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Secondary analysis of data from large national surveys figures prominently in social science 
and public health research, and these surveys use complex sample designs in lieu of the 

simple random sample (SRS) that is assumed by most conventional statistical software. Exam-
ples are the National Health Interview Survey, the Medical Expenditure Panel Survey, the 
National Health and Nutrition Examination Survey, the Collaborative Psychiatric Epidemiology 
Surveys, the National Longitudinal Survey of Adolescents Health (Add Health), and the General 
Social Survey.

Researchers are drawn to these data sets because of their methodological strengths, such as 
the use of probability sample designs that can be generalized to the population, large sample 
sizes that permit sophisticated statistical analysis, and oversamples of relatively small groups 
in the population. The analysis of publicly available data sets is inexpensive for the analyst; 
and the agencies that funded the original data collection often are eager to have these data 
analyzed, which can result in funding for secondary data analysis. In addition to these public 
use data sets, survey researchers who conduct primary data collection rely on complex sam-
ples more often than not.

These complex samples differ from SRSs in such fundamental ways that it is not appropri-
ate to analyze the data as if these data were obtained from an SRS. These design features 
include stratification, which is partitioning the entire population into nonoverlapping seg-
ments (e.g., census tracts); clustering, which are groupings of similar persons (e.g., blocks 
within census tracts); and unequal selection probabilities, which means that the probability 
of being selected into the sample differs across the persons who comprise the population. As 
a result of stratification and clustering, individuals are not sampled independently of one 
another. Two issues are of paramount concern: (1) the representativeness of the sample and its 
impact on parameter estimates and (2) the estimation of population variances and standard 
errors (SEs), which form the basis for tests of statistical significance and for constructing 
confidence intervals (CIs).

6
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In sharp contrast, in an SRS, every individual in the population has an equal chance of being 
randomly selected for the sample, and the selection of individuals is independent of one 
another. However, this type of sampling is extremely rare in surveys of the general population 
for several reasons.

First and foremost are cost and logistical difficulty, especially for interviews with a sample 
that is widely dispersed geographically. For a sample defined geographically, for instance, an 
SRS would result in people being sampled from anywhere within these boundaries. To drive 
this point home, Los Angeles County encompasses 4,060.87 square miles (1 square mile = 2.59 
square kilometers); given local traffic conditions, interviewers might well log more hours trav-
eling to and from interviews than actually conducting them. In contrast, it is more efficient and 
less costly to collect data when sampling units are grouped together in some way. For example, 
the Los Angeles Depression Study, conducted in 1979 and recently designated a Social Science 
Classic by the Library of Science (Aneshensel, 2009), drew a representative sample of adults 
residing in Los Angeles County by first sampling census tracts from within subsets of all tracts 
in the county (known as strata, see below), then blocks within sampled tracts, households (HH) 
within sampled blocks, and finally one individual within sampled HHs (Frerichs, Aneshensel, 
& Clark, 1981).

An equally important consideration is that there may not be an information source for 
randomly selecting individuals directly, as is done in an SRS. In the absence of a listing of all 
residents of Los Angeles County, for example, sample members cannot be selected randomly 
as individuals. For this reason, it is necessary to sample identifiable clusters of individuals and 
then sample individuals within those clusters. These clusters may have existing lists of 
the sampling units within them, for instance, sampled schools have lists of all students in the 
schools. Other times, it is necessary to list individuals expressly for the study to provide the 
information necessary to select individuals.

For the Los Angeles Depression Study, two listings were necessary. First, the HHs on 
sampled blocks were enumerated by canvassing each block and listing the address of every 
HH on the block so that a sample of HHs could be selected. Then residents of the sampled 
HHs were listed so that one adult could be randomly selected. Until this last stage in the 
sample design, clusters were sampled; individuals were selected for the sample only in the 
sense that their clusters were sampled, and only some of the people in selected clusters 
were ultimately selected for the sample. Specific individuals were selected only in the final 
stage.

Finally, complex samples are also preferred when it is desirable to obtain larger numbers of 
sample members with particular characteristics than would be obtained with an SRS. This is 
accomplished by oversampling people with those characteristics. In social science research, it 
is now commonplace to oversample members of racial/ethnic minority groups to improve the 
precision of parameter estimates for these groups and to provide sufficient sample sizes for 
within group analysis. For the same reasons, people of advanced old age, the “oldest old,” are 
sometimes oversampled.

Analyzing data obtained from a complex sample as if it had been collected from an SRS 
may yield biased parameter estimates and tends to underestimate SEs, which leads to inflated 
tests of statistical significance and increases the chances of making a Type I error, failing to 
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reject the null hypothesis when it is true, for example, finding an association when in fact the 
variables are independent of one another. For these reasons, the features of a complex sample 
design should be taken into consideration during data analysis by using specialized software to 
obtain unbiased parameter estimates that are representative of the population and robust SEs 
that accurately reflect the variability due to the sample design.1, 2

Although the statistical development of the techniques for analyzing data from complex 
samples is beyond the scope of this text, implementing these methods is usually straightfor-
ward (unless, of course, you are the statistician who is compiling the sample weights, for 
example, or the programmer who is developing the software). In most instances, all that is 
involved is (a) reading the study documentation pertaining to the derivation of the sample to 
identify the variables that define the sample, (b) inserting these variables into the specialized 
software as indicated in the software documentation, (c) selecting among a few analytic 
options based on both sources of documentation, (d) executing the analysis using specialized 
software, and (e) interpreting results in the same manner as results based on the analysis of an 
SRS using ordinary statistical techniques.

Although these steps are sufficient to get the job done, this “black box” approach leaves one 
in the dark about how the derivation of the sample and adjustments for its design have influ-
enced analytic results and, thereby, study findings and conclusions. These adjustments to the 
data are just as important as the methods of data collection for arriving at accurate conclu-
sions. The overview of these topics in this chapter is intended to shed some light on the inter-
nal mechanisms of this black box and the implications for drawing valid inferences from the 
data. For a complete treatment of these topics, the reader should consult Heeringa, West, and 
Berglund (2010), an excellent text on the statistical basis for the analysis of survey data from 
complex samples.

This chapter first describes the basic elements of complex samples: stratification, cluster-
ing, and unequal selection probabilities. The second part explains the impact of these sample 
design elements on parameter estimates and their SEs. Next, techniques to adjust for these 
effects to obtain unbiased parameter estimates and robust SEs are described, procedures that 
are available in major statistical software packages. Specifically, methods of estimation for 
multiple linear regression that take the sample design into account are presented, including 
sample weights and adjustments to SEs. Implications for inferences from sample estimates to 
true population values are then discussed. The Health and Retirement Study (HRS) provides an 
example of a complex sample and is used to illustrate the application of design-based methods 
of analysis, and to demonstrate inferential errors that may arise from the incorrect analysis of 
these types of data as if they were obtained from an SRS.

Complex Samples

Complex samples can be understood best by comparing their structure to an SRS, and the 
multistage area probability sample is a particularly instructive example because it incorporates 
features found in other less complicated designs that utilize only some of these features. Also, 
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it is the design most often used in the large-scale population-based surveys that are used for 
secondary data analysis by social scientists and public health researchers.

A multistage area probability sample has the following characteristics: (a) sampling occurs 
at more than one stage, (b) the boundaries of the sample are delineated by geographical and 
demographic characteristics, such as U.S. Metropolitan (core urban population of at least 
50,000) Statistical Areas and nonurban counties, and (c) the elements of the sample are 
selected using a random mechanism so that every unit has a known chance of being selected 
for the sample (hence its name). This type of design is used to select not only individuals but 
other units as well, such as couples, families, or HHs, but for simplicity, the presentation that 
follows assumes that individuals are being sampled.

The multiple stages are arranged in a hierarchy in which the sampling units of the later 
stages are nested within the sampling units of the earlier stages (e.g., blocks are contained 
within census tracts, HH are situated within blocks). Clusters are used in place of the direct 
sampling of individuals from within strata because they can be identified, whereas it may not 
be possible to identity individuals at this stage, for example, blocks within census tracts are 
known, but the residents of a census tract are not listed (except in the decennial census, and 
these primary data are not available to researchers). Equally important, cluster sampling sub-
stantially reduces data collection costs and facilitates the administration of the data collection 
because the individuals within a cluster who are selected into the sample are less widely dis-
persed geographically than if they had been selected independently of one another.

In the initial stages, clusters of individuals with shared characteristics are sampled; indi-
viduals are selected only in the sense that they are part of a cluster that is selected. In this 
manner, individuals are carried along in the derivation of the sample as long as their cluster is 
among the clusters that are selected at that stage. When a cluster is not selected, it is dropped 
from the sampling frame along with all the individuals that constitute it. Specific individuals 
are not selected until the final stage, and even then, they are sampled from among the indi-
viduals contained within the cluster selected at the preceding stage (e.g., an individual is 
selected from within an HH).

In this manner, every member of the sample belongs to clusters that have been selected at 
every stage in the sampling frame. Each person’s probability of being selected into the sample 
accumulates across the stages of the sample design. Because the probability of selection is 
known for the clusters, along with the probability of selection for the individual in the last 
stage, the probability of selection for each individual is known. However, selection probabilities 
for clusters may differ; for example, some clusters may be oversampled, which filters down to 
generate individual differences in the probability of being selected into the sample. Also, the 
selection probabilities of individuals in the last stage tends to differ as well, for instance, some-
one living in a two-person HH has a greater selection probability than someone living in a 
three-person HH when only one person per HH is selected. For these reasons, the members of 
a multistage area probability sample have a known probability of selection, but these selection 
probabilities are unequal.

Sampling techniques are not necessarily the same across stages. For example, probabilities 
proportionate to size might be used to select census tracts; a random draw could be used to 
select two blocks per census tract; a systematic sample could be used to select every kth HH 
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within a sampled block starting with a random HH; and, within an HH, simple random selec-
tion could be used by selecting the person with the most recent birthday.

With this general description, we turn now to the most critical features of complex samples: 
stratification, clustering, and unequal selection probabilities. Their impact on parameter esti-
mates and SEs is described along with the consequences of ignoring the sample design by 
analyzing data as if the data had been generated by an SRS.

Stratification

Multistage area probability sample designs typically employ stratification, which entails 
subdividing the entire population into mutually exclusive and exhaustive subpopulations, 
which are known as strata (Kish, 1965). Stratification is used for several reasons, including 
decreasing the size of SEs relative to an SRS of the same size, enabling the oversampling of 
specific subpopulations, facilitating the use of different survey methods within strata, and 
permitting analysis within strata (Heeringa et al., 2010). Stratification affects SEs because the 
variance is estimated within stratum, which are internally homogeneous, and then averaged 
across stratum. It improves the precision of estimates by making the variance of at least some 
variables smaller within the strata than within the sample as a whole. This is achieved by 
stratifying on characteristics that are closely associated with selected variables so that there is 
less variability within stratum than between them. For example, socioeconomic status (SES) is 
strongly related to many health outcomes, which accounts for the use of stratification by SES 
in health research. Given that the characteristics used to define strata are more strongly associ-
ated with some variables than with others, stratification will affect the variance estimates of 
these variables more than the others. 

Strata are distinct from one another and encompass the entire population. They are often 
delineated by geographic boundaries and demographic characteristics. However, strata may be 
defined by other characteristics, such as school districts. There are usually only a few strata, with 
each stratum containing a large number of people. To increase the precision of parameter esti-
mates, there should be as much homogeneity within strata as possible on the variables under 
investigation, and the greatest amount of heterogeneity between strata (Heeringa et al., 2010).

In the first stage, the eventual sampling units (e.g., individuals) are grouped together into the 
largest clusters, which are known as Primary Sampling Units (PSUs; e.g., census tracts). PSUs 
are sampled from every stratum, and sampling is independent across strata. As a result, stra-
tum can be analyzed separately. Although PSUs are sampled from each stratum, not all PSUs 
within a stratum are selected for inclusion in the sample. Only the sampled PSUs are carried 
forward to the next stage in the sample design.

It is important to emphasize that at this stage, PSUs are sampled, not individuals. Individuals 
are selected only insofar as they are members of a PSU that has been selected; most individu-
als within a sampled PSU eventually will be dropped as a result of the sampling that occurs at 
subsequent stages.

In contrast, with SRSs, sampling occurs in one stage and individuals are selected directly. 
Stratified samples usually result in somewhat smaller variance estimates than an SRS of the 
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same size, that is, smaller estimates of SEs. Therefore, SEs are overestimated when stratifica-
tion is not taken into consideration during analysis by using software that assumes an SRS; 
tests of statistical significance are deflated and CIs are artificially wide, which may lead to a 
Type II error.

Clustering

In the next stage of a multistage area probability sample design, the clusters are known as 
Secondary Sampling Units (SSUs), and SSUs are independently sampled from within each of 
the PSUs that were selected at the previous stage. Thus, clusters are linked between stages: The 
PSUs that are selected at the first stage contain within them the SSUs for the second stage. If, 
for example, the PSUs are census tracts, then the subset of selected census tracts provides the 
clusters of blocks that are sampled at the second stage. As before, it is the SSUs that are sam-
pled at this stage (not individuals), and only some SSUs are selected from within each PSU. All 
individuals within a given cluster are selected at this stage and remain in the sampling frame 
at this stage, although only some of these individuals will be selected into the final sample at 
subsequent stages. Sampling of SSUs from within PSUs is independent of sampling of SSUs 
within other PSUs.

The sampled SSUs contain within them the clusters to be used at the next stage and so on 
until the final stage when individuals are selected. For example, each block that has been 
sampled from a census tract at Stage 2 encompasses numerous HHs, from which a sample of 
HHs is then selected at Stage 3.

People within clusters tend to have similar characteristics precisely because they are in the 
same cluster. For example, they reside on the same block. As a result, they are more like one 
another than like people in other clusters and more alike than they would be if they had been 
selected individually from an SRS. For example, sampled residents from HHs on a given block 
are likely to be somewhat the same on many characteristics, such as annual family income. 
This violates the assumption of an SRS that observations are independent of one another. The 
extent to which observations within a cluster resemble one another is known as the intraclass 
correlation coefficient. Although a cluster needs to be large enough to make stable parameter 
estimates, large clusters are not an optimal use of resources because the observations are pro-
viding somewhat redundant information as a result of this similarity.

The homogeneity within clusters results in an effective sample size for a clustered sample that 
is smaller than an SRS of the same size. Therefore, the actual sample size may need to be increased 
to achieve the desired level of precision, offsetting some of the cost-effectiveness of clustering.

Although stratification tends to decrease the variance of parameter estimates relative to an 
SRS of the same size, as just discussed, clustering has the opposite effect. These countervailing 
influences may be perplexing because strata and clusters are similar in that they are internally 
homogeneous with regard to the variables being studied. However, while all stratums are 
sampled, only some clusters are sampled. As a result, the clusters that are sampled may con-
tain cases that are more dissimilar from one another than would be the case if all clusters were 
sampled, leading to greater variance (Menard, 2010).
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The final stage of a multistage area probability sample entails the random selection of indi-
viduals into the sample. Unlike an SRS, however, the selection of individuals into the sample is 
not independent because the individuals who are selected in the final stage have been selected 
because they were part of clusters that were sampled in earlier stages.

Clustering is an exceedingly consequential feature of complex samples for the estimation 
of SEs, which then affects significance tests for hypotheses and inferences to the population 
made on the basis of these tests. Cluster sampling typically increases sampling variation com-
pared with the direct sampling of individuals in an SRS, resulting in less efficient SEs. In other 
words, parameter estimates are less precise and SEs are larger in a clustered sample than in an 
SRS of the same size.

The impact of stratification on reducing variance estimates typically is substantially 
smaller than the impact of clustering on increasing variance estimates. For this reason, the 
net effect is to increase the variance of parameter estimates when both stratification and 
clustering are used.

As a result, when SRS statistical techniques are mistakenly applied to a clustered sample, 
SEs are underestimated and tests of statistical significance are inflated, leading to an increased 
chance of making a Type I error. In this manner, one may obtain a statistically significant result, 
when in actuality, there is none. These considerations do not apply to data from an SRS 
because individuals are selected directly, not as elements in clusters and strata.

Unequal Selection Probabilities

A representative sample of the population is essential to making accurate estimates of 
population parameters, but sample characteristics may not align well with population charac-
teristics for a number of reasons. From a sample design perspective, a major consideration is 
variation in the probability of being selected into the sample. In an SRS design, each person 
has an equal probability of being selected. In a complex sample, however, members of the 
population usually (although not always) do not have equal selection probabilities by design. 
Differences typically occur at every stage in a multistage sample and accrue over the stages. As 
a result, the raw sample may not be an accurate representation of the population, necessitating 
the use of sample weights (see the following discussion).

Selection probabilities are likely to vary from person to person as a result of the design 
because strata differ in size from one another as do clusters. For example, if the sampling of 
census tracts from within a stratum is based on probabilities proportional to the size of the 
tract, then a large tract will have a greater probability of selection than a small tract. In con-
trast, if two blocks are sampled per census tract, then the selection probability will be higher 
for blocks within a census tract containing only a few blocks than blocks within a tract with 
many blocks.

The probability of selection into the sample accumulates over the stages of a sample design 
in that the sampling fractions across stages are multiplied to yield a total sampling fraction. 
Suppose that for a given individual, the probability of being selected into a sample like the one 
used in the Los Angeles Depression Study is 1/18 for the tract (sampling 100 of the approximately 
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1,800 tracts in the county), 1/25 for the block (sampling 2 of the 50 blocks in the tract), 1/10 
for the HH (sampling 3 of the 30 HH on the block), and 1/2 for the individual (sampling 1 of 
2 persons in the HH). This person would have a sampling fraction of 1/18 × 1/25 ×1/10 × 1/2 = 
0.00011. Someone residing on the same block and who lives alone, in comparison, would have 
a sampling fraction of 0.00022 (1/18 ×1/25 × 1/10 × 1).

In addition, it is common for some subgroups of the population to be oversampled by hav-
ing a disproportionately large selection probability compared with members of groups that 
are not oversampled. For example, it is often desirable to oversample members of minority 
groups such as African Americans to ensure sufficient sample sizes for analysis and to 
improve the precision of parameter estimates for these groups. One method of accomplishing 
this end is by selecting a disproportionately large number of census tracts with relatively high 
concentrations of African Americans; this is done by assigning these tracts relatively high 
selection probabilities. Given that African Americans, on average, have lower SES than do non-
Hispanic Whites, especially African Americans living in impoverished, hypersegregated inner-
city neighborhoods, the resultant sample may not accurately reflect the full spectrum of 
variation in SES among African Americans. To compensate, PSUs could be stratified simulta-
neously on both racial composition and SES, for example, increasing the selection probabili-
ties of high-SES predominantly African American tracts even more. As a case in point, the Add 
Health Survey mentioned in Chapter 2 oversampled African American students with college-
educated parents.

Oversampling most often is based on sociodemographic characteristics, such as member-
ship in a racial/ethnic minority group, although other criteria are sometimes used. For 
example, in the Add Health Study cited in Chapter 2, twins and adoptees were selected with 
certainty.

It should be apparent that if some groups are oversampled in this manner, other groups 
necessarily are undersampled (given a fixed sample size), although this consequence is rarely 
made explicit in sample descriptions. These groups compose a smaller proportion of the total 
sample than would be the case if not for the oversampling of other groups.

As a result, characteristics that are associated with the criteria used to oversample have 
sample distributions that typically do not correspond very well with the distributions of those 
characteristics in the population. Indeed, these sample characteristics may be extremely dis-
torted. For instance, if persons over the age of 85 are oversampled, then sample estimates of 
population parameters that are associated with age will be inaccurate. Suppose that subjective 
life expectancy is estimated—the age to which you expect to live minus your current age. The 
disproportionately large number of people nearing the end of their lives will yield an overall 
estimate that is shorter than the true value for the population where this group is a relatively 
small (albeit growing) portion of the population.

More generally, unequal selection probabilities generate a sample in which the proportional 
representation of at least some segments of the population is not the same as their propor-
tional representation in the population. In other words, the sample is not representative of the 
target population because some groups are overrepresented, while others are underrepre-
sented. Consequently, estimates of population parameters based on the raw sample tend to be 
biased, and findings do not generalize accurately to the population.
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In contrast, in the SRS everyone has an equal probability of selection so that the distribution 
of characteristics of the sample mirrors those of the population. Therefore, parameter esti-
mates can be generalized to the population.

HRS ANALYSIS JOURNAL 6.1

The Health and Retirement Study Sample Design

The Health and Retirement Study is an ongoing, biennial longitudinal study of a large, 
nationally representative multicohort sample of persons aged 50 and older begun in 
1992 (Health and Retirement Study, n.d.). In this chapter, it is used to illustrate the design 
of complex samples and the analysis of survey data collected from these types of samples. 
The HRS data also provide a running example of the implementation of the elaboration 
model with multiple linear regression that spans the beginning of the exclusionary strat-
egy of analysis through the end of the inclusive strategy (Chapters 7 through 11).

The HRS sample design is a good illustration of the type of complex sampling design 
just discussed. The target population for each cohort was all adults in the contiguous 
United States born during the birth cohort years who resided in HHs. Samples were 
selected using a multistage area probability sample design with four selection stages. At 
the first stage, 2 PSUs were selected from among each of 56 strata, where the PSUs were 
U.S. Metropolitan Statistical Areas (MSA) and non-MSA counties selected based on prob-
abilities proportionate to size. The SSU were area segments within PSUs. Third, a com-
plete enumeration was made of all housing units (HU) physically located within the 
selected SSU, followed by the random selection of HUs that contained at least one person 
from the birth cohort. The final stage selected one or more persons within a sampled HU: 
(a) a single unmarried age-eligible person, (b) a married couple who were both age-eligible, 
or (c) a married couple in which only one spouse was age-eligible. If there was more than 
one unrelated age-eligible person in the HU, one person was randomly selected. In addi-
tion, there were three oversamples: Blacks, Hispanics, and residents of Florida.

The original HRS study that commenced in 1992 was designed to follow a cohort of 
adults then in their fifties as they made the transition from active work into retirement 
(HRS1, born 1931–1941, n = 12,654). It was joined in 1993 by the companion Assets and 
Health Dynamics of the Oldest Old Study (AHEAD, born before 1924, n = 8,222), consist-
ing of persons aged 70 and over and designed to examine the postretirement and end of 
life period. The two studies were merged in 1998, when two new cohorts were added: 
Children of the Depression Era (CODA, born 1924–1930, n = 2,320) and War Babies 
(WB, born 1942–1947, n = 2,529). In 2004, an additional cohort was added, Early Baby 
Boomers (EBB, born 1948–1953, n = 3,340).3 Thus, the sample encompasses people in 
late middle age through the oldest old.

The substantial differences in the number of participants enrolled for each cohort 
signify differences in selection probabilities across cohorts that are consequential to 
sample estimates of characteristics of the population. For instance, the 10-year HRS1 
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cohort enrolled nearly four times as many participants as the 5-year EBB cohort. This 
difference suggests that persons in the birth years for HRS1 were in effect oversampled, 
having a higher probability of being selected into the sample than persons in the EBB 
birth years.

The analyses reported in this text utilize the sample as it was constituted in 2006 and 
2008 in order to use data from an enhanced face-to-face interview that included a leave-
behind “Psychosocial Questionnaire” (PQ) that measures key constructs for the theories 
used as examples in this text. Half of the sample was randomly selected to complete the 
PQ in 2006; the other half of the sample was assessed in the same way at the next data 
collection in 2008. The 2006 sample was divided to select respondents who were sam-
pled for the PQ that year: the same procedure was used to select respondents sampled 
for the PQ in 2008. Then the entire sample was reconstituted by combining these two 
halves to increase the analytic sample size and statistical power relative to using only the 
2006 or the 2008 data.

Procedurally, the PQ was left with sampled respondents at the end of the interview, 
and respondents were asked to complete the questionnaire and mail it back to the field 
office. Telephone follow-ups were conducted with respondents who had not returned the 
questionnaire after a second reminder notice. Measures from the PQ include life satisfac-
tion, loneliness, discrimination, and social support. Additional information, including 
sociodemographic characteristics and health status, comes from the concurrent HRS core 
interview and from the respondent’s baseline interview.

Of the approximately 30,000 persons ever enrolled in the HRS sample through 2008, 
a total of 15,176 were eligible for the PQ, selected for it, and additionally were age-
eligible for this analysis because they were in one of the five birth cohorts (excluded, e.g., 
are younger spouses of participants). Of these persons, 12,983 (85.5%) returned the 
survey. Respondents were dropped from the analytic sample if they did not have a valid 
sample weight (n = 127) and/or had excessive missing data (following limited imputa-
tion of missing data with the mean or the mode, n = 620). The final analytic sample for 
all analyses is 12,236.

Accounting for the Sample Design

The design features of paramount importance to the analysis of data from a complex sample 
concern the structure of the sample in terms of stratification, clustering, and unequal selection 
probabilities. Although our primary interest is the impact of these design features in multiple 
linear regression and logistic regression (see Chapter 12), the procedures described in this 
chapter apply to other procedures as well, including univariate parameter estimates and their 
SEs (see HRS Analysis Journal 6.2 below). In brief, it is necessary to use sample weights to 
obtain unbiased parameter estimates and to take the sample design into account in the estima-
tion of SEs for tests of statistical significance and CIs. For the statistical basis for these esti-
mates, see Heeringa and colleagues (2010) and the sources cited therein. Major statistical 
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software packages now contain specialized procedures for analysis of survey data that accom-
modate sample weights and adjust estimates of SEs for complex sample designs. The ease with 
which these procedures can now be implemented eliminates a number of obstacles that in the 
past deterred survey analysts from taking the sample design into consideration. Thus, current 
accepted practice is to analyze complex survey data with procedures that are tailor made for 
such designs.

Sample Weights

As discussed above, the complex sample design typically results in unequal selection prob-
abilities. This feature distinguishes these designs from SRSs in which each individual in the 
population has the same probability of being selected into the sample. This variation in selec-
tion probabilities needs to be taken into consideration during analysis in order to make unbi-
ased parameter estimates.

This adjustment is accomplished with the use of sample weights, also referred to as prob-
ability weights or pweights, which are weights assigned to each observation that equal the 
inverse of the probability of being selected into the sample based on the sample design. This 
weight is interpreted as the number of persons in the population who are represented by a 
particular person in the sample. In an SRS, each person in the population has the same prob-
ability of being selected and, therefore, each observation has the same implicit weight of 1.00. 
In most complex samples, however, selection probabilities vary from person to person, which 
necessitates the use of sample weights.

Since sample weights are the inverse of selection probabilities, they too accumulate over 
stages in a multiplicative manner. Continuing the example from above, the sample weight for 
the hypothetical person in the Los Angeles Depression study is 18 × 25 × 10 × 2 = 9,000; this 
person’s neighbor who lives alone has a weight of 4,500 (18 × 25 × 10 × 1). This weight is 
interpreted as the number of people in the population that this person represents. For this 
reason, the sum of these weights equals the size of the target population. Statistical packages 
sometimes apply the weight in a particular data set in such a way that the population size is 
mistaken for the sample size. Should this difficulty occur, a relative weight or normalized 
weight can be calculated and used instead by dividing the raw weight by its mean (Thomas & 
Heck, 2001). The same adjustment can be made by multiplying the sample weight by the 
unweighted n divided by the weighted n.

Weights for complex samples often take into consideration factors in addition to unequal 
sampling probabilities. One crucial factor is nonresponse among persons who are selected for 
the sample, especially differential nonresponse rates across subgroups of the population. For 
example, some racial/ethnic minority groups may have disproportionately low response rates 
because they are distrustful of research because of incidents of scientific misconduct, such as 
the infamous Tuskegee syphilis experiment, or because cultural norms discourage the disclo-
sure of personal information. Sample weights may be adjusted to compensate for these differ-
ences, assigning disproportionately high weights to participants who are members of groups 
with low participation rates.
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Adjustment for nonresponse requires information about the characteristics of the persons 
who did not respond, but this information may be very limited precisely because these persons 
did not respond. In some instances, information is available from an external source, such as 
information about all patients in a sample drawn from a medical care provider. In other 
instances, it is obtained during data collection, for example, through interviewer observations 
of the person or his or her surroundings. However, this information more often than not is 
limited to the information contained in the sample design (Heeringa et al., 2010), for example, 
the racial composition of the census tract.

These adjustments to the sample weights rest on the assumption that people who did par-
ticipate in the survey are similar to those who did not participate on some characteristics—
such as race/ethnicity or median HH income of their census tract—also are similar on other 
characteristics, most important, the variables being studied. This assumption is problematic 
given that they differ on one essential characteristic: whether they participated or not. Conse-
quently, adjustments for nonresponse can be thought of as reducing bias in parameter esti-
mates as distinct from providing completely unbiased estimates.

Beyond adjusting for unequal selection probabilities and differential nonresponse, 
weights are sometimes used to make the sample distribution of key sociodemographic char-
acteristics conform to the population distribution of those characteristics.4 These weights are 
called poststratification weights because they are computed after the sample is collected 
and because these characteristics define the various strata that constitute society, for exam-
ple, race/ethnicity, gender, and SES. To calculate poststratification weights, information about 
the stratification of the population by these sociodemographic characteristics is needed from 
an external source, such as the U.S. Census or the Current Population Survey. Sampling 
weights are then adjusted to align the proportional distribution of subgroups in the sample 
to match those in the population, considering multiple characteristics simultaneously. For 
example, adjustments might be made for strata simultaneously defined by race/ethnicity, 
gender, and SES such that a low-income African American woman receives a different adjust-
ment from a low-income African American man and from a low-income non-Hispanic White 
female. 

As a result of these factors, sample weights can vary tremendously from person to person.
It is imperative to examine closely the documentation for sample weights for a given data 

set. Although some of the statistical details may be impenetrable, it is necessary to understand 
how these weights correspond to the sample design in order to be aware of how the applica-
tion of these weights affects your analysis. Often, it is productive to examine the mean sample 
weights by select characteristics; for example, examining how these weights vary across the 
sociodemographic subgroups of the sample (see Table 6.2).

In addition, sample weights almost always increase estimates of SEs and, therefore, are 
consequential to inferences from sample estimates to population parameters, as discussed in 
the following.

These issues do not apply to data from an SRS because individuals have equal selection 
probabilities; each person in effect has an implicit weight of one. This feature eliminates the 
need for sample weights (although other weights might be called for, such as adjustments for 
differential nonresponse).
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Characteristic

Unweighted Weighted

 
n

Proportion/
Mean

Proportion/
Mean

 
Robust SE

Cohort

 AHEADa 1,100 0.090 0.072 0.003

 CODAb 1,844 0.151 0.114 0.005

 HRS1c 5,087 0.416 0.266 0.005

 WBd 2,004 0.164 0.231 0.006

 EBBe 2,201 0.180 0.317 0.009

Gender

 Male 5,110 0.418 0.457 0.005

 Female 7,126 0.582 0.543 0.005

Race/ethnicity

 non-Hispanic White 9,685 0.792 0.833 0.010

 African American 1,454 0.119 0.082 0.005

 Latino 859 0.072 0.063 0.009

 “Other” 238 0.019 0.022 0.003

Table 6.1 Characteristics of the HRS PQ Sample, U.S. Adults Aged 52 and Older

HRS ANALYSIS JOURNAL 6.2

The HRS Sample and Sample Weights

The unequal selection probabilities generated by the HRS sample design require sam-
pling weights to yield unbiased parameter estimates. The HRS weights also adjust for 
initial nonresponse and for attrition over time. In addition, poststratification adjustments 
to the weights are made based on the corresponding Current Population Survey on the 
basis of the birth cohort, gender, and race/ethnicity.

The weights specially for the PQ data also adjust for nonresponse to it. The half sam-
ples that received the PQ in either 2006 or 2008 are each weighted to the population 
for that year. Consequently, an adjusted weight is calculated by dividing these weights in 
half. The application of the adjusted weight means that we can think of the sample as 
representing the U.S. population of persons born before 1954 midway between these two 
times in 2007.5

The characteristics of the analytic sample are summarized in Table 6.1. Unweighted 
and weighted data are presented to illustrate the effects of using sample weights on 

(Continued)



180 PART II REGRESSION WITH SIMPLE RANDOM SAMPLES AND COMPLEX SAMPLES

Note: N = 12,236; SE = Standard error. Robust SEs are calculated using Balanced Repeated Replication (BRR) 
to adjust for the complex sample design. SEs are not shown for unweighted data because they are inaccurate; 
HRS = Health and Retirement Study; PQ = Psychosocial Questionnaire; AHEAD = Assets and Health Dynamics 
of the Oldest Old; CODA = Children of the Depression Era; HRS1 = Health and Retirement Study 1; WB = War 
Babies; EBB = Early Baby Boomers; Some proportions to not sum to 1.00 due to rounding error.

a. Born before 1924.

b. Born between 1924 and 1930.

c. Born between 1931 and 1941.

d. Born between 1942 and 1947.

e. Born between 1948 and 1953.

Table 6.1 (Continued)

univariate parameter estimates. The most instructive comparison concerns the distribu-
tion of birth cohorts. In terms of sample composition, HRS1 retains the distinction of 
being the largest cohort, as shown by the unweighted n and proportion. However, when 
the data are weighted, the most recent EBB cohort is the largest one, even though fewer 
EBB participants entered the study and despite the fact that it encompasses only a 5-year 
birth interval (compared with the 10-year interval of HRS1).

The differences between the unweighted and weighted distributions are the result of 
corresponding differences in the sample weights by cohort, as shown in Table 6.2. PQ 
participants in the EBB cohort have an average weight that is almost three times the 
average sample weight of participants from the HRS1 cohort. Although these weights 

Characteristic

Unweighted Weighted

 
n

Proportion/
Mean

Proportion/
Mean

 
Robust SE

Marital status

 Married 8,215 0.671 0.674 0.006

 Divorced/separated 1,310 0.107 0.130 0.004

 Widowed 2,350 0.192 0.158 0.003

 Never married 361 0.030 0.038 0.002

Employment status

 Employed 2,988 0.244 0.358 0.007

 Retired 8,055 0.658 0.543 0.008

 “Other” 1,193 0.097 0.099 0.004

Age (years) 69.102 65.952 0.182

Education (years) 12.712 13.003 0.071

Income (/$1,000) 62.619 71.920 1.777

Wealth (/$1,000) 427.692 431.440 14.903
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adjust for several factors, one is the sampling rate, that is, the size of the cohort sample 
relative to the size of the population in that age cohort. The weighted distribution reflects 
the actual distribution of these cohorts in the U.S. population aged 52 and older in 2007, 
whereas the unweighted distribution reflects the number of participants in the study.

The standard deviations (SDs) in Table 6.2 show that there is substantial variation in 
these weights. The weights range from a low of 1,593 to a high of 21,655; there are 7,653 
unique values among the 12,236 persons in the sample. This variation reflects the numer-
ous factors that are taken into consideration in the construction of these weights. For 
example, the average weight for African Americans (3,956) is substantially lower than 
the other racial/ethnic groups because this group was oversampled (non-Hispanic 
Whites, 6,008; Latinos, 5,106; and “other,” 6,588). However, among African Americans, 
males have a substantially higher average weight (4,698) than do females (3,551). The 
end result is that each respondent is almost unique with regard to the number of persons 
represented in the population.

The impact of ignoring unequal selection probabilities on parameter estimates can be 
seen by considering a characteristic that is related to cohort, such as education, which 
has risen historically with each successive cohort. The difference between the unweighted 
and weighted estimates is about a quarter of a year (0.291) of education, a modest dif-
ference, but substantially greater than the robust SE for education (see Table 6.1).

This impact also can be seen for characteristics that are associated with age because 
age is fixed by cohort. The estimate of age itself is lower by 3 years in the weighted than 
in the unweighted data, reflecting the relatively large weights for the two most recent 
cohorts. Age also can be used to illustrate the impact of the sample design on variance 
estimates. Its design-adjusted SE (see below) is given in Table 6.1 as SE = 0.182; the 
biased estimate under the assumption of an SRS is SE = 0.086, approximately half. A 
difference of this magnitude is extraordinarily consequential for tests of statistical 
significance and CIs, increasing the chance of making a Type I error.

Two age-related characteristics further reveal the magnitude of the bias that can occur 
with estimates using SRS statistical techniques with data obtained from a complex sample. 

Table 6.2 HRS PQ Sample Weights by Cohort

Cohort Mean SD

AHEAD 4562.55 2020.06

CODA 4320.57 1738.71

HRS1 3650.08 1581.80

WB 8073.38 4173.52

EBB 10069.77 4010.53

Total 5712.37 3756.80

Note: N = 12,236; HRS = Health and Retirement Study; PQ = Psychosocial Questionnaire; SD = standard 
deviation; AHEAD = Assets and Health Dynamics of the Oldest Old; CODA = Children of the Depression Era; 
HRS1 = Health and Retirement Study 1; WB = War Babies; EBB = Early Baby Boomers (see note, Table 6.1).
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Being widowed and being retired both increase with age, so it is reasonable to suppose 
that the estimates of both would decrease from the unweighted to the weighted esti-
mates. As shown in Table 6.1, compared with the weighted estimate, the unweighted 
estimate of the proportion widowed is 21.6% larger (100 × (0.192 - 0.158)/0.158); this 
value is 21.3% for proportion retired (100 × (0.658 - 0.543)/0.543).6

The impact of unequal selection probabilities is not limited to the estimation of char-
acteristics of the sample. A comparison of reports of having lifetime exposure to major 
acts of discrimination demonstrates the potential impact. These experiences were 
assessed by asking whether eight events occurred “at any point in your life,” such as being 
unfairly dismissed from a job; unfairly prevented from moving into a neighborhood; and 
unfairly stopped, searched, questioned, physically threatened, or abused by the police. 
These events were counted. Although the modal response is 0, the maximum score of 8 
is also observed, indicating that exposure in general is low, but some persons have expe-
rienced numerous discriminatory acts. The average level of exposure is highest among 
persons in their fifties and declines steadily through age 80 before leveling off. As a result 
of this age trend, the unweighted mean is considerably lower ( X = 0.467 ) than the 
weighted mean ( X = 0.530 , SE = 0.011), such that the design-adjusted 95% CI [0.507, 
0.553] does not include the unweighted estimate.

These dynamics are important to grasp because they illustrate the potential bias in 
parameter estimates that can result from not taking the sample design into account dur-
ing data analysis. For these reasons, the weighted data are better suited to making uni-
variate parameter estimates that can be generalized to the population.

We now turn to the characteristics of the sample compared with the weighted sample 
estimates of the population. Table 6.1 shows more women than men, which reflects the 
average age of 69 when the greater longevity of women has become apparent. The 
gender difference is slightly smaller in the weighted data, consistent with the lower 
average age. The overwhelming majority of respondents are non-Hispanic Whites, a 
distribution that like gender in part reflects the age composition of the sample. This 
preponderance is even more extreme in the weighted data and reflects the fact that the 
African American and Latino populations are younger than the non-Hispanic White 
population. About two of three respondents are married in both the unweighted and 
weighted data, but as just discussed, the proportion widowed in the population estimate 
is less than in the sample, whereas the reverse is the case for separated and divorced. 
Two thirds of the sample is retired and a quarter is employed, but these values are sub-
stantially different from the population estimates based on the weighted data. The 
sizeable numbers of widowed and retired persons indicate that many HRS participants 
already have undergone some of the major transitions in life course trajectories that 
occur later in life. The sample is well educated for these birth cohorts, with somewhat 
more than a high school education on average. Average HH income is above the 
national median HH incomes of persons aged 65 and older ($27,798), but it is less than 
the value estimated for the population with the weighted data. Although there is sub-
stantial wealth, the sample encompasses people who are considerably less well off 
financially, including those who are in debt.
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Estimating the Regression Equation and Standard Errors

Multiple linear regression parameter estimates and their SEs are affected by the design of 
complex samples, which has substantial implications for tests of statistical significance and 
for the calculation of CIs, and by extension, inferences that are based on these statistics. The 
same equation is estimated for data obtained with a complex sample as for ordinary least 
squares (OLS) regression under an assumption of an SRS (hereafter referred to OLS/SRS) (see 
Equation 5.14),

Y a b X b X b X b Xf f i i i i i i
^ = + + + + + + +1 1 2 2  ,                                 (6.1)

where Y
^ is the predicted value of the focal dependent variable, a is the intercept with the y-axis 

when all of the independent variables equal 0, bf is the expected average change in Y for a 
1-unit increase in the focal independent variable Xf when Xi1, Xi2, . . ., Xi+ are held constant, and 
the same interpretation applies to bi1, bi2, . . ., bi+.

The use of sample weights to obtain unbiased parameter estimates, however, changes the 
method of estimation. Weighted least squares estimation is used instead of OLS estimation, 
such that the contribution of each observation to the residual sum of squares is proportional 
to its population weight (Heeringa et al., 2010).7

The cumulative influence of design elements on estimates of SEs are summarized in 
Figure 6.1. Stratification decreases SEs somewhat as does the use of poststratification 
weights. Other weights increase SEs as does clustering. The net effect of these opposing influ-
ences more often than not is to inflate SEs relative to an SRS of the same size of the same 
population.

These effects are quantified as the design effect (DEFF), which is the ratio of the variance 
under the actual sample design to the variance under a hypothetical SRS of the same size 
from the same population. Values less than 1 indicate that the actual sample design is more 
efficient than the hypothetical SRS, whereas the more usual values that are greater than 1 
indicate that the actual complex sample design is less efficient. Efficiency refers to how much 
a statistic fluctuates from sample to sample and is related to the precision of the statistic as 
an estimate of the parameter. Taking the square root of the DEFF results in the design factor 
(DEFT), which is the ratio of corresponding SE estimates; it shows how much the sample 
design changes the SE.

Major software packages provide procedures for correcting SEs based on the sample design. 
For the statistical details of these, the interested reader is referred to Heeringa and colleagues 
(2010). One approach is linear approximation, also known as Taylor series linearization, which 
is based on an expansion of the first- and higher-order derivatives of the formula for the 
population parameter (Menard, 2010). The variance estimate for this approximation is used to 
determine the variance of the estimate itself (Korn & Graubard, 1999). The estimated variance 
is calculated from the variation among PSUs; stratum variance estimates are pooled to com-
pute the overall variance estimate (Kneipp & Yarandi, 2002).
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The second approach entails what is known as resampling in which replicated subsamples 
are selected from the sample, point estimates are made for each subsample, and then, the 
overall variance of the statistic is estimated from the variability of the subsamples. The bal-
anced repeated replication (BRR) method draws multiple half-sample replicates for designs 
with exactly two PSUs per stratum. The jackknife method draws multiple subsamples by 
deleting a small and different portion of the total sample (e.g., a PSU) from each subsample.

Some public use survey data sets do not contain complete information on the sample 
design to protect the confidentiality of participants and provide instead a replicate sample 
weight, which is an adjusted weight, usually with the resampling methods of BRR or the jack-
knife method.

Thomas and Heck (2001) conclude that using specialized software procedures is by far the 
most accurate method of accounting for the effects of clustered samples. They note three other 
less precise corrective steps that can be considered: (1) using a known DEFT value to adjust SEs 

Stratification

Post-
Stratification

Weights

Clustering

Probability
Weights

Nonresponse
Weights

SE

SRS

Figure 6.1
Impact on Standard Errors (SE) of Complex Sample Design Relative to a 
Simple Random Sample (SRS)

Note: The net effect of a complex sample design typically is to increase SEs relative to the SEs 
that would be obtained with an SRS of the same size of the same population. Stratification and 
poststratification weights tend to decrease SEs somewhat, but these effects usually are more than 
offset by the increase in SEs that results from clustering and from probability and nonresponse 
weights.
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upward, (2) manipulation of the effective sample size by adjusting the relative weight down-
ward based on a known DEFF value, or (3) simply using a more conservative critical value for 
alpha (e.g., .01 or .001 instead of .05). Given the marked superiority of specialized software and 
the ease with which it can be implemented for many statistical procedures, the only reasons 
to use any of these alternatives would be the absence of information about one or more of the 
variables that define the sample, which does occur on occasion with the secondary analysis of 
existing data, or the lack of suitable software for a specific statistical procedure. Ignoring the 
effects of the sample design is not a viable alternative.

Inferences to the Population

The parameter estimates of Equation 6.1 and their standard errors are used to draw 
inferences about the probable true population values based on the following model (see 
Equation 5.15): 

Y X X X Xj f f i i i i i i jj j j j
= + + + + + ++ +α β β β … β ε1 1 2 2 ,                           (6.2)

where the subscript j refers to the jth observation, a and the bs refer to the population parameters, 
and the error term e captures other systematic influences on Y, random variation, and measurement 
error.

Once again, our primary focus from the perspective of the elaboration model concerns the 
null hypothesis for the focal relationship, H f0 0: β = . As is the case for OLS/SRS, this 
hypothesis is tested in two steps. The first step is the overall test for the regression equation, 
H f i i i0 1 2 0: β β β … β= = = = =+ . This hypothesis is tested with an overall modified Wald 

test statistic, which follows an F distribution (Heeringa et al., 2010). It is analogous to the over-
all F test statistic used with OLS/SRS. However, instead of the usual degrees of freedom (df) of k, 
n - k - 1, where k is the number of variables in the model, the design degrees of freedom (ddf) 
are fixed to the number of clusters minus the number of strata. Thus, the df for the regression 
equation are k, ddf. Alternately, an adjusted Wald test can be used with df = k, dff – k + 1. As 
Heeringa and associates (2010) point out, sample designs with large df permit more precise 
estimation of the true variance parameters of the reference distribution. 

If the null hypothesis for the regression equation is rejected, then we conclude that at least 
one of the coefficients probably differs from 0. Because the overall test is uninformative about 
the individual coefficients, the null hypothesis H f0 0: β =  is tested for the coefficient. As in 
OLS/SRS, the t statistic is used for this purpose:

t
b

SE b
f

f
=

  − 0

( )
,                                                          (6.3)

where SE(bf) is obtained in the manner described above; the ddf are used to determine the statistical 
significance. Likewise, the robust SEs are used to calculate a design-based CI, b t SE bf f= ± α / [ ( )]2 .
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In the elaboration method of analysis, a model-building strategy is used in which sets of vari-
ables are sequentially added to the model to determine their effect on the estimate of the focal 
relationship. The test of the null hypothesis that the coefficients for all of the m variables that are 
added equal 0 is the modified partial Wald test statistic, which is distributed as F with df equal to 
m, ddf, (Heeringa et al., 2010) or an adjusted partial Wald test with df = m, dff – m + 1. This test 
requires nested models in which the variables in the restricted model are a subset of those in the 
expanded model and the model is estimated on the same sample, that is, the n is constant. It is 
equivalent of the incremental F test with OLS/SRS. If the null hypothesis cannot be rejected, then 
the restricted model is preferred on the basis of parsimony. If it is rejected, then the coefficients 
for the individual variables are evaluated using the t test or CIs just described.

Explanation of the Dependent Variable

Like OLS/SRS, regression that adjusts for a complex sample design yields a value of R2 that 
gives the correlation between the dependent variable and the optimal linear combination of 
independent variables, that is, the correlation between Y and Y^. However, this is a weighted 
version of R2 such that the squared differences contributing to the sums of squares are 
weighted by the observation’s sample weight (Heeringa et al., 2010). Its significance is given by 
the test of the regression equation.

The change in R2 between nested models gives the contribution of the added variables to 
explaining Y. It too is weighted. The significance of the increment in R2 is provided by the 
modified partial or adjusted Wald test statistic just described.

Subgroup Analysis

The analysis of subgroups with data from complex samples differs from the same analysis 
conducted with an SRS. West (2008) explains that estimates of SEs should reflect theoretical 
sample-to-sample variation based on the original complex sample design; therefore, the entire 
sample should be retained rather than deleting the cases that are not in the subgroup of interest. 
For instance, both men and women should be retained in the sample even when the analysis 
is restricted to women. Similarly, Lumley (2004) makes it clear that a subpopulation of a survey 
cannot be treated simply as a smaller survey.

West cites two primary problems with the dropping cases for subgroup analysis. First, 
sample-to-sample variability in the size of the subgroup should be incorporated into SEs, but 
dropping cases that are not in the subgroup treats the subgroup size as fixed. The second prob-
lem identified by West is that the entire first-stage sampling clusters are dropped from the 
analysis when they do not contain any cases in the subgroup by chance, which results in 
underestimates of SEs because these clusters are not recognized by the software as ever being 
part of the original sample design. Relatedly, he notes that there may be only a single cluster 
within a stratum, which is problematic because within-stratum variance between the clusters 
cannot be estimated.
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Instead, the entire sample should be retained with an indicator variable for whether the 
case is in the subgroup of interest or not. As West explains, this indicator variable enables the 
software to recognize the full complex design of the sample, treat the subgroup sample size as 
random, and estimate parameters and SEs based on the full complex sample design.8

Lumley (2004) likewise maintains that the correct analysis involves keeping the entire 
sample but assigning zero weight to observations not in the subpopulation. He further notes 
that this strategy maintains the equivalence between separate regression models in subpopula-
tions and a common regression with interactions.

Incorporating the Sample Design Into Analysis

The information necessary to identify the sample design for recognition by the software is 
embedded in a set of variables created by a sampling statistician for this purpose. Depending 
on the design, these variables include a strata variable, a cluster variable, and one or more 
weight variables. These codes link the person to a particular cluster within a specific stratum. 
West explains that public use data sets usually contain only one cluster variable, and it is at the 
first stage because the variance at this level encompasses all of the variance in estimates due 
to later stages of cluster sampling.

The final sample weight for each individual may be the only weight variable in the data set, 
although sometimes, other weights are also provided. For example, it’s not uncommon to have 
survey data that can be analyzed at the individual level and at the HH level. The individual 
weights differ from the HH weights because they additionally take into consideration the num-
ber of persons in the HH.

Other specifications that may be necessary include options for handling strata that contain 
only one cluster, which are problematic because variance estimates are based on variation 
within the stratum. Also, a finite correction factor may be needed when the sample constitutes 
a large fraction of the population.

The Question of Weights

Some social scientists contend that sample weights are unnecessary because multivariate 
analyses typically control statistically for the same set of variables that go into the sample 
design and calculation of sample weights. Strata are often defined by dimensions of SES and 
take race/ethnicity into account, variables that are almost always taken into consideration dur-
ing data analysis. Although these statistical controls serve much the same purpose as sample 
weights, analyses are limited to the main effects of these variables, leaving out the complex 
ways in which these factors might interact in the design and execution of the sampling plan. 
For example, controlling for race/ethnicity and SES will not adjust fully for an especially low 
participation rate among African American women, whereas a poststratification weight could 
be used for this purpose. Also, the substitution of control variables in multivariate analysis 



188 PART II REGRESSION WITH SIMPLE RANDOM SAMPLES AND COMPLEX SAMPLES

does not address the impact of differential selection probabilities on univariate point estimates 
(e.g., means and proportions).

Equally important, the argument about weights is often taken to imply that the impact of 
the sample design on variance estimation can be ignored too. Inaccurate SEs obtained under 
an assumption of an SRS have profound implications for tests of statistical significance and CIs, 
which argues forcefully for adjustments for stratification and clustering to avoid potential 
inferential errors and misleading study conclusions. In my opinion, this last consideration is of 
paramount importance and leads to the conclusion that the features of the complex sample, 
including weights for unequal selection probabilities, should be taken into consideration using 
software designed for this purpose.

Interpretation

Given all that has been said, it is decidedly anticlimactic to sum up the implications for the 
interpretation of results in a single sentence. Although the design features of complex samples 
are extremely consequential for parameter estimates and their SEs, when these features are 
taken into consideration using appropriate design-based software, the interpretation of regres-
sion results is the same as it would be for regression conducted with OLS/SRS.

HRS ANALYSIS JOURNAL 6.3

Regression With Complex Samples: 
Loneliness and Discrimination

The example of regression using survey data presented in this chapter concerns the focal 
relationship between exposure to discrimination and being lonely. Discrimination refers 
to the unequal treatment of persons or groups on the basis of some ascribed or perceived 
trait such as race/ethnicity, gender, age, or mental illness. It is distinguished from related 
phenomenon such as prejudice and stereotypes in that discrimination refers to behavior 
as distinct from the possible motivations for that behavior. Among other adverse social 
corollaries, the target of discriminatory actions is treated as “other”—not one of “us”—
which may lead to feeling separated from people in general. For this reason, perceived 
discrimination is hypothesized to be positively related to loneliness—the feeling of being 
alone, lacking friends or companions, being socially isolated, and cut off from others.

These two constructs were assessed as part of the PQ among the HRS sample 
described earlier. Loneliness was measured with a three-item scale asking how often you 
feel “you lack companionship,” “left out,” and “isolated from others.” Responses were 
coded as 1 = “hardly ever or never,” 2 = “some of the time,” and 3 = “often”; thus, a high 
score indicates that the person frequently feels lonely (Hughes, Waite, Hawkley, & 
Cacioppo, 2004). Responses were averaged across the three items (a = .81) to maintain 
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the metric of the response categories. Loneliness generally tends to be infrequent  
( X = 1.498 , SD = 0.549), equivalent to an average response midway between “hardly 
ever or never” and “some of the time”; however, the maximum score of 3 was observed, 
indicating that some respondents feel alone more often than not.

The focal independent variable is perceived everyday discrimination, a five-item 
scale that asked respondents, “How often in your day-to-day life have any of the fol-
lowing things happened to you,” such as “you are treated with less courtesy or respect 
than other people,” and “you receive poorer service than other people at restaurants or 
stores” (Williams, Yu, Jackson, & Anderson, 1997). Response codes were 0 = “never,” 1 
= “less than once a year,” 2 = “a few times a year,” 3 = “a few times a month,” 4 = “at 
least once a week,” and 5 = “almost every day.” Responses were averaged across items 
(a = .80). Everyday discrimination usually is conceptualized and operationalized differ-
ently than major lifetime experiences of discrimination, described earlier, which 
includes actions such as being unfairly denied a promotion or a bank loan (see also 
Chapter 10).

Perceived exposure to everyday discrimination is quite low on average ( X = 0.680 , 
SD = 0.755): The mode is 1 (one third of the sample)—a response of “never” to all five 
items. Nevertheless, some respondents report encountering discrimination on a daily 
basis, given that the maximum score possible is observed.

Respondents also were asked, “What do you think were the reasons why these experi-
ences happened,” and could give multiple responses. Of those who cited a reason, half of 
them reported more than one reason. The most common attribution by far is age, cited 
by roughly 3 in 10 of all respondents. About 10% of the sample identified the actions as 
arising in response to their race/ethnicity or gender.

The simple regression of loneliness on everyday discrimination is shown as Model 1 in 
Table 6.3. The F statistic for the regression equation is obtained from the adjusted Wald 
test statistic, as mentioned above, and we see that it has df of 1, 56 because there is one 
variable in the equation and there are 112 clusters and 56 PSU yielding ddf = 569, such 
that df = k, dff – k + 1.

Based on this test, the null hypothesis that everyday discrimination in not associated 
with loneliness is rejected. Thus, we conclude that it is extremely unlikely that a coeffi-
cient of this magnitude or larger would be observed if in fact the two variables are inde-
pendent of one another in the population. Because this is a simple regression, the test of 
the regression equation is equivalent to the test of the individual coefficient for discrimi-
nation. The SE for this coefficient is adjusted for the complex sample design using Taylor 
series linearization. This robust SE is used in the t test for the coefficient for discrimination 
such that t = 26.33 (0.260/0.010). And, t2 = F. By comparison, the SE estimated incor-
rectly with OLS/SRS is substantially smaller (0.006), yielding a much larger value of t = 
40.70. This illustrates the inflation in tests of statistical significance that can result from 
not adjusting for a complex sample design.

The expected change in Y with a 1-unit increase in Xf is equivalent to about a half an 
SD (0.260/0.549 = 0.474) of loneliness. The difference in the expected value of loneli-
ness between those who never experience discrimination and those who experience it 
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Table 6.3
Analysis of Complex Samples: Regression of Loneliness on Everyday 
Discrimination and Social Support

Independent 
Variablesa

Loneliness

Model 1 Model 2 Model 3

b
Robust 

SE p b
Robust 

SE p b
Robust 

SE p

Everyday 
discrimination

0.260 0.010 *** 0.210 0.010 *** 0.206 0.010 ***

Social support -0.273 0.012 *** -0.269 0.012 ***

Age (-52) -0.009 0.002 ***

Age (-52)2 0.0002 0.00004 ***

Female 0.055 0.012 ***

Race/ethnicity

  African 
American

-0.019 0.019

 Latino 0.006 0.023

 “Other” 0.031 0.050

Education 
(years)

-0.009 0.002 ***

Income 
(/$1,000)b

-0.034 0.008 ***

Wealth 
(/$1,000)b

-0.050 0.034

Marital status

  Divorced/
separated

0.198 0.020 ***

 Widowed 0.216 0.014 ***

  Never 
married

0.236 0.032 ***

Employment status

 Retired 0.029 0.016

 “Other” 0.067 0.021 **

Constant 1.321 0.010 *** 2.207 0.045 *** 2.816 0.248 ***
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daily is 1.300, on a scale of loneliness with a range of 2. The R2 value similarly indicates 
that there is a medium-sized association.

In the next step, social support is taken into consideration because it is often concep-
tualized as a coping resource that may offset the deleterious effects of exposure to 
stressors, and discrimination is considered to be a pernicious stressor (Thoits, 2010). If 
social support offsets exposure, it is because discrimination is positively associated with 
support; for example, one’s victimization may prompt others to come to one’s assistance, 
demonstrating that you are cared for and valued by others—thus, offsetting the effect of 
everyday discrimination on loneliness. However, discrimination may erode a person’s 
sense of being connected to people in general, including those who otherwise would be 
sources of social support. Thus, a negative association between these two variables would 
suggest that discrimination depletes support rather than activates it: People may with-
draw because they become tired of helping a person cope with a chronic stressor, for 
instance. Finally, supportive social ties should diminish feelings of loneliness.

The most important dimension of social support for psychological well-being appears 
to be socioemotional support: the perception that your basic social needs—affection, 
esteem, approval, belonging, identity, and security—are satisfied through interaction with 

Note: N = 12,236; SE = standard error.

a. Reference categories: Race/ethnicity = non-Hispanic White; marital status = never married; employment 
status = employed.

b. Log transformed.

c. ΔR2 = Difference in R2: Model 2 compared with Model 1; Model 3 compared with Model 2; ΔR2 values may 
not sum exactly due to rounding errors.

*p ≤ .05. **p ≤ .01. ***p ≤ .001.

Independent 
Variablesa

Loneliness

Model 1 Model 2 Model 3

b
Robust 

SE p b
Robust 

SE p b
Robust 

SE p

Model Statistics

F 693.48 *** 715.40 *** 134.84 ***

df 1, 56 2, 55 16, 41

R2 .127 .192 .260

Model Comparisonsc

F 487.32 *** 58.57 ***

df 1, 56 14, 43

DR2 .065 .067
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others (Cassel, 1976; Cobb, 1976; Thoits, 1983, 2011). In the PQ, social support was 
measured with three items that were asked separately as they pertain to spouse/partner 
(a = .81), children (a = .82), other family (a = .86), and friends (a = .83). Participants 
were asked how much these persons “really understand the way you feel about things,” 
“can you rely on them if you have a serious problem,” and “can you open up to them if 
you need to talk about your worries.” Responses were coded from 1 = “not at all” through 
4 = “a lot” and were averaged across items for each type of relationship. These averages 
were then summed and divided by the number of sources reported (e.g., two scores were 
averaged for someone who reported support only from family and friends). Given a 
maximum score of 4, the mean ( X = 3.116 , SD = 0.530) indicates that respondents, on 
average, enjoy considerable support from their family, friends, children, and spouses; 
However, others derive little support from them as evidenced by scores of 1. In preliminary 
bivariate analysis, social support is negatively correlated with both everyday discrimina-
tion and loneliness; therefore, it has the potential to mediate the effect of discrimination 
on loneliness.

As in Model 1, the F test of the regression equation for Model 2 (Table 6.3) is based 
on the adjusted Wald test statistic and indicates that we can reject the null hypothesis 
that the regression coefficients for discrimination and social support are equal to each 
other and equal to 0. This finding makes it appropriate to examine the individual coef-
ficients, both of which are statistically significant: Everyday discrimination is positively 
associated with loneliness with social support held constant, and social support is nega-
tively associated with loneliness when discrimination is controlled. It bears repeating that 
the t test for the individual coefficients is based on the robust SE that is adjusted for the 
complex sample using Taylor series linearization. Therefore, it is smaller than the values 
obtained by incorrectly using OLS/SRS (21.26 vs. 33.10 for discrimination and -22.08 
vs. -31.47 for social support), again demonstrating the inflation of tests of statistical 
significance that accompanies the inappropriate analysis of complex sample data with 
methods based on an assumed SRS.

Model 1 is nested within Model 2, so that the adjusted partial Wald test can be used 
to assess the statistical significance of adding social support. However, given that only 
one variable was added, this 1-df test is equivalent to the t test of the coefficient for 
social support. The increment in R2 between Model 1 and Model 2 shows that social sup-
port makes a small- to medium-sized contribution to the explanation of loneliness. The 
total R2 value is a substantial level of multivariate association between the dependent 
variable and the two independent variables.

When social support is added in Model 2, the coefficient for everyday discrimination 
is reduced by roughly 20% (100 × [0.260 - 0.210]/0.260 = 19.2%), although it remains 
statistically significant. The interpretation of this change hinges on the inverse associa-
tion between discrimination and social support, which shows that people who have 
encountered frequent acts of discrimination are the same people who tend to have the 
least social support. Thus, rather than counteracting the effects of discrimination, the 
diminishment of social support may be one of the ways in which discrimination produces 
loneliness.
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Model 3 in Table 6.3 illustrates the addition of a set of several variables to the regres-
sion equation, in this instance, control variables for sociodemographic characteristics that 
may be related to loneliness on the one hand and be the object of discriminatory acts on 
the other hand: age, gender, and race/ethnicity. (As mentioned previously, the associa-
tion of loneliness with age is curvilinear and is modeled as age and age2; see Figure 3.2.) 
Other demographic characteristics are added for the same reasons, although their con-
nections to the focal variables are not so readily apparent. Marital statuses other than 
married and employment statuses other than being employed may result in being treated 
differently and unequally, and are likely to be associated with loneliness; SES is controlled 
too (education, income, and wealth), given that being poor is a stigmatized condition.

Based on the test of the regression equation, conducted with an adjusted Wald test, 
the null hypothesis that all of the regression coefficients equal 0 can be rejected. Note 
again that the df are k and ddf – k + 1, where k is the number of variables (16) and the 
ddf = the number of strata (112) minus the number of PSU (56). Under OLS/SRS, the df 
for this model and data are much greater: k, n - k - 1 (16, 12,219).

The adjusted partial Wald test is used to compare the restricted Model 2 with the 
expanded Model 3. As shown in Table 6.3, the F value indicates that the null hypothesis 
that the coefficients for the variables added to Model 3 all equal 0 can be rejected. Recall 
that this test is distributed like F and has df of m, ddf, where m is the number of added 
variables, in this case, 14, 43. If these data had been collected from an SRS of the same 
size, then the df would be 14, 12,219. The smaller value in the denominator means that 
the p values and CIs are larger for the complex sample. Also, the value of F is substantially 
greater when this model is incorrectly estimated with OLS/SRS (81.54). This inflation of 
the test statistic opens the door to inferential errors.

Given that the null hypothesis can be rejected, it is appropriate to examine the indi-
vidual variables added to Model 3. As before, the statistical significance of these coeffi-
cients is based on the t test, which is the weighted estimate of the coefficient divided by 
the robust SE that is adjusted for the complex sample design. As can be seen in Model 3, 
Table 6.3, compared with those who are married, those in other marital statuses experi-
ence more frequent loneliness, other factors held constant, as do persons in the “other” 
employment category compared with the employed. Women more often feel alone than 
do men. There are no significant differences between non-Hispanic Whites and the other 
racial/ethnic groups (net of the other variables in the model). Age and age2 continue to 
define a curvilinear association with loneliness first decreasing until about age 75 and 
then reversing course and increasing, other things held constant. Higher levels of educa-
tion and income (but not wealth) are inversely associated with loneliness.

From the perspective of the elaboration model, we are interested in whether the addi-
tion of these sociodemographic characteristics alters the estimate of the focal relation-
ship. As can be seen, the change is barely perceptible, smaller than the SE of the 
coefficient, meaning that it is negligible. Thus, apart from social support, the other vari-
ables in this analysis do not contribute to the explanation of the focal relationship.

The impact of ignoring the sample design can be seen with the DEFT values for the 
regression coefficients in Model 3, where the DEFT is the ratio of the SE under the actual 
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HRS design to the SE of a hypothetical SRS of the same size (12,236) of the same popu-
lation, that is, the 2007 population of the U.S. born before 1924. The mean across the 
16 variables in Model 3 is 1.266.10 Two variables have values less than 1.000: age2 
(0.926) and widowed (0.939). The largest DEFF values are for log wealth (1.831), “other” 
race/ethnicity (1.519), and everyday discrimination (1.418), that is, both sociodemo-
graphic characteristics that are implied in the HRS sample design and a psychosocial 
variable that is not. Given that these SEs are used in the calculation of the t tests for these 
coefficients, as just discussed, we risk making substantial inferential errors for this exam-
ple if we ignore the sample design.

The R2 and change in R2 values are calculated using weights for each observation, as 
discussed above. The increment in R2 shows a small- to medium-sized contribution of the 
set of sociodemographic variables to explaining Y. The total R2 value of Model 3 shows 
that a quarter of the variance in loneliness is explained by the entire set of control vari-
ables, social support, and discrimination—a very good level of explanatory efficacy in the 
social sciences that nevertheless leaves three quarters of the variance unexplained.

The decrease in R2 obtained by dropping everyday discrimination from Model 3 is 
small to medium (0.071), and gives the amount of variance in loneliness that is exclu-
sively due to the focal independent variable over and above what is attributed to the 
control variables and social support. This demonstrates the importance of understanding 
the role of discrimination in loneliness among older adults.

In conclusion, the results of this analysis are consistent with the idea that frequent 
exposure to everyday discrimination leads to feeling alone and that it may do so because 
it has a corrosive effect on feelings of being supported by significant others. The finding 
that discrimination is associated with loneliness net of sociodemographic controls sub-
stantiates this interpretation because the association has survived the test that it is 
merely a spurious association. Although these characteristics do little to explain the focal 
relationship, they do contribute to the explanation of loneliness. Net of the other varia-
bles in the model, discrimination continues to be associated with loneliness, suggesting 
that further specification of mediators of this association would be a productive next step. 
This interpretation is quite speculative, however, given that this analysis is an incomplete 
example of a test of the relationship between everyday discrimination and loneliness.

This example illustrates quite clearly that analyzing data from a complex sample as if 
it were obtained from an SRS can produce substantial inflation in tests of statistical sig-
nificance, leading to potential inferential errors.

Summary

Much of what is taught in standard statistics courses is predicated on the assumption that the 
data have been collected from an SRS, but complex samples are encountered far more fre-
quently than SRSs in large-scale social science surveys. Although SRSs have very desirable 
statistical properties, cost and logistical concerns make complex samples far more practical.
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Complex samples usually are stratified, which means that the population is subdivided into 
strata that are as internally homogeneous as possible with regard to the variables being studied 
and distinctly different from each other on these variables. Stratification improves the preci-
sion of parameter estimates, so that it generates SEs that are smaller than would be obtained 
with an SRS of the same size. In contrast, clustering tends to increase SEs because only some 
of the clusters are sampled, so that observations may be more different from one another than 
would have been the case had all clusters been sampled. Sample weights also tend to increase 
the variance of parameter estimates, except for poststratification weights, which slightly 
decrease variance estimates. When these multiple influences are combined, complex samples 
usually generate larger SEs than SRSs of the same population of the same size, thereby inflat-
ing tests of statistical significance and potentially leading to inferential errors.

There are several methods to adjust SEs for the complex design, including Taylor series 
linearization and resampling using either BRR or Jacknife procedures. Tests of statistical sig-
nificance, such as the adjusted Wald test statistic for the regression equation and the t test for 
the individual coefficients, incorporate the sample design into their calculations.

In addition to their influence on SEs, complex samples affect the parameter estimates 
themselves because the elements of the sampling frame typically have unequal selection prob-
abilities. Sample weights adjust for these differences, including oversampling of some seg-
ments of the population and the corresponding undersampling of other segments of the 
population. Weights also may be applied to minimize bias due to nonresponse. In addition, 
poststratification weights are sometimes used to align the distribution of the sample with the 
known distribution of the population on the types of characteristics that are used to stratify 
both samples and society, such as age, gender, race/ethnicity, and SES.

The correct analysis of data obtained from a complex sample necessitates the use of spe-
cialized procedures that are available in major statistical software packages that take into con-
sideration stratification, clustering, and sample weights. The method of estimation and tests of 
statistical significance used in these procedures differ from OLS/SRS. However, the interpreta-
tion of results is identical.

Although there is a long history of ignoring the statistical implications of complex samples 
in survey data analysis, it is no longer scientifically acceptable to do so.

Notes

 1 A robust SE is one that is resistant to errors produced by deviations from assumptions.
 2 In Stata, these design features are analyzed with the survey (•svy) estimator commands. First the 

•svyset command is used to identify strata, clusters, and sample weights and other features of the 
sample so that they are recognized by the software. Then the •svy prefix is used to put into effect 
the specific type of statistical procedure. For example, for multiple linear regression, the survey 
estimator command is, •svy: regress followed by the dependent variable and a list of the independ-
ent variables.

 3 Participants were added to these enrollment cohorts over time, and the sample also includes “age-
ineligible” spouses, that is, husbands and wives born outside the birth cohorts. The entire sample of 
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persons enrolled is used as the base for the analyses reported here, and cohort is measured with the 
variable wtcohort, which is based on birth date as reported at enrollment in the study. The AHEAD 
and CODA samples were supplemented with persons drawn from a list of age-eligible people 
enrolled in Medicare.

 4 Other uses of weights are to adjust for sample attrition over time for longitudinal studies.
 5 The sample design features for the HRS data were set as follows: •svyset RAEHSAMP [pweight=WT_

PQ], strata (RAESTRAT). These RAND HRS variables correspond to the HRS Tracker variables  
SECU and STRATUM and identify the stratum and half sample, respectively. WT_PQ is the sample 
weight for the PQ data created for these analyses from the HRS-supplied weights KLBWGTR and 
LLBWG (renamed in lower case for convenience), such that WT_PQ = klbwgtr/2 or llbwg/2, depend-
ing on whether the respondent was sampled for the 2006 or 2008 PQ, respectively.

 6 Slight discrepancies in calculations here and elsewhere are due to rounding error; calculations are 
carried to more decimal points than shown in the text for accuracy.

 7 Given a dearth of diagnostic tests for regression with complex sample data, Heeringa and colleagues 
(2010) recommend using the tools available in usual regression software.

 8 This can be accomplished, for example, by using the •subpopulation procedure in Stata. For a 
complete discussion of this topic, see UCLA Statistical Consulting Group (n.d.).

 9 In the Stata •svy: regress procedure, the default is an adjusted Wald test with df = k, ddf - k + 1 
instead of df = k, ddf. For the comparison of nested models, the df = m, ddf - m +1, where m is the 
number of variables differentiating the restricted and expanded models. The following command 
yields the unadjusted model: •test varlist, nosvyadj.

10 These values were obtained in Stata with the following command •estat effects, deft.


