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LOGISTIC REGRESSION AND
DISCRIMINANT ANALYSIS

In the previous chapter, multiple regression was presented as a flexible

technique for analyzing the relationships between multiple independent

variables and a single dependent variable. Much of its flexibility is due to

the way in which all sorts of independent variables can be accommodated.

However, this flexibility stops short of allowing a dependent variable consist-

ing of categories. How then can the analyst deal with data representing multi-

ple independent variables and a categorical dependent variable? How can

independent variables be used to account for differences in categories?

This chapter introduces two techniques for accomplishing this aim:

logistic regression and discriminant analysis. Even though the two techniques

often reveal the same patterns in a set of data, they do so in different ways and

require different assumptions. As the name implies, logistic regression draws on

much of the same logic as ordinary least squares regression, so it is helpful to

discuss it first, immediately after Chapter 4. Discriminant analysis sits alongside

multivariate analysis of variance, the topic of Chapter 6, so discussing it second

will help to build a bridge across the present chapter and the next. That said, the

multivariate strategy of forming a composite of weighted independent variables

remains central, despite differences in the ways in which it is accomplished.

In Subsection 5.1.1 we explore the nature of the weighted composite vari-

able in logistic regression with a dichotomous dependent variable and intro-

duce the main statistical tools that accompany it. Subsection 5.1.2 shows

two-group, or “binary,” logistic regression in action, first with further analyses
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of the nurses’ data introduced in Chapter 4 and then with examples from the

research literature. In Subsection 5.1.3 the usual questions of trustworthiness

will be raised with specific reference to logistic regression. Then in Subsection

5.1.4 extensions to the basic technique are discussed, including how to deal with

different types of independent variables and with a dependent variable that has

more than two categories. Subsections 5.1.3 and 5.1.4 will be relatively brief

since they will draw heavily on material we have already covered in Chapter 4

on multiple regression. The second half of this chapter, comprising Subsections

5.2.1–5.2.4, follows the same sequence of topics for discriminant analysis.

5.1 LOGISTIC REGRESSION

5.1.1 The Composite Variable in Logistic Regression

Although it is inappropriate to use ordinary least squares (OLS) regres-

sion when the dependent variable is categorical, it is instructive to begin by

asking how the composite variable would function if OLS regression were

used. In its most general form the relationship between multiple independent

variables (IVs) and a single dependent variable (DV) is:

DV == [coefficient 1(effect 1) ++ coefficient 2(effect 2) ++  . . . . . . . .
++ constant]
++ residual

For OLS regression, this general expression becomes:

DV == [slope 1(IV1) ++ slope 2(IV2) ++  . . . . . . . .
++ Y intercept]
++ residual

The composite variable in the square brackets generates predicted scores

on the dependent or Y variable. Values for the slopes and Y intercept are cho-

sen that maximize the correlation between the actual and predicted Y scores

or, equivalently, minimize the gap or residual between them.

What happens if this strategy is applied to data in which the dependent

variable consists of two categories, labeled 0 and 1 (i.e., a dummy variable)?
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The composite cannot be used to generate predicted scores on the dependent

variable since there are no scores to predict, only categories. Instead the com-

posite now generates the predicted probability of a case being in the category

labeled 1. These predicted probability values should lie between 0 and 1

and can be subtracted from the actual 0 and 1 values to obtain residuals. The

regression slope will have the usual interpretation, except that it will be in

probability terms: for every 1-unit change in a given independent variable

there will be a change in probability of being in category 1, which is equiva-

lent to the slope value. All of this makes it sound as if OLS regression is well

suited to a categorical dependent variable, so where is the problem?

Actually, there are several problems that have been detailed with great

clarity by Pampel (2000), to whose primer on logistic regression the present

account is much indebted. In summary, using OLS regression to generate pre-

dicted probabilities can produce values outside the 0 to 1 range, forces linear-

ity on what is more likely an S-shaped relationship, violates the assumption

that the components of the composite variable are additive, and violates the

assumptions of normality and homoscedasticity required for statistical tests.

After such a list of charges, there seems little option but to seek an alternative

strategy. The logistic regression strategy retains the goal of generating pre-

dicted probabilities but achieves it indirectly by using another probability

index and a different criterion to choose the coefficients in the composite vari-

able. These two “moves” make for a convoluted and abstract journey from the

data to the results. We will just highlight the landmarks along the way and as

usual emphasize the familiarity of the big road map.

In the present context the probability of being in one of two groups is pro-

vided by the relative frequency, that is, the number of cases in one group divided

by the number of cases in both groups. If group 1 contained 80 cases and group

0 contained 20 cases, the probability of being in group 1 would be 80/100 = .8

or 80%. This is the type of probability that we are trying to predict, but that is

inadequately predicted using OLS regression. To obtain more accurate predicted

probabilities, the first step is to focus on another type of probability index that

we encountered in Chapter 1: the odds. The odds of being in group 1 for our

imaginary 100 cases would be 80/20 = 4. A case is four times more likely to be

in group 1 than in group 0. Since the probability and the odds combine the same

frequencies in different ways, they are obviously closely related (the probability

is just the odds divided by the odds plus 1). But this simple move opens the door

to a solution to the problem of predicting probabilities.
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The next step within the first “move” is to change the scale of the odds by

transforming it, for reasons that will become apparent shortly. The specific

transformation is to replace the odds with its natural log. The natural log of a

number is the power to which 2.718 has to be raised to produce that number.

So now, instead of dealing with odds, we are confronting log odds, also known

as logits. What is the payoff for this mind-numbing shift into mathematical

abstraction? It can be summed up in the following:

predicted log odds of a DV == [logistic coefficient 1(IV1)
++ logistic coefficient 2(IV2) 
++ . . . . . . . . . . . . . ++ constant]

Working with log odds rather than probabilities as such means that the

familiar composite of independent variables is applicable and retains all its

usual properties. In terms of the problems raised earlier, the composite will

capture an S-shaped relationship between the independent and dependent vari-

ables, it will be additive, and the predicted probabilities that can be derived

from it will fall between 0 and 1. The logistic coefficients will be interpretable

as statistically controlled effects as usual although, since they are on a log odds

scale, they will require some massaging to be useful. But before we delve into

this sort of detail, we need to ask how the logistic coefficients including the

constant are obtained: the second move in the overall strategy.

As we just noted, a predicted probability for each case can be derived from

the log odds and consequently so can a residual—the difference between the

prediction for that case and their actual 1 or 0 status. However, the regression

coefficients that minimize the residuals’ sum of squares for all the cases, that is,

that meet the ordinary least squares criterion, will not necessarily maximize pre-

dictive power. Moreover, any statistical tests that are based on this way of choos-

ing coefficients will violate the assumptions of normality and homoscedasticity

and produce inaccurate p values. To avoid these problems, a different criterion

for selecting coefficients is adopted: the criterion of maximum likelihood.
Under this criterion, the aim is still to minimize the difference between a

case’s predicted probability of being in a category and its actual category. The

search is for the coefficients that will produce the log odds that in turn produce

the predicted probabilities that will most accurately place cases in their actual

category. So the maximum likelihood criterion produces the logistic coeffi-

cients that will most closely reproduce the actual categories in which cases
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appear. The predicted probabilities and actual categories for each case are

bundled up, not into a sum of squares package for all cases, but into a statistic

called the log likelihood function. So, in an opaque nutshell, the aim is to find

the coefficients that maximize the value of the log likelihood function. To

make matters even more opaque, the log likelihood function is often multiplied

by −2 to turn it into the log likelihood chi2 statistic, as we will see shortly.

Multiplying by −2 also means that the log likelihood values range from 0 to

positive infinity and that the strategic aim is now to find coefficients that

minimize the value of this function. These rapid turnabouts should become less

dizzying when we look at logistic regression in action, below.

To summarize, the relationships between multiple independent variables

and a categorical dependent variable can be analyzed using a technique called

logistic regression. This involves forming the independent variables into the

usual weighted, additive composite, which is then used to predict the proba-

bility of cases appearing in a particular category of the dependent variable.

However, in order to achieve this legitimately, two moves are made. First, the

predicted probabilities are derived indirectly through logged odds, or logits.

Second, the coefficients in the composite are calculated using a procedure

called maximum likelihood estimation. A set of coefficients is chosen provi-

sionally that, through log odds, generates the probability of each case being

in a given category. These probabilities and the actual category memberships

are fed into the log likelihood function, which produces a particular log like-

lihood value. Then different sets of coefficients are tried and those that

produce the maximum log likelihood value are the ones that are finally

selected as the logistic coefficients. To make all of this more concrete, and to

see what other statistics result, we now turn to some actual logistic regression

analyses.

5.1.2 Binary Logistic Regression in Action

A large part of Chapter 4 was spent in exploring the use of multiple

regression to analyze the effects of workplace characteristics on the mental

health of a group of nurses (Budge, Carryer & Wood, 2003). To highlight the

similarities and differences between ordinary least squares and logistic regres-

sion, we will now return to this data set. We will reanalyze the relationships

between workplace characteristics and mental health, but with the latter now

treated as a dichotomous categorical variable. So for present purposes, the data
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set consists of three independent variables: professional relations, autonomy,

and control; and a dichotomous dependent variable: mental health coded 1 for

good health and 0 for poor health. Of the 163 nurses in the sample, 91 reported

good mental health and 72 reported poor health. The earlier multiple regres-

sion analyses also included age as an independent variable, but since it had no

effect on mental health and adds distracting detail, it has been omitted from the

present analyses.

Before we embark on the logistic regression, it is helpful to gain a bivari-

ate overview of the data, just as an inspection of bivariate correlations is advis-

able in multiple regression. Since we are interested in the relationships between

interval and categorical variables, we can make use of mean differences and

ANOVAs (or t tests) to achieve this. Table 5.1 summarizes the bivariate rela-

tionships between the independent and dependent variables.

The mean differences indicate that nurses in good mental health report

better relations, better autonomy, and better control than those in poor

health. However, the F tests suggest that only in the case of professional

relations is the difference statistically significant. These separate bivariate

analyses are informative, but they fail to take into account the correlations

among the three work variables. Since professional relations correlates .56

with autonomy and .48 with control, and autonomy correlates .69 with con-

trol, it is quite possible that the conclusions we have just drawn are distorted

by confounding. This is one of the fundamental reasons for turning to a

multivariate analysis, in this case logistic regression analysis. As usual, we

take a top-down approach, beginning with the performance of the composite

variable overall and then proceeding to examine particular coefficients, if

this appears justified.

The −2 log likelihood statistic of 215.15, which is the lowest value that

emerged from trying out different sets of coefficients, reflects the multivariate

relationship. Since it is significant by chi2 test at p = .035, we can conclude that
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Table 5.1 Mean Scores and F Tests on Three Workplace Characteristics for
Nurses in Good and Poor Mental Health 

Variable Good Health Mean Poor Health Mean F p

Professional relations 14.70 13.40 8.35 .004
Autonomy 13.60 13.10 1.23 .269
Control 17.90 17.20 0.82 .368
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there is a statistically significant relationship between the set of independent

variables and the dependent variable, if we adopt an alpha of .05. But what

exactly is the null hypothesis under test here? Testing omnibus hypotheses in

logistic regression is an inherently comparative exercise. In fact, this is usually the

case in statistical analysis, but here it becomes more explicit. As we have noted,

a set of independent variables or effects is referred to as a “model,” so more pre-

cisely we are engaged in a comparison of models. In the present case the model

containing the three independent variables is being compared with a model that

contains only the constant. In other words, we are testing whether knowledge of

the workplace characteristics improves our ability to predict mental health status.

If we were to do a logistic regression without the independent variables, the

“baseline” −2 log likelihood would be 223.75. Including the independent vari-

ables reduces the −2 log likelihood to 215.15: an improvement of 8.6. It is this

change that is indexed and tested by the log likelihood chi2 statistic, the null

hypothesis being that there is no change in the population. This is conceptually

parallel to the statistical testing of R2 change in sequential regression. At the first

step of a stepwise multiple regression, for example, the statistical test can be seen

as being of the change in R2 from zero, when there are no independent variables

present, to whatever value it achieves when the first independent variable enters.

This reference to R2 in multiple regression highlights the fact that, in

logistic regression, there is no straightforward index of the strength of the mul-

tivariate relationship between the independent and dependent variables. This

should not be surprising given the grounding of R2 in sums of squares, which

are now notable by their absence. The log likelihood statistics are useful for

hypothesis testing but do not offer an interpretable measure of association.

Various attempts have been made to develop “pseudo” R2 statistics for logistic

regression. For example, the SPSS program provides the Cox & Snell and the

Nagelkerke pseudo R2 statistics, which are .051 and .069, respectively, in the

present analysis. So we could tentatively conclude that the three independent

variables explain between 5.1% and 6.9% of the variance in mental health.

However, there are a variety of such pseudo statistics, all giving different esti-

mates, and none regarded as superior to all the others, so they are best treated

with caution if not actually avoided. Note this means that, aside from these

pseudo statistics, logistic regression statistics therefore inherently focus on

group differences rather than individual differences.

There is another method of expressing the strength of the multivariate

relationship, which is not only less contentious but also more intuitively
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appealing and potentially more practicable. This method uses the predicted

probabilities to assign cases into the categories of the dependent variable and

then compares the results with their actual categories. Cross-classifying cases

according to their assigned and actual categories provides another picture

of how well the independent variables predict the dependent variable. Since

the predicted probabilities are decimal values between 0 and 1, they need to be

dichotomized so that they can be compared with the actual 0 and 1 categories

in a 2 × 2 table. In the present analysis, cases with a predicted probability

below .5 were assigned to the 0 category, and those with a value above .5 were

assigned to the 1 category.

In the nurses’ sample about 82% of those in good mental health were cor-

rectly classified, while only 33% of those in poor health were accurately pre-

dicted. This gives an overall “hit rate” of about 61%. This sounds impressive,

especially in the good health group, but these figures have to be compared

with what could be achieved even in the absence of any knowledge about the

nurses’ workplaces. In such a situation one prediction strategy would be to

assign all cases to the modal category, the one that actually contains most of

the cases. This is the good health category that contains 91 of the 163 cases.

Following this prediction rule would result in a 100% hit rate for the good

health category and 0% for the poor health category. Overall this would give

an average hit rate of about 56%. So, on this strategy, using the workplace pre-

dictors increases the overall hit rate from 56% to 61%: a gain of only 5%, but

at the cost of a disastrous hit rate for the poor health group.

A less draconian strategy would simply be to use the relative frequencies

in the sample as a basis for assignment: 56% for the good health group and 44%

for the bad health group. If this defined the baseline or chance expectation, the

gain in hit rate for the good health group would be 26% (82% − 56%) and 11%

for the poor health group. Details aside, the key points to note in classification

analysis are that hit rates need to be compared with chance and that chance can

be interpreted in more than one way. We will return to this issue in Subsection

5.2.2 as classification analysis is also used as part of discriminant analysis.

At this point the results indicate that the set of work characteristics is

related to mental health to a degree that is unlikely to be due to chance. The

magnitude of this relationship is hard to specify precisely, but the pseudo R2

statistics in the range 5%–7%, and the gain in predictive hit rate, suggest that

the relationship is probably weak. Given that there is some relationship, which

independent variables are contributing to it? The answer to this question can
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be found in the logistic coefficients and their associated statistical tests, which

may be z tests or the Wald tests shown in Table 5.2.
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Table 5.2 Logistic Regression Statistics Showing the Effects of Three
Workplace Characteristics on Mental Health

Independent Variable Coefficient Wald Statistic p Odds

Professional relations .193 6.753 .009 1.212
Autonomy −.027 .116 .734 .973
Control −.012 .057 .812 .988
Constant −1.907

The SPSS program uses the Wald statistic to test the null hypothesis that

a coefficient value is zero in the population. As Table 5.2 shows, only in the

case of the professional relations variable should this null hypothesis be

rejected with an associated p value of .009. Under some circumstances the

Wald statistic can produce misleading results, and so it is wise to check the

pattern of results by comparing models. In the present situation the question of

interest would be whether the model containing professional relations and the

constant would perform better than the constant-only model. In other words,

does the professional relations variable truly have predictive power in the

absence of the other two predictors?

As we saw earlier, the −2 log likelihood for the constant-only model

is 223.75. Running a logistic regression that includes professional relations

reduces this figure to 215.55, a reduction and chi2 of 8.2 that is statistically sig-

nificant with a p value of .004. Moreover, this professional relations model has

pseudo R2 statistics in the range 4.9%–6.6% and a similar gain in hit rate. The

significant chi2 test for the professional relations model, and the similarity of

the magnitude statistics in the models containing one or three independent

variables, strongly suggest that only the professional relations variable is con-

tributing to differences in mental health.

The logistic coefficient for professional relations of .193 indicates its

impact on mental health when the other two independent variables are statis-

tically controlled. However, the fact that it is on a log odds scale means that it

is not easy to interpret. The coefficient says that nurses who are higher by one

unit on the professional relations scale have a .193 increase in their log odds

of being in the good health group. As usual, the coefficients can be positive, as
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in this case, or negative if the relationship is inverse. The coefficients can be

turned into probabilities, but these are even more difficult to interpret because

the impact is not uniform across the independent variable scale. Instead the

most common strategy is to convert the coefficients into odds, and these

appear in the last column of Table 5.2. Remember that an odds of 1 indicates

no relationship, a value greater than 1 indicates a positive relationship, and a

value less than 1 indicates a negative relationship. The odds statistics can be

interpreted in terms of percentage change by subtracting 1 and multiplying by

100. So the odds of 1.212 for professional relations mean that for every 1-unit

increase in that independent variable, the odds of being in the good mental

health group increase by 21.2%. Every unit increase in autonomy produces a

2.7% decrease in the odds [100(.973 − 1) = −2.7] and for control the decrease

in odds is 1.2%. Bear in mind, though, that the coefficients for autonomy and

control are not statistically significant, so we should be treating them as effec-

tively zero and their corresponding odds as 1. The description here is purely

for illustrative purposes.

As in OLS regression, confidence intervals may be calculated around

logistic coefficients and around the odds. For example, the 95% confidence

interval for the professional relations odds ranges from 1.048 to 1.402. So,

while the best single odds estimate is 1.212, we can be 95% confident that the

population value lies within this range. Finally, it is important to appreciate

that the logistic coefficients are unstandardized, and therefore not directly

comparable with each other unless the independent variables happen to share

the same unit of measurement. According to Pampel (2000), while there are

various ways to calculate standardized coefficients, none are truly equivalent

to the betas found in ordinary least squares regression. A partial solution is to

standardize the independent variables, either before they are entered into the

analysis or by multiplying the coefficient for a variable by its standard devia-

tion. However, since the dependent variable remains in its original form, this

semistandardization is only a semisolution.

Now that we have discussed the most commonly used statistics in logis-

tic regression, two examples from the research literature may help to consoli-

date understanding. Kirschenbaum, Oigenblick, and Goldberg (2000) used

binary logistic regression to examine differences between two groups of Israeli

workers: 77 who had suffered a first-time work injury and 123 who had suf-

fered injuries on multiple occasions. The independent variables were a variety

of sociodemographic, work environment, and well-being indicators. For a
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logistic regression containing 11 independent variables, they report a chi2 of

15.9 with a p value of < .01. Clearly, there was a multivariate relationship

between the independent variables and the work injury categories that was

unlikely to be due to chance. A classification analysis showed that 140 of the

200 cases were correctly classified by the probabilities derived from the

model: an overall hit rate of 70%.

Turning to the independent variables, we find that 11 of the 17 logistic

coefficients were statistically significant at p < .05. Three of these were well-

being variables: a feeling that things are going wrong, unhappy with family

life, and unhappy with housing. Thus it appears that some aspects of well-

being had an influence on proneness to multiple work injuries. However,

inspection of the signs of the coefficients revealed an anomalous pattern.

Multiple injuries were more likely for workers who were unhappy with their

housing (coefficient = 3.396), but less likely for those who felt that things were

going wrong (coefficient = −1.657) or who were unhappy with family life

(coefficient = −2.66). The authors then provide some interesting suggestions

on how this apparent anomaly might be resolved.

Many reports of logistic regression analyses omit information about the

chi2 for the model, classification results, and the logistic coefficients. Instead

they focus on the odds for each independent variable, often including the 95%

confidence interval rather than p values. Natvig, Albrektsen, and Qvamstrom

(2003), for example, analyzed the predictors of happiness in a sample of 887

Norwegian school adolescents. In one logistic regression the dichotomous

dependent variable was very or quite happy versus not happy, and the inde-

pendent variables were school alienation, school distress, general self-efficacy,

school self-efficacy, support from teacher, support from pupils, and decision

control. The logistic regression results showed that several of these variables

had odds with a 95% confidence interval that did not include 1. These are the

variables whose effects would be statistically significant if null hypothesis

testing were used with an alpha of .05. The school alienation and general self-

efficacy variables exemplify this and can be used to reiterate how odds statis-

tics are interpreted.

The school alienation odds of .47 were less than 1, indicating a negative

relationship with happiness. The dependent variable was coded such that the

odds are those of being in the very or quite happy group. Subtracting 1 from

.47 and multiplying by 100 indicates that with every 1-unit increase in school

alienation the odds of being happy decreased by 53%. The confidence interval
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revealed that in the population this decrease could be as great as 69% or as

little as 27%. Turning to general self-efficacy, we find that the odds of 1.7 mean

that for every 1-unit increase in that variable, the odds of being happy increased

by 70%. Again, the confidence interval suggests that we can be 95% confident

that the population value for this increase lies between 10% and 163%. Since

this is a multivariate logistic analysis, the odds have been adjusted to take

account of any associations among the independent variables and, in this

example, they have also been adjusted to control for age, gender, and school.

5.1.3 Trustworthiness in Logistic Regression

The issues that bear on the trustworthiness of logistic regression results

can be discussed briefly since the details of most of them have already been

explored with respect to OLS regression in Section 4.3 of Chapter 4 and more

generally in Chapter 2. We will follow the usual sequence of first considering

sampling and measurement issues, then the assumptions required for the legit-

imate use of the technique, and finish with some other general concerns.

The sample size required for logistic regression is typically greater than

that needed for OLS regression. Statistical tests of coefficients obtained by

maximum likelihood estimation may give misleading results for samples

under 100 (Pampel, 2000, p. 30). More independent variables require more

cases, and a minimum of 50 cases per independent variable is recommended

(Wright, 1995, p. 221). As usual, the appropriate sample size for a given analy-

sis is also dependent on the acceptable levels of Type I and II error, the

expected magnitude of the relationships between the independent and depen-

dent variables, the reliability of measurement, and the frequency distribution

of the dependent variable. In the logistic regression context, the more unequal

the numbers in the categories, the more cases are needed. Add to all this the

problem of missing data because of listwise deletion, and the desirability

of having enough cases to cross-validate results on a holdout sample, and it

becomes painfully clear that logistic regression typically requires cases in the

hundreds to guarantee trustworthy results.

Regarding measurement, the independent variables may be on any type

of scale, and they are dealt with as in OLS regression, using dummy coding

where necessary. The dependent variable is usually categorical and may have

two or more categories, as we will see in the next section. Also in the next

section, it will become apparent that the dependent variable may be on an
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ordinal scale, again by using dummy coding. However the dependent variable

is scaled, it is required that the categories are mutually exclusive and jointly

comprehensive. So each case must be locatable in one and only one category.

As usual, it is assumed that the data have been produced by reliable and valid

measurement procedures. It is important to emphasize that assigning cases

to categories may be a highly complex and error-prone process. A simple out-

come of a measurement procedure does not mean that the procedure itself is

simple.

The assumptions required for statistical tests in logistic regression are far

less restrictive than those for OLS regression. There is no formal requirement

for multivariate normality, homoscedasticity, or linearity of the indepen-

dent variables within each category of the dependent variable. However, as

Tabachnick and Fidell (2001, p. 521) note, satisfying these conditions among

the independent variables for the whole sample may enhance power. The prob-

lem of multicollinearity—very high correlations among the independent vari-

ables—does apply to logistic regression. All of these assumptions about the

independent variables may be evaluated by treating one of the independent

variables as a pseudodependent variable and regressing it on all the other inde-

pendent variables using OLS regression. The tenability of the assumptions can

then be examined with the usual OLS diagnostic tools. The assumption of

independence of cases remains in place. In other words, each case can appear

in the data set only once, and their data must be uncorrelated with the data of

any other case. Casewise exploration of the residuals—the difference between

the predicted probability and the actual category—may reveal patterns sug-

gesting nonindependence and may identify outliers for whom the model pro-

vides notably poor predictions.

To this point we have concentrated on trustworthiness issues that arise

in one form or another in regression generally. Two further issues present

themselves in logistic but not in OLS regression. The first issue is that the

maximum likelihood procedure for estimating the logistic coefficients is an

iterative procedure. This means that the coefficient values are calculated in a

series of steps or iterations rather than in one hit, as in OLS regression. The

aim at each iteration is to produce a log likelihood that is greater than that at

the preceding iteration. This process continues until a convergence criterion is

satisfied, that is, the amount of increase between two iterations is small enough

for the solution to be regarded as stable. In some circumstances the proce-

dure may fail to converge on estimates of the coefficients, either because the
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convergence criterion could not be met or the number of permitted iterations

was exceeded. Or less dramatically, convergence may be achieved, but only at

the cost of a large number of iterations. In all of these situations a warning sig-

nal is being given that the data are problematic in some way, and the results

may not be trustworthy. So information about the iteration history of a maxi-

mum likelihood analysis can be another useful diagnostic tool.

The second issue concerns the trustworthiness of classification analyses.

Classification results are never definitive because they depend on at least two

decisions made by the analyst that may be questionable. The first is the cut-

point used to translate predicted probabilities into predicted categories. The

usual default is .5, but this may not be the optimum choice. The second deci-

sion concerns the best choice of baseline hit rate against which the achieved

hit rates should be judged: an issue we noted earlier. This could be the simple

probability (50% in a two category analysis), the relative frequency in the sam-

ple, the relative frequency taken from available population data, or a figure

based on some other criterion. A different choice of baseline hit rate can give

a very different sense of the predictive power of a given model. Even when

appropriate decisions on these two issues have been made, the concreteness of

classification analysis can also distract from the point that the hit rates are gen-

erated from and tested on the same data. This capitalization on chance means

that hit rates in any replication are almost inevitably going to be less impres-

sive. Accordingly, when possible it is advisable to generate predictions with

one subgroup from the sample and to test their predictive power on another

“holdout” subgroup. Failing this, other cross-validation techniques can be used

within one sample to test the stability of the results across different subsets of

the sample.

5.1.4 Extending the Scope of Logistic Regression

Like OLS regression, logistic regression can accommodate indepen-

dent variables on any measurement scale with the use of dummy coding. For

example, Hintikka (2001) examined the relationship between religious atten-

dance and life satisfaction in a random sample of 1,642 adults in Finland,

using almost entirely categorical variables. Both of these variables had two

categories, while the control variables of sex, employment status, household

category, and adequate social support had two, three, or four categories. Age

was the only independent variable that was not categorical. A binary logistic
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regression was conducted to assess the relationship between religious

attendance and life satisfaction, while controlling for all of the other indepen-

dent variables. Hintikka reports an adjusted odds for religious attendance of

1.7 with a 95% confidence interval of 1.2–2.4. This means that religious atten-

ders were 70% more likely than nonattenders to be satisfied with their lives.

Alternatively, we could say that religious attenders were 1.7 times more likely

than nonattenders to be satisfied with their lives.

Logistic regression can also be used to evaluate interaction or moderating

effects, using the products of independent variables, as in OLS regression. The

study by Natvig et al. (2003) of happiness in school adolescents, discussed

earlier, included such interaction terms. Thus their logistic model included not

only the independent variables described earlier, but also the product of each

separately with age and sex. Since none of these interaction variables were

statistically significant, it could be concluded that the predictors of happiness

that were found were not moderated by age or sex.

All of the sequential techniques used in OLS regression are also available

in logistic regression. Kirschenbaum et al.’s (2000) analysis of the predictors

of work accident proneness was actually more complex than the description

given earlier. As noted then, the independent variables fell into three groups:

sociodemographic, work environment, and well-being characteristics. The

analytic strategy was to build a hierarchical model where these blocks of vari-

ables were entered in three cumulative steps. This allowed the analysts to

examine the predictive gain at each step and to note changes in the coefficient

for a particular variable at each step. For example, the coefficient for sex

changed from a statistically significant 1.201 at step 1 to a nonsignificant .742

at step 2 and then dropped further to .418 at step 3. Such a pattern suggests

confounding or possibly mediation if other conditions were met. In fact, even

this description understates the complexity of the analysis because the selec-

tion of particular variables into the blocks was guided by earlier forward and

backward logistic regressions. That is, variables were selected for inclusion in

the blocks according to statistical rules rather than by the analysts.

The final extension of logistic regression in this section concerns the

structure of the dependent variable. To this point we have focused on binary

logistic regression, which allows for a two-category dependent variable. More

than two categories can be accommodated with the technique of multinomial
or polytomous logistic regression. To achieve this, the categories are con-

verted into a set of dummy variables, one less than the number of categories.
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Each dummy variable represents a particular difference between particular

categories, either singly or in sets. As we saw in Chapter 4, two systems of

particular interest are reference and ordinal coding. In the first, a particular

category is chosen as a reference, and each dummy variable represents a dif-

ference between that category and each of the others. In ordinal coding the

ordinal scaling of the dependent variable is represented by a set of dummy

variables, each representing a comparison of the sets of categories above and

below each scale point.

In multinomial logistic regression, a logistic model is estimated for each

dummy dependent variable. This means that no new interpretive issues arise,

and the only concern is to be clear about the particular difference that a given

model is estimating. Returning to the study of the predictors of happiness in

adolescent schoolchildren (Natvig et al., 2003), the researchers conducted

both binary and multinomial logistic regressions. In the former, as we saw ear-

lier, the dependent variable was very or quite happy versus not happy. For the

multinomial analysis, they created two dummy variables: very happy versus

not happy, and quite happy versus not happy, to represent three categories of

happiness. This is an example of reference dummy coding with not happy as

the reference category.

Earlier in the binary logistic regression we saw that one of the successful

predictors, school alienation, differentiated between the very or quite happy

and not happy categories with an odds of .47. The multinomial regression pro-

duced odds of .53 and .35 for the very happy versus not happy and quite happy

versus not happy contrasts, respectively, and neither of their 95% confidence

intervals included 1. This means that school alienation differentiates the not

happy category from the other two, both singly and jointly, and this pattern is

unlikely to be due to chance. However, a different pattern emerged for the

other successful predictor—general self-efficacy. For this variable, the binary

odds for the very or quite happy versus not happy comparison were 1.7. The

multinomial regression produced odds of 1.39 and 2.89 for the very happy ver-

sus not happy and quite happy versus not happy contrasts, respectively, but

the 95% confidence interval for the former did not include 1. Accordingly, it

appears that general self-efficacy did not predict the difference between the

quite happy and not happy categories. Details aside, it should be apparent that

multinomial logistic regression provides the capacity not only to accommo-

date a variety of categorical and ordinal dependent variables, but also to detect

specific differences between categories within these variables.
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This completes our introduction to logistic regression. We now turn to an

alternative multivariate technique for analyzing the relationships between multi-

ple independent variables and a single categorical variable: discriminant analysis.

5.2 DISCRIMINANT ANALYSIS

5.2.1 The Composite Variable in Discriminant Analysis

Discriminant analysis captures the relationship between multiple indepen-

dent variables and a categorical dependent variable in the usual multivariate

way, by forming a composite of the independent variables. So, discriminant

analysis and logistic regression can be used to address the same types of

research question. As in logistic regression, the variable generated by the com-

posite cannot be a predicted score on the dependent variable. Instead it is a dis-
criminant function score that then feeds into calculations that produce the

predicted probability of a case being in a particular category of the dependent

variable. This predicted probability is then used to generate a predicted cate-

gory for each case. So, in broad terms the strategy is very similar to logistic

regression in which the composite variable generates logits, which produce

predicted probabilities, which produce predicted categories. The composite

variable in two-group discriminant analysis is:

discriminant score == [discriminant coefficient 1(IV1)
++ discriminant coefficient 2(IV2) . . . . . . .
++ constant]

The coefficients are now called discriminant function coefficients. For

each case, the coefficient for an independent variable is multiplied by the

case’s score on that variable; these products are summed and added to the

constant; and the result is a composite score for that case—their discriminant

score. From these scores can be derived predicted probabilities and predicted

group membership on the dependent variable.

Before we look more closely at the coefficients, it would be helpful to dis-

cuss the principle by which they are calculated. This principle will be clearer

if we first pause to appreciate the hybrid nature of discriminant analysis and to

review briefly some material from Chapter 1. When we consider the typical

interpretation and application of the technique, it is convenient to frame it in
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regression terms: the prediction of a categorical dependent variable using

multiple independent variables. However, it is easier to appreciate how the

technique works if we frame it as a form of multivariate analysis of variance

(MANOVA), which indeed it is. MANOVA is the multivariate form of ANOVA

in which there are multiple dependent variables. (This is discussed in detail in

Chapter 6.) The unsettling consequence of this shift in perspective is that we

need to reverse the status of the independent and dependent variables temporar-

ily. So from a MANOVA perspective we are now asking how well a categorical

variable accounts for differences in a set of dependent variables. To make this

more concrete, in the next section we will return to the nurses’ data and the

relationship that autonomy, control, and professional relations have with good

versus poor mental health. From a regression perspective, there are three inde-

pendent variables and one dependent variable. But from the MANOVA per-

spective that we now adopt temporarily, we have one independent categorical

variable and three dependent variables. This may sound like cheating, but in fact

it just highlights the way in which independent and dependent variable status is

something imposed by the analyst rather than embedded in the statistics.

Imagine that we want to analyze the bivariate relationship between the

nurses’ mental health, treated as a dichotomous independent variable, and

their professional relations treated as a dependent variable. In Chapter 1 we

saw how analysis of variance can be used to analyze the relationship between

a categorical independent variable and an interval-level dependent variable. In

fact, we quickly carried out an ANOVA on the relationship between mental

health and professional relations in Subsection 5.1.2 of this chapter. At the

heart of the ANOVA strategy is the idea of capturing group differences on the

dependent variable with a between-groups sum of squares and individual dif-

ferences with a within-group sum of squares. The between-group and within-

group sums of squares add up to the total sum of squares, which represents all

of the individual differences on the dependent variable, regardless of group.

The basic rationale of this approach is that the bigger the between-groups sum

of squares is relative to the within-group sum of squares, the more likely it is

that the independent and dependent variables are related. In Chapter 1 we saw

how this relationship can be indexed with the ratio of between-group/total

sum of squares (eta2 = explained variability), or of within-group/total sum of

squares (Wilks’s lambda = unexplained variability). Further, the ratio of between-

group/within-group sum of squares can be changed into a ratio of variances

that then becomes the test statistic known as the F ratio.
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For the nurses’ data, those in good mental health have a mean professional

relations score of 14.7, while those in poor mental health have a mean score

of 13.4: a mean difference of 1.3, as we saw in Table 5.1. Analysis of variance

gives an eta2 of .049, a Wilks’s lambda of .951, and an F of 8.35 (p = .004).

The F statistic reassures that the relationship is unlikely to be due to chance,

and the other statistics indicate that mental health status accounts for 4.9% of

variance in professional relations or, conversely, that it leaves 95.1% of vari-

ance unexplained. As we move into discriminant analysis, we carry forward

from this bivariate analysis two particular perspectives. The first focuses

on the distance between the two means. The second focuses on the ratio of

the between-groups/within-groups sum of squares, which lies at the heart of

the F ratio. This sum of squares ratio is known as the eigenvalue, and it is the

statistic on which discriminant analysis pivots.

In discriminant analysis the ANOVA logic we have been reviewing is

applied to the composite variable: the discriminant score. If we return to the

example in which there are three quasi-dependent variables (autonomy, con-

trol, and professional relations), each nurse will have a discriminant score that

combines their weighted scores on these three variables. These discriminant

scores can be divided into the good and poor mental health groups, and the mean

discriminant score can be calculated for each group. The group means on the

composite variable are known as centroids. Now we are finally in a position

to state the principle by which the discriminant coefficients or weights are

selected. They are chosen so that the distance between the centroids is maxi-

mized, within certain constraints that need not concern us. So coefficients are

chosen that push the group means on the composite variable as far apart as

possible, that is, that maximally discriminate between the two groups.

The principle can also be stated in terms of eigenvalues. Discriminant

coefficients are chosen that maximize the eigenvalue for the composite vari-

able, that is, the ratio of between-group to within-group sums of squares. A

critical feature of these composite sums of squares is that they encapsulate, not

only the variability of each variable, but also their covariability. This means

that the coefficients are partial, just as in multiple and logistic regression, so

each indicates the contribution of a particular variable while statistically con-

trolling for all of the others. Further, the coefficients can again be calculated

in unstandardized or standardized form, as in multiple regression. That said,

we will see in the next section that discriminant coefficients are less informa-

tive than those in regression, whatever their form. After so many abstractions,
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it is more than time to return to an example where these ideas are made more

concrete.

5.2.2 Two-Group Discriminant Analysis in Action

In order to appreciate similarities and differences in the techniques, it will

be helpful to begin this section with a discriminant analysis that parallels the

logistic regression carried out in Subsection 5.1.2. As a reminder, the data set

consists of three independent variables: professional relations, autonomy, and

control; and a dichotomous dependent variable: good mental health versus

poor mental health. Bear in mind, though, that the independent/dependent sta-

tus of these variables will flip occasionally in our discussion. This somersault

is potentially confusing, but it does avoid deeper confusions that can arise in a

nonstatistical account.

We begin with the question of whether the composite variable or dis-

criminant function discriminates between the two groups to a degree that is

unlikely to be due to chance. This is equivalent to asking whether the multi-

variate association between the independent and dependent variables is statis-

tically significant. The null hypothesis that there is no multivariate association

in the population can be tested using chi2, which in the present case is 8.45

with a reassuring p value of .038. Since it is statistically significant it is mean-

ingful to ask about the magnitude of the relationship. Discriminant analysis

produces a multivariate version of Wilks’s lambda (see Chapter 1), which has

a value of .948 in this case. This means that the discriminant function or com-

posite variable fails to account for 94.8% of the variance in mental health sta-

tus. Conversely, by subtraction the function does account for 5.2% of variance.

In the bivariate context this explained variance is indexed by the eta2 statistic, but

in this multivariate context it becomes known as the canonical correlation2.

So in the present analysis SPSS reports a canonical correlation of .228, that is

the square root of .052. In summary, the discriminant analysis suggests that the

three work variables considered as a set are related to mental health status and

explain just over 5% of its variance. This outcome opens the way to an inspec-

tion of the coefficients in the composite variable to discover which variables

are contributing to its discriminating power.

The contributions of individual variables can be shown in a variety of

ways, and the most common appear in Table 5.3. The unstandardized dis-
criminant coefficients in the first column are the weights used to generate the

discriminant score. However, since they do not take account of any differences
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in the measurement scales of the variable, they are not usually comparable, as

in multiple and logistic regression. The standardized discriminant coefficients
in the middle column are comparable, but only in a limited sense. Their rank

order, ignoring the signs, provides an indication of the relative contribution

made by variables to the discriminant function. Thus it is clear that the pro-

fessional relations variable takes the lions’ share of the credit in this case. Note

that unlike beta coefficients in multiple regression, these coefficients cannot be

interpreted in rate of change terms, nor do they have associated statistical tests.

Since the standardized coefficients have been adjusted to take account of

correlations among the variables, it is also helpful to have an unadjusted view

of their contributions for comparison. This is provided by the discriminant
structure coefficients in the last column. The structure coefficient is the

simple correlation between scores on a particular variable and the discriminant

scores. It thereby gives an uncluttered view of a variable’s contribution and is

favored by many analysts because of this. Ideally, as in the present case, the

standardized and structure coefficients provide a similar message, although

sometimes the differences can be instructive. The message is clearly that the

professional relations variable is the key discriminator, as we found in the

logistic regression analysis.

Another similarity to logistic regression is the availability of classification

analysis: the prediction of group membership and the assessment of its suc-

cess. In fact, in some discriminant analyses, particularly in applied settings,

this is of more interest than the inspection of coefficients. There are a variety

of ways to conduct classification analyses that can be pursued in the readings

at the end of this chapter. In SPSS the discriminant scores are used to calcu-

late what is called each case’s posterior probability: their probability of

being in a particular category given their discriminant score. This is then

adjusted by the case’s prior probability: the probability of their being in a
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category regardless of their discriminant score. The result of all this is a

predicted group membership for each case, that is, the category that is their

most probable location given their attributes. This predicted category can then

be compared with their actual category to calculate various indices of classifi-

cation success for the sample as a whole.

In the nurses’ sample, about 84% of those in good mental health were cor-

rectly classified, and about 32% of those actually in poor health were so clas-

sified, giving an overall hit rate of nearly 61%. As we discussed in the context

of logistic regression, these figures can and should be compared with what

could be achieved by chance. However, as before, the notion of “chance” can

take on a variety of meanings, and it is important to choose the most appro-

priate for the research context. In this form of classification analysis the choice

of chance level is equivalent to the choice of prior probabilities. The simplest

choice would be the tossed coin model, which gives a prior probability of 50%

for either category. Using this would lead to the conclusion that the overall hit

rate was 11% better than chance, but that this hid a gain of 34% in the good

health group and a loss of 18% in the poor health group. Since the actual

groups were not equal in size, a better choice of prior probabilities would be

the sample relative frequencies: 56% in the good health group and 44% in the

poor health group. Using these as base rates gives an overall hit rate gain of

about 10% with a gain of 28% in the good health group and a loss of 12% in

the poor health group.

This change in the choice of prior probabilities results in a relatively small

shift in the pattern of classification success. However, there may be grounds

for choosing quite different prior probabilities that could alter the rates con-

siderably. For example, population figures may be available for the prevalence

of mental health in nurses that are notably different from the sample figures

and that might provide more accurate prior probabilities. Or there may be good

reason to set the prior probabilities in a way that favors the accurate detection

of mental health problems at the expense of detecting those in good mental

health. Details aside, the two general points to reiterate from the earlier dis-

cussion on classification analysis in logistic regression are that the results

hinge on the analyst’s choice of prior probability, and that until the results are

cross-validated in some way they should be regarded as how good classifica-

tion can get.

The results of the discriminant analysis suggest that work characteristics

can discriminate among nurses in good versus poor mental health, albeit to
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a modest degree. However, they also suggest that most if not all of this

discriminative power is due to the professional relations variable. Since there

are no individual variable tests in discriminant analysis, it is wise to check

their contributions by running sets of analyses with them present or absent. If

we run a discriminant analysis including only the professional relations vari-

able, we find very similar figures to those resulting from the three variable

model. The figures for the single variable model, with those from the three

variable model in brackets, are chi2 = 8.12 (8.45), p = .004 (.038), Wilks’s

lambda = .948 (.951), canonical correlation = .222 (.228), and overall classifi-

cation success 62% (61%). The similarities here make it clear that the auton-

omy and control variables are quite redundant. Of course, all we have really

done here is to repeat the ANOVA we conducted earlier. When there is only

one independent variable, discriminant analysis collapses into an analysis of

variance: a further demonstration of the cumulative nature of multivariate sta-

tistics. The example nonetheless exemplifies the value of comparing models

with different subsets of variables to clarify their individual contributions.

To complete this section and to help consolidate understandings of the

main features of discriminant analysis, we can turn to an example of a two-

group analysis from the research literature on well-being. Philips and Murrell

(1994) compared a group of 120 older adults who sought help for their mental

health with another similar group of 120 who did not seek help, to see if they

differed in terms of their well-being, experience of undesirable events, social

integration, social support, and physical health. The discriminating power of

these independent variables, accompanied by 10 sociodemographic control

variables, was analyzed with a two-group discriminant analysis. The authors

report the following statistics for the discriminant function: Wilks’s lambda =
.5861; chi2 = 122.89, p < .0001; canonical correlation = .643. From the chi2 and

associated p value it is clear that the independent variable composite’s capacity

for discriminating between the two groups was highly unlikely to be due to

chance. The extent of this capacity can be quantified by squaring the canonical

correlation and concluding that the variables explained about 41% of the vari-

ance in help-seeking status. This same figure can be arrived at by subtracting

the Wilks’s lambda figure from 1 and converting to a percentage, since Wilks’s

lambda reflects unexplained variance.

To evaluate the contribution of individual variables, the authors present

the standardized and structure coefficients for each. The rank orders of these

two types of coefficient were strikingly different in some respects, reflecting
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the adjustments made to the standardized coefficients to account for

correlations among the independent variables. Like many analysts, the authors

chose to base their interpretations on the structure coefficients: the simple,

unadjusted correlations between variable and discriminant scores. From these

they concluded that the helpseekers had poorer well-being (structure coeffi-

cient = .77) and physical health (.63), experienced more undesirable events

(.50), and reported less social support (.33). The social integration variable had

a structure coefficient of .08, well below the conventional .30 threshold for

interpretation (Hair, Anderson, Tatham & Black, 1998). Interestingly, they did

not proceed to analyze a model without the sociodemographic variables. The

full model suggested that these variables were contributing little, so it would

have been interesting to evaluate the discriminating power of the five variables

that were apparently making the sole contribution to predicting group mem-

bership. It is also interesting to note that the authors chose not to proceed to a

classification analysis, despite the implications this might have had for mental

health services for older adults.

5.2.3 Trustworthiness in Discriminant Analysis

In this section we review concerns about sampling, measurement, and the

statistical assumptions that can influence the trustworthiness of discriminant

analysis results. As in the case of logistic regression, the review can be rela-

tively brief since it draws heavily on more extensive discussions in Section 4.3

of Chapter 4 and in Chapter 2.

It is generally recommended that the sample size in a discriminant analy-

sis should provide at least 20 cases for each independent variable. A sample

size smaller than this can result in discriminant coefficients that are not stable

across samples and therefore not trustworthy (Stevens, 2002, p. 289; Hair

et al., 1998, p. 258). It is also recommended that the smallest group size in the

dependent variable categories be at least 20, with an absolute minimum greater

than the number of independent variables. If these conditions are met, unequal

sample sizes across the categories are not problematic in themselves, though

they may have implications for the choice of prior probabilities in a classifi-

cation analysis and may contribute to assumption violation as discussed below.

As usual, the more general issues of acquiring enough cases to achieve appro-

priate levels of Type I and II error for the expected effect size, to compensate

for unreliable measurement, to allow for missing data, and to create a holdout
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sample if desired, should all be considered in determining the optimum

sample size.

The dependent variable in a discriminant analysis should be categorical

and may have any number of categories. The categories should be mutually

exclusive and jointly comprehensive, allowing each case to be assigned to a

single category. It is assumed that all of the independent variables are mea-

sured on at least an interval scale. Including other types of variables using

dummy coding will produce meaningful results. However, the more noninter-

val variables that are included, the less trustworthy the results will be in terms

of finding the optimum separation of the groups. In this situation it is usually

wiser to resort to logistic regression, which can accommodate any mix of inde-

pendent variable types. No new issues of measurement quality arise in dis-

criminant analysis; as usual, reliable and valid measurement of all variables is

the order of the day.

The statistical assumptions required for discriminant analysis are essen-

tially the same as for OLS regression, though some of them take on a slightly

different form. The independent variables are assumed to have a multivariate

normal distribution in each population from which the category samples are

drawn. As in OLS regression, the consequences of violating this assumption

are not usually serious if the sample size requirements above are met. The

assumption of multivariate homoscedasticity found in OLS regression takes on

a more elaborate form in the present context. Discriminant analysis requires

that the population variances and covariances for all independent variables are

equal across the dependent variable groups. This is known as the homogene-
ity of variance-covariance matrices assumption. The status of the assump-

tion can be explored by inspecting the group variances and covariances,

examining appropriate plots, and testing with statistics such as Box’s M. If the

sample sizes in each category are reasonably large and approximately equal,

violation of this assumption has little effect on statistical tests, but classifica-

tion analyses may be distorted. If there is a clear violation, remedies may be

found in transformations of variables, or possibly in an alternative approach to

classification called quadratic discrimination.

Discriminant analysis also assumes independence of cases and multivari-

ate linearity of relationships among the independent variables in each category

of the dependent variable. As in OLS regression, multicollinearity or high

correlations among independent variables can be a problem to which the ana-

lyst should be alert. Also, outliers on the independent variables may distort the
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results. Examination of univariate and bivariate statistics and plots for the

independent variables is important to check for these potential problems and for

nonnormality. As we noted earlier, it is also possible to explore the multivariate

structure of the independent variables by treating one of them as a pseudode-

pendent variable and conducting an OLS multiple regression. This will gener-

ate all of the diagnostic tools that were discussed in Chapter 4 that can now be

used to evaluate many of the assumptions required by discriminant analysis.

5.2.4 Extending the Scope of Discriminant Analysis

In Subsection 5.1.4 we discussed how the scope of binary logistic regres-

sion could be extended by accommodating various types of independent vari-

ables, conducting sequential analyses, and analyzing dependent variables with

more than two categories or groups. As we noted earlier, it is not advisable

in discriminant analysis to include independent variables that have less than

interval scaling, so there is no need to pursue that topic here. All of the sequen-

tial strategies, both hierarchical and statistical, can be used in discriminant

analysis, though the statistical approach using such techniques as stepwise

analysis is the most common application. No new general issues arise when

sequential strategies are used in discriminant analysis, so the earlier discussion

in Chapter 4 on OLS regression should suffice as an introduction. This then

leaves the topic of how discriminant analysis can be applied to a dependent

variable with more than two groups.

When discriminant analysis is applied to more than two groups, the major

consequence is that more than one discriminant function can be calculated.

Each function will have its own set of coefficients and each will generate a dis-

criminant score for every case. Mathematically, it is possible to derive as many

functions as there are groups minus 1. So for a four-group analysis, there will

be a maximum of three functions, and each case will potentially have three

discriminant scores. However, the fact that three functions can be derived does

not mean that all are necessary in order to achieve maximum discrimination

between the groups. This may be achievable with only one, or perhaps two, of

the available functions. Not surprisingly then, the major new issue that arises

when the dependent variable has more than two categories is how many func-

tions are worth retaining from those that are available.

The broad strategy for deriving and testing multiple discriminant func-

tions can be confusing, so we will first describe the logic in broad outline and
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then make it less abstract with a closing research example. When there two

groups, there is only one dimension along which their two means on the com-

posite variable (centroids) can be pushed apart as far as possible. However,

each time a group is added, another dimension emerges along which the cen-

troids can be separated. A four-group discriminant analysis, for example, first

calculates the set of coefficients that maximally separates the four centroids:

the first discriminant function. It then calculates another set of coefficients that

separates the centroids in a completely different way. This is the second dis-

criminant function, whose discriminatory power is unrelated to that found in

the first function. The process then continues to derive the third function. Since

the objective is to maximize the discriminating power of a function, the result

is a series of functions (three in this case) that have decreasing discriminating

power and that are uncorrelated with each other.

Another way of thinking about multiple discriminant functions is in terms

of explained variance. All of the available functions in an analysis are jointly

responsible for any explained variance that is achieved. Deriving separate

functions can be seen as assigning portions of this explained variance to each

function. The first function will be awarded the largest portion, and the suc-

ceeding functions will receive diminishing portions. Moreover, the portions

will be mutually exclusive, so that they add up to the total explained variance.

In general then, a discriminant analysis will produce a series of functions one

less in number than the number of groups or categories in the dependent vari-

able. These functions will be ordered such that they have decreasing discrim-

inating or explanatory power, and each will achieve this power in different

ways.

As we noted, the question this creates is whether all of the functions are

worth retaining in the analysis. The usual approach to this question is to rely

on the statistical significance of functions. Unfortunately, this is not simply

a matter of testing the significance of each function. The first step is to test

the significance of all the available functions considered jointly. This makes

sense, as it is equivalent to testing whether the functions jointly capture more

explained variance than would be expected by chance. If this test achieves sta-

tistical significance, the way is open to testing for superfluous functions. (If

not, the analysis is not worth pursuing at all.) The superfluity tests proceed by

testing the significance of subsets of functions, each time omitting the next

largest function. So, in the three-function case, the first test would evaluate the

joint significance of the second and third functions; and the second test would
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evaluate the significance of the third function alone. The occurrence of a

statistically nonsignificant result suggests that none of the functions under test

at that point are worth retaining. To see this process in action, we can turn to

a study involving four groups, which meant that three functions were available

in principle.

Diehl, Elnick, Bourbeau, and Labouvie-Vief (1998) conducted a study to

examine how adult attachment styles are related to a range of family context

and personality variables. They identified 304 cases as exhibiting one of four

attachment styles: secure (154), dismissing (77), preoccupied (25), or fearful

(48). One of their research objectives was to discover how well a wide range

of well-being, family, and personality variables would predict membership

of these four groups. To find out, they conducted a four-group discriminant

analysis with 12 independent variables. Since there were four groups, it was

possible to derive three functions. Their first analytic task was to decide whether

three functions were needed to account for any discriminating power of the

independent variables, or whether a smaller number would suffice.

All three functions had a joint chi2 of 109.96, with an associated p value

< .001. This demonstrated an overall level of discriminatory power that was

unlikely to be due to chance. The reported Wilks’s lambda of .69 indicates that

the functions accounted for 100(1 − .69) = 31% of the variance in attachment

styles. The next test of functions 2 and 3 was also significant with a chi2 value

of 47.24 and a p < .01. This outcome, and the fact that the second function

accounted for about 13% of the variance in attachment styles, suggested that

it was worth retaining for its discriminating power. However, when the third

function was tested it did not achieve statistical significance and accounted for

a minuscule amount of variance in the dependent variable. Moreover, func-

tions 1 and 2 together accounted for over 95% of the explained variance (not

of the total variance). All of this suggested that only two functions were

required rather than the three that were available in principle.

Since two functions were retained, two sets of coefficients resulted, and

the authors present the two sets of structure coefficients as the basis for their

interpretations of how the independent variables contribute to the functions.

Based on the patterning of the coefficients, the researchers labeled the first

function as a “self-model” and the second function as an “other-model.” They

also examined the group means (centroids) on the two discriminant scores and

found that the first function discriminated the secure and dismissing styles

from the preoccupied and fearful styles. In contrast, the second function
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discriminated the secure and preoccupied styles from the dismissing and

fearful styles. This differential outcome demonstrates nicely how the two func-

tions captured different aspects of the discriminating power of the super function.

Finally, Diehl et al. (1998) conducted a classification analysis. Given the

very different numbers of cases in each category, they wisely chose the rela-

tive frequencies as their prior probabilities rather than a uniform 25% for each

category. The success rates for each category with the prior probability in

brackets were secure 50% (51%), dismissing 55.8% (25%), preoccupied 44%

(8%), and fearful 50% (16%). The overall success rate for the classification

analysis was 51%. As the authors note, the prediction gains from using the dis-

criminating power in the independent variables were over 30%, but only in the

groups with insecure styles.

5.3 FURTHER READING

Pampel’s (2000) “primer” on logistic regression is exactly that—a model of

clear exposition for the novice, while Tabachnick and Fidell (2001, Chapter

12) provide a more extensive, computer-analysis-oriented account. In the

present context, the chapter by Hair et al. (1998, Chapter 5) is particularly

germane because it discusses logistic regression and discriminant analysis

in parallel. After more than 20 years, Klecka’s (1980) brief introduction to

discriminant analysis remains a valuable source. More extensive treatments of

discriminant analysis can be found in Tabachnick and Fidell (2001, Chapter 11),

Stevens (2002, Chapter 7), and Huberty (1984, 1994).
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