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CHAPTER 8

Chapter 8 is a response to three frequently asked questions about data. 
The first section discusses the implications of missing data. What do 

you do when some items of information are unobtainable or are mysteri-
ously missing from your data pool? There is a certain amount of controversy 
about the treatment of missing data, and the answers range from the simple 
to the complex. The second section confronts the issue of outliers, those data 
points or responses from research participants that seem to lie outside the 
range of the bulk of the data. Here, too, many solutions are possible. Our 
recommendations rest on making an adequate assessment of the nature and 
seriousness of the problem. Finally, we address the question of what to do 
with data that are not normally distributed. This issue was broached initially 
in Chapter 5 in the context of the assumptions that provide the foundation 
for statistical testing. In practice, however, data do not always behave as 
they do in theory. When violations of the assumption of normality warrant 
special procedures, the researcher needs to know what to do. In this chapter, 
we offer our suggestions.

HOW DO I DEAL WITH MISSING VALUES?

As we gather data for each case in a research endeavor, some items of informa-
tion almost certainly will be unobtainable. These incomplete or lost responses 
are referred to as missing values and result in an incomplete set of data for 

how do I deal wIth  
MIssIng Values, outlIeRs,  
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some cases. Values may be missing for numerous reasons. Following is a list of 
only a few of the possible explanations:

•• The respondent refused to answer one or more questions on a survey.
•• The respondent is not home when the interviewer calls.
•• During a phone interview, the respondent hangs up.
•• An interviewer inadvertently skips one or more questions.
•• An experimental animal dies halfway through the study.
•• A recording instrument fails.
•• A survey is collated improperly, and a page is left out of some surveys.
•• Data collected by other persons or organizations—the US Census, for 

example—may not have certain pieces of information available for every 
case.

Missing data are an unavoidable reality in research. The implications of 
missing data include the possibility of making inferences on the basis of sample 
data that are inadvertently biased in unknown directions, as well as being 
forced to rely on reduced sample sizes for statistical analysis. What does the 
researcher do? Ignore missing data? Fill in arbitrary values to complete the 
distribution of scores?

The nature of statistical inference, generalizing from sample observations to 
conclusions about populations, presupposes that data are missing; that is, the 
sample differs from the population precisely because it does not contain all the 
observations within the population. The logic of statistical inference, however, 
presumes that the sample is randomly drawn from the population. Similarly, 
whether the missing data within a sample are random is an important consid-
eration. When data are missing in a random fashion, there is no systematic 
difference between the available data and the missing data; they are both ran-
dom subsets of the data composing the entire sample. 

There is no acknowledged way of making this determination, but some 
guidelines are available to the researcher. In practice, we become suspicious if 
a large number of data are missing from a certain variable, because it cannot 
be assumed that the missing data are representative of the remaining data. The 
missing values may imply, for example, that certain types of subjects had dif-
ficulty responding to an item. Excising the scores of these subjects would be 
prejudicial. For example, people with certain characteristics may be very will-
ing to answer questions about their sexual activity, whereas people with other 
characteristics may be equally unwilling to do so. These different sorts of 
people are probably different on a number of variables related to their attitudes 
and values about sexuality and morality.
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As a first step, the researcher seeks to determine the extent of the missing 
data. The procedures suggested for the examination of data in Chapter 2 will 
make the problem very clear. Note that in some cases, data should be missing, 
as when a question is the result of a filter from a previous question. For exam-
ple, it makes no sense to ask people the age at which they were married when 
a previous question has established that they have never been married. All 
single, never-married persons should have data missing on such a question.

The researcher then seeks to determine the reasons behind the missing data 
to help determine if the missing data are the result of random oversights or 
systematic bias. Sometimes, data are missing because of data collection or data 
entry problems. More frequently, data are not available on particular variables 
from certain research participants, or the respondents themselves neglected to 
answer or refused to answer especially taxing or intrusive questions. In the lat-
ter instance, you may be able to avoid having substantial missing data by 
designing questions that are more benign or by collecting the data more sensi-
tively. For example, rather than ask people directly what their annual income 
is, survey researchers often hand respondents a card with income categories 
represented by letters and ask the respondents to give the letter of the category 
that comes closest to their annual income. Thus, a gauge of annual income can 
be obtained without respondents having to provide a direct dollar figure.

Three Patterns of Missing Data:  
MAR, MCAR, and MNAR

The types of “missingness” generally come in three forms: 

 1. Data missing at random (MAR). The distribution of the missing data is 
similar to the distribution of the observed data. 

 2. Data missing completely at random (MCAR). The distribution of the 
missing data does not depend on the distribution of the observed data 
either

 3. Data that are not missing at random (MNAR) 

The distinction among MAR, MCAR, and MNAR may not be obvious. 
Consider, for example, a longitudinal study in which a large group of men 
receive prostate-specific antigen (PSA) testing for possible prostate cancer. If 
some of the men who were initially tested were randomly selected for retesting 
6 months later, the result would be MCAR. If all of the men were invited for 
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retesting but only those with a PSA score above 3.00, let’s say, showed up  
6 months later, the result would be MAR. However, if all the men showed up 
for the second testing but only those men whose scores on retest were above 
3.0 were retained, the result would be MNAR. The important implication is 
that as the conditions of the missing data move from MCAR to MAR to 
MNAR, the distribution of scores becomes increasingly different from that of 
the population: The mean increases, and the standard deviation decreases. 

If a review of the research procedures and an overview of the missing data 
are not sufficient to identify distinct patterns, you may need to take more formal 
steps to make this determination. If you cannot be sure that the missing entries 
are random, and if the distributions of included variables are affected by the 
missing data, then any statistical results based on these data will be biased.

One method to determine if the process resulting in missing data is random 
is to form two groups, one consisting of cases that contain missing values on a 
particular variable and the other group consisting of cases without the missing 
values (Hair, Black, Babin, & Anderson, 2009). These groups are then com-
pared for patterns of significant difference. If these patterns are found, they 
suggest a nonrandom process of missing data acquisition. For example, let’s say 
we are conducting a survey on the number of sexual partners acknowledged by 
men and women. Not surprisingly, some participants leave this question unan-
swered. We now compare the percentage of men and women who answered the 
question on sexual partners with those who left it blank. If these percentages 
are almost equal, it appears that the data are randomly missing; if these per-
centages are significantly different, the data are not randomly missing, at least 
with respect to the variable of gender. With continuous variables rather than 
categorical variables, the comparison would be made using a t-test rather than 
percentages. Note, however, that drawing conclusions about randomly missing 
data on the basis of nonsignificant differences between groups is akin to con-
firming the null hypothesis, a practice we took issue with in Chapter 3.

A second method uses dichotomized correlations to evaluate the correlation 
of missing data between variables (Hair et al., 2009). With this approach, all 
valid values of a variable are coded “1,” and all missing data are coded “0,” 
essentially creating a new dummy variable with two codes: zero for “missing” 
and 1 for “valid.” All remaining variables are now correlated with this dummy 
variable. The correlations show the level of association between being missing 
on the variable in question and all other variables. Randomness within a pair 
of variables is indicated by low correlations. A statistical significance test of the 
correlations offers a conservative estimate of randomness. Note that lack of 
randomness in this context means that the observed values for a variable may 
still represent a random sample of values for each value of the paired variable 
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but not necessarily a random sample of all values on that variable. With regard 
to the previous example, missing data on prior sexual partners might occur 
randomly among both men and women but much more frequently for women 
than for men. Consequently, any remedial procedure to accommodate the miss-
ing data on sexual partners must consider the gender of the respondent.

Adjusting for MCAR Data

After researchers obtain a clearer understanding of the scope of the problem, 
they can institute a number of alternative procedures to deal with it. If data are 
believed to be MCAR, one technique is to simply delete subjects with missing 
data. Called case deletion or listwise deletion, this is the default option in many 
statistical programs. It is a straightforward method but has the significant disad-
vantage of reducing power (i.e., increasing the standard error) through subject 
loss. Only in cases where a few subjects account for a substantial portion of the 
missing data, or where a large number of subjects are available and very few data 
are missing, is this strategy recommended. An exception, noted by Hair et al. 
(2009), is to delete cases in which the missing values occur in the dependent vari-
able of a statistical analysis. In general, however, whenever missing values are 
distributed throughout cases and variables in a multivariate study, deletion of 
entire cases leads to considerable loss of data. Furthermore, when the data are 
organized in an experimental design, losing a single case may result in unequal 
cell sizes and lead to more complicated data analyses. 

We have found that in research, no matter how carefully designed the data 
collection instruments or how carefully the potential participants are screened, 
the instruments typically will be largely incomplete in a few cases. We typically 
assume that the respondent was not interested, was unmotivated, or, worse yet, 
made a conscious attempt to sabotage the research. In such situations, it may 
make sense to eliminate all data for that case.

Adjusting for Missing, Non-MCAR Data

Case Deletion

When the missing data are not MCAR, then the results from using a case 
deletion approach may be biased, especially if the violations of MCAR are sub-
stantial, because the complete sample data set may not accurately represent the 
population. Case deletion is apt to be especially inefficient for multivariate 
analyses with large sample sizes because a few missing items on several variables 
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can result in many cases being eliminated. The beauty of case deletion is in its 
simplicity, but as Schafer and Graham (2002) advised, it is best to explore the 
data set before proceeding to ascertain that the discarded cases aren’t overly 
influential. 

A related approach is to eliminate variables that are associated with consid-
erable data loss from the study. Taking this approach may in fact be unavoid-
able, because items that are left unanswered by many subjects are likely to be 
untrustworthy. On the other hand, no investigator wants to lose key variables 
from a study. 

Imputation

A second major approach to handling missing values is to use “imputation” 
techniques. Imputation refers to estimating missing values and then using the 
estimates in subsequent statistical analyses, that is, proceeding as if there are 
no missing data. Imputation techniques have become increasingly sophisticated 
over the last several years, initially stimulated by Rubin’s (1976) algorithmic 
framework for inferring the values of incomplete data. The necessary statistical 
computations can be difficult, but, fortunately, contemporary statistical pro-
gram packages make imputation more accessible. One of the first programs to 
be adopted is “SPSS Missing Value Analysis®,” which assesses the magnitude 
of each pattern of missing data within a table. The procedure uses different miss-
ing value methods (listwise, pairwise, regression, or expectation-maximization) 
to estimate means, standard deviations, covariances, and correlations and then 
fills in (imputes) the missing values with estimated values. The EM (Expectation-
Maximization) algorithm and the regression imputation are particularly note-
worthy approaches to generating these values. 

As indicated above, many forms of imputation are available, including com-
plex, model-based procedures that can be employed with nonrandom missing 
data (Little & Rubin, 2002). We will address only common ones here. Each 
approach can be implemented either by using data from observations with no 
missing data to estimate missing data on the remaining cases (the “complete 
case approach”) or by using data from all available valid observations to make 
these estimates (the “all-available approach”; Hair et al., 2009).

The most straightforward method is mean imputation (also called mean 
substitution), which consists of entering the mean value of a variable for any 
subject with missing data on that variable. Mean imputation is a conservative 
procedure, in that the mean of the distribution of that variable does not 
change. The procedure will, however, artificially reduce the variance of the 
distribution and thus may reduce the correlation of the variable with other 
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variables. Although the approach is certainly easy to administer, it is no longer 
recommended (Allison, 2002).

A second technique is known as random imputation or sequential hot deck 
imputation (Little & Rubin, 2002). The idea is to replace the missing value 
with a value chosen randomly from the available cases. The term sequential hot 
deck imputation comes from the process of arranging a data file randomly and 
utilizing the case adjacent to the case with the missing value to provide that 
score. This approach does not systematically affect the variance of the distribu-
tion in the way that mean imputation does, but it does introduce more random 
variability. As such, it is no longer viewed as a desirable approach either. 

Regression

A more sophisticated method for estimating missing values is to rely on 
regression values. One constructs a regression equation with the other variables 
as independent variables and the variable with missing data as the dependent 
variable. The equation is derived from subjects without missing data and is 
then used to predict the missing values for the remaining cases. Typically, the 
predicted values from the first round of regression are assigned for missing 
values, and then all the cases are used in a second regression. The predicted 
values for the variable with missing data from this round are the basis for a 
third regression. The process keeps going until the predicted values from one 
round to the next are similar. The predictions from the last round are then 
chosen to replace the missing values.

The advantage of the regression approach is that it offers a more accurate 
estimate of missing values. The disadvantages are that it is computationally 
complex and that scores taken from regressions fit together better than they 
should because the estimates have been based on the other variables and are 
likely to be more consistent with them than actual scores would be (Tabachnick 
& Fidell, 2007). Thus, the method reinforces the relationships present in the 
sample data, which then become less generalizable. The SPSS Missing Value 
Analysis procedure adds some random error to each substitution to reduce the 
scope of the problem; nonetheless, better strategies are available.

Adjusting for Missing Outcomes  
Due to Participant Attrition

A particularly aggravating situation is when the data that are missing consist 
of outcomes for participants who failed to complete a study or procedure. 
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Ignoring these participants and performing the analysis on those who com-
pleted the study not only reduces sample size but also runs the risk of bias, 
because attrition may be directly related to treatment condition. 

Most imputation methods also have limitations here. Simple mean imputa-
tion, of course, assumes that attrition is random over the entire study, which 
usually is not the case. More sophisticated methods of imputation, such as 
those proposed by Pigott (1994), are better, but they still assume that the 
mechanisms that account for the missing data can be ignored. That is, the 
mechanisms may not be completely random, but at least they are not related to 
the actual values of the missing data, a situation that is more likely to be defen-
sible. Moreover, such methods of imputation assume that there are variables 
available that are good predictors of the treatment outcomes.

Maximum Likelihood Methods

Modern approaches to imputation include maximum likelihood estimation 
and multiple imputation. Maximum likelihood (ML) methods are very popular 
and include a range of approaches. The overall principle is to estimate values 
for missing data that, to the extent that these estimated values represent the 
probable responses of the missing cases, yield distributions that make the 
observed data the most likely representation of the complete sample without 
missing values (Allison, 2002). The methods involve drawing inferences from a 
likelihood function derived from the observed data. Then the missing values are 
estimated by extrapolating the function using the principles of probability the-
ory. For example, when a distribution is normal, ordinary least squares linear 
regression can be regarded as an ML method. As long as the data are assumed 
to come from multivariate normal distributions, a number of linear models, 
including logistic regression models, can be estimated in this way. For instance, 
the maximum likelihood estimator of the population mean is the sample mean. 
Other estimators are a bit more complicated. Nonlinear models, in particular, 
have not yet been successfully modeled by many computer programs. According 
to Schafer and Graham (2002), when data are MAR, the marginal distribution 
of observed data provides the most likely estimates for the missing values, 
assuming that the model underlying the complete data set is realistic. 

Rubin (1976) authored the EM (expectation-maximization) algorithm to 
compute ML estimates for many different missing data problems. The algorithm 
estimates parameters from the given data, then estimates the missing values 
from the parameters, and again estimates the parameters from the enhanced 
data set. These steps are sometimes referred to as expectation and maximiza-
tion, respectively These methods have evolved over the last several years to the 
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point of being more practical because of the advent of sophisticated computer 
programs with the ability to process large statistical tasks. The missing data are 
treated as random variables that are deleted from the likelihood function as if 
they were never part of the sample. Whereas older methods of imputation 
attempt to predict missing data accurately (and may do so while distorting the 
distribution variances and correlations), the ML approach focuses on making 
accurate inferences about a population of interest (Schafer & Graham, 2002). 

Multiple Imputation Methods

The second modern approach, multiple imputation (MI), works well with 
almost any MAR data. MI uses random data rather than the constant or pre-
dicted value used by EM. The randomness is introduced in the imputation 
process to add an error component, which compensates for the systematic 
standard errors provided by other methods. Because a single solution is apt to 
underestimate standard errors, the procedure is repeated several times to create 
multiple completed data sets. These alternative versions are arithmetically com-
bined to produce overall estimates and standard errors that capture the uncer-
tainty built into missing data. Random MI produces slightly different estimates 
every time it is used with the same data set, but that should not be much of a 
problem. More details are available through Enders (2010) and Little and 
Rubin (2002). SPSS and SAS have modules for MI, as does Shafer’s NORM 
program, which also provides step-by-step procedures. NORM, a free 
Windows program, forms MIs for data with missing values while assuming an 
unstructured normal model (see http://sites.stat.psu.edu/~jls/misoftwa.html).

MI has considerable flexibility in terms of data formats and sample sizes. As 
with other likelihood methods, it assumes that data are MAR, but apparently 
MNAR applications are available as well (Schafer & Graham, 2002). It is fun-
damentally a Bayesian approach (see Chapter 4), which requires the assump-
tion of a model at the imputation stage. For two variable data sets, a simple 
regression model works fine. A multivariate normal model is the most com-
monly used assumption (all variables have normal distributions, linear rela-
tionships with the other variables, and a normal, homoscedastic error term). 
One approach, cited by Allison (2002), is data augmentation (DA), a method 
of determining posterior distributions that is common in Bayesian statistics. As 
a general principle, the number of iterations for DA should be no fewer than 
those required for EM, and the more data are missing, the more iterations are 
needed. It should also be kept in mind that MI is designed for continuous vari-
ables rather than categorical variables; the latter require some modifications to 
the procedure (Allison). It is not always necessary to choose an imputation 
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model based on established theory, but the model does need to be sufficiently 
robust to be valid in subsequent analyses.

Adjusting for Missing Values: Summary

In summary, a rule of thumb in compensating for missing data is to use all of 
the available data if possible. That’s why recommendations that involve arbitrary 
threshold rules such as “Exclude all cases that are missing more than 15% of the 
responses,” may be ill-advised. A 40% response rate is not necessarily better than 
a 15% response rate. If the data are MCAR or MAR, low response rates do not 
imply bias. According to Newman (2009), the problem of missing responses is a 
function of the “systematic nonresponse parameters” (SNPs) that relate to the 
constructs being addressed. Therefore, these SNPs must be identified at the outset. 
For example, the lack of a response to specific questions in a survey can be pre-
dicted by constructs such as how favorable respondent attitudes are regarding the 
topic in question, and how confident they are in their ability to respond. Many of 
these social or psychological variables can be identified and obviated by careful 
attention to research methods (e.g., by personalizing surveys, sending reminders, 
or offering incentives). Obtaining empirical estimates of differences between 
respondents and nonrespondents on key variables can help you understand and 
minimize the potential biasing effect of low response rates. 

Table 8.1 presents Daniel Newman’s (2009) overview of bias and power 
issues related to common approaches to managing missing data. The techniques 

Missing Data 
Technique

Missingness Mechanism

MCAR MAR MNAR

Listwise deletion Unbiased, low power Biased, low power Biased, low power

Pairwise deletion Unbiased, innacurate 
power

Biased, inaccurate 
power

Biased, inaccurate 
power

Maximum likelihood Unbiased, accurate 
power

Unbiased, accurate 
power

Biased, accurate 
power

Multiple imputation Unbiased, accurate 
power

Unbiased, accurate 
power

Biased, accurate 
power

SOURCE: Newman (2009, p. 11).

Table 8.1    Parameter Bias and Statistical Power Problems of Common Missing 
Data Techniques
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that he recommended are printed in boldface. We recognize that there are dis-
parate opinions among knowledgeable statisticians on this topic, but we believe 
that his formulations are unusually sound.

HOW DO I CONTROL OR ADJUST FOR OUTLIERS?

Most researchers have been confronted with the dilemma of eyeballing a dis-
tribution of data and discovering that a few cases (subjects) have scores that lie 
far outside the distribution of scores in the sample. Such so-called outliers can 
be problematic because their presence can unduly affect the description of the 
sample distribution and subsequent inferential statistics.

In Chapter 2, we discussed how to examine a distribution to detect the 
presence of outliers using box and whisker plots and stem-and-leaf dia-
grams. Finding outliers in univariate distributions is relatively simple. An 
outlier arises as an observation that appears to be unattached to the bulk of 
the distribution, which is typically piled up near the center with fewer cases 
trailing off to the sides. Then one asks these questions: Do the outliers con-
tribute to an understanding of the phenomenon being studied? Are the 
extreme scores from the same population as the other cases in the sample? 
Should they be kept or deleted in terms of computing statistical summaries 
and tests?

Identifying Outliers

Univariate Distributions

The first task is to identify the presence of an outlier. Convention suggests 
that scores that are more than 3 standard deviations from the mean may be 
regarded as outliers on a univariate distribution. With smaller sample sizes 
(fewer than 70), this criterion could be reduced to 2.5 standard scores  
(z scores); with very large sample sizes, one might anticipate more extreme 
standard scores (z scores), including a few in excess of 3 standard deviations 
from the mean, and adjust the criterion upward. A glance at a frequency dis-
tribution or a graphic display can give you a quick indication if an outlier 
exists. An outlier emerges as a case that appears to be unattached to the bulk 
of the distribution.

The bar graph in Figure 8.1 illustrates the number of 8-ounce cups of water 
consumed by 87 hikers on a weeklong wilderness expedition. These data represent 
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a continuous distribution with a mean of approximately 73 and a standard 
deviation of 25.5. According to the rule of 3 standard deviations, an outlier 
would have a score below 73 – (3 × 25.5) < 0 or above 73 + (3 × 25.5) = 149.5. 
As shown by the histogram, and by the boxplot in Figure 8.2, there are no out-
liers in this distribution.

To understand the impact of an outlier on statistical computations, watch 
what happens to the mean and standard deviation of the water use data with 
and without inclusion of outliers. We add to this distribution 2 cases who con-
sumed large quantities of water, 167 and 182 8-ounce bottles each. (The  
z scores of these two values, in the new distribution containing 89 cases, are 
3.11 and 3.62, respectively.) The new boxplot, shown in Figure 8.3, clearly 
shows these values as being above the upper fence.

The mean of the new distribution is 75.4, up 2.3 bottles from the previ-
ous value, and the standard deviation has increased 4 bottles, from 25.5 to 
29.4. Now that we have diagnosed the situation, what do we do about it? 
Perhaps there is nothing particularly unusual about these data: The two 
hikers just drink a lot of water. Perhaps the data are in error (e.g., one hiker 
drank 128 bottles, not 182). Although there may be no reason to exclude 
these two cases from the sample, the researcher might decide to report a 
different measure of central tendency, the median as opposed to the mean, 
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201Chapter 8  How Do I Deal With Missing Values?

140

120

100

80

60

40

20

0
Cups of Water

Figure 8.2  Boxplot of Cups of Water Used by 87 Hikers

Cups of Water
0

100

200

Figure 8.3   Boxplot of Cups of Water Use Among 87 Hikers, With 
Outliers

to describe the distribution, because the addition of the two outliers 
changed the median only from 73 to 74. Our conclusion, based on a com-
parison of these statistics, probably would be that the outliers were not 
particularly problematic.

SOURCE: Newton and Rudestam (1999).

SOURCE: Newton and Rudestam (1999).
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Bivariate and Multivariate Distributions

Extreme cases can also exist in a bivariate distribution, even when there is no 
outlier on either single variable that makes up the distribution. Consider the situ-
ation in which the data indicate that a 17-year-old subject has had three divorces. 
Three divorces are not uncommon, nor is the presence of a 17-year-old subject, 
but the combination certainly is unusual. Whereas the appropriate measure with 
univariate distributions is the standard deviation from the mean, with two vari-
ables the measure is the standardized residual (greater than 3) from the regression 
line. Most statistical software packages compute standardized residuals. 

Scatterplots can help one visually identify bivariate outliers. Superimposing 
an ellipse that represents a bivariate normal distribution on the scatterplot can 
help you visually determine the expected range of observations (Hair et al., 
2009). The confidence intervals on the ellipse (e.g., 90%) can be adjusted to 
locate outliers according to whatever criterion you establish. For example, 
imagine a variable that is likely to be correlated with water use, such as the 
hiker’s weight. We probably would predict a positive relationship between how 
much a person weighed and how much water was consumed. Figure 8.4 pres-
ents the bivariate scatterplot of weight by water consumption. Note that the two 
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outliers do not appear particularly unusual in this representation. We simply 
happen to have two individuals who weighed a lot and thus drank a lot of water.

Multivariate outliers derived from more than two variables can also be diag-
nosed, but it is difficult to do so without the aid of statistical software. 
J. Stevens (2009) has written a detailed account of how outliers may occur in 
multiple regression as outliers on the criterion variable or on the predictor 
variables. The analysis requires determining the multidimensional position of 
each observation from a common point. The usual measure of multivariate 
outliers is the Mahalanobis distance. The Mahalanobis distance is the distance 
of a case from the centroid of the rest of the cases, where the centroid is a point 
in space determined by the means of all the variables (Tabachnick & Fidell, 
2007). The Mahalanobis distance is computed using a discriminant function 
analysis by which an equation is determined that best distinguishes one case 
from the rest of the cases. Whenever a case has an unusual configuration of 
scores, those scores become heavily weighted in the function, and the 
Mahalanobis distance of the case from the bulk of the cases is significant. 
These computations are available in many statistical software packages, includ-
ing SPSS, SAS, and STATA. A conservative p value of .001 or less is recom-
mended to define an outlier using this measure.

Adjusting Data for Outliers

Once outliers have been located, there is still the question of what to do with 
them. Because a primary cause of the presence of outliers is sloppy data record-
ing, the first recommended antidote is to check data entry and transcription for 
the involved values. Sometimes, missing values are read as real data because 
missing value codes have not been specified accurately in the computer analy-
sis. In such a case, the correct missing value codes need to be introduced. 

More complex solutions arise if there are no coding errors. Because it is 
impossible to know if an outlier is an extreme case within a single population 
or represents a case drawn from a different population, it is not advisable sim-
ply to eliminate it. Outliers easily can be observations that represent a unique 
but valid aspect of the sample population. These outliers, of course, should be 
retained in the sample. They contribute to a complete understanding of the 
phenomenon under study. Elimination of them runs the risk of facilitating the 
statistical analysis but reducing its generalizability. If most of the outliers, how-
ever, are due to the presence of one variable, it might make sense to delete that 
variable from the analysis. 
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If the extreme cases are not part of the relevant population of cases, they can 
be deleted with no loss of generalizability of results because the results do not 
apply to that population. If the outliers do belong to the sample population, 
there are two options. One is to retain the cases but modify their values so they 
won’t be overly influential in determining the statistical results of the study. This 
involves transforming the data (see the following discussion). The transforma-
tion is intended to change the distribution of scores to a more normal distribu-
tion because the outliers are considered to be part of a non-normal distribution. 
Transformation allows for easier statistical manipulation, and it retains outliers 
in the tails of the distribution but allows them to have less impact on the results.

A second, and certainly less drastic, option for dealing with outliers is to run 
your analyses twice, once with the outliers included and once without. Both sets 
of results can be reported. With reasonable sample sizes, the results from the two 
analyses frequently will be similar. The point here is that although it is important 
to examine and diagnose problems or potential problems with your data distri-
butions, sometimes these result in no appreciable differences in interpretation. If 
this is the case, we recommend reporting the results with untransformed data.

HOW DO I ADJUST FOR NON-NORMAL DATA?

We first addressed the issue of the normal distribution in Chapter 2 and sug-
gested strategies for assessing the “normality” of data. In Chapter 5, we dis-
cussed the “assumption of normality” as a basic criterion for the conduct of 
some statistical tests. In this chapter, we consider the question of what strategies 
to invoke when data do not appear to be normally distributed. This follows 
from the material in Chapters 2 and 5 and from the discussion of how to handle 
missing data and outliers in the previous two sections of this chapter. Once we 
have dealt with missing data and outliers, the problem of non-normal distribu-
tions may have fixed itself. However, when this is not the case, the researcher 
needs to consider using some method to adjust the distribution.

Even though many parametric statistical procedures require normally dis-
tributed population distributions, the researcher does not, and cannot, know 
for certain whether or not the population from which a sample came is nor-
mally distributed. He or she can, however, examine the sample distributions for 
evidence about the population’s structure. The larger the sample is, the more 
confidence we are likely to have in what the sample distributions suggest; small 
samples are likely to tell us much less. As shown in Chapter 2, the easiest way 
to get a sense of the shape of a distribution is simply to plot it. The four types 
of plots that we suggested (histograms, boxplots, stem-and-leaf diagrams,  
and normal probability plots) are likely to indicate whether the distributions 
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contain outliers and/or extreme skew and whether the case for the normality 
of the population distribution cannot reasonably be made.

Data Transformation

Not all distributions are normal. Some would argue that few are, and sometimes 
extreme cases do belong in the sample, resulting in distributions that are seriously 
skewed. One option, then, is to modify (“transform”) the distribution in such a 
way that (a) extreme cases won’t be overly influential in determining the statistical 
results of the study and (b) the distribution assumes a more “normal” shape.

Data transformation is a larger topic that has generated considerable interest 
among researchers at least since John Tukey’s (1977) groundbreaking volume, 
Exploratory Data Analysis, which proposed a host of graphic and numeric 
ways of looking at data in order to understand them better. Transforming data 
is also useful for responding to a number of distribution problems, such as lack 
of normality, and, in bivariate and multivariate distributions, lack of homosce-
dasticity, nonlinearity, and lack of bivariate and multivariate normality. 

The justification for changing or transforming data goes back to the goals of 
the researcher. In data analysis, we are interested in describing data and in making 
inferences from the data. At the descriptive level, we have focused on measures of 
central tendency (mean, median, model) in order to identify the typical score and 
on measures of dispersion (range, standard deviation, variance) and association 
(correlation coefficients). By far the most fundamental way of identifying the 
typical value of a distribution of scores is to cite the mean. But some distributions, 
such as the skewed or bimodal distributions described in Chapter 2, are not as 
well behaved; the mean, median, and mode, for example, may not be in the same 
location, making it more difficult to identify the typical value. In that case, we 
may transform the data to a different metric to create more symmetry and estab-
lish a more functional relationship among the variables (Fink, 2009). 

Power Transformations

In order to transform skewed, unimodal data one might use a single-bend, or 
one-bend, transformation (also called a power transformation because it 
involves raising the value of a variable (X) to some power (q). For example, 
squaring a variable raises that variable to the power of 2 (i.e., X2), which makes 
the distribution more symmetric and the mean become a reasonably typical 
value. In a skewed distribution, scores are closer to each other at one end of the 
distribution than at the other end. For instance, it has been suggested that hap-
piness is positively correlated with income, but only up to about $75,000 per year 



206 Part 3  Issues Related to Variables and Their Distribution

(Kahneman & Deaton, 2010). Thereafter, the relationship is marginal. This 
would be a negatively skewed distribution, such that the same amount of 
income difference (e.g., $10,000) at the lower end of the distribution would 
yield greater increases in happiness than the same change in income at the 
upper end of the distribution. Transforming the data by converting the scores 
logarithmically would compress the data so that the differences between the 
scores would be similar at both ends of the distribution (i.e., the skewness dis-
appears, and the mean and median become more or less identical).

Power transformations are particularly helpful in reducing skew, condensing 
outliers, and conditioning the distribution to approximate a normal curve. 
Tukey (1977) gave the moniker “ladder of powers” to the set of steps that 
applies different powers to bring non-normal distributions toward normality. 
We provide some illustrations in Figure 8.5 and an example afterward.

Problem Transformations Name Effect

X = X3

(q = 3)

Cube Reduces extreme 
negative skew

X = X2

(q = 2)

Square Reduces negative skew

X = X1

(q = 3)

Raw No effect

X = X(1/2)

(q = 1/2)

Square Root Reduces Positive skew

X = log10 (X)

(q = 0)

Log Reduces Positive skew

X = -[X (-1/2)]

= -1/√X

(q = -1/2)

Negative 
reciprocal root

Reduces extreme 
Positive skew

Figure 8.5   The Effects of Power Transformations on Distribution Shape

SOURCE: Newton and Rudestam (1999).
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As can be seen by examining the values of q in Figure 8.5, powers of q that 
are greater than 1 are used to adjust for problems of negative skew. This is 
because they tend to change the distribution by shifting the area of the distribu-
tion to the upper tail. In contrast, powers less than 1 change the distribution 
by shifting the area out of the upper tail, thus reducing positive skew. In gen-
eral, if a distribution differs moderately from normal and is positively skewed, 
a square root transformation should be tried first, and if a distribution is sub-
stantially different from normal, a logarithmic transformation is recommended 
(Tabachnick & Fidell, 2007). Logarithmic transformations are particularly 
good for stabilizing the variance between different sets of data. This can be 
useful when you are comparing batches of data from different populations. We 
provide examples in Figures 8.6 and 8.7 using distributions that represent 
positive and negative skew.

As can be seen from the examples, a positively skewed distribution can be 
made approximately normal by applying a log transformation, but we can also 

Y: negatively skewed

Y 2: approximately normal

Y 3: positively skewed

Figure 8.6   The Effect of Square and Cube Transformations on 
Negative Skew

SOURCE: Adapted from Hamilton (1992).
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go too far and morph a positively skewed distribution into a negatively skewed 
one, essentially leaving us no better off than when we started. Similarly, “over-
correcting” a negatively skewed distribution by applying a cube transformation 
changes a negatively skewed distribution into a positively skewed one. A 
square transformation works much better in this case.

So how does the researcher go about selecting the right power transforma-
tion? The answer usually is found by trial and error, but some software pack-
ages can help with the job, not only by making it easy to assess the degree of 
non-normality but also by making suggestions for an appropriate transforma-
tion. For example, Stata® will plot the histogram of a variable using the ladder 

log (Y): approximately normal

−(Y −1): negatively skewed

Y: positively skewed

Figure 8.7   The Effect of Log and Negative Reciprocal Transformations 
on Positive Skew

SOURCE: Adapted from Hamilton (1992).
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of powers to let the user select the transformation that appears most reason-
able. SPSS® provides a dialog box that contains various transformation options; 
the user only needs to select one that seems appropriate. Finally, the ladder of 
powers offers a range of values that may be suitable, but it may be necessary 
to select a power that is between two of these values. For example, if a trans-
formation overcorrects, such as a cube, this does not imply that a square is 
appropriate. It may be necessary to select a power such as 2.3 or 2.5. 

Data transformation can also be used to deal with nonlinearity. Most com-
mon statistical tests assume a general linear model, and applying them to non-
linear data can violate this assumption. Moreover, your theory or hypothesis is 
likely to assume a linear relationship between an independent and dependent 
variable. In such cases, it may be necessary to transform your data to create 
linearity and then to test the linear relationship in accordance with your 
hypothesis. Standard transformations for these purposes can be found in most 
experimental design texts. Prior to adopting a procedure for transforming data, 
eyeball your data to examine a variable’s skewness, equality of spread, and 
linearity. In addition, you may use statistical procedures to evaluate these attri-
butes (e.g., Whistler, White, Wong, & Bates, 2007). 

Finally, power transformations can be important in meeting the assumptions 
of multivariate techniques; they can aid in dealing with problems of multivari-
ate normality in regression analysis and heteroscedasticity in both analysis of 
variance and regression analysis. We recommend Lawrence C. Hamilton’s 
intermediate text, Regression with Graphics (1992), for an excellent treatment 
of these applications.

Limitations of Data Transformation

Edward Fink (2009) has raised the question of whether violations of the 
assumptions of common inferential tests are to be taken seriously, that is, 
whether most of these tests are not sufficiently robust to absorb such violations 
to normal distributions. He argued that although minor violations of test 
assumptions will probably not affect rejecting or failing to reject the null 
hypothesis, if the purpose of the research includes understanding the functional 
form of the relationships among the variables, then transformation comes into 
play even if the statistical tests are robust. The transformation of a variable 
offers feedback to theory as well as to how measurement of the variables 
should proceed. 

The biggest limitation of transforming data is the possible difficulty of inter-
preting the new scores. For instance, if raw scores refer to an inherently mean-
ingful scale such as income, the transformed scores may be harder to interpret. 
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As Fink (2009) put it, a transformed variable can always be untransformed 
subsequently for the sake of clarity. He suggested that, in addition to under-
standing enough theory to generate a problem worthy of study, having the 
skills to measure the relevant variables, and knowing how to design the data 
collection procedure, a researcher should be able to examine data visually and 
statistically and figure out if and how the data need to be transformed. 

On the other end of the spectrum are behavioral scientists such as Erceg-Hurn 
and Mirosevich (2008), who are very dubious about the value of transforming 
data for violations of normality and homoscedasticity. They assert that these 
violations are indeed widespread and potentially damaging. For example, the 
likelihood of a Type I error at a p value of .05 can jump to over 50% when data 
are non-normal and heteroscedastic (Wilcox, 2003). Moreover, the power of 
many commonly used statistical tests (e.g., t-test) can be significantly reduced 
when these assumptions are violated. What makes matters worse, claimed Erceg-
Hurn and Mirosevich, is that the so-called assumption tests (e.g., Kolmogorov-
Smirnov test, Levene’s test) found in SPSS and other statistical software don’t 
work well either when distributions stray from normality and homoscedasticity. 
Unfortunately, they are no more sanguine about the use of data transformation, 
arguing that transformation may not restore normality and homoscedasticity; 
may reduce overall power; and may, as we mentioned earlier, make the interpre-
tation of results more difficult. Their solution? Rely on so-called modern robust 
statistical methods, a topic we pursue further in Chapter 12. 





Code dummy 
variables?

Determine 
whether a 
parametric or 
nonparametric 
test is best?

Dichotomize a 
continuous 
variable?

Use nonparametric 
statistics?

Use parametric 
statistics?

A dummy variable?
An extreme group 

design?
Classification 

variables?
Categorical 

variables?

Continuous 
variables?

Discrete variables? 
Multicollinearity?
Nonparametric 

tests?
Reference 

category?

How do I . . . ? When should 
or shouldn’t I . . . ?

Level: Intermediate

Focus: Instructional

What is . . . ? What are . . . ?

Types of Variables and Their Treatment  
in Statistical Analysis




