
201

Resampling Methods

8.1 INTRODUCTION

Resampling methods are a natural extension of simulation.1 The analyst uses a
computer to generate a large number of simulated samples, then analyzes and
summarizes patterns in those samples. The key difference is that the analyst
begins with the observed data instead of a theoretical probability distribution.
Thus, in resampling methods, the researcher does not know or control the DGP.
However, the goal of learning about the DGP remains.

Resampling methods begin with the assumption that there is some population
DGP that remains unobserved, but that this DGP produced the one sample of
observed data that a researcher has. The analyst then mimics the “in repeated
samples” process that drives simulations by producing new “samples” of data that
consist of different mixes of the cases in the original sample. That process is
repeated many times to produce several new simulated “samples.” The funda-
mental assumption is that all information about the DGP contained in the original
sample of data is also contained in the distribution of these simulated samples. If
so, then resampling from the one observed sample is equivalent to generating
completely new random samples from the population DGP.2

Resampling methods can be parametric or nonparametric. In either type, but
especially in the nonparametric case, they are useful because they allow the ana-
lyst to relax one or more assumptions associated with a statistical estimator. The
standard errors of regression models, for example, typically rely on the central
limit theorem or the asymptotic normality of ML estimates. What if there is good
reason to suspect these assumptions are not valid? As Mooney and Duval (1993),
point out, it is sometimes “better to draw conclusions about the characteristics of

1For book-length treatments of resampling methods, see Chernick and LaBudde (2011),
Efron and Tibshirani (1993), Good (2005), or Mooney and Duval (1993).

2Another way to think about this is that if the sample of data you have in your hands is a
reasonable representation of the population, then the distribution of parameter estimates
produced from running a model on a series of resampled data sets will provide a good
approximation of the distribution of that statistic in the population.

8

202	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

a population strictly from the sample at hand, rather than by making perhaps
unrealistic assumptions about that population” (p. 1).

Within this context, the key question is how we can actually produce new
simulated samples of data from the observed data that effectively mimic the “in
repeated samples” framework. We discuss three common methods here: (1) per-
mutation tests, in which the analyst “reshuffles” the observed data, (2) jackknif-
ing, which involves iteratively dropping an observation and reestimating, and
(3) bootstrapping, which uses repeated draws with replacement from the observed
sample to create the simulated samples. Of these three, bootstrapping is the most
versatile and widely used.

8.2 PERMUTATION AND RANDOMIZATION TESTS

Permutation tests are the oldest form of resampling methods, dating back to
Ronald A. Fisher’s work in the 1930s (e.g., Fisher, 1935; Pitman, 1937). They are
typically used to test the null hypothesis that the effect of a treatment is zero.
Rather than assuming a particular form for the null distribution, the analyst uses
the observed data to create one. This is done by randomly shuffling the sample
many times, creating new samples that “break” the relationship in the observed
sample each time. Then, the statistic of interest is computed in each reshuffled
sample. Finally, the estimate from the original sample is compared with the dis-
tribution of estimates from the reshuffled samples to evaluate how different the
observed estimate is from random reshuffling. If every single reshuffling combi-
nation is computed, the procedure is called a permutation (or exact) test. Another
option is to perform a “large” number of reshuffles, in which case it is called a
randomization test. We briefly introduce these methods here. For more complete
accounts, see Rosenbaum (2002), Good (2004), or Manly (2006).

Suppose you had a sample of individuals. One subset of them received a treat-
ment while the remaining individuals did not. The actual sample of data records
measures for every individual on a dependent variable of interest, Y , and whether
that person received the treatment. Suppose you were interested in recording
whether the means of Y differ for the two groups. A permutation test would
reshuffle the data by keeping every individual’s observed value of Y unchanged,
but randomly assigning which individuals to record as having received the treat-
ment and which to record as having not received the treatment. The difference in
the means of Y between these two “groups” would be computed and saved. This
process of reshuffling who was recorded as receiving the treatment or not would
be done many times, with the difference in the means of Y being recorded each
time. The actual observed difference in the means of Y for the original sample
would then be compared with the distribution of these simulated differences in
means that emerged from randomness. The objective is to evaluate whether the
observed difference in means in the actual sample differs enough from the distri-
bution of randomly generated ones for the researcher to conclude that the treat-
ment has an impact on Y.

CHAPTER 8. RESAMPLING METHODS	 203

Permutation and randomization tests assume exchangeability, which means
that the observed outcomes across individuals come from the same distribution
regardless of the value(s) of the independent variable(s) (Kennedy, 1995). This is
a weaker assumption than the iid assumption, which also includes the notion of
independence. As we discuss later, resampling methods can be easily adapted to
nonindependence between observations. Before getting to that point, we illustrate
permutation and randomization tests with two basic examples.

8.2.1 A Basic Permutation Test

To develop an intuition for the logic of permutation tests, we start with a simple
experiment using six observations. We create a true DGP in which there is a
treatment effect: Cases in the treatment group (observed.treatment = 1)
have larger values of the dependent variable (observed.y) than do those in the
control group (observed.treatment = 0).

Basic Permutation Test

library(combinat)

set.seed(98382)

case.labels <- letters[1:6] # ID labels for each case

observed.treatment <- c(1, 1, 1, 0, 0, 0) # Treatment assignment

The dependent variable

observed.y <- rnorm(6, mean = observed.treatment*5, sd = 1)

Put the data together

observed.data <- data.frame(case.labels, observed.treatment, observed.y)

observed.data

 case.labels observed.treatment observed.y

1 a 1 5.2889932

2 b 1 5.5227244

3 c 1 5.7360698

4 d 0 -0.6683198

5 e 0 1.9418637

6 f 0 0.9191380

The mean of the treatment group in this case is 5.52 compared with 0.73 for the
control group (a difference of 4.79). We can conduct a difference-in-means test
to arrive at the p value associated with observing this difference due to chance,
which produces t = 6.21 and p = 0.02. However, this requires that we assume the
difference we compute can be assumed to follow a t distribution. With a sample
this small, it turns out that we can also compute the exact probability of observing
this outcome with a permutation test.

The following function p.test()performs the permutation test. It takes the
dependent variable (y), treatment variable (treatment), and case label vari-
able (labels) as inputs. Then, it creates all of the possible combinations of

204	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

treatment assignment for those cases. In the observed data, treatment is assigned
to cases a through f as 1,1,1,0,0,0, which means a, b, and c get the treat-
ment and d, e, and f are in the control group. However, there could be many
other possible assignments that could have happened, such as 0,1,1,0,1,0
or 1,0,1,0,0,1. In fact, there are exactly 6

3() = 20 possible combinations

of three treatment and three control cases with a sample size of 6. The formula
N
K() can be read as having a set of size N from which you choose K, or more

simply as “N choose K.” It is equal to
N

K N K

!

! ()!× −
. In R, you could compute

this by typing choose(6,3).3

The code that follows creates a function that will generate all 20 of these pos-
sible combinations. Note that it uses the combinat package.

p.test <- function(y, treatment, labels){ # Inputs: data, case labels

require(combinat) # Requires the combinat package

This lists all possible combinations of treatment assignment

combinations <- unique(permn(treatment))

reshuffle.treatment <- matrix(unlist(combinations),

nrow = length(combinations), ncol = length(treatment), byrow = TRUE)

Compute the difference-in-means for each combination

reshuffle.dm <- numeric(nrow(reshuffle.treatment))

for(i in 1:nrow(reshuffle.treatment)){

reshuffle.dm[i] <- mean(y[reshuffle.treatment[i,] == 1]) -

mean(y[reshuffle.treatment[i,] == 0])

}

Return the difference-in-means for each combination

result <- cbind(reshuffle.treatment, reshuffle.dm)

colnames(result) <- c(as.character(labels), “DM”)

return(result)

}

After listing each of these 20 combinations in the object reshuffle.
treatment, the function computes the difference-in-means between the two
groups for each combination. For example, for the combination 0,1,1,0,1, 0,
it computes the difference-in-means between observations b, c, and e (“treatment”)
and observations a, d, and f (“control”).

The result from applying this function to these data is shown below. Each row
is a different combination of treatment assignment (note the first row is the
assignment found in the observed data). The first six columns indicate whether

3Factorials can be computed with the factorial()command, though this com-
mand may produce incorrect answers due to rounding error that R encounters with very
large integers. You can solve this problem by installing the gmp package and using its
factorialZ()function.

CHAPTER 8. RESAMPLING METHODS	 205

each observation is in treatment (1) or control (0). The last column provides the
difference-in-means of the dependent variable under that combination. The dis-
tribution of these means constitutes the null distribution of no difference between
the treatment and control groups, which you can confirm by noting that the mean
of this column is zero—the average difference between “treatment” and “control”
groups when treatment is assigned randomly is zero.

 a b c d e f DM
 [1,] 1 1 1 0 0 0 4.7850352
 [2,] 1 1 0 1 0 0 0.5154421
 [3,] 1 0 1 1 0 0 0.6576724
 [4,] 0 1 1 1 0 0 0.8134931
 [5,] 1 1 0 0 1 0 2.2555645
 [6,] 1 0 1 0 1 0 2.3977947
 [7,] 0 1 1 0 1 0 2.5536155
 [8,] 0 1 0 1 1 0 -1.7159776
 [9,] 1 0 0 1 1 0 -1.8717983
[10,] 0 0 1 1 1 0 -1.5737473
[11,] 0 0 1 1 0 1 -2.2555645
[12,] 0 1 0 1 0 1 -2.3977947
[13,] 0 1 1 0 0 1 1.8717983
[14,] 1 0 1 0 0 1 1.7159776
[15,] 1 0 0 1 0 1 -2.5536155
[16,] 1 1 0 0 0 1 1.5737473
[17,] 1 0 0 0 1 1 -0.8134931
[18,] 0 1 0 0 1 1 -0.6576724
[19,] 0 0 1 0 1 1 -0.5154421
[20,] 0 0 0 1 1 1 -4.7850352

Notice that the observed difference, 4.79, is the largest of the 20 values. If the null
hypothesis were true, we would expect to see this value in one out of every 20
samples, which corresponds to an exact p value of 0.05. Figure 8.1 shows a his-
togram of the results to reinforce this point. The observed difference-in-means
(solid line) falls in the tail of the distribution—an indication that it is unlikely to
appear due to random chance under the null hypothesis.

Finally, note that doing this procedure for larger data sets can become
extremely complex. This small example with six observations produces 20
possible combinations of treatment assignment. However, a data set of 50 obser-

vations with 25 in the treatment group would produce 50
25() = 126,410,606,437,752

combinations! Clearly, this is more than we want to actually construct, which is
why researchers move from permutation testing to randomization testing when
the number of possible permutations becomes unwieldy.

8.2.2 Randomization Tests

A randomization test is a permutation test in which a large number of the pos-
sible permutations are assembled and analyzed instead of every one of them. We

206	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

illustrate how a randomization test works using data from the 1970s on the effect
of the National Supported Work (NSW) job training programs on income
(LaLonde, 1986). These data have been analyzed in several different ways and
are part of a larger discussion of causal inference and experimental and observa-
tional studies in the social sciences (e.g., Dehejia & Wahba, 1999). We only use
these data as an example; we do not make any causal claims from the results.

Our dependent variable in this example is the change in earnings between 1974
and 1978, which represent pre- and post-treatment measurement. Participants in
the treatment group (n = 185) received job training during that period while those
in the control group (n = 429) did not.4 We evaluate whether the change in earn-
ings was larger, on average, for those in the treatment group compared with those
in the control group. The difference-in-means is $2,888.64, meaning that earnings
for those in the program increased by nearly $3,000 more than earnings increased
for those not in the program. Using a conventional t test, this estimate is statisti-
cally significantly different from zero (p = 0.0001398).

Figure 8.1 Distribution of Differences-in-Means From All Permutations of the
Null Distribution

4The control group was constructed from survey data in the CPS.

CHAPTER 8. RESAMPLING METHODS	 207

We can also do the analysis with a randomization test.5 The following function
r.test() is very similar to p.test() from above. The difference is that
while p.test() listed each combination of 1s and 0s to compute each permuta-
tion of treatment and control, r.test() computes 1,000 permutations by ran-
domly drawing 1s and 0s with the sample() command. In other words, it takes
a large random sample of all the possible permutations. This number can be set
with the reps argument (the default is 1,000). As the number of randomly
selected permutations gets larger, the randomization test gets closer and closer to
an exact test.

RT Function

r.test <- function(y, reps = 1000){ # Inputs: data, number of repetitions

The sample command randomly draws a 1 or 0 for each observation

The replicate command tells R to do this ‘reps’ times

The result is a matrix in which each column is a new reshuffling

reshuffle.treatment <- replicate(reps, sample(0:1, length(y), replace = TRUE))

Compute the difference-in-means for each reshuffling

reshuffle.dm <- numeric(reps)

for(i in 1:reps){

reshuffle.dm[i] <- diff(t.test(y ~ reshuffle.treatment[, i])$estimate)

}

return(reshuffle.dm)

}

Figure 8.2 plots results from the function on the LaLonde (1986) data. The histo-
gram shows the distribution of the average difference between the two groups
when the treatment and control group labels were randomly shuffled. It is cen-
tered at zero with most of its values falling between −$1,000 and $1,000. The
solid line at $2,888.64 shows the result from the observed sample. This observed
difference is a very extreme value compared with the null distribution; in fact,
none of the estimates computed in the randomization test are larger than the
observed estimate.6 Thus, it appears very unlikely that the observed difference
between the two groups’ change in earnings arose due to random chance, though,
as we stated before, we do not wish to make any causal claims because there are
issues with these data that we do not address here.7

5Note that if we wanted to do a permutation test, the total number of combinations is an inte-
ger that starts with 5 and is followed by 161 additional digits—clearly too many to manage.
6We performed the randomization test again with reps set to 100,000. Even that many
repetitions yielded no reshuffles that produced a larger difference than the observed value.
7Specifically, a more complete analysis would focus on whether the treatment and control
groups are comparable to one another (see Dehejia & Wahba, 1999).

208	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

8.2.3 Permutation/Randomization and
Multiple Regression Models

These examples only show permutation and randomization testing in an exper-
imental setting, which, in our view, is where they are best suited (see Keele,
McConnaughy, & White, 2012). However, randomization experiments can also be
extended to the regression framework. A key issue in using a randomization test
with observational data and/or multiple regression models is the procedure for
reshuffling. Kennedy (1995) reviews several possibilities, ultimately concluding
that simply reshuffling the values of the independent variable of interest is suffi-
cient (see also, Kennedy & Cade, 1996).8 However, it is also recommended that
when conducting inference, the analyst should store the t values in each reshuffle
rather than the coefficient estimate on the variable of interest (Erikson, Pinto, &
Rader, 2010). The reason for this is that while the DGP can naturally produce
collinearity between independent variables, the reshuffling in a randomization test

Figure 8.2 Distribution of Differences-in-Means From 1,000 Permutations of the
Null Distribution in the LaLonde (1986) Job Training Data

8Other possibilities include reshuffling the values of the dependent variable or reshuffling
the residuals across observations.

CHAPTER 8. RESAMPLING METHODS	 209

breaks that collinearity, which reduces the variability of the coefficient estimates
that are computed on the permutation samples (recall the simulation from Chapter 5
on multicollinearity).

We advise caution when using randomization testing in a multiple regression
model. The method was designed primarily to get a p value for a statistic of inter-
est. This is different from estimation of the covariance matrix of a set of param-
eter estimates (and thus, their resulting standard errors). While we tend to focus
on the standard errors of coefficients the most in social science applications, the
estimates of covariance between two coefficients are often just as important.
Parameter estimates will covary in statistical models—certainly in all of the mod-
els we described in Chapters 5 and 6—to the degree that any of the independent
variables in those models are correlated with each other. To see this, we encour-
age you to return to the simulation on multicollinearity we presented in Chapter
5 and to plot the simulated estimates of the two slope coefficients operating on X1
and X2 for different levels of correlation between these two variables. You should
see that as X1 and X2 become increasingly positively correlated, the estimates of
their respective coefficients become increasingly negatively correlated. The
covariance between model parameters is, thus, an important component of under-
standing a statistical model’s uncertainty.

Fortunately, the full covariance matrix of a model’s parameter estimates is a com-
plete representation of model uncertainty, which can be used to compute a p value
or a confidence interval. The problem is that randomization testing in a multiple
regression setting—at least when the independent variables are reshuffled—does not
allow for computing the covariance between coefficients. This is problematic
because a covariance estimate is often needed for analysis of model results.9 For
instance, conducting joint F tests, calculating confidence intervals for the marginal
effects of variables in interaction models, and simulating quantities of interest
(which we will learn in Chapter 9) all require an estimate of covariance between
coefficients of interest. This does not make randomization testing incorrect, but we
feel it has limited applicability outside of the experimental setting or when simply
comparing two groups, and readers should be aware of these limitations.

8.3 JACKKNIFING

The jackknife is another relatively old resampling method, dating back to the
1950s (e.g., Tukey, 1958). The goal is to create resampled data by iteratively
deleting one observation from the data, computing the statistic of interest using
the remaining data, then putting the observation back in and deleting another
case.10 This is done until each observation has been removed once. Thus, the

9This is less of a concern if the dependent variable or residual is reshuffled because doing
so leaves the independent variable covariances intact. However, those approaches are less
common in practice (see Erikson et al., 2010; Kennedy, 1995; Kennedy & Cade, 1996).
10This review draws primarily from Rizzo (2008).

210	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

number of resamples is equal to the size of the original sample. Formally, follow-
ing Rizzo’s (2008, p. 191) notation, if x is the observed random sample, the ith
jackknife sample, x(i), is the subset of the sample that leaves out observation
xi: x(i) = (x1,…,xi-1,xi+1,…,xn). In most applications, jackknifing is used to estimate
uncertainty. For a sample size n, the standard error of a statistic θ is defined as

	
n

n
i

i

n−
−


 


∑

=

1 2

1
θ θ 

() (.)
 	

(8.1)

where θ θ 

(.) ()= ∑ =
1

1n
ii

n , which is the mean of the estimates from each of the

resamples (Rizzo, 2008, pp. 190–191).
Jackknifing can be accomplished in R by using the bracket notation. Recall

from Chapter 3 that the minus sign can be used to specify all elements in a vector
or matrix except a certain element. For example, the code [-3] would call all
elements in a vector except for the third element. This can be used with the
counter in a for loop to remove one observation at a time, as shown below.

v <- 1:5
for(i in 1:length(v)){
print(v[-i])
}
[1] 2 3 4 5
[1] 1 3 4 5
[1] 1 2 4 5
[1] 1 2 3 5
[1] 1 2 3 4

Imagine that the numbers printed out above are observation labels. In the first
line, we could estimate the statistic of interest on all observations except #1; in
the second line, we estimate it on all observations except #2, and so on.

8.3.1 An Example

We illustrate jackknifing with data on macroeconomic indicators for 14 coun-
tries during the period 1966–1990 that is available in the Zelig package (Imai
et al., 2012). We specify an OLS model of the unemployment rate (unem) as a
function of three independent variables: (1) GDP (gdp), (2) capital mobility
(capmob), (3) trade (trade), and indicator variables for all countries except
Austria (i.e., country fixed effects). An easy way to include indicator variables in
R is to use the factor() function.

library(Zelig)

data(macro)

ols.macro <- lm(unem ~ gdp + capmob + trade + factor(country), data = macro)

summary(ols.macro)

CHAPTER 8. RESAMPLING METHODS	 211

Call:

lm(formula = unem ~ gdp + capmob + trade + factor(country), data = macro)

Residuals:

 Min 1Q Median 3Q Max

-3.9811 -1.2594 -0.2674 0.9630 4.9581

Coefficients:

	 Estimate	 Std. Error	 t value	 Pr(>|t|)

(Intercept)	 -5.84319	 0.99674	 -5.862	 1.10e-08	***

gdp	 -0.11016	 0.04510	 -2.443	 0.0151	*

capmob	 0.81468	 0.19156	 4.253	 2.75e-05	***

trade	 0.14420	 0.01138	 12.669	 < 2e-16	***

factor(country)Belgium	 -1.59865	 0.66631	 -2.399	 0.0170	*

factor(country)Canada	 6.75941	 0.63342	 10.671	 < 2e-16	***

factor(country)Denmark	 4.31070 	 0.50798	 8.486	 7.14e-16	***

factor(country)Finland	 4.80987	 0.56277	 8.547	 4.63e-16	***

factor(country)France	 6.90479	 0.62070	 11.124	 < 2e-16	***

factor(country)Italy	 9.28969	 0.60618	 15.325	 < 2e-16	***

factor(country)Japan	 5.45862	 0.71636	 7.620	 2.66e-13	***

factor(country)Netherlands	 -1.45929	 0.60332	 -2.419	 0.0161	*

factor(country)Norway	 -2.75371	 0.54409	 -5.061	 6.91e-07	***

factor(country)Sweden	 0.92533	 0.52102	 1.776	 0.0766	.

factor(country)United Kingdom	 5.60078	 0.57706	 9.706	 < 2e-16	***

factor(country)United States	 10.06622	 0.87617	 11.489	 < 2e-16	***

factor(country)West Germany	 3.36355	 0.61641 	 5.457	 9.49e-08	***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.775 on 333 degrees of freedom

Multiple R-squared: 0.7137, Adjusted R-squared: 0.6999

F-statistic: 51.88 on 16 and 333 DF, p-value: < 2.2e-16

This produces the conventional standard errors from the formula for OLS
(OLS-SE). Let’s compute jackknife standard errors (JSE) as a comparison using
the following function, jackknife(), that we create. The function takes the
names of the model and data objects as inputs. Then, it iterates through the data,
removing one observation at a time, estimating the model again, and storing the
results.11 Once estimates have been computed with each observation removed, it
applies the formula from Equation 8.1 to each coefficient.

11Notice the use of formula()to insert the model formula inside the function without
needing to type it out.

jackknife <- function(model, data){ # Inputs: Model and data

n <- nrow(data) # Computes the sample size

212	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

This creates an empty matrix to store the jackknife estimates

Each row is one iteration and each column is a coefficient

jk.est <- matrix(NA, nrow = n, ncol = length(model$coef))

The next step is to loop through the observations, removing

one each time, estimating the model, then storing the results

for (i in 1:n){

jk.est[i,] <- lm(formula(model), data = data[-i,])$coef

}

Empty vector for the SEs

jk.se <- numeric(ncol(jk.est))

Loop through the coefficients, computing the SE for each one with

the formula for JSE

for (i in 1:ncol(jk.est)){

jk.se[i] <- sqrt(n/(n-1)*sum((jk.est[, i] - mean(jk.est[, i]))^2))

}

return(jk.se)

}

We can now use this function to compute JSE. We also bind the coefficients,
OLS-SE, and JSE together, round them to three digits, and print the results.

jk.macro <- jackknife(ols.macro, macro)

round(data.frame(“Coefficients” = ols.macro$coef,

“OLS.SE” = sqrt(diag(vcov(ols.macro))), “JSE” = jk.macro), digits = 3)

	 Coefficients	 OLS.SE	 JSE

(Intercept)	 -5.843	 0.997	 1.089

gdp	 -0.110	 0.045	 0.045

capmob	 0.815	 0.192	 0.201

trade	 0.144	 0.011	 0.013

factor(country)Belgium	 -1.599	 0.666	 0.659

factor(country)Canada	 6.759	 0.633	 0.615

factor(country)Denmark	 4.311	 0.508	 0.459

factor(country)Finland	 4.810	 0.563	 0.511

factor(country)France	 6.905	 0.621	 0.721

factor(country)Italy	 9.290	 0.606	 0.660

factor(country)Japan	 5.459	 0.716	 0.699

factor(country)Netherlands	 -1.459	 0.603	 0.567

factor(country)Norway	 -2.754	 0.544	 0.490

factor(country)Sweden	 0.925	 0.521	 0.475

factor(country)United Kingdom	 5.601	 0.577	 0.673

factor(country)United States	 10.066	 0.876	 0.898

factor(country)West Germany	 3.364	 0.616	 0.626

In some cases, the OLS-SE and JSE are equal (to three digits) while in others they
are not. Sometimes the OLS-SEs are larger and sometimes the JSEs are larger. It

CHAPTER 8. RESAMPLING METHODS	 213

does not appear that using JSE produces a substantial difference in statistical
inference in this case. This leads to the question of when JSE might be beneficial
to use over the conventional standard errors of a model. We examine such an
example below.

8.3.2 An Application: Simulating Heteroskedasticity

Having shown the basic operation of the jackknife, our next task is to demon-
strate when it might be useful. In this example, we take the simulation on hetero-
skedasticity from Chapter 5 and add the estimation of jackknifed standard errors
to it. We compare this JSE with the conventional standard errors produced by
OLS. Because jackknifing is an empirical, nonparametric means of estimating
uncertainty that does not assume constant variance, we expect that the JSE will
perform better than OLS-SE.

We described this simulation in more detail in Chapter 5. The most important
points are that we generate the variance of the error term as a function of the
independent variable, X. This produces larger error variance at higher values of X
and smaller error variance at smaller values of X (see Figure 5.4). In this case, we
set the sample size to 200 rather than 1,000 because the jackknife slows down the
simulation by a considerable amount.12

The code for the simulation is given below. We use the same jackknife()
function from the example above. Inside the for loop we generate the data,
estimate the model, then store the estimate of β1 (the coefficient on the indepen-
dent variable) and its estimated OLS-SE and JSE.

12This is because in each iteration of the simulation, the jackknife has to estimate the model
n times.

Heteroskedasticity

CP Function

coverage <- function(b, se, true, level = .95, df = Inf){ # Estimate,

 # standard error,

 # true parameter,

 # confidence level,

 # and df

qtile <- level + (1 - level)/2 # Compute the proper quantile

lower.bound <- b - qt(qtile, df = df)*se # Lower bound

upper.bound <- b + qt(qtile, df = df)*se # Upper bound

Is the true parameter in the confidence interval? (yes = 1)

true.in.ci <- ifelse(true >= lower.bound & true <= upper.bound, 1, 0)

cp <- mean(true.in.ci) # The coverage probability

mc.lower.bound <- cp - 1.96*sqrt((cp*(1 - cp))/length(b)) # Monte Carlo error

mc.upper.bound <- cp + 1.96*sqrt((cp*(1 - cp))/length(b))

return(list(coverage.probability = cp, # Return results

 true.in.ci = true.in.ci,

 ci = cbind(lower.bound, upper.bound),

 mc.eb = c(mc.lower.bound, mc.upper.bound)))

}

214	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

set.seed(38586) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.jack <- matrix(NA, nrow = reps, ncol = 3) # Empty matrix to store the

 # estimates

b0 <- .2 # True value for the intercept

b1 <- .5 # True value for the slope

n <- 200 # Sample size

X <- runif(n, -1, 1) # Create a sample of n observations on the

 # independent variable X

gamma <- 1.5 # Heteroskedasticity parameter

for(i in 1:reps){ # Start the loop

Y <- b0 + b1*X + rnorm(n, 0, exp(X*gamma)) # Now the error variance is a

 # function of X plus random noise

model <- lm(Y ~ X) # Estimate OLS model

vcv <- vcov(model) # Variance-covariance matrix

par.est.jack[i, 1] <- model$coef[2] # Store the results

par.est.jack[i, 2] <- sqrt(diag(vcv)[2])

par.est.jack[i, 3] <- jackknife(model, data.frame(Y, X))[2]

cat(“Just completed iteration”, i, “\n”)

} # End the loop

We then use the coverage()function from Chapter 5 to compare OLS-SE and JSE.

OLS-SE
coverage(par.est.jack[, 1], par.est.jack[, 2], b1,
df = n - model$rank)$coverage.probability
[1] 0.883

JSE
coverage(par.est.jack[, 1], par.est.jack[, 3], b1,
 df = n - model$rank)$coverage.probability
[1] 0.946

As we saw in Chapter 5, the OLS-SEs are too small in the presence of heteroske-
dasticity, on average, with a 95% confidence interval coverage probability of 0.88
in this example. In contrast, the JSEs are the correct size; the coverage probabil-
ity is 0.946 with simulation error bounds that include 0.95: [0.932, 0.960]. Thus,
we conclude that jackknifing is a better method for computing standard errors in
the presence of heteroskedasticity than is the conventional method. Using the
sample data to produce an estimate of uncertainty outperforms the OLS-SE,
which assume constant variance.

8.3.3 Pros and Cons of Jackknifing

The jackknife certainly has advantages, such as its nonparametric nature that
makes it robust to some assumption violations. Like other resampling methods, it

CHAPTER 8. RESAMPLING METHODS	 215

can also be adapted to many different data structures, such as clustered data, in
which entire groups of observations (rather than just one observation) are
dropped in each iteration. It is also good for detecting outliers and/or influential
cases in the data. Indeed, its leave-one-out procedure is similar to Cook’s D,
which is often used to detect outliers in linear regression models (Cook, 1977).

However, there are also limitations to jackknifing. It does not perform as well
if the statistic of interest does not change “smoothly” across repetitions. For
example, jackknifing will underestimate the standard error of the median in many
cases because the median is not a smooth statistic (see Rizzo, 2008, p. 194). In
such cases, it is necessary to leave more than one observation out at a time (Efron
& Tibshirani, 1993). Additionally, the jackknife can be problematic in small
samples because the sample size dictates the number of repetitions/resamplings
that are possible.13 A key theme throughout this book has been that adding more
repetitions increases the precision of an estimate, but the number of repetitions is
capped at N for the jackknife. Fortunately, this limitation is not faced by the most
versatile and perhaps most common resampling method: bootstrapping.

8.4 BOOTSTRAPPING

Bootstrapping was formally introduced by Efron (1979). It gets its name from the
phrase “to pull oneself up by the bootstraps,” which typically refers to a person
improving her situation in life through her own efforts. Bootstrapping reflects this
quality by getting the most information you can about a population DGP from the
one sample of data you have. While there are several varieties of bootstrapping,
at their core is a common process of simulating draws from the DGP using only
the sample data.14

The bootstrap process usually unfolds according to the following steps. Denote
a sample S = {x1, x2, x3,…, xn} of size n drawn from a population P. A statistic of
interest, θ, that describes P can be estimated by calculating θ from S. The sampling
variability of θ can then be calculated via the bootstrap in the following way:

	 1.	 Draw a sample of size n from S with replacement such that each element is selected
with probability 1

n
. Denote this “bootstrap sample,” Sboot1.

	 2.	 Calculate a new estimate of θ from Sboot1. Denote this bootstrap estimate θ1
* .

	 3.	 Repeat Steps 1 and 2 J times, storing each θ j
* to create V, a vector of bootstrap

estimates of the parameter of interest, θ.

13To see this illustrated, try computing JSE for a model from the Ehrlich (1973) crime data
set used in Chapter 3, which has only 47 observations. The JSE differ considerably from
the OLS-SE in that case.
14There are numerous treatments of bootstrapping that go into much greater detail than we
can in this section. Interested readers should examine Efron and Tibshirani (1993), Good
(2005), Mooney and Duval (1993), and chapter 7 of Rizzo (2008).

216	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

For a sufficiently large J, the vector V from Step 3 can be used to estimate a stand-
ard error and/or confidence interval for θ through several different methods.15

There are several key features of this process. First, the draws must be
independent—each observation in S must have an equal chance of being selected.
Additionally, the bootstrap sample drawn in Step 1 should be size n to take full
advantage of the information in the sample (although some bootstrap methods
draw smaller samples). Finally, resampling must be done with replacement. This
means that in any given bootstrap sample, some individual observations might
get selected more than once while others might not get selected at all. If replace-
ment did not occur, every bootstrap sample of size n would be identical to each
other and to the original sample.

To see this illustrated, consider the following sample of 10 countries. First, we
sample without replacement. Notice that doing so produces the exact same sam-
ple of 10 countries (though in a different order). Computing any statistic of inter-
est would be identical each time when sampling is done without replacement.

countries <- c(“United States”, “Canada”, “Mexico”, “England”, “France”,

“Spain”, “Germany”, “Italy”, “China”, “Japan”)

sample(countries, replace = FALSE)

 [1] “France” “Italy” “China” “Spain” “United States”

 [6] “England” “Japan” “Canada” “Mexico” “Germany”

Now, we sample with replacement three times. Notice that sometimes one or
more countries do not make it into a particular sample and other times a particu-
lar country is repeated in a given sample. This produces the variation needed to
compute measures of uncertainty in the statistic of interest.

15We use a single parameter, θ, to illustrate how bootstrapping works, but q could just as
easily represent a set of parameters of a statistical model (e.g., the βs in a regression model).

sample(countries, replace = TRUE)

 [1] “United States” “Italy” “Italy” “China” “Germany”

 [6] “Italy” “England” “Japan” “Italy” “Canada”

sample(countries, replace = TRUE)

 [1] “England” “United States” “Germany” “Mexico” “Canada”

 [6] “England” “United States” “England” “United States” “Spain”

sample(countries, replace = TRUE)

 [1] “Canada” “Italy” “Spain” “Canada” “Italy” “China” “China”

 [8] “Japan” “Spain” “Germany”

Below we go through several different types of bootstrapping. The most
important point to keep in mind is that bootstrapping is a lot like simulation. The
difference is that instead of drawing multiple random samples from a theoretical

CHAPTER 8. RESAMPLING METHODS	 217

DGP (as we do with simulation), we are drawing multiple random samples from
the observed data.

8.4.1 Bootstrapping Basics

We start with a basic example of bootstrapping to compute the standard error
of a mean, μ, and compare it with simulation. We first draw a sample from a
normal distribution using rnorm(). Then, we compute the mean and standard

error for that sample using the formula for the standard error of a mean: σ

n
.

Bootstrap a Mean

set.seed(34738)

n <- 500 # Sample size

n.boot <- 1000 # Number of bootstrap samples

b <- rnorm(n, 4, 5) # The sample, from a DGP of mean = 4, SD = 5

mean.b <- mean(b) # Sample mean

se.b <- sd(b)/sqrt(n) # SE of the mean

se.b

[1] 0.2065029

We can bootstrap the standard error of μ by resampling from the data many
times (n.boot = 1,000 here) and computing the mean of each of those boot-
strapped samples. We do this in a for loop with the code below. The object ind
is the key component. That object is a sample of observation numbers drawn with
replacement. We insert that object into the brackets in the next line—b[ind]—
to reference those observation numbers in the sample.

boot.b <- numeric(n.boot) # Vector for the bootstrap samples

for(i in 1:n.boot){ # Start the loop

Observation indicators for the bootstrap sample

ind <- sample(1:n, replace = TRUE)

boot.b[i] <- mean(b[ind]) # Compute the mean of the bootstrap sample

} # End the loop

We can also draw 1,000 samples from the true DGP to compare with the bootstrap
estimates. Remember that this is what bootstrapping is trying to mimic, so the
two procedures should look very similar.

Random draws from the DGP
dgp.b <- numeric(n.boot)
for(i in 1:n.boot){
dgp.b[i] <- mean(rnorm(n, 4, 5))
}

218	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

We show the results in Figure 8.3. Panel (a) plots a histogram of the 1,000 boot-
strapped means, generated by resampling the observed data. Panel (b) plots a
histogram of 1,000 means from repeatedly using rnorm()to draw from the true
DGP. Notice that the two distributions look very similar; both are centered near
the true mean of 4 and show about the same spread. In short, we can see that
bootstrapping does mimic the process of drawing repeated samples from the sta-
tistic’s sampling distribution, which in this case is the true DGP.16

To arrive at the bootstrap standard error of the mean, we can simply compute
the standard deviation of the 1,000 bootstrap estimates of the mean. Notice that
this produces an estimate that is very close to the standard error we computed
using the formula above.

Bootstrap estimate of the SE of the mean
boot.se <- sd(boot.b)
boot.se
[1] 0.2111522

se.b
[1] 0.2065029

Figure 8.3 Histograms of 1,000 Bootstrap Sample Means and Simulated Means

16This is due to the fact that the sample mean is an unbiased estimator of the population
mean. If the estimator were biased, its sampling distribution would be different from the
true DGP.

CHAPTER 8. RESAMPLING METHODS	 219

We can then compute a 95% confidence interval with the standard error as
µ ± ×1 96. .SEboot

95% confidence interval (parametric)
mean.b - 1.96*boot.se # Lower bound
[1] 3.648022

mean.b + 1.96*boot.se # Upper bound
[1] 4.475739

This is a parametric confidence interval because it uses properties of the normal
distribution (i.e., the critical value of 1.96 multiplied by the standard error). For
this to be appropriate, it must be reasonable to assume that the statistic of interest
follows a normal distribution. For sample means, the central limit theorem makes
this plausible, but this will not always be the case.

More generally, it strikes us as a bit odd to use a nonparametric resampling
method to generate a simulated distribution of a parameter of interest, but then to
use a parametric method to summarize the distribution of those parameter esti-
mates. A completely distribution-free 95% confidence interval can be computed
using the 2.5th and 97.5th quantiles of the bootstrap estimates.

95% confidence interval (nonparametric)
quantile(boot.b, .025) # Lower bound
 2.5%
3.656705

quantile(boot.b, .975) # Upper bound
 97.5%
4.47584

In this case, the two are very similar because the true DGP is a normal distribu-
tion. If the true DGP were not normal, these two methods would produce different
results. Similarly, if the true DGP were not symmetric, the quantile method would
capture that with a 95% confidence interval with bounds that were not equidistant
from the mean. Thus, the quantile method (sometimes called the percentile
method) is more flexible and better suited to recover a wider range of possible
DGPs.

There are limits to the percentile method, however. First, the method requires
you to have a fairly large sample of data so that you can be confident that the tails
of the underlying population probability distribution are adequately represented
in the sample data (Mooney & Duval, 1993). In other words, observations that
are unlikely to appear given the true DGP may be completely unrepresented in a
small sample of data rather than appearing rarely as they should. The percentile
method can also be biased and inefficient (see Good, 2005). Still, if your original
sample size is large, the percentile method is attractive because it does not impose
any parametric assumptions.

220	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

We have discussed the two most common methods of generating confi-
dence intervals via the bootstrap, but there are many others. Another problem
with the percentile method is that you must assume that the distribution of the
bootstrapped parameters of interest is an unbiased estimate of the true distri-
bution of those parameters in the population. This is less restrictive than
assuming the distribution must be normal, but still an assumption. In
response, scholars have introduced a bias-corrected bootstrap confidence
interval.17

Another approach to getting a proper confidence interval is to use a double-
bootstrapping method to produce an estimate of the standard error of a statistic.18
For this method, you still draw your large number of resamples to generate esti-
mates of the parameter of interest. However, for each of those replicated samples,
you perform another bootstrap on that replicated sample to generate an estimate
of the standard error of that statistic. Rizzo (2008) offers a step-by-step discussion
of how this procedure unfolds (section 7.4.4 starting on page 201). The main
obstacle to this procedure is the computational time involved. If you draw 1,000
resamples to compute your parameters of interest, but also perform a bootstrap of
1,000 draws on each of those initial draws, you end up taking 1,000 × 1,000, or
a total of 1,000,000 resampled draws from your data. If the statistical model you
are estimating is even slightly computationally intensive, running it 1 million
times will be very time-consuming.

The various methods described here for generating bootstrap confidence inter-
vals (and a few others) are available to researchers in several R packages. These
include the boot package, the bootstrap package, and the bootcov()
function that is part of the rms package. We encourage interested readers to
explore these packages and the publications we have cited if they are interested
in learning more.

8.4.2 Bootstrapping With Multiple Regression Models

Bootstrapping is probably most useful to applied social scientists in the context
of computing standard errors for multiple regression models. In the example
below, we compute bootstrapped standard errors for the following model from
the Ehrlich (1973) crime data used in Chapter 3.

set.seed(8873)
library(foreign)
crime <- read.dta(“crime.dta”)

17See Efron and Tibshirani (1993), Good (2005), Mooney and Duval (1993), or Rizzo (2008)
for more discussion of this approach
18Good (2005) and Rizzo (2008) refer to this method as the bootstrap t interval, but Mooney
and Duval (1993) call it the percentile t method.

CHAPTER 8. RESAMPLING METHODS	 221

OLS model from the crime data
crime.1 <- lm(crime1960 ~ imprisonment + education + wealth +
+ inequality + population1960, data = crime)
summary(crime.1)

Call:
lm(formula = crime1960 ~ imprisonment + education + wealth +
 inequality + population1960, data = crime)

Residuals:
 Min 1Q Median 3Q Max
-525.23 -178.94 -25.09 145.62 771.65

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|)
(Intercept)	 -4213.3894	 1241.3856	 -3.394	 0.001538	**
imprisonment	 -3537.8468	 2379.4467	 -1.487	 0.144709
education	 113.6824	 65.2770	 1.742	 0.089088	.
wealth	 0.3938	 0.1151	 3.422	 0.001420	**
inequality	 101.9513	 25.9314	 3.932	 0.000318	***
population1960	 1.0250	 1.3726	 0.747	 0.459458

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 297 on 41 degrees of freedom
Multiple R-squared: 0.4744, Adjusted R-squared: 0.4103
F-statistic: 7.4 on 5 and 41 DF, p-value: 5.054e-05

There are several packages available to do bootstrapping in R, but we will start
by writing our own because it helps develop intuition. The function we create
takes two arguments: (1) the name of the model and (2) the number of bootstrap
samples desired, which is set to a default of 1,000.19 The first object created inside
the function, boot.est, is an empty matrix to store the coefficient estimates
from the bootstrap samples. It has a row for every bootstrap sample and a column
for every coefficient estimate to be stored.20 Next, the function starts a bootstrap
loop that creates a new bootstrap sample each time.

19Efron and Tibshirani (1993) contend that this number need not be large (e.g., 50–200).
We recommend a large number such as 1,000 to improve precision (see also Rizzo, 2008).
20The object rank in a model object gives the number of coefficients estimated in that model.

Inputs: the model name and the number of bootstrap samples
bootstrap <- function(model, n.boot){
This creates an empty matrix for the bootstrap estimates
boot.est <- matrix(NA, nrow = n.boot, ncol = model$rank)
for(i in 1:n.boot){ # Start bootstrap loop

222	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

Inside the bootstrap loop, the first step is to draw a sample of data from the
observed data. As before, we use sample()to draw n observation numbers
with replacement. Next, we create an empty matrix called datai that will be
the data matrix of the bootstrap sample. We fill this matrix row by row in a sec-
ond for loop. To do this, we use the model object that can be called from any
estimation object in R (such as lm()). This object stores the entire data matrix
used in estimation. We index the row numbers from model using the numbers
sampled with replacement. At the end of this loop, datai is a matrix with n
rows and a column for each variable in the model. Some observations from the
original data may be repeated in multiple rows, and some observations may not
appear at all. The final lines coerce this matrix into a data frame and assign the
variables names.

Select observations to go in bootstrap sample

boot.sample <- sample(1:nrow(model$model), replace = TRUE)

Initiate bootstrap sample data

datai <- matrix(NA, nrow = length(boot.sample), ncol = model$rank)

for(j in 1:length(boot.sample)){ # Start data loop

datai[j,] <- as.numeric(model$model[boot.sample[j],]) # Coefficients from

 # bootstrap sample

 # j go into row

 # j of datai

} # End bootstrap sample data

datai <- data.frame(datai)

colnames(datai) <- colnames(model$model)

The final task is to estimate the model on this bootstrapped sample and store
the results. We use the formula()function to paste the model’s formula and set
the data to the object datai. We fill each row of boot.est with the coeffi-
cients. Once that is complete, the bootstrap loop is complete. The last step is to
return the results. We include two objects in the return()function: (1) the
actual bootstrap coefficient estimates in a matrix and (2) the variance–covariance
matrix of those estimates, which we obtain with the cov()function.21

21Note that this is a parametric means of estimating uncertainty. We could also compute con-
fidence intervals for each coefficient with the quantiles of each set of bootstrap estimates.

Run the model on the bootstrap sample,

then collect coefficients in boot.est matrix

boot.est[i,] <- coef(lm(formula(model), data = datai))

cat(“Completed”, i, “of”, n.boot, “bootstrap samples”, “\n”)

} # End bootstrap loop

Return the matrix of coefficient estimates and the

bootstrapped variance-covariance matrix

return(list(boot.est = as.matrix(boot.est), boot.vcv = cov(boot.est)))

} # End function

CHAPTER 8. RESAMPLING METHODS	 223

We can then use the function on the crime data model and compare the results
with the OLS standard errors. The bootstrap() function takes about 15 sec-
onds to complete the process. In this case, the bootstrapped standard errors are
the larger of the two for all of the coefficient estimates.

system.time(# Check how long it takes

crime.boot <- bootstrap(crime.1)

)

 user system elapsed

 14.71 0.03 14.78

crime.se <- cbind(coef(crime.1), sqrt(diag(vcov(crime.1))),

sqrt(diag(crime.boot$boot.vcv)))

colnames(crime.se) <- c(“Coefficients”, “Conventional SE”, “Bootstrapped SE”)

crime.se

	 Coefficients	 Conventional SE	 Bootstrapped SE

(Intercept)	 -4213.3894135	 1241.3856333	 1549.2743323

imprisonment	 -3537.8467727	 2379.4467146	 3093.9600328

education	 113.6824207	 65.2769966	 81.4374504

wealth	 0.3937634	 0.1150612	 0.1516832

inequality	 101.9513371	 25.9314385	 28.7289504

population1960	 1.0250156	 1.3725803	 1.7785137

Increasing Computation Speed

Although our bootstrap()function works, it is somewhat slow because it
relies on a for loop. A faster option is the bootcov()function in the rms
package, which uses vectorized operations. To use the function, we first need to
use the package’s ols()function instead of lm()to estimate the model.22

library(rms)

crime.2 <- ols(crime1960 ~ imprisonment + education + wealth +
inequality + population1960, x = TRUE, y = TRUE, data = crime)

22The rms package also has several other GLM functions that work with bootcov(). The
arguments x = TRUE, y = TRUE tell R to save the independent variables and dependent
variable in a matrix, which the bootstrapping function requires.

Then, we insert the model name into bootcov()and set the argument B to the
number of bootstrap samples.

system.time(# Check how long it takes

crime.boot2 <- bootcov(crime.2, B = n.boot)

)

224	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

 user system elapsed

 0.17 0.00 0.17

crime.boot2

Linear Regression Model

ols(formula = crime1960 ~ imprisonment + education + wealth +

 inequality + population1960, data = crime, x = TRUE, y = TRUE)

 n Model L.R. d.f. R2 Sigma

 47 30.23 5 0.4744 297

Residuals:

 Min 1Q Median 3Q Max

-525.23 -178.94 -25.09 145.62 771.65

Coefficients:

	 Value	 Std. Error	 t	 Pr(>|t|)

Intercept	 -4213.3894	 1565.4927	 -2.6914	 0.0102514

imprisonment	 -3537.8468	 3114.1249	 -1.1361	 0.2625267

education	 113.6824	 80.1067	 1.4191	 0.1634172

wealth	 0.3938	 0.1518	 2.5940	 0.0130963

inequality	 101.9513	 28.2689	 3.6065	 0.0008343

population1960	 1.0250	 1.6787	 0.6106	 0.5448257

Residual standard error: 297 on 41 degrees of freedom

Adjusted R-Squared: 0.4103

Notice that bootcov()took less than 1 second to complete the operation—a
substantial improvement over bootstrap(). Additionally, the standard errors
produced by bootcov()look similar to those from bootstrap(), but they
are not exactly the same. This highlights an important feature of bootstrapping.
Because a different set of bootstrap samples could be drawn in each successive
run of the code, the standard errors will be different each time. However, the
analyst controls the number of repetitions, and adding more repetitions reduces
the variation between calculations. Additionally, setting the seed beforehand will
produce the same estimates each time.

Alternative Versions

We have focused primarily on bootstrapping by resampling complete observa-
tions, which is the most common approach. However, there are several alterna-
tives that may also be useful. For example, one option is to resample residuals
and assign them to observations. This comports better with the assumptions that
the independent variables are fixed in repeated samples and that the error is what
is random. Another possibility is an approach called the wild bootstrap, in which
residuals are resampled and multiplied randomly by some number, such as 1 or
- 1 or a random draw from a standard normal distribution. Wu (1986) shows that

CHAPTER 8. RESAMPLING METHODS	 225

this can improve bootstrap performance in the presence of heteroskedasticity.
There are also several modifications to correct for bias if the distribution of boot-
strap estimates is skewed (e.g., bias-corrected bootstrap or accelerated bootstrap,
see Chernick & LaBudde, 2011; Efron, 1987; Good, 2005; Rizzo, 2008).

8.4.3 Adding Complexity: Clustered Bootstrapping

As we briefly mentioned above, the resampling methods we examine here can be
adapted to several features of the data. For instance, the block bootstrap is designed
to be used with time-series data (Künsch, 1989). Similarly, it is possible to resample
groups of observations instead of individual observations if there is nonindepen-
dence due to clustering in the data. For example, recall the model on macroeconomic
indicators in 14 countries from 1966 to 1990 from above. Each country appears in
the data set multiple times. Because observations from each country likely share
something in common that is not captured in the systematic component of the model,
the residuals among observations clustered within each specific country are likely to
be correlated with each other. We saw in Chapter 5 that this produces a downward
bias in the standard error estimates we calculated. As an alternative, we can boot-
strap the standard errors, resampling clusters of observations by country rather than
individual observations. To do so, we make a small change to the code in the
bootcov()function. First, here is the model with the conventional OLS standard
errors (notice we removed the country indicator variables).

ols.macro2 <- ols(unem ~ gdp + capmob + trade
+ , x = TRUE, y = TRUE, data = macro)

ols.macro2
Linear Regression Model

ols(formula = unem ~ gdp + capmob + trade, data = macro, x = TRUE,
 y = TRUE)

 n Model L.R. d.f. R2 Sigma
 350 118.8 3 O.2878 2.746

Residuals:
 Min 1Q Median 3Q Max
-5.3008 -2.0768 -0.3187 1.9789 7.7715

Coefficients:
	 Value Std.	 Error	 t	 Pr(>|t|)
Intercept	 6.18129	 0.450572	 13.719	 0.000e+00
gdp	 -0.32360	 0.062820	 -5.151	 4.355e-07
capmob	 1.42194	 0.166443	 8.543	 4.441e-16
trade	 0.01985	 0.005606	 3.542	 4.517e-04

Residual standard error: 2.746 on 346 degrees of freedom
Adjusted R-Squared: 0.2817

226	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

To bootstrap the standard errors by country, we use the cluster argument in
the bootcov()function. This tells the function to resample countries instead of
individual observations. In other words, if a country is drawn, all of its observa-
tions in the data enter the bootstrap sample rather than just one observation. If a
country is resampled more than once, then all of its observations enter the sample
more than once.

macro.boot <- bootcov(ols.macro2, B = n.boot, cluster = macro$country)

macro.boot

Linear Regression Model

ols(formula = unem ~ gdp + capmob + trade, data = macro, x = TRUE,

 y = TRUE)

 n Model L.R. d.f. R2 Sigma

 350 118.8 3 0.2878 2.746

Residuals:

 Min 1Q Median 3Q Max

-5.3008 -2.0768 -0.3187 1.9789 7.7715

Coefficients:

	 Value	 Std. Error	 t	 Pr(>|t|)

Intercept	 6.18129	 1.35613	 4.558	 7.171e-06

gdp	 -0.32360	 0.09519	 -3.399	 7.541e-04

capmob	 1.42194	 0.54369	 2.615	 9.303e-03

trade	 0.01985	 0.01874	 1.059	 2.902e-01

Residual standard error: 2.746 on 346 degrees of freedom

Adjusted R-Squared: 0.2817

Notice that the bootstrapped standard errors (1.36, 0.10, 0.54, and 0.02) are con-
siderably larger than the conventional OLS standard errors (0.45, 0.06, 0.17, and
0.01). This leads to the question of which standard error method is better. We can
use simulation to produce an answer. Recall that in Chapter 5 we simulated clus-
tered data and compared several different estimators for coefficient estimates and
standard errors. We conduct a version of that simulation below and compare the
OLS standard errors (OLS-SEs), robust cluster standard errors (RCSEs), and
bootstrap cluster standard errors (BCSEs).23

The code for this simulation is a modification of the code from Chapter 5. We
set the sample size to 200, the number of clusters to 25, and we set the indepen-
dent variable, X, to vary at the cluster level. We estimate an OLS model, then
compute the OLS-SE, RCSE, and BCSE.

23This is a short version of simulations done in Harden (2011).

CHAPTER 8. RESAMPLING METHODS	 227

Simulation with BCSE

library(mvtnorm)

library(rms)

Function to compute robust cluster standard errors (Arai 2011)

rcse <- function(model, cluster){

require(sandwich)

M <- length(unique(cluster))

N <- length(cluster)

K <- model$rank

dfc <- (M/(M - 1)) * ((N - 1)/(N - K))

uj <- apply(estfun(model), 2, function(x) tapply(x, cluster, sum))

rcse.cov <- dfc * sandwich(model, meat = crossprod(uj)/N)

return(rcse.cov)

}

set.seed(934656) # Set the seed for reproducible results

reps <- 1000 # Set the number of repetitions at the top of the script

par.est.cluster <- matrix(NA, nrow = reps, ncol = 4) # Empty matrix to store

 # the estimates

b0 <- .2 # True value for the intercept

b1 <- .5 # True value for the slope

n <- 200 # Sample size

p <- 0.5 # Rho

nc <- 25 # Number of clusters

c.label <- rep(1:nc, each = n/nc) # Cluster label

for(i in 1:reps){ # Start the loop

i.sigma <- matrix(c(1, 0, 0, 1 - p), ncol = 2) # Level 1 effects

i.values <- rmvnorm(n = n, sigma = i.sigma)

effect1 <- i.values[, 1]

effect2 <- i.values[, 2]

c.sigma <- matrix(c(1, 0, 0, p), ncol = 2) # Level 2 effects

c.values <- rmvnorm(n = nc, sigma = c.sigma)

effect3 <- rep(c.values[, 1], each = n/nc)

effect4 <- rep(c.values[, 2], each = n/nc)

X <- effect3 # X values unique to level 2 observations

error <- effect2 + effect4

Y <- b0 + b1*X + error # True model

model.ols <- lm(Y ~ X) # Model estimation

vcv.ols <- vcov(model.ols) # Variance-covariance matrices

vcv.rcse <- rcse(model.ols, c.label)

vcv.bcse <- bootcov(ols(Y ~ X, x = TRUE, y = TRUE),

B = n.boot, cluster = c.label)

228	 	 MONTE CARLO SIMULATION AND RESAMPLING METHODS

par.est.cluster[i, 1] <- model.ols$coef[2] # Coefficients

par.est.cluster[i, 2] <- sqrt(diag(vcv.ols)[2])

par.est.cluster[i, 3] <- sqrt(diag(vcv.rcse)[2])

par.est.cluster[i, 4] <- sqrt(diag(vcv.bcse$var)[2])

cat(“Just completed iteration”, i, “\n”)

} # End the loop

Next, we compute the coverage probabilities of each standard error method.

ols.cp <- coverage(par.est.cluster[, 1], par.est.cluster[, 2], b1,

 df = n - model.ols$rank)

ols.cp$coverage.probability

[1] 0.641

rcse.cp <- coverage(par.est.cluster[, 1], par.est.cluster[, 3], b1,

 df = n - model.ols$rank)

rcse.cp$coverage.probability

[1] 0.909

bcse.cp <- coverage(par.est.cluster[, 1], par.est.cluster[, 4], b1,

 df = n - model.ols$rank)

bcse.cp$coverage.probability

[1] 0.923

As we saw in Chapter 5, the OLS-SE is severely biased downward, with a cover-
age probability of 0.641. Additionally, while RCSE is better, it still shows evi-
dence of being too small, with a coverage probability of 0.909 and simulation
error bounds of [0.891, 0.927]. Finally, bootstrapping by cluster performs the best
of the three, though it is still biased slightly downward. The BCSE coverage
probability is 0.923 with error bounds [0.906, 0.940]. Overall, among these alter-
natives, bootstrapping by cluster provides the best method of estimating standard
errors in the presence of clustered data (for more details, see Harden, 2011).24
This example shows both the benefits of bootstrapping as a method of estimating
standard errors and the use of a simulation to evaluate competing methods.

8.5 CONCLUSIONS

Resampling methods are similar to simulation in that they use an iterative process
to summarize the data. The main difference is that they rely on the observed
sample of data rather than a theoretical DGP. This empirical basis typically gives
resampling methods robustness to assumption violations, as shown by the jack-
knife estimate of standard errors in the presence of heteroskedasticity, the BCSE

24The BCSE method can also be extended to multilevel model standard errors (Harden,
2012a).

CHAPTER 8. RESAMPLING METHODS	 229

performance with clustered data, and the quantile method of computing boot-
strap confidence intervals. Data from the real world are rarely perfectly well
behaved, so we recommend that researchers consider using resampling methods
in their own work.

Within the various methods, there are cases where each one may be most
appropriate. Permutation and randomization testing are typically best for experi-
mental data where there is a clear treatment variable and null hypothesis of no
effect. Randomization testing has been extended to the multiple regression frame-
work (e.g., Erikson et al., 2010), but we do not recommend it because it does not
allow for estimation of the full variance–covariance matrix of the coefficient
estimates. Jackknifing is a good option when the analyst is concerned about the
undue influence of particular data points. However, it performs poorly in small
samples and when the statistic of interest is not smooth.

We recommend bootstrapping for most cases because it is flexible and robust
to many different types of data. It also allows for estimation of the full covariance
matrix in a multiple regression model while also generally performing well in
small samples (Efron & Tibshirani, 1993). Moreover, its strong connection to the
conceptualization of simulating repeated samples makes the method intuitively
appealing. In short, while not a panacea, bootstrapping is a very useful tool for
applied social scientists.

Having completed chapters on simulation and on resampling methods, we
bring the two together in the next chapter. First, we look at a method for simulat-
ing from the observed data as a means of generating quantities of interest from
model results. Then, we discuss cross-validation as a “resampling-like” tool for
evaluating the fit of statistical models.

