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WHAT IS HETEROSKEDASTICITY  

AND WHY SHOULD WE CARE?

For concreteness, consider the following linear regression model for a 
quantitative outcome (yi) determined by an intercept (β1), a set of predictors 
(x2, x3, . . . , xK) and their coefficients (β2, β3, . . . βJ), and a random error (εi):

 y Ni = β β ε =1 + ∑ +
=

k
k
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2

1 2 3, , , , ...,  (1.1)

or in matrix notation,

y = +Xββ εε

where y_ is an N × 1 column vector of the values of the outcome, X is an 
N × K matrix whose columns are the values of the predictors,1 ββ  is a 1 × K 
column vector of the coefficients, and ε  is an N × 1 column vector of the 
values of the error term.

One of the usual ordinary least squares (OLS) assumptions is that the vari-
ance of εi is constant (see QASS # 50 by Berry & Feldman, 1985, for a good 
discussion of all of the OLS assumptions): Var ( .ε_ σ) = 2I  Heteroskedastic-
ity means that this assumption is incorrect. Instead, the error variance differs 
in some systematic fashion across the cases in the analysis. As I discuss in 
more detail later in this chapter, there are three common and easily identifi-
able situations in which social science researchers should strongly suspect the 
potential for heteroskedasticity: (1) when analyzing an aggregate dependent 
variable, (2) when making comparisons among social groups, and (3) when 
the distribution of the dependent variable is far from a symmetric and bell-
shaped distribution. One easily recognized instance of the last situation is the 
analysis of a dummy dependent variable, which is described in many text-
books. Although it is certainly true that an OLS model for a dummy outcome 
will have heteroskedastic errors, logistic or probit models are more appropri-
ate for such analyses (see, e.g., Greene, 2008, pp. 772–773; Hanushek & 
Jackson, 1977, pp. 181–189). Similarly, generalized linear models (GLMs; 
briefly discussed in the concluding chapter) are suitable for the analysis of 

1By convention, the values in the first column of X are all equal to 1 and the cor-
responding coefficient in β


  is the intercept term.
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outcomes with distributions such as the Poisson for count models or the 
exponential for proportional hazards models. Other forms of heteroskedastic-
ity are possible (e.g., a function of the square of the dependent or an indepen-
dent variable), but these are somewhat less readily apparent in an analysis.

As an example, suppose you are interested in understanding why income 
inequality varies across the states of the United States. One explanation might 
be the differences across states in their stock of human capital; specifically 
that inequality declines as the level of mean education rises. Figure 1.1 shows 
the scatterplot of state-level income inequality by state mean education as 
well as the regression line, with Panel A illustrating homoskedasticity and 
Panel B demonstrating the actual heteroskedasticity.2 Note that in Panel A, 

2The data in Panel B were constructed using the data for application Example 1 
described at the end of this chapter. The data in Panel A are an idealized modifica-
tion of these data to portray the lack of heteroskedasticity. An outlier is excluded 
from the plots and calculations in this chapter because it exaggerates the differences 
between the various estimates of the coefficient variance.

Figure 1.1  Plots showing (A) Hypothetical Homoskedasticity and  
(B) Actual Heteroskedasticity for State-Level Analysis of 
Income Inequality Regressed on State Mean Education
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the data points are similarly scattered around the regression line for all levels 
of education as is expected when the data are homoskedastic. In Panel B, the 
data points are scattered farther from the regression line for lower levels of 
mean education but closer to the regression line at higher levels of mean 
education. Such systematic patterning of the y values around the regression 
line is potentially indicative of heteroskedasticity. But as I discuss in the next 
chapter, the reason that the error variance differs across cases is not necessarily 
(or even likely) due to states’ levels of mean education.

Consequences of Heteroskedasticity

If there is heteroskedasticity, the good news is that using OLS to estimate 
Equation 1.1 provides unbiased estimates of the coefficients. But it also cre-
ates two different problems: (1) the OLS estimates of the coefficients (β)
are inefficient and (2) ignoring heteroskedasticity leads to biased estimates 
of the OLS standard errors in practice and hence biased statistical tests of the 
coefficients. Saying that OLS is inefficient means that there is an alternative 
unbiased estimator (the generalized least squares [GLS] estimator described 
in Chapter 5), whose coefficient estimates vary less from sample to sample 
than do the OLS coefficients. When the errors are heteroskedastic, the usual 
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formula for calculating the variance of the OLS coefficients does not apply. 
Instead, it is given by (Greene, 2008, p. 150)

 Var OLS( ) ( ) ( )b X X X X X X= ′ ′ ′− −σ 2 Ω1 1  (1.2)

where σ2Ω is an n × n diagonal matrix with the varying values of the vari-
ance of εi on the diagonal.

The coefficients’ standard errors are the square roots of the diagonal ele-
ments of Var .OLS( )b  Similarly, a different estimator of σ2 is also required 
(Theil, 1971, p. 256):
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where the elements of y  are the predicted values of the outcome from the 
OLS regression.

A reasonable question to ask is whether the inefficiency of OLS as esti-
mated using Equations 1.2 and 1.3 makes any difference in practical terms 
given that many analyses use large samples. The loss of efficiency of OLS 
is given by3

 σ 2 Ω Ω[( ) ( ) ( ) ]′ − ′ ′ ′− − − −X X X X X X X X1 1 1 1  (1.4)

To illustrate concretely the degree of relative inefficiency of OLS esti-
mates, consider the case of a single predictor xi, with both xi and the depen-
dent variable yi measured as standardized variables with a mean of 0 and a 
variance of 1.0. Let ωi be the error variance of the ith case (the ith diagonal 
element of Ω). The variances of the OLS and GLS coefficients and their 
ratio are given by (see the appendix for the derivation):
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3This formula results from subtracting the variance of the OLS coefficients given by 
Equation 1.2 from the variance of the efficient GLS estimator (described in Chapter 5) 
given by Equation 5.1.
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Thus, the degree of inefficiency of OLS depends on the squared values of 
the predictor xi, the degree of heteroskedasticity as indexed by ωi, the degree 
of association between xi

2  and ωi, and the sample size. For the example shown 
in Panel B of Figure 1.1, the ratio of the variance of the OLS coefficient to the 
variance of the GLS coefficient is 1.79. That is, the OLS coefficient variance 
is 79% larger than the efficient alternative estimator. This means that the 
coefficient standard error (which is the square root of the variance) is 34% 
larger in OLS than in GLS, and correspondingly that the confidence interval 
for the OLS coefficient is 34% larger. Such a loss of efficiency is more than 
large enough to affect conclusions about the significance or lack of signifi-
cance of findings.

A second problem is what happens if a researcher were to ignore hetero-
skedasticity and use the OLS results as estimated by any standard statistical 
software. In this case, the variances of the OLS coefficients are improperly 
estimated. The problem is that the formulas used to calculate the variance 
of the OLS coefficients are not what are shown in Equations 1.2 and 1.3 
(which takes the heteroskedasticity into account). Instead, what is used is 
the usual OLS formula for calculating the variances (standard errors) of the 
OLS coefficients, assuming a constant error variance (Greene, 2008, p. 48):

 Var andOLS( ) ( )
( ) ( )

b X X
y y y y
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The difference between using Equation 1.6 and Equation 1.2 is not in 
general known in the sense that the coefficient variances as calculated by 
Equation 1.6 could be either larger or smaller than the correct values 
estimated using Equation 1.2. Consequently, the reported hypothesis 
tests are biased in unknown directions. In the single standardized predic-
tor case, the ratio of the incorrect estimate of the coefficient variance to 
the correct estimate is given by (see the appendix for derivation of this 
formula)
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Whether this ratio is greater than or less than 1 depends on the degree 
of heteroskedasticity and the degree of association between the error 
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variance and the square of the predictor. When there is relatively little 
heteroskedasticity, the value of this expression will be close to 1 (see 
the appendix). For the data portrayed in Figure 1.1, the incorrect 
estimate of the coefficient variance is 57% of the size of the correct 
estimate. Such a large underestimate creates the potential for a substan-
tial error in drawing conclusions about the effect of mean education on 
income inequality.

Common Forms of Heteroskedasticity

A final reason to care about heteroskedasticity is that the potential for it 
to exist is more common than is usually recognized by researchers, 
although there has been a growing use of estimation methods in sociol-
ogy which model heteroskedasticity in some fashion. For example, I 
reviewed all the 227 articles, comments, and replies in the American 
Sociological Review during a recent 5-year period.4 I found that on aver-
age somewhat less than one article per issue (0.73) reported at least one 
analysis using some method of correction for heteroskedasticity. But this 
same review also indicated that much less attention is paid to this issue 
than the type of data and hypotheses analyzed would warrant. As I 
describe next, there are several readily identifiable scenarios in which a 
researcher should suspect heteroskedasticity. Table 1.1 tabulates the type 
of heteroskedasticity correction (if any) by two potential likely types of 
heteroskedasticity. In my assessment, nearly one third of all the articles 
(32.2%) included an analysis that fit into these situations. Of these, 38% 
ignored the potential for heteroskedasticity, 32% included some method 
of correction for heteroskedasticity, and the remaining 30% were indeter-
minate but most likely ignored the possibility of heteroskedasticity. Virtu-
ally all of the analyses in the latter category were multilevel models in 
which insufficient detail on modeling was provided to determine whether 
or not the model included a heteroskedastic specification. To me, this 
review suggests that about twice as many articles should be testing and 
possibly correcting for heteroskedasticity than currently do.

What are the situations in which the potential for heteroskedasticity should 
be readily apparent? Consider first the analysis of a set of units that are aggre-
gations of (typically) a set of nA individual cases within each unit A, such as 
a country or some smaller geographic unit. The dependent variable ( yA) in 
such analyses is often constructed as an aggregation of individual cases 

4This review included all 227 articles, research notes, comments, and replies in the 
issues from October 2005 to August 2010.
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within the unit rather than a sui generis global property of the unit. It might 
take the form of an aggregate summary statistic:

 y f y nA Ai A= ( , )  (1.8)

where f ( ) is an aggregate function such as the mean or median, yAi is a 
characteristic of individual i in aggregate unit A, and nA is the number of 
individuals in aggregate unit A.

Or it could be the form of an aggregate sum:

 y yA Ai
i

= ∑  (1.9)

An example of the former would be a city’s median family income, while 
the number of refugees entering a country in a year would be an example 
of the latter.

In the case of an aggregate statistic, the variance of the outcome measure 
will be inversely proportional to nA. If yA is defined as the mean of indi-

vidual cases, y y nA Ai
i

A= ∑ / ,  then the variance of yA is σ σyA y An2 2= / ,  

where σ y
2  is the variance of y in the population of individuals. Similarly, if 

yA is the median of individual cases, then it has variance

σ
σ

yA
y

An
2

21 57
≈

.

Type of Potential 
Heteroskedasticity

Estimation 
Technique

Type of Correction

None HCCMa EGLSb Unknown

Aggregate (n = 25) OLS  6  7
Non-OLS  6  3 1  2

Social categories OLS  11 10
(n = 48) Non-OLS  5  2 20

None apparent Various 154

Table 1.1  Type of Heteroskedasticity Correction in ASR articles  
(N = 227) by Type of Potential Heteroskedasticity  
and Estimation Technique

Note: ASR, American Sociological Review; HCCM, heteroskedasticity-consistent covariance 
matrix; EGLS, estimated generalized least squares; OLS, ordinary least squares.

a. See Chapter 4.

b. See Chapter 5.
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If yA is defined as the proportion of individual cases with a particular 
characteristic c,

y
n y c
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P
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In the case of an aggregate sum, the variance of yA is directly proportional to 
the size of the aggregate unit, σ σyA A yn2 2= .  Although the fact that the vari-
ance of yA varies with nA across cases does not guarantee that the variance of 
εi does so in the same manner, it is likely that εi will be heteroskedastic. Of 
the 73 articles I identified as having the potential for heteroskedasticity, 34% 
were such aggregate analyses.5

The second situation in which the potential for heteroskedasticity is 
easy to identify is when the analysis involves a comparison among social 
groups (categories). Suppose that one of the predictors Xj is a dummy 
indicator for a case’s membership in a social group (e.g., race/ethnicity or 
gender) or more broadly a contrast between two social categories (e.g., 
married vs. not married or employed vs. not employed). Such a situation 
suggests the potential for heteroskedasticity. Conceptually, if there is a 
process creating systematic differences in yi between the two social cate-
gories, then the same process may also create random, nonsystematic dif-
ferences in εi corresponding to the two social categories. A careful reading 
of the existing empirical literature in an area may sometimes indicate this. 
For example, it has long been argued in the labor market literature that there 
is less explained variation in the determination of rewards for minority 
groups than for nonminority groups in the United States (e.g., Featherman 
& Hauser, 1976, p. 636). This is tantamount to saying that the error vari-
ance is different for the groups:

 
Var for Group 1 and Var for Group( ) ( )ε σ ε σi i= =1

2
2
2 2  (1.10)

Similarly, the literature might suggest that the range of outcomes is 
more restricted for one group than another. A common argument is that 
the sex segregation of occupations restricts the range of occupational 

5Five of these were also characterized by the social categories form but were 
counted only as an aggregate analysis form to avoid double counting.
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choices and hence the variation in the earnings of women (e.g., Reskin 
& Padavic, 1994, p. 46). Again, this suggests the potential for unequal 
error variance in earnings for men and women. The logic of this can be 
readily extended to more than two social categories, such as social 
classes or regions of a country. In the articles I reviewed, 66% of those 
with the potential for heteroskedasticity were such social group or cate-
gory comparisons.6

The third common situation is when the distribution of the dependent 
variable is far from bell shaped. A highly skewed distribution or the pres-
ence of many extreme values (whether high or low) potentially could lead 
to different error variances across the range of values. Workers’ earnings 
is an example of the former in which the magnitude of reporting errors is 
likely to be much larger for high earners than for low earners. Similarly, it 
is reasonable to argue that there could be greater random variation in a 
respondent’s answers concerning assets and liabilities at the opposite ends 
of the net worth distribution (extreme wealth or high net debt) than in the 
middle parts of the distribution. Reporting errors (or rounding tendencies) 
in the tens of thousands of dollars seem highly plausible for someone with 
millions of dollars of assets or with hundreds of thousands of dollars of net 
debt but highly unlikely for someone with modest assets. Or consider the 
analysis of a dichotomous dependent variable that is guaranteed to be 
heteroskedastic as a function of the predictors. Avoiding heteroskedastic-
ity is one of the reasons that logit or probit analyses are commonly pre-
ferred to OLS regression analysis of the dummy dependent variable 
(Greene, 2008, pp. 772–773; Hanushek & Jackson, 1977, pp. 181–189). I 
did not try to count how many would fall into this category because too 
many articles did not provide sufficient information to determine if the 
distribution of the outcome was unusual. And I did not count logit or 
probit analyses as potentially heteroskedastic (but see Allison, 1999; 
Williams, 2009; for a discussion of heteroskedasticity within logit and 
probit analyses).

There are certainly many other forms of heteroskedasticity that are often 
less readily apparent on a priori grounds, such as variance proportional to 
the square of the mean or multiplicative heteroskedasticity (Greene, 2008, 
p. 170). So how do we know if heteroskedasticity is an actual problem in a 
given analysis, and not just a potential problem? The next chapter presents 
diagnostic tools for determining the presence of heteroskedasticity in an 
analysis and applications of these tools to three examples. Each example 
illustrates one or more of the three common “obvious” situations. In the 

6Five of these were also characterized by the aggregate analysis form and were 
counted only as an aggregate analysis form to avoid double counting.
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next section, I describe the topic studied, the data source, and the measurement 
of the dependent and independent variables for each example. I have also 
posted on the web (www.sagepub.com/kaufman) a read-me file describing 
the contents of the posting and how to use them, a Stata do-file with two 
special-purpose programs (commands) that I’ve written, and a data file and 
its associated annotated Stata do-file for all of the analyses presented in this 
monograph.

Application Examples

Example 1: A State-Level Analysis of Income Inequality. The research 
question for this example is to explain why income inequality is higher 
in the Southern region of the United States than it is elsewhere. It 
requires an aggregate analysis because conceptually income inequality 
is an aggregate property of groupings of families or persons. This 
example uses states as the units of analysis, and I measure income 
inequality by the Gini coefficient calculated from the distribution of 
family income within a state. It is an attempt to determine if an initial 
significant difference between Southern states and other states in family 
income inequality (Gini) can be explained by state differences in the 
following:

 • Human capital as measured by the average years of education com-
pleted by school-age adults in the state; education is expected to 
decrease income inequality

 • Economic structure as measured by the prevalence of small busi-
nesses (proportion of the labor force in establishments employing 19 
or fewer workers); this is predicted to increase income inequality

 • Family structure as measured by the proportion of households 
headed by single mothers; this is hypothesized to increase income 
inequality

These variables were constructed by aggregating data from the March 
1990 current population survey to the state level for the 48 coterminous 
states.7 This data set was extracted from a larger pooled cross section cre-
ated by a former graduate student of mine, Dr. Hyun-Song Lee, for his 
dissertation research, which he has graciously made available for instruc-
tional uses.

7Thus, the data exclude Alaska, Hawaii, and the District of Columbia.
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Example 2: An Individual-Level Analysis of Voluntary Association Mem-
berships. The second example uses persons as the units of analysis and 
focuses on understanding what factors can explain why people have greater 
or lesser connectivity (social bonds) to the larger society. The outcome 
measure is the number of voluntary associations to which a person belongs. 
There are three sets of predictors, all of which would be hypothesized to 
increase social bonds:

 • Two indicators of socioeconomic status, years of education completed 
and self-reported social class rank on an integer scale from 1 = lowest 
to 10 = highest

 • Two indicators of exposure to membership opportunities, population 
size of the place the person lives (in millions of persons) and whether 
or not the respondent has attended college coded as a dummy variable 
with 1 = some college and 0 = no college

 • Two sociodemographic controls, age in years and sex coded as a 
dummy indicator with 1 = male and 0 = female

These measures were created from the 1987 NORC (National Opinion 
Research Center) General Social Survey, and the sample consists of 1,374 
respondents with nonmissing values for all the variables.8

Example 3: A Household-Level Analysis of Wealth. The data for this 
final example are drawn from a more extensive published analysis of 
race and ethnic differences in wealth (Campbell & Kaufman, 2006). 
For simplicity, I use a subset of the predictors and restrict the sample 
to the white non-Hispanic households (N = 14,237). The dependent 
variable is household net worth, defined as the value of all assets minus 
the value of all debts held by household members. The predictors fall 
into four sets:

 • Geographic location, measured by a dummy variable for metropolitan 
residence

 • Household structure, measured by dummy indicators for type of 
household head (dual heads, male headed, female headed) and by the 
number of children (logged because its effect should be smaller at 
higher family sizes)

8This data set was originally constructed for another purpose with several additional 
variables, which might have affected the count of cases with nonmissing values.
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 • Life cycle stage, measured by age in years and its square
 • Socioeconomic statuses, measured by dummy variables for educa-

tional credentials (less than high school, high school completion, some 
college, bachelor’s degree, and postgraduate degree), dummy indica-
tors of labor force status (in the labor force, retired, and not otherwise 
in the labor force), and monthly household income in $1000s

My coauthor and I constructed this data set from the 1992 panel of 
the Survey of Income and Program Participation using information from 
the Wave 4 core panel, the Wave 2 topical module on migration history, 
and the Wave 4 topical module on assets and liabilities. For details on 
measurement and sample selection see Campbell and Kaufman (2006, 
pp. 138–141).


