parameter of the item i

on dimension θ2, and bi is the difficulty parameter
of item i. The simulated data sets are described in
Table 5.1.

5.4.3. Results of Data Analyses

For each data set, the correct model was arrived at
by following the steps described in the algorithm for
test modeling, as illustrated in Figure 5.3. Results of
the analyses are tabulated in Tables 5.2 and 5.3. These
results will be summarized below in detail for each of
the tests.

Uni.dat: DIMTEST results (T = 0.85 and p =
.20) showed that it is essentially unidimensional.
Hence, unidimensional modeling is appropriate for
these data.
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Table 5.1 Description of Simulated Data

Test # Items # Examinees ρa Dimensionality

uni.dat 30 2,000 — d = 1
simplr5.dat 30 2,000 0.5 d = 2, simple structure
simplr7.dat 30 2,000 0.7 d = 2, simple structure
realr5.dat 30 2,000 0.5 d = 2, complex structure
realr7.dat 30 2,000 0.7 d = 2, complex structure

a. Denotes the correlation between latent abilities for two-dimensional tests.

Table 5.2 DIMTEST and DETECT Results

DIMTEST DETECT

Test T p Dmax R # Clusters Item Clusters

uni.dat 0.85 .20 — — — —
simplr5.dat 9.69 .00 1.33 0.98 2 1–15, 16–30
simplr7.dat 6.0 .00 1.58 0.74 2 1–15, 16–30
realr5.dat 2.63 .00 0.16 0.29 3 (1, 4, 6, 7, 10, 11, 13, 14, 15, 27);

(2, 5, 8, 9, 12, 19, 23, 29);
(3, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 30)

realr7.dat 0.86 .19 — — — —

Table 5.3 Further Analyses of Two-Dimensional Data

DIMTEST DETECT

Test Item Cluster T P Dmax R

simplr5.dat 1–15 –0.77 .78 — —
16–30 0.03 .49 — —

simplr7.dat 1–15 –1.36 .91 — —
16–30 0.90 .18 — —

realr5.dat 1, 4, 6, 7, 10, 11, 13, 14, 15, 27 –.76 .78 — —
2, 5, 8, 9, 12, 19, 23, 29 — — 0.01 0.02
3, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 30 1.04 .15

realr5.dat 1, 2, 4 to 15, 19, 23, 27, 29 0.52 .30 — —
clusters 1 and 2

simplr5.dat: DIMTEST results (T = 9.69 and
p = .00) indicated the presence of more than one dom-
inant dimension underlying these test data. DETECT
analyses resulted in a two-cluster solution with a
high value of Dmax (1.33) and an R-value close to
1, indicating two dimensions with a simple struc-
ture solution. As expected, Items 1 to 15 formed one
cluster, and the rest of the items formed the second
cluster. Further analyses on these clusters, shown in
Table 5.3, showed that each of these clusters is uni-
dimensional (T = −0.77 and p = .78 for Items 1
to 15; T = 0.03 and p = .49 for Items 16 to 30).
Hence, these subtests are amenable to unidimensional
modeling.

simplr7.dat: These test data were also assessed
as multidimensional (T = 6.0 and p = .00) by
DIMTEST. DETECT analyses on these data resulted
in a two-cluster solution. However, the Dmax (0.58)
and R-values (0.74) were not high, indicating that
the simple structure solution is not as explicit as it
was for simplr5.dat. This is due to high correlation
between latent abilities. Nonetheless, it is noteworthy
that DETECT was able to correctly classify items into
clusters given the high degree of correlation between
abilities. Further analysis on the clusters, shown in
Table 5.3, showed that each cluster is unidimensional
(T = −1.36 and p = .91 for Items 1 to 15; T = 0.90
and p = .18 for Items 16 to 30).
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Figure 5.6 Item Vectors Representing the Three Clusters in the Test: realr5
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realr5.dat: DIMTEST results (T = 2.63 and
p = .00) indicated that the data violated the
unidimensionality assumption. Subsequent DETECT
analyses showed three clusters. Although the DETECT
procedure split the test items into three clusters, the
corresponding Dmax (0.16) and R-values (0.29) were
small, indicating that the degree of multidimensional-
ity was not of a concern. In fact, the Dmax value was
within the range of what is expected for a unidimen-
sional test. Here, the unidimensionality assumption
is violated. However, there is not enough evidence
of multidimensionality to warrant significant separate
clusters.

To understand the nature of multidimensionality,
each of the clusters was further analyzed for unidi-
mensionality using DIMTEST. As the results suggest
in Table 5.3, Clusters 1 and 3 were confirmed as uni-
dimensional by DIMTEST (T = −0.76 and p = .78
for Cluster 1; T = 1.04 and p = .15 for Cluster 3).
Because Cluster 2 contained too few items to apply
DIMTEST, its dimensionality was estimated using
DETECT. Note that the Dmax value (0.01) associated
with Cluster 3 was very small and resembles a value
associated with unidimensional tests. Hence, one may
treat this cluster as unidimensional.

DIMTEST also provided clues regarding the
source of the multidimensionality. If the null hypoth-
esis of d = 1 is rejected, it means that items in the
subtest AT are contributing to multidimensionality.
Upon observing the AT subtest of DIMTEST results
of realr5.dat, it was found that there was an overlap
of items between Cluster 3 and the AT subtest. Hence,
it was conjectured that Cluster 3 was dimensionally
distinct from Clusters 1 and 2. Hence, Clusters 1 and
2 were combined to confirm if the combined subtest
is unidimensional. DIMTEST analysis confirmed

unidimensionality of this subtest (T = 0.52 and
p = .30). Hence, there are two unidimensional sub-
tests of realr5.dat.

Figure 5.6 shows a graphical display of vector plots
of items in the three clusters identified by DETECT.
Contrasting Figures 5.5 and 5.6, it can be seen that
the item vectors in Figure 5.5 (in which abilities have
a correlation of 0.5) are split into three clusters by
the DETECT procedure. The test composite vector of
Cluster 1 is at 23.8 degrees from the θ1-axis, the test
composite vector of Cluster 2 is at 45.7 degrees from
the θ1-axis, and the test composite vector of Cluster 3 is
at 65.2 degrees from the θ1-axis. Both the DIMTEST
and DETECT procedures are sensitive to the differ-
ences among these three clusters. As the detailed
analyses revealed, Clusters 1 and 2 can be combined
to form a unidimensional subtest, whereas Cluster 3
is an independent cluster dimensionally different from
the other two clusters.

realr7.dat: DIMTEST analyses of this test revealed
unidimensionality (T = 0.86 andp = .19). This is not
surprising as the items span the entire two-dimensional
space in which the two abilities are highly correlated.
Hence, this group of items is best captured by a unidi-
mensional vector encompassing all items in the space.
Unidimensional scoring is the best way to summarize
these data.

In summary, unidimensional modeling was appro-
priate for the following test data: uni.dat and realr7.dat.
The former is an inherently unidimensional test,
whereas the latter resembles a unidimensional test
because of high correlation between abilities coupled
with items spanning the entire two-dimensional space,
as in Figure 5.5. For both of these tests, the DIMTEST
results indicated unidimensionality. Two-dimensional
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data sets—simplr5.dat and simplr7.dat, both
simple-structure tests—were assessed as multidimen-
sional based on DIMTEST analyses. DETECT results
confirmed this fact by indicating a high degree of
multidimensionality, as evidenced by large Dmax and
R-values. It is remarkable that DETECT, despite
highly correlated abilities for simplr7.dat, correctly
partitioned test items into clusters/subtests. The sub-
tests of simplr5.dat and simplr7.dat were further
assessed by DIMTEST as unidimensional. Hence, uni-
dimensional modeling for each of these subtests is
meaningful. Among all simulated test data, the dimen-
sionality structure of realr5.dat turned out to be the
most complex. For these test data, even though the
DIMTEST analyses indicated the presence of multi-
dimensionality, DETECT analyses indicated a very
low degree of multidimensionalily. Further investiga-
tion and detection of the source of multidimensionality
in realr5.dat led to the identification of two subtests,
which were each unidimensional. Hence, all three
two-dimensional tests could be split into subtests for
unidimensional modeling or could be combined for
two-dimensional modeling and scoring.

5.5. Summary and Conclusions

The aim of a test is to accurately capture the exam-
inee’s position on a continuum of latent trait(s) of
interest. To accomplish this, one must use a model
that best explains given data, which is an inter-
action between items and the examinee population
taking the test. Most commonly used models to
explain test data comprise monotone, local inde-
pendent, and unidimensional assumptions. However,
increasingly, tests are designed to measure more than
one dominant trait. Hence, it has become ever more
important to empirically investigate the suitability
of the unidimensional modeling of test data. This
chapter has provided a modeling algorithm using a
series of procedures to investigate whether test data
are amenable to monotone, local independent, and
unidimensional modeling. The proposed algorithm
for test modeling was illustrated using simulated test
data. Although the algorithm described here provides a
framework for test modeling, the process is more of an
art than a science. Often, data in the real world may not
strictly satisfy the criteria proposed here for test model-
ing. For example, results of DIMTEST and DETECT
may lead to conclusions that test data do not adhere
to unidimensional modeling. At the same time, test
data may not warrant multidimensional modeling (e.g.,

realr5.dat). In such a situation, it is important to go
beyond statistical analyses and consult content experts
and test specifications to decide the most appropriate
modeling of test data. Clearly, modeling test data
involves many decisions and thus is more a craft than
an exact science.

Another important aspect of test modeling is to
consider implications of dimensionality considera-
tions. There are well-established methodologies and
a choice of software for fitting unidimensional models
and estimating parameters of items and examinees.
Hence, the selection of multidimensional models
over unidimensional models needs careful exami-
nation. Other important factors to consider are the
cost, improvement in accuracy and understanding
of the results, and communication of results with
the public.
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