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Spatially Adjusted Regression  

and Related Spatial Econometrics

LEARNING OBJECTIVES:

•	 To reformulate linear regression models to account for spatial 
autocorrelation

•	 To reformulate binomial/logistic regression models to account 
for spatial autocorrelation

•	 To reformulate Poisson regression models to account for 
spatial autocorrelation

•	 To differentiate between static geographic distributions and 
spatial interaction cases

Regression analysis seeks to establish an equation for predicting some res­
ponse variable, Y, from a set of P covariates, X1, X2, …, XP. One statistical 
problem is to estimate the coefficients for these covariates in order to construct 
this prediction equation. Classical statistics attaches a probability distribution 
to the residuals (i.e., differences between observed and predicted values of Y) 
of this prediction equation. Spatial statistics modifies this situation by specify­
ing a prediction function that has Y on both sides of the equation. In  
other words, a value at location i is at least partially a function of the values of 
Y at nearby locations. This conceptualization captures the essence of spatial 
autocorrelation.
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Spatially Adjusted Regression 69

5.1. Linear regression

Cliff and Ord (1973) furnish much of the seminal work for a linear regression 
model. Griffith (1993b) details the translation of a range of linear regression model 
specifications, from ANOVA, through product moment correlation coefficients, 
to two­group discriminant function analysis. This section features the autoregres­
sive model most commonly employed in spatial statistics, namely the simultaneous 
autoregressive (SAR) specification,

Y WY I W X= + − +ρ ρ( ) β ε,  (5.1)

which is the spatial statistical counterpart to the standard linear regression 
model specification of 

Y X= +β ε,  (5.2)

where W is the row standardized geographic connectivity matrix (see Section 
4.2), I is an n × n identity matrix, ρ is the spatial autocorrelation parameter, 
β is a (P + 1) × 1 vector of regression coefficients (including the intercept 
term), and ε is an n × 1 vector of iid N(0, σ2) random variables, which may  
be written in matrix form as the multivariate normal distribution  
MVN(0, Iσ2). Positing a row standardized geographic connectivity matrix 
W restricts positive spatial autocorrelation values of ρ to be in the interval [0, 
1). The presence of non­zero spatial autocorrelation means equation (5.2) has 
the modified specification

Y X I W= + − −β ε( ) ,ρ
1  (5.3)

where the spatial linear operator (I – ρW)–1 embeds spatial autocorrelation 
into the error term, and hence the calculated residual. In other words, equation 
(5.2) becomes 

Y X W Y X X, [ ( ) ] ,= + − + = +β β ε β ξρ  

with ξ no longer being distributed as MVN(0, Iσ2). The conventional (i.e., 
ordinary least squares, or OLS) estimates b of β remain unbiased. But spatial 
autocorrelation alters their sampling distribution variances (i.e., their standard 
errors) as well as the regression model R2 value (see Dutilleul et al., 2008). 
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Although equation (5.1) is properly specified, its estimation requires 
employment of a weighting function that achieves two goals: first, it ensures 
that the probabilities in both the autocorrelated and its corresponding unauto­
correlated mathematical space integrate to 1; and second, it restricts the 
value of ρ to the interval [0, 1). This estimation version of equation (5.1) is 
(Griffith, 1988)
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where the iλ  are the n eigenvalues of matrix W. Estimation requires nonlinear 
techniques because ρ appears in both the numerator and the denominator of 
the first two terms on the right­hand side of this equation. Furthermore, the 
derivatives are not straightforward, and their calculation is cumbersome. These 
technical complications become hidden in software implementations of spatial 
autoregression estimation procedures.

Consider the 2007 geographic distribution of number of farms utilizing irri­
gation. The Box–Cox power transformation better aligning it with a bell­shaped 
curve is ln(Y/area + 0.04); normal diagnostic probability increases from < 0.001 
to 0.611 (see Section 4.1.4). Results for regressing this response variable on average 
annual rainfall include the following:

Estimation ρ̂ β̂0 β̂1 (pseudo-)R2 Normality probability

OLS 0 –0.2067 –0.0207 0.138 0.210

(0.4360) (0.0061)

SAR 0.5760 –0.4327 –0.0174 0.379 0.213

(0.5129)1 (0.0071)
1

These results imply the presence of moderately strong positive spatial auto­
correlation, and illustrate the effects on standard errors and the increase in variance 
accounted for (e.g., R2). 

1 Standard error results may differ slightly because of differences in the nonlinear optimization 
algorithm used and/or the type of standard error computed (e.g., asymptotic).
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Spatial autocorrelation can affect a pairwise correlation coefficient calculated 
for two georeferenced variables (see Clifford et al., 1989), again largely in terms 
of its standard error. The Pearson product moment correlation coefficient 
for the power­transformed 2007 geographic distribution of number of farms 
utilizing irrigation and the average annual rainfall is –0.3719. The SAR spatial 
autocorrelation parameter estimates for these two variables respectively are 
0.6469 and 0.8239. In order to adjust for these levels of spatial autocorrelation, 
the correlation coefficient to calculate is between the variables

( 0.6469 ) ln( /area 0.04)Y− 〈 + 〉I W   and  ( 0.8239 ) −I W X,

where the wide angle brackets denote a vector. Adjusting for the latent 
spatial autocorrelation in this way reduces the correlation coefficient 
to –0.2426. In other words, spatial autocorrelation makes the relationship 
between these two variables look stronger than it actually is in the 
superpopulation.

In Section 4.1.4, the initial statistical decision is that a difference exists in 
regional means of the power­transformed 2007 geographic distribution of 
number of farms utilizing irrigation. Accounting for average annual rainfall 
reverses this decision. But after adjusting for spatial autocorrelation of 0.6469 
in this transformed variable, the ANOVA results change as follows:

Source df Sum of squares Mean square F-ratio Pr > F

Regions  4  2.2023 0.5506 1.35 0.2603

Error 68 27.7215 0.4077

Corrected total 72 29.9239

The normality diagnostic statistic probabilities are:

Region San Juan Arecibo Mayaguez Ponce Caguas

Probability 0.5666 0.1938 0.2120 0.9804 0.8066
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Meanwhile, Levene’s test yields:

Source df Sum of squares Mean square F-ratio Pr > F

Regions  4  0.2654 0.0713 0.47 0.7541

Error 68 10.2194 0.1503

These model diagnostics support the underlying assumptions for model­based 
inference. Consequently, the initial differences detected in regional means 
disappear after accounting for spatial autocorrelation. This finding explains 
why adjusting for average annual rainfall, with its high level of positive spatial 
autocorrelation, also reverses the statistical decision.

The two­group discriminant function analysis (DFA) model is the final 
classical linear model treated here (see Tatsuoka, 1988). It also can be formu­
lated as a linear regression specification, for which the response variable is 
binary (i.e., takes the value 0 or 1). The bivariate regression results are as follows 
(with standard errors in parentheses):

Estimation ρ̂ β̂0 β̂1 (pseudo-)R2

OLS 0 –0.4440 0.0125 0.124

(0.2795) (0.0039)

SAR 0.7426 –1.5004 0.0272 0.494

(0.3276) (0.0044)

The normality assumption no longer is valid with this analysis; the response 
variable is binary, not continuous. In addition, the linear model specification 
does not guarantee that the 0–1 response values are contained in the interval 
[0, 1]. Nevertheless, the coefficients are proportional to discriminant function 
analysis coefficients in multivariate statistical theory.

5.2. Nonlinear regression

In the preceding section, implementation of spatial autoregressive models requires 
nonlinear regression techniques. But the error term assumption is still the normal 
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probability model. Nonlinear regression also involves non­normal probability 
models, such as those for binomial and Poisson random variables. The generalized 
linear model (GLM) is the implementation of the latter models.

Eigenvector spatial filtering furnishes a sound methodology for estimating 
non­normal probability models with georeferenced data containing non­zero 
spatial autocorrelation. This methodology accounts for spatial autocorrelation in 
random variables by incorporating heterogeneity into parameters in order to 
model non­homogeneous populations. It renders a mixture of distributions that 
can be used to model observed georeferenced data whose various characteristics 
differ from those that are consistent with a single, simple, underlying distribution 
with constant parameters across all observations. The aim of this technique is to 
capture spatial autocorrelation effects with a linear combination of spatial proxy 
variables – namely, eigenvectors – rather than to identify a global spatial auto­
correlation parameter governing average direct pairwise correlations between 
selected observed values. As such, it utilizes the misspecification interpretation 
of spatial autocorrelation, which assumes that spatial autocorrelation is induced 
by missing exogenous variables, which themselves are spatially autocorrelated, 
and hence relates to heterogeneity.

Eigenvector spatial filtering conceptualizes spatial dependency as a common 
factor that is a linear combination of synthetic variates summarizing distinct fea­
tures of the neighbors’ geographic configuration structure for a given georefer­
enced dataset. The synthetic variates may be the eigenvectors of the matrix 
(I – 11T/n)C(I – 11T/n) discussed in Section 4.2.1, a term appearing in the Moran 
Coefficient (MC) index of spatial autocorrelation.2 De Jong et al. (1984) show that 
the extreme eigenfunctions of this matrix define the most extreme levels possible 
of spatial autocorrelation for a given surface partitioning, a result in combination 
with Tiefelsdorf and Boots (1995) and Griffith (1996) that attaches conceptual 
meaning to the extracted synthetic variates. These variates summarize distinct map 
pattern features because they are both orthogonal and uncorrelated.

The eigenfunction problem solution is similar to that obtained with principal 
components analysis in which the covariance matrix is given by [I + k(I – 11T/n) ×	
C(I – 11T/n)], for some suitable value of k; sequential, rather than simultaneous, 
variance extraction is desired in order to preserve interpretation of the extremes. 
This solution relates to the following decomposition theorem (after Tatsuoka, 
1988, p.141):

the first eigenvector, say E1, is the set of numerical values that has the largest MC 
achievable by any set of real numbers for the spatial arrangement defined by matrix C; 
the second eigenvector is the set of real numbers that has the largest achievable MC by 

2  The Geary ratio counterpart to this matrix also could be used.
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any set that is uncorrelated with E1; the third eigenvector is the third such set of values; 
and so on through En, the set of values that has the largest negative MC achievable  
by any set that is uncorrelated with the preceding (n – 1) eigenvectors.

The corresponding eigenvalues index these levels of spatial autocorrelation: 
MC = nETCE/1TC1. But, in contrast to principal components analysis, rather 
than using the resulting eigenvectors to construct linear combinations of attri­
bute variables (which would be the n 0–1 binary indicator variables forming 
matrix C), the eigenvectors themselves (instead of principal components scores) 
are the desired synthetic variates, each containing n elements, one for each areal 
unit (i.e., location). Figure 5.1 illustrates global, regional, and local geographic 
patterns of spatial autocorrelation portrayed by selected eigenvectors.

5.2.1. Binomial/logistic regression
The preceding discriminant function analysis can be recast as a logistic regres­
sion problem, which ensures that the predicted values corresponding to the 
observed 0–1 values are contained in the interval [0, 1]. The Bernoulli (i.e., 
binomial with number of trials (Ntr) equal to 1) probability model underlies 

Figure 5.1  Spatial filter map patterns for (a–c) a regular square tessellation (top) 
and (d–f) the Puerto Rico municipality surface partitioning; quintile  
eigenvector value classes (which are relative to a factor of –1) range 
from dark green to dark red. (a,d) Global map pattern. (b,e) Regional 
map pattern. (c,f) Local map pattern.

(a) (b) (c)

(d) (e) (f)
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this model specification. The spatial filter (SF) conceptualization enables this 
model to be implemented with a GLM while still accounting for positive 
spatial autocorrelation.

Figure 5.2a portrays the coastal lowlands/interior highlands classification 
scheme. This distribution contains weak positive spatial autocorrelation: 
MC = 0.2374 (standard error 0.075), Geary Ratio (GR) = 0.8120. Average 
rainfall accounts for roughly 12% of the variation in the binary classification. 
A stepwise selection procedure adjusting for non­constant variance includes 
nine eigenvectors in the model to account for spatial autocorrelation. This 
spatial autocorrelation component accounts for an additional approximately 
64% of the variation in the classification scheme. The residuals for the binary 
predicted values contain only trace amounts of spatial autocorrelation: MC = 
–0.1244, GR = 1.1879. Figure 5.2b is the geographic distribution of the esti­
mated probability of a municipality being a member of the interior highlands 
group. Rounding all values between 0 and 0.5 to 0, and all values between 0.5 
and 1 to 1, Figure 5.2c portrays the predicted classification scheme. Figures 
5.2a and 5.2c are very similar.

The preceding example illustrates a dichotomous classification case. But many 
georeferenced variables are percentages. For these variables, a binomial model 
specification is appropriate. Such a specification involves both a lower limit (i.e., 0) 
as well as an upper limit (i.e., Ntr) on counts. The percentage of farms in a 
municipality utilizing irrigation furnishes one example of this type of variable 
(Figure 5.3a). This geographic distribution contains weak positive spatial auto­
correlation: MC = 0.1533, GR = 0.6665. Because the variable is linked to a 
binomial probability model, the relationship between its mean and its variance 
is given as follows: variance = (1 – p) mean. Overdispersion occurs when devia­
tions from this relationship are such that variance > (1 – p) mean. The deviance 
statistic that indexes this overdispersion has an ideal value of 1. For the 
Puerto Rico farm irrigation example, average rainfall accounts for roughly 
29% of the geographic variance in percentage of farms utilizing irrigation, with 
an accompanying deviance statistic of 9.67 (i.e., excessive overdispersion). Spatial 

Figure 5.2  The coastal lowlands/interior highlands classification scheme.  
(a) Geographic distribution of the observed classification. (b) Predicted 
probabilities for the observed classification. (c) Predicted classification. 

(a) (b) (c)
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autocorrelation (Figure 5.3c) accounts for an additional roughly 32% of geo­
graphic variance, reducing the deviance statistic to 4.42 (i.e., a substantial reduc­
tion, but still indicating excessive overdispersion). The SF (Figure 5.3c) represents 
strong positive spatial autocorrelation: MC = 0.8097, GR = 0.2598. Meanwhile, 
the model residuals contain little spatial autocorrelation: MC = –0.1415, GR = 
0.9572. Of note is that the GR values3 here suggest the presence of some data 
complications (e.g., messiness, dirtiness, noisiness).

5.2.2. Poisson/negative binomial regression
One difference between Poisson and binomial variables is that the only bound 
the former have is a lower one of 0. Counts for a Poisson variable are not 
constrained by an upper bound (i.e., Ntr), and can go to infinity. Another dif­
ference is that the presence of overdispersion can be conceptualized as a non­
constant mean, which when characterized by a gamma probability model 
converts a Poisson into a negative binomial variable.

5.2.2.1. Geographic distributions

The Box–Cox power transformation for 2007 farm count density (Y) can be 
recast as a Poisson variable for farm counts coupled with an area offset variable 
(i.e., a variable whose regression coefficient is set to 1 rather than being esti­
mated). Because the area variable is introduced into an exponential function, it 
must be done in its natural logarithm form (i.e., eln(x) = x). A model specification 
of this type avoids specification error arising from employing a bell­shaped curve 
with a power­transformed variable, as well as avoiding the need to calculate a 
back­transformation after completing an analysis (see equation [4.1]).

3  A heuristic test for well­behaved data is that MC + GR should be very close to 1.

Figure 5.3  Gray scale darkness is directly proportional to values. (a) Geographic 
distribution of percentage of farms utilizing irrigation. (b) Predicted  
geographic distribution of percentage of farms utilizing irrigation.  
(c) Constructed spatial filter.

(a) (b) (c)
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The Box–Cox power transformation renders the variable (Y – 0.12)0.38 as 
approximately normally distributed; the Shapiro–Wilk probability, P(S­W), 
increases from less than 0.0001 to 0.5688. Regressing the transformed variable 
on mean annual rainfall yields a set of predicted values together with a mean 
squared error of 0.2550 (i.e., 2 2ˆ ˆ ˆ0.5067σ µ µ= +). Mean annual rainfall accounts for roughly 
13% of the variance in the transformed variable. The back­transformation 
involves the exponent 1/0.38 = 2.6315789. Equation (4.2) yields

C1 = 
2

1

1

0.5 1 1 3
2

4 0.38 2h
h

h=

  − + − +∏      
 = 2.14681

and equation (4.1) yields, for the n values of E(Y), 

( )1 2
1/0.38 2 2

1

ˆ ˆ(2.14681) 0.25496 0.12
j

j
i i

j
µ µ −

=
+ +∑ ,    i = 1, 2, …, n,

which accounts for roughly 16% of the variance in Y (Figure 5.4a). The range of 
these back­transformed predicted values is roughly 2 to 7, whereas that for the 
observed values is 0 to 15. The bivariate regression of Y on these back­transformed 
predicted values renders an intercept of –0.8048 and a slope of 1.2244.

Employing the Poisson model specification yields a deviance statistic of 
nearly 94, indicating that the variance and the mean are not equal. Respecifying 
this Poisson model as a negative binomial model (i.e., a Poisson random vari­
able with a gamma­distributed mean) reduces this deviance statistic value to 
1.11 (which mostly affects the calculation of standard errors); accordingly, 

2 2ˆ ˆ ˆ0.5067σ µ µ= + . Densities computed with the predicted counts account 
for about 15% of the variance in Y (Figure 5.4b). The range of these predicted 
values is roughly 2 to 9, an improvement upon the normal approximation 
results. The bivariate regression of Y on these predicted values renders an 
intercept of 0.5078 and a slope of 0.8858, both of which are closer to their 
respective ideal values of 0 and 1 than the normal approximation results. The 
difference between these GLM and the bell­shaped curve results is attributable 
to specification error: the paired results are reasonably similar (i.e., the approx­
imation is very good), but have conspicuous differences.

Positive spatial autocorrelation can be detected not only in variable  
Y (MC = 0.3343, GR = 0.7732), but also in the residuals from both model 
specifications (normal approximation MC = 0.3847, GR = 0.7104; negative 
binomial MC = 0.4040, GR = 0.6788). Constructing an SF to account for this 
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spatial autocorrelation results in eight vectors being selected for the normal 
approximation specification, and five of these same eight vectors being selected 
for the negative binomial specification (using α = 0.01 in this second case). 
Now roughly 73% of the variation is accounted for in the transformed vari­
able, and roughly 72% of the variation in Y (Figure 5.5a) after calculating the 
back­transformation. The range of these back­transformed predicted values 
improves to roughly 1 to 14. The bivariate regression of Y on these back­
transformed predicted values renders an intercept of 0.1867 and a slope of 
0.9635. In contrast, the negative binomial specification yields predicted values 
that account for roughly 68% of the variation in Y, and produces a 1 to 14 
range of predicted values. Its bivariate regression results include an intercept of 
0.4136 and a slope of 0.8993. In other words, the normal approximation out­
performs the GLM.

Equation (2.7) furnishes the expected value for normally distributed resid­
uals from a linear regression analysis. Here the value is –0.1059 for the normal 
approximation regression analysis, and –0.0777 for the negative binomial 
regression analysis. Spatial autocorrelation index values for the back­trans­
formed residuals are MC = –0.1751 and GR = 1.2692. In contrast, spatial 
autocorrelation index values for the negative binomial residuals are MC = 
–0.1276 and GR = 1.2484. The GR values suggest possible overcorrection by 
the SFs for detected spatial autocorrelation. 

These results can be extended to ANOVA problems by introducing  
the appropriate indicator variables into the regression model specifications, 

Figure 5.4  Observed versus predicted scatterplots. (a) Normal probability model 
results. (b) Poisson probability model results.
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allowing the assumed ANOVA probability model to be non­normal. The 
transformed variable results for a one­way ANOVA, in which the classifica­
tion is based upon urban and non­urban municipalities, yields the following 
results:

unadjusted

for variable Y: P(S­W) = 0.5376 and 0.7834

for variable Y: P(Levene statistic) = 0.2976

ANOVA F = (–6.18)2 = 38.19, P(F) < 0.0001

adjusted for spatial autocorrelation4

for regression residuals: P(S­W) = 0.5054 and 0.7594

for regression residuals: P(Levene statistic) = 0.3216

ANOVA F = (–2.94)2 = 8.64, P(F) = 0.0046

In other words, a difference in farm densities between the urban and non­urban 
groups is expected to exist in the superpopulation. Meanwhile, the negative binomial 

4  The spatial filter construction with stepwise regression includes one additional 
eigenvector when the model specification includes the classification variable.

Figure 5.5  Observed versus predicted scatterplots. (a) Spatial filter normal proba-
bility model results. (b) Spatial filter Poisson probability model results.
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yields a significant regression coefficient for the difference between the two 
indicator variables (P(bclass) = 0.0005). The deviance statistic is 1.22, while the 
individual group deviance statistics are 1.29 and 1.49. Overall, both analyses 
furnish the same statistical inference, and indicate that this implication is a 
sound model­based inference.

5.2.2.2. Geographic flows: a journey-to-work example

Because the n2 geographic flows between locations are counts, they constitute 
a Poisson random variable. Each flow tends to be positively correlated with 
the size of its origin and the size of its destination, and negatively correlated 
with the size of the intervening distance. In other words, as the number of 
workers at a location increases, the number leaving that origin location to 
travel to work tends to increase. Similarly, as the number of jobs at a location 
increases, the number of workers arriving at that destination to work tends 
to increase. And, as the distance separating an origin and a destination loca­
tion increases, the number of workers tending to travel from that origin to 
that destination tends to decrease. The following simple equation furnishes a 
very good description of this situation (see Section 4.2.2; Griffith, 2011):

SF
e e O Djij i

d
ij i i j jF AO B D ×−≈ γκ , (5.4)

where 

 Fij  denotes the flow (e.g., number of workers) between locations i 
and j;

 κ	 	is a constant of proportionality;
 Ai denotes an origin balancing factor;
 Oi  denotes the total amount of flow leaving from origin i (e.g., num­

ber of workers residing at an origin);
 Bj denotes a destination balancing factor;
 Dj  denotes the total amount of flow arriving at destination j (e.g., the 

number of jobs available at a destination);
 dij denotes the distance separating origin i and destination j;  
 γ denotes the global distance decay rate.
 SFOi

  denotes the origin i spatial filter accounting for spatial auto­
correlation in flows, calculated by holding Dj constant in SFOi×Dj

 SFDj
  denotes the destination j spatial filter accounting for spatial auto­

correlation in flows, calculated by holding Oi constant in SFOi×Dj
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Selected results from the estimation of equation (5.4) for the Puerto Rico 
2000 journey­to­work data (874,832 inter­municipality trips for 732 = 5,329 
dyads) include the following:

Set values κ̂ γ̂ Overdispersion pseudo-R2

SFO
i
 = 0, SFD

j
 = 0, Ai = 1, Bj = 1 9.4 ×	10–6 0.1625 14.52272 0.8039

SFO
i
 = 0, SFD

j
 = 0 5.6 ×	10–6 0.2286  7.98012 0.9825

None 5.1 ×	10–6 0.2084  6.47502 0.9892

The spatial filter comprises 85 of 121 candidate eigenvectors (those with 
an MC of at least 0.25), from a total of 5,329 possible eigenvectors. These 
results illustrate the failure to estimate an accurate global distance decay 
parameter value when ignoring spatial autocorrelation in flows. Spatial 
autocorrelation in flows contributes to excess Poisson variation, too. 
Adjusting for spatial autocorrelation in flows yields a better alignment of 
the largest predicted and observed values, which slightly improves the 
pseudo­R2 value (Figure 5.6). The following bivariate regression results 
quantify this improved alignment, which signifies a reduction in model 
misspecification: 

Set values Intercept Slope PRESS/ESS5 Predicted R2

SFO
i
 = 0, SFD

j
 = 0, Ai = 1, Bj = 1 95.36 0.42 3.53 0.3086

SFO
i
 = 0, SFD

j
 = 0   7.09 0.96 1.41 0.9753

None   4.08 0.98 1.21 0.9876

5The ideal values here are 0 for the intercept, 1 for the slope, 1 for the PRESS/
ESS ratio, and 1 for the predicted R2.

Figure 5.7 portrays the balancing factors and spatial filters for the Puerto 
Rico journey­to­work example. The Ai and Bj values display conspicuous 
geographic patterns (Figures 5.7a,b). The origin balancing factors display an 
east–west trend from values between 0 and 1 (deflating departure flows), to 
values greater than 1 (inflating departure flows). The destination balancing fac­
tors display the opposite trend. Spatial autocorrelation accounts for roughly 
90% of the variation in each of these geographic distributions. Meanwhile, the 
origin spatial filter (Figure 5.7c) contrasts the San Juan metropolitan region 

5  ESS is error sum of squares, PRESS is predicted error sum of squares.
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Figure 5.6  Scatterplots of the journey-to-work trips predicted by equation (5.4) and 
observed. (a) SFOi

 = 0, SFDj
 = 0, Ai = 1, Bj = 1. (b) SFOi

 = 0, SFDj
 = 0. (c) 

All parameters estimated. Solid circle denotes observed flow values; star 
denotes predicted flow values.
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with the remainder of the island. This contrast is consistent with the origin 
balancing factors map pattern. The destination spatial filter highlights the four 
urban catchment areas (San Juan­Caguas, Arecibo, Mayaguez, and Ponce; see 
Figure 4.1). 
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5.3. R code for concept implementations

Computer Code 5.1 demonstrates implementations of the spatially adjusted 
regression models presented in this chapter. These implementations include 
eigenvector spatial filter specifications for the normal, binomial, Poisson, and 
negative binomial models. Standard stepwise regression methods in R, such as 
the step and stepAIC functions, make selections based upon such measures as the 
Akaike information criterion (AIC). The stepwise procedure with AIC tends to 
select more eigenvectors than are chosen by the traditional stepwise procedure 
based upon statistical significance. All data analyses in this chapter were per­
formed with SAS, including the eigenvector selections. The R code implemen­
tations in this section utilize the stepwise.forward function (which is defined in the 
all_functions.R file) for the normal cases, and the stepAIC function for the non­
normal distribution cases. Hence, when compared with the eigenvectors 
selected for the normal cases, slightly more eigenvectors tend to be selected with 

Figure 5.7  Geographic distributions of equation (5.4) terms. (a) Origin balancing 
factor, Ai. (b) Destination balancing factor, Bj. (c) Origin spatial filter.  
(d) Destination spatial filter. Darkness of gray scale is directly proportional 
to value.
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stepAIC for the non­normal cases. Nevertheless, many eigenvectors are common 
to these two sets. In order to replicate the data analyses in this chapter, the results 
from traditional stepwise regression based upon statistical significance are pre­
sented as well as R code using the stepAIC function. Results obtained with R 
code need to be manually adjusted to match those obtained with SAS.

The mapping.seq function is utilized in order to avoid redundant and lengthy 
R code lines in Computer Code 5.1 when performing repetitive mapping 
tasks. This function is also defined in the all_functions.R file.
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# load libraries and data 
library(car) 
library(spdep) 
library(RColorBrewer) 
library(classInt) 
 
pr.f <- read.csv(file="PR-farm-data.csv") 
 
# 5.1 
ifarm.den07 <- pr.f$irr_farms_07/pr.f$area 
 
y <- log(ifarm.den07 + 0.04) 
rain <- pr.f$rain_mean 
 
if.lm <- lm(y ~ rain) 
summary(if.lm) 
shapiro.test(resid(if.lm)) 
 
pr.nb <- read.gal("PuertoRico.GAL") 
pr.listw <- nb2listw(pr.nb, style="W") 
pr.listb <- nb2listw(pr.nb, style="B") 
if.sar <- errorsarlm(y ~ rain, listw = 
pr.listw) 
summary(if.sar) 
if.res <- residuals(if.sar) 
shapiro.test(if.res) 
 
cor(y, rain) 
 
y.sar <- errorsarlm(y ~ 1, listw=pr.listw) 
y.sar$lambda 
x.sar <- errorsarlm(rain ~ 1, listw= 
pr.listw) 
x.sar$lambda 
 
y.sa <- y - y.sar$lambda *  
lag.listw(pr.listw,y) 
rain.sa <- rain - x.sar$lambda * 
lag.listw(pr.listw,rain) 
cor(y.sa, rain.sa) 
 
adm <- factor(pr.f$ADM, levels=1:5, labels= 
c("San Juan", "Arecibo", "Mayaguez", 
"Ponce", "Caguas")) 
lm.if.sa <- lm(y.sa ~ adm) 
anova(lm.if.sa) 
 
sw.p <- function(x){    
  shapiro.test(x)$p.value} 
tapply(resid(lm.if.sa),adm,sw.p) 
leveneTest(resid(lm.if.sa), adm, 
center=mean) 
 
ci <- pr.f$cl_ih 
ci.lm <- lm(ci ~ rain, data=pr.f) 
summary(ci.lm) 
ci.sar <- errorsarlm(ci ~ rain, 
listw=pr.listw) 
summary(ci.sar) 

 
Load car, spdep, RColorBrewer, and 
classInt packages.  
 
 
 
Read Puerto Rico farm data. 
 
 
Calculate irrigated farm density in 
2007. 
Transform the density. 
Get mean rainfall. 
 
Run linear regression and summarize the 
results. 
Conduct a normality test. 
 
Read spatial neighbor information. 
Generate listw objects with W and B 
styles. 
Run a spatial autoregressive model and 
summarize the results. 
 
Get residuals and conduct Shapiro-Wilk 
normality test. 
 
Calculate correlation between the two 
variables. 
Estimate SAR spatial autocorrelation 
parameters for the two variables.  
 
 
 
 
Adjust for the latent spatial 
autocorrelation in the variables.  
 
 
Calculate correlation between the 
adjusted variables. 
Create a factor variable. 
 
 
Conduct ANOVA for the spatial 
autocorrelation adjusted farm 
densities. 
Create a function and conduct Shapiro-
Wilk test for each administrative 
region. 
Conduct Levene’s test. 
 
 
Get a binary variable. 
Run a linear regression and summarize 
the result. 
Run an SAR model and summarize the 
result. 
 
 
 
 

    Computer Code 5.1. Implementing spatially adjusted regression and spatial interaction 
models
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moran.test(ci, pr.listb) 
geary.test(ci, pr.listb) 

n <- length(pr.nb) 
M <- diag(n) - matrix(1,n,n)/n 
B <- listw2mat(pr.listb) 
MBM <- M %*% B %*% M 
eig <- eigen(MBM,symmetric=T) 
EV <- as.data.frame( eig$vectors[ , 
eig$values/eig$values[1] > 0.25]) 
colnames(EV) <- paste("EV", 1:NCOL(EV), 
sep="")

ci.full <- glm(ci ~ rain + ., data=EV, 
family=binomial)
ci.sf <- stepAIC(glm(ci ~ rain, data=EV, 
family=binomial), scope=list(upper= 
ci.full), direction="forward") 
ci.sf <- glm(ci ~ rain + EV4 + EV2 + EV7 + 
EV9 + EV6 + EV14 + EV13 + EV18 + EV12,
                  data=EV, family=binomial)
summary(ci.sf)

ci.sf.res <- round(residuals(ci.sf, 
type="response"))
moran.test(ci.sf.res , pr.listb) 
geary.test(ci.sf.res , pr.listb) 

pr <- readShapePoly("PuertoRico.shp") 
pal.wr <- c("white","red") 
cols.wr <- pal.wr[ci+1] 
plot(pr, col=cols.wr) 
leg <- c("coastal", "interior") 
legend("bottomright", fill=pal.wr, 
legend=leg, bty="n") 

pal.red <- brewer.pal(5,"Reds") 
q5 <- classIntervals(ci.sf$fitted, 5, 
style="quantile")
cols.red <-findColours(q5, pal.red) 
plot(pr, col=cols.red) 
brks <- round(q5$brks,3) 
leg <- paste(brks[-6], brks[-1], sep=" - ")
legend("bottomright", fill=pal.red, 
legend=leg, bty="n") 

cols.wr <- pal.wr[round(ci.sf$fitted)+1] 
plot(pr, col=cols.wr) 
leg <- c("coastal", "interior") 
legend("bottomright", fill=pal.wr, 
legend=leg,bty="n")

# The percent of farms utilizing irrigation
fp <- pr.f$irr_farms_02/pr.f$nofarms_02 
fp.col <- cbind(pr.f$irr_farms_02, 
pr.f$nofarms_02-pr.f$irr_farms_02)

fp.base <- glm(fp.col ~ rain, family= 
quasibinomial)
disp <- summary(fp.base)$dispersion 
fp.full <- glm(fp.col ~ rain + ., data=EV, 
family=binomial)

Conduct spatial autocorrelation tests.

Generate eigenvalues and eigenvectors.
from a transformed spatial weight 
matrix (MBM in the R codes). 

Construct a candidate set of 
eigenvectors.
Add column names for the eigenvectors.

Conduct spatial filtering with stepAIC
function.This selects more 
eigenvectors than a selection procedure 
based solely on significance.

Get a spatial filter model in the text 
which is constructed based on 
significance.
Summarize the result. 

Get the residuals of the spatial filter 
model.
Conduct spatial autocorrelation tests. 

Read Puerto Rico shapefile. 
Set a color list with white and red. 
Find colors for each polygon. 
Plot the polygons with the colors. 
Set legend texts. 
Locate a legend. 

Create a color palette with 5 colors. 
Classify the fitted values into 5 
classes with quantile option. 
Find colors for the polygons. 
Plot the polygons with the colors. 
Get break information. 
Create legend texts. 
Locate a legend. 

Convert the fitted values into a binary 
variable, then map them similarly. 

Get irrigated farm densities in 2002. 
Create a dependent variable for 
binomial regression: 
(# of success, # of fail).
Run a binomial regression. 

Get Pearson-type overdispersion value. 
Conduct stepwise regression with 
stepAIC.

#5.2.1
moran.test(ci, pr.listb) 
geary.test(ci, pr.listb) 

n <- length(pr.nb) 
M <- diag(n) - matrix(1,n,n)/n 
B <- listw2mat(pr.listb) 
MBM <- M %*% B %*% M 
eig <- eigen(MBM,symmetric=T) 
EV <- as.data.frame( eig$vectors[ , 
eig$values/eig$values[1] > 0.25]) 
colnames(EV) <- paste("EV", 1:NCOL(EV), 
sep="")

ci.full <- glm(ci ~ rain + ., data=EV, 
family=binomial)
ci.sf <- stepAIC(glm(ci ~ rain, data=EV, 
family=binomial), scope=list(upper= 
ci.full), direction="forward") 
ci.sf <- glm(ci ~ rain + EV4 + EV2 + EV7 + 
EV9 + EV6 + EV14 + EV13 + EV18 + EV12,
                  data=EV, family=binomial)
summary(ci.sf)

ci.sf.res <- round(residuals(ci.sf, 
type="response"))
moran.test(ci.sf.res , pr.listb) 
geary.test(ci.sf.res , pr.listb) 

pr <- readShapePoly("PuertoRico.shp") 
pal.wr <- c("white","red") 
cols.wr <- pal.wr[ci+1] 
plot(pr, col=cols.wr) 
leg <- c("coastal", "interior") 
legend("bottomright", fill=pal.wr, 
legend=leg, bty="n") 

pal.red <- brewer.pal(5,"Reds") 
q5 <- classIntervals(ci.sf$fitted, 5, 
style="quantile")
cols.red <-findColours(q5, pal.red) 
plot(pr, col=cols.red) 
brks <- round(q5$brks,3) 
leg <- paste(brks[-6], brks[-1], sep=" - ")
legend("bottomright", fill=pal.red, 
legend=leg, bty="n") 

cols.wr <- pal.wr[round(ci.sf$fitted)+1] 
plot(pr, col=cols.wr) 
leg <- c("coastal", "interior") 
legend("bottomright", fill=pal.wr, 
legend=leg,bty="n")

# The percent of farms utilizing irrigation
fp <- pr.f$irr_farms_02/pr.f$nofarms_02 
fp.col <- cbind(pr.f$irr_farms_02, 
pr.f$nofarms_02-pr.f$irr_farms_02)

fp.base <- glm(fp.col ~ rain, family= 
quasibinomial)
disp <- summary(fp.base)$dispersion 
fp.full <- glm(fp.col ~ rain + ., data=EV, 
family=binomial)

Conduct spatial autocorrelation tests.

Generate eigenvalues and eigenvectors.
from a transformed spatial weight 
matrix (MBM in the R codes). 

Construct a candidate set of 
eigenvectors.
Add column names for the eigenvectors.

Conduct spatial filtering with stepAIC
function.This selects more 
eigenvectors than a selection procedure 
based solely on significance.

Get a spatial filter model in the text 
which is constructed based on 
significance.
Summarize the result. 

Get the residuals of the spatial filter 
model.
Conduct spatial autocorrelation tests. 

Read Puerto Rico shapefile. 
Set a color list with white and red. 
Find colors for each polygon. 
Plot the polygons with the colors. 
Set legend texts. 
Locate a legend. 

Create a color palette with 5 colors. 
Classify the fitted values into 5 
classes with quantile option. 
Find colors for the polygons. 
Plot the polygons with the colors. 
Get break information. 
Create legend texts. 
Locate a legend. 

Convert the fitted values into a binary 
variable, then map them similarly. 

Get irrigated farm densities in 2002. 
Create a dependent variable for 
binomial regression: 
(# of success, # of fail).
Run a binomial regression. 

Get Pearson-type overdispersion value. 
Conduct stepwise regression with 
stepAIC.
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family=binomial), scale=disp, scope= 
list(upper=fp.full), direction="forward") 
fp.sf <- glm(fp.col ~ rain + EV1 + EV13 + 
EV4 + EV12 + EV2 + EV15, data=EV, 
family=quasibinomial) 
summary(fp.sf) 
 
moran.test(fp, pr.listb) 
geary.test(fp, pr.listb) 
summary(fp.base)$deviance/fp.base$df.residu
al 
summary(fp.sf)$deviance/fp.sf$df.residual 
summary(fp.sf)$dispersion 
 
# Mapping the percentages 
source("all_functions.R") 
mapping.seq(pr, fp, 5) 
 
# Mapping the predicted 
mapping.seq(pr, fp.sf$fitted, 5) 
 
# Mapping the spatial filter 
sfilter <- 
as.matrix(EV[,c(1,13,4,12,2,15)]) %*% 
as.matrix(fp.sf$coefficients[c(-1,-2)]) 
 
moran.test(sfilter, pr.listb) 
geary.test(sfilter, pr.listb) 
 
sf.res <- residuals(fp.sf, type="response")
moran.test(sf.res, pr.listb) 
geary.test(sf.res, pr.listb) 
 
mapping.seq(pr, sfilter, 5, main="SF") 
 
#5.2.2.1 
 
farm.den07 <- pr.f$nofarms_07/pr.f$area 
y.fd <- (farm.den07 - 0.12)^0.38 
shapiro.test(y.fd) 
lm.fd <- lm(y.fd ~ rain) 
lm.fd.s <- summary(lm.fd) 
s2 <- round(lm.fd.s$sigma^2,5) 
c1 <- round(0.5 * (-0.25+(1/0.38-
2+1.5)^2),5) 
pred <- lm.fd$fitted 
y.fd.e <- pred^(1/0.38) + c1*s2 + 0.12  
 
lm.bt <- lm(farm.den07 ~ y.fd.e) 
summary(lm.bt) 
 
pois.fd <- glm(nofarms_07 ~ rain_mean, 
offset=log(area), family=poisson, 
data=pr.f) 
pois.fd$deviance/pois.fd$df.residual 
nb.fd <- glm.nb(nofarms_07 ~ rain_mean + 
offset(log(area)), data=pr.f) 
nb.fd$deviance/nb.fd$df.residual 
1/nb.fd$theta 
nb.fit <- nb.fd$fitted/pr.f$area 
nb.back <- lm(farm.den07 ~ nb.fit) 
summary(nb.back) 
 

 
Get a spatial filter model in the text 
estimated based on significance. 
 
Summarize the result. 
 
Conduct spatial autocorrelation tests. 
 
Calculate deviance statistics for the 
base and spatial filter models. 
 
Get Pearson-type overdispersion value. 
 
 
Load functions in all_functions.R file. 
Map the farm percentage with 5 classes. 
 
 
Map the predicted values. 
 
 
Construct the spatial filter. 
 
 
 
Conduct spatial autocorrelation test 
for the spatial filter. 
 
Get residuals of the spatial filter 
model, and conduct spatial 
autocorrelation tests. 
 
Map the constructed spatial filter. 
 
 
 
Calculate farm densities in 2007 and 
transform it. 
Conduct Shapiro-Wilk test. 
Run a linear regression. 
Store the summaries of the regression. 
Calculate components for back-
transformation. 
 
 
Calculate back-transformed predicted 
values. 
Run linear regression between observed 
and predicted values, and summarize the 
result. 
Run a Poisson regression with offset 
values. 
 
Calculate deviance statistic. 
Run a negative binomial model. 
 
Calculate deviance statistic. 
Get dispersion parameter estimate. 
Calculate predicted densities. 
Run linear regression and summarize it. 
 
 

fp.sf <- stepAIC(glm(fp.col~rain, data=EV,
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par(mfrow=c(1,2)) 
plot(y.fd.e, farm.den07, pch=20) 
abline(0,1, col=2) 
nb.den <- fitted(nb.fd)/pr.f$area 
plot(nb.den, farm.den07, pch=20) 
abline(0,1, col=2) 
par(mfrow=c(1,1)) 
 
moran.test(farm.den07, pr.listb) 
geary.test(farm.den07, pr.listb) 
moran.test(farm.den07-y.fd.e, pr.listb) 
geary.test(farm.den07-y.fd.e, pr.listb) 
moran.test(farm.den07-
nb.fd$fitted/pr.f$area, pr.listb) 
geary.test(farm.den07-
nb.fd$fitted/pr.f$area, pr.listb) 
 
lm.full <- lm(y.fd ~ rain + ., data=EV) 
lm.sf <- stepwise.forward(lm.full, lm(y.fd 
~ rain, data=EV), 0.1, verbose=F)          
summary(lm.sf)$r.squared 
pred.sf <- lm.sf$fitted 
                                     
s2.sf <- round(summary(lm.sf)$sigma^2,5) 
y.e.sf <- pred.sf^(1/0.38) + c1*s2.sf + 
0.12  
lm.sf.bt <- lm(farm.den07 ~ y.e.sf) 
summary(lm.sf.bt) 
 
plot(y.e.sf, farm.den07, pch=20) 
abline(lm.sf.bt) 
 
lm.sf.res <- farm.den07 - y.e.sf 
moran(lm.sf.res, pr.listb, n, 
Szero(pr.listb)) 
geary(lm.sf.res, pr.listb, n, n-1, 
Szero(pr.listb)) 
 
X <- as.matrix(cbind(rep(1,n), 
lm.sf$model[,-1])) 
num <- -n*sum(diag(solve(crossprod(X), 
crossprod(X,B)%*%X))) 
den <- lm.sf$df.residual * sum(B) 
num/den 
 
nb.full <- glm.nb(pr.f$nofarms_07 ~ rain + 
offset(log(pr.f$area)) + ., data=EV) 
nb.sf <- stepAIC(glm.nb(pr.f$nofarms_07 ~ 
rain + offset(log(pr.f$area)), data=EV), 
scope=list(upper=nb.full), 
direction="forward") 
nb.sf <- glm.nb(pr.f$nofarms_07 ~ rain + 
EV12 + EV4 + EV1 + EV2 + EV18 + 
offset(log(pr.f$area)), data=EV) 
summary(nb.sf) 
 
glm.sf.bt <- lm(farm.den07 ~ 
I(nb.sf$fitted/pr.f$area)) 
summary(glm.sf.bt) 
 
plot(nb.sf$fitted/pr.f$area, farm.den07, 
pch=20) 
abline(glm.sf.bt) 

Plot observed versus predicted plots 
from the normal model and negative 
binomial model. 
 
 
 
 
 
Conduct spatial autocorrelation tests 
for the three sets of values: the farm 
densities in 2007, residuals from the 
normal model, and residuals from the 
negative binomial model. 
 
 
 
 
Conduct stepwise regression with 
stepwise.forward. 
 
Summarize the result. 
Get predicted values. 
 
Conduct back-transformation. 
 
 
Examine its model fit. 
 
 
Plot a scatterplot with observed and 
predicted values. 
 
Get residuals of the normal model. 
Calculate Moran’s I.  
 
Calculate Geary’s C.  
 
 
Get independent variables to calculate 
the expected value of Moran’s I: 
numerator 
 
denominator 
the expected value of Moran’s I. 
 
Run stepwise negative binomial 
regression with stepAIC. 
 
 
 
 
Get a spatial filter model in the text 
estimated based on significance. 
 
Summarize the result. 
 
Examine the model fit of the negative 
binomial model. 
 
 
Create a scatterplot of observed versus 
predicted values. 
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glm.sf.res <- farm.den07 - 
nb.sf$fitted/pr.f$area 
moran(glm.sf.res, pr.listb, n, 
Szero(pr.listb)) 
geary(glm.sf.res, pr.listb, n, n-1, 
Szero(pr.listb)) 
 
X <- as.matrix(cbind(rep(1,n), 
nb.sf$model[,c(-1,-8)])) 
num <- -n*sum(diag(solve(crossprod(X), 
crossprod(X,B)%*%X))) 
den <- nb.sf$df.residual * sum(B) 
num/den 
 
ur <- factor(pr.f$u_r, levels=0:1, 
labels=c("urban", "rural")) 
tapply(y.fd, ur, sw.p) 
leveneTest(y.fd, ur, center=mean) 
anova(lm(y.fd ~ ur)) 
 
ur.d <- ifelse(pr.f$u_r==0,-1,1) 
lm.full <- lm(y.fd ~ rain+ur.d+., data=EV)  
lm.ur <- stepwise.forward(lm.full, lm(y.fd 
~ rain + ur.d, data=EV), 0.1, verbose=F) 
lm.ur.res <- residuals(lm.ur) 
tapply(lm.ur.res, ur, sw.p) 
leveneTest(lm.ur.res, ur, center=mean) 
summary(lm.ur)$coefficients[3,] 
 
nb.ur <- update(nb.sf, . ~ . + EV10 + EV15 
+ ur.d) 
summary(nb.ur)$coefficients[10,] 
nb.ur$deviance/nb.ur$df.residual 
 
 
#5.2.2.2 
 
pr.j2w <- read.csv("PR_journey-to-
work_2000.csv") 
n <- sqrt(NROW(pr.j2w)) 
 
# model1 
f.os <- function(x,flow.df,n){ 
sum(flow.df[flow.df[,"ResID"]==x,"Count"])}
Oi.sum <- sapply(1:n, f.os, flow.df=pr.j2w, 
n=n) 
Oi.sum <- rep(Oi.sum, each=n) 
 
f.ds <- function(x,flow.df,n){ 
sum(flow.df[flow.df[,"WorkID"]==x,"Count"])
} 
Dj.sum <- sapply(1:n, f.ds, flow.df=pr.j2w, 
n=n) 
Dj.sum <- rep(Dj.sum, n) 
lnOiDj <- log(Oi.sum) + log(Dj.sum) 
 
si.nc <- glm(Count ~ dist, offset=lnOiDj, 
data=pr.j2w, family=poisson) 
exp(si.nc$coefficients[1]) 
si.nc$coefficients[2] 
si.nc$deviance/si.nc$df.res 
lm.nc <- lm(pr.j2w$Count~si.nc$fitted)  

Get the residuals of the negative 
binomial model. 
Calculate Moran’s I. 
 
Calculate Geary’s C. 
 
 
Get independent variables to calculate 
the expected value of Moran’s I. 
numerator 
 
denominator 
the expected value of Moran’s I. 
 
Create a factor variable for urban & 
rural. 
Conduct normality tests. 
Conduct Levene’s test. 
Conduct ANOVA. 
 
Create a dummy variable with -1 & 1. 
Run stepwise regression for a spatial 
filter model. 
 
Get residuals of the spatial filter 
model, and then conduct normality and 
Levene’s tests. 
Get statistics for ur.d variable (mean 
difference test). 
Get a spatial filter model in the text 
estimated based on significance. 
Get statistics of ur.d variable. 
Get deviance statistic. 
 

  
 
  
 Load journey-to-work data. 
 
The number of regions (i.e., 
municipalities). 
 
Define a function to calculate sums of 
flows from each origin. 
Get sums of flows from each origin. 
 
Match the sums to the 
origin/destination (OD) list. 
Define a function to calculate sums of 
flows from each origin. 
 
Get sums of flows from each 
destination. 
Match the sums to the OD list. 
Prepare an offset variable.  
 
Run Poisson regression with only 
distance variable. 
Constant estimate. 
Distance-decay estimate. 
Deviance type overdispersion estimate. 
Examine the model fit. 
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summary(lm.nc) 
 
# model2 
b.id <- 63 
fid.f <- as.factor(pr.j2w$ResID) 
contr.f <- contr.treatment(levels(fid.f), 
base=b.id) 
xo <- contr.f[fid.f,] 
colnames(xo) <- paste("R", levels(fid.f)[-
b.id], sep="") 
rownames(xo) <- 1:(n^2) 
 
tid.f <- as.factor(pr.j2w$WorkID) 
contr.t <- contr.treatment(levels(tid.f), 
base=b.id) 
xd <- contr.t[tid.f,] 
colnames(xd) <- paste("W", levels(tid.f)[-
b.id], sep="") 
rownames(xd) <- 1:(n^2) 
 
si.dc <- glm(Count ~ dist + xo + xd, 
offset=lnOiDj, data=pr.j2w, family=poisson)
exp(si.dc$coefficients[1]) 
si.dc$coefficients[2] 
si.dc$deviance/si.dc$df.res 
lm.dc <- lm(pr.j2w$Count~si.dc$fitted) 
summary(lm.dc) 
 
 
# model3 
attach(pr.j2w) 
# eigenvector treatment for flows 
evec <- read.table("pr_evecs.txt", 
header=T) 
evec <- evec[,c(-1,-2)] 
EV <- evec[,1:11] 
EVo <- apply(EV,2, function(x,n) 
{rep(x,each=n)}, n=n) 
EVd <- apply(EV,2, function(x,n) 
{rep(x,n)}, n=n) 
EVod <- kronecker(EVo, matrix(1,1,11)) * 
kronecker(matrix(1,1,11),EVd) * 100 
 
colnames(EVod) <- paste("EV",1:121,sep="") 
EVod.df <- as.data.frame(EVod) 
 
#disp <- si.dc$deviance/si.dc$df.res 
#si.full <- glm(Count ~ dist + xo + xd + ., 
data=EVod, family=poisson) 
#si.sf <- stepAIC(glm(Count ~ dist + xo + 
xd, data=EVod, family=poisson), scale=disp, 
scope=list(upper=si.full), 
direction="forward", trace=0) 
 
evs <- scan("pr_flow_sel_evecs.txt") 
EVod.sel <- EVod[,evs]          
          
si.sf <- glm(Count ~ dist + xo + xd + 
EVod.sel, offset=lnOiDj, family=poisson) 
 
exp(si.sf$coefficients[1]) 
si.sf$coefficients[2] 
si.sf$deviance/si.sf$df.res 

 
 
Set a base level for dummy variables. 
Get a factor variable for origins. 
Create dummy variables for origins with 
b.id region as base. 
Match the dummy variable to the OD list. 
Set column names for the dummy 
variables. 
Set row names. 
 
Similarly create dummy variables for 
destinations. 
 
 
 
 
 
 
Run a Poisson regression with the dummy 
variables and distance. 
Constant estimate. 
Distance-decay estimate. 
Deviance type overdispersion estimate. 
Examine the model fit. 
Summarize the result. 
 
 
 
Add pr.j2w to a search space. 
 
Read eigenvectors from the transformed 
spatial weight matrix. 
Drop two ID columns. 
Select the first 11 eigenvectors. 
Match the 11 eigenvectors to the 
origins in the OD list.  
Match the 11 eigenvectors to the 
destinations in the OD list.  
Generate 121 eigenvectors by 
multiplying the matched eigenvectors 
for origins and destinations. 
Set column names. 
Convert a matrix to a data frame. 
 
Conduct stepwise regression to 
construct a spatial filter model. Note 
that this stepAIC function will take a 
while. Also note that the selected 
eigenvectors with significance in the 
text are stored in pr_flow_sel_evec.txt 
file.  
 
Read selected eigenvector information. 
Get only the selected eigenvectors. 
 
Run a Poisson with distance, dummy 
variables, and the selected 
eigenvectors. 
Constant estimate. 
Distance-decay estimate. 
Deviance type overdispersion estimate. 
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lm.sf <- lm(Count~si.sf$fitted)
summary(lm.sf) 
 
plot(si.nc$fitted, Count, pch=4) 
points(Count, Count) 
plot(si.dc$fitted, Count, pch=4) 
points(Count, Count) 
plot(si.sf$fitted, Count, pch=4) 
points(Count, Count) 
 
detach(pr.j2w) 
 
ai.v <-substr(names(si.sf$coef),1,3)=="xoR"
ai <- si.sf$coef[ai.v] 
 
bj.v <-substr(names(si.sf$coef),1,3)=="xdW"
bj <- si.sf$coef[bj.v] 
 
insert <- function(v,e,pos){  
  return(c(v[1:(pos-1)], e,     
  v[(pos):length(v)]))} 
ai <- insert(ai, 0, b.id) 
bj <- insert(bj, 0, b.id) 
 
ev.v <- substr(names(si.sf$ coef),1,8) == 
"EVod.sel" 
ev.beta <- si.sf$coef[ev.v] 
sf.if <- EVod.sel %*% ev.beta 
sf.df <- pr.j2w[,c("ResID", "WorkID")] 
sf.df$sfij <- sf.if 
 
f.oi <- function(x,flow.df) { median( 
flow.df[flow.df[,"ResID"]==x,"sfij"])} 
sf.oi <- sapply(1:n, f.oi, flow.df=sf.df) 
 
f.dj <- function(x,flow.df) {median( 
flow.df[flow.df[,"WorkID"]==x,"sfij"])} 
sf.dj <- sapply(1:n, f.dj, flow.df=sf.df) 
 
mapping.seq(pr,ai,7,main="Org Balancing")  
mapping.seq(pr,bj,7,main="Dest Balancing") 
mapping.seq(pr,sf.oi,7,main="Org SF") 
mapping.seq(pr,sf.dj,7,main="Dest SF") 

Examine the model fit. 
Summarize the result.   

 
Scatterplots of observed versus 
predicted values for the three models. 
 
 
 
 
 
Remove pr.j2w from the search space. 
 
Find origin dummy variables. 
Get estimated coefficients of origin 
dummy variables. 
Find destination dummy variables. 
Get estimated coefficients for 
destination dummy variables. 
Create a function to insert zero for 
base regions of the dummy variables. 
 
Put zero for the origin base region. 
Put zero for the destination base 
region. 
Get estimated coefficients for 
eigenvectors. 
 
Calculate a spatial filter. 
Combine the filter values with origin 
and destination IDs. 
 
Define a function to get medians of the 
spatial filter vales for each origin. 
Get medians for origins. 
 
Similarly, get medians for 
destinations. 
 
 
Map the balancing factors and spatial 
filters. 
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