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The Multilevel Model Framework

1.1 OVERVIEW

Multilevel models account for different lev-
els of aggregation that may be present in
data. Sometimes researchers are confronted
with data that are collected at different lev-
els such that attributes about individual cases
are provided as well as the attributes of
groupings of these individual cases. In addi-
tion, these groupings can also have higher
groupings with associated data characteris-
tics. This hierarchical structure is common
in data across the sciences, ranging from
the social, behavioral, health, and economic
sciences to the biological, engineering, and
physical sciences, yet is commonly ignored
by researchers performing statistical analyses.
Unfortunately, neglecting hierarchies in data
can have damaging consequences to subse-
quent statistical inferences.

The frequency of nested data structures in
the data-analytic sciences is startling. In the
United States and elsewhere, individual vot-
ers are nested in precincts which are, in turn,
nested in districts, which are nested in states,
which are nested in the nation. In health-
care, patients are nested in wards, which are
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then nested in clinics or hospitals, which are
then nested in healthcare management sys-
tems, which are nested in states, and so on.
In the classic example, students are nested
in classrooms, which are nested in schools,
which are nested in districts, which are then
nested in states, which again are nested in the
nation. In another familiar context, it is often
the case that survey respondents are nested in
areas such as rural versus urban, then these
areas are nested by nation, and the nations in
regions. Famous studies such as the American
National Election Studies, Latinobarometer,
Eurobarameter, and Afrobarometer are obvi-
ous cases. Often in population biology a
hierarchy is built using ancestral informa-
tion, and phenotypic variation is used to
estimate the heritability of certain traits, in
what is commonly referred to as the “animal
model.” In image processing, spatial relation-
ships emerge between the intensity and hue of
pixels. There are many hierarchies that emerge
in language processing, such as topic of dis-
cussion, document type, region of origin, or
intended audience. In longitudinal studies,
more complex hierarchies emerge. Units or
groups of units are repeatedly observed over
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4 THE MULTILEVEL MODEL FRAMEWORK

a period of time. In addition to group hier-
archies, observations are also grouped by the
unit being measured. These models are exten-
sively used in the medical/health sciences to
model the effect of a stimulus or treatment
regime conditional on measures of interest,
such as socioeconomic status, disease preva-
lence in the environment, drug use, or other
demographic information. Furthermore, the
frequency of data at different levels of aggre-
gation is increasing as more data are generated
from geocoding, biometric monitoring, Inter-
net traffic, social networks, an amplification
of government and corporate reporting, and
high-resolution imaging.

Multilevel models are a powerful and
flexible extension to conventional regression
frameworks. They extend the linear model and
the generalized linear model by incorporating
levels directly into the model statement, thus
accounting for aggregation present in the data.
As aresult, all of the familiar model forms for
linear, dichotomous, count, restricted range,
ordered categorical, and unordered categor-
ical outcomes are supplemented by adding
a structural component. This structure clas-
sifies cases into known groups, which may
have their own set of explanatory variables
at the group level. So a hierarchy is estab-
lished such that some explanatory variables
are assigned to explain differences at the indi-
vidual level and some explanatory variables
are assigned to explain differences at the
group level. This is powerful because it takes
into account correlations between subjects
within the same group as distinct from cor-
relations between groups. Thus, with nested
data structures the multilevel approach imme-
diately provides a set of critical advantages
over conventional, flat modeling where these
structures emerge as unaccounted-for hetero-
geneity and correlation.

What does a multilevel model look like? At
the core, there is a regression equation that
relates an outcome variable on the left-hand
side to a set of explanatory variables on the
right-hand side. This is the basic individual-
level specification, and looks immediately

like a linear model or generalized linear
model. The departure comes from the treat-
ment of some of the coefficients assigned to
the explanatory variables. What can be done
to modify a model when a point estimate is
inadequate to describe the variation due to
a measured variable? An obvious modifica-
tion is to treat this coefficient as having a dis-
tribution as opposed to being a fixed point.
A regression equation can be introduced to
model the coefficient itself, using information
atthe group level to describe the heterogeneity
in the coefficient. This is the heart of the mul-
tilevel model. Any right-hand side effect can
get its own regression expression with its own
assumptions about functional form, linearity,
independence, variance, distribution of errors,
and so on. Such models are often referred to
as “mixed,” meaning some of the coefficients
are modeled while others are unmodeled.

What this strategy produces is a method of
accounting for structured data through utiliz-
ing regression equations at different hierar-
chical levels in the data. The key linkage is
that these higher-level models are describing
distributions at the level just beneath them for
the coefficient that they model as if it were
itself an outcome variable. This means that
multilevel models are highly symbiotic with
Bayesian specifications because the focus in
both cases is on making supportable distribu-
tional assumptions.

Allowing multiple levels in the same
model actually provides an immense amount
of flexibility. First, the researcher is not
restricted to a particular number of levels. The
coefficients at the second grouping level can
also be assigned a regression equation, thus
adding another level to the hierarchy, although
it has been shown that there is diminishing
return as the number of levels goes up, and
it is rarely efficient to go past three levels
from the individual level (Goel and DeGroot
1981, Goel 1983). This is because the effects
of the parameterizations at these super-high
levels gets washed out as it comes down the
hierarchy. Second, as stated, any coefficient
at these levels can be chosen to be modeled
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1.2 BACKGROUND 5

or unmodeled and in this way the mixture of
these decisions at any level gives a combina-
torially large set of choices. Third, the form of
the link function can differ for any level of the
model. In this way the researcher may mix lin-
ear, logit/probit, count, constrained, and other
forms throughout the total specification.

1.2 BACKGROUND

It is often the case that fundamental ideas in
statistics hide for a while in some applied
area before scholars realize that these are
generalizable and broadly applicable princi-
ples. For instance, the well-known EM algo-
rithm of Dempster, Laird, and Rubin (1977)
was pre-dated in less fully articulated forms
by Newcomb (1886), McKendrick (1926),
Healy and Westmacott (1956), Hartley (1958),
Baum and Petrie (1966), Baum and Eagon
(1967), and Zangwill (1969), who gives the
critical conditions for monotonic conver-
gence. In another famous example, the core
Markov chain Monte Carlo (MCMC) algo-
rithm (Metropolis et al. 1953) slept quietly
in the Journal of Chemical Physics before
emerging in the 1990s to revolutionize the
entire discipline of statistics. It turns out that
hierarchical modeling follows this same sto-
ryline, roughly originating with the statistical
analysis of agricultural data around the 1950s
(Eisenhart 1947, Henderson 1950, Scheffé
1956, Henderson et al. 1959). A big step
forward came in the 1980s when education
researchers realized that their data fit this
structure perfectly (students nested in classes,
classes nested in schools, schools nested
in districts, districts nested in states), and
that important explanatory variables could
be found at all of these levels. This flurry
of work focused on the hierarchical linear
model (HLM) and was developed in detail
in works such as Burstein (1980), Mason
et al. (1983), Aitkin and Longford (1986),
Bryk and Raudenbush (1987), Bryk et al.
(1988), De Leeuw and Kreft (1986), Rau-
denbush and Bryk (1986), Goldstein (1987),
Longford (1987), Raudenbush (1988), and

Lee and Bryk (1989). These applications con-
tinue today as education policy remains an
important empirical challenge. Work in this
literature was accelerated by the development
of the standalone software packages HLM,
ML2, VARCL, as well as incorporation into
the sas procedure MIXED, and others. Addi-
tional work by Goldstein (notably 1985) took
the two-level model and extended it to sit-
uations with further nested groupings, non-
nested groupings, time series cross-sectional
data, and more. At roughly the same time,
a series of influential papers and applica-
tions grew out of Laird and Ware (1982),
where a random effects model for Gaussian
longitudinal data is established. This Laird—
Ware model was extended to binary out-
comes by Stiratelli, Laird, and Ware (1984)
and GEE estimation was established by Zeger
and Liang (1986). An important extension to
non-linear mixed effects models is presented
in Lindstrom and Bates (1988). In addition,
Breslow and Clayton (1993) developed quasi-
likelihood methods to analyze generalized lin-
ear mixed models (GLMMs).

Beginning around the 1990s, hierarchical
modeling took on a much more Bayesian com-
plexion now that stochastic simulation tools
(e.g. MCMC) had arrived to solve the result-
ing estimation challenges. Since the Bayesian
paradigm and the hierarchical reliance on dis-
tributional relationships between levels have
a natural affinity, many papers were produced
and continue to be produced in the inter-
section of the two. Computational advances
during this period centered around customiz-
ing MCMC solutions for particular problems
(Carlin et al. 1992, Albert and Chib 1993,
Liu 1994, Hobert and Casella 1996, Jones
and Hobert 2001, Cowles 2002). Other works
focused on solving specific applied problems
with Bayesian models: Steffey (1992) incor-
porates expert information into the model,
Stangl (1995) develops prediction and deci-
sion rules, Cohen et al. (1998) model arrest
rates, Zeger and Karim (1991) use GLMMs
to study infectious disease, Christiansen and
Morris (1997) build on count models hierar-
chically, Hodges and Sargent (2001) refine
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6 THE MULTILEVEL MODEL FRAMEWORK

inference procedures, Pauler et al. (2001)
model cancer risk, and Pettitt et al. (2006)
model survey data from immigrants. Recently,
Bayesian prior specifications in hierarchical
models have received attention (Hadjicostas
and Berry 1999, Daniels and Gatsonis 1999,
Gelman 2006, Booth et al. 2008). Finally, the
text by Gelman and Hill (2007) has been enor-
mously influential.

A primary reason for the large increase
in interest in the use of multilevel models
in recent years is due to the ready availabil-
ity of sophisticated general software solutions
for estimating more complex specifications. A
review of software available for fitting these
models is presented in Chapter 26 of this vol-
ume. For basic models, the 1me4 package in
R works quite well and preserves R’s intu-
itive model language. Also, Stata provides
some support through the XTMIXED routine.
However, researchers now routinely specify
generalized linear multilevel models with cat-
egorical, count, or truncated outcome vari-
ables. Itis also now common to see non-nested
hierarchies expressing cross-classification,
mixtures of nonlinear relationships within
hierarchical groupings, and longitudinal con-
siderations such as panel specifications and
standard time-series relations. All of this pro-
vides a rich, but sometimes complicated, set
of variable relationships. Since most applied
users are unwilling to spend the time to
derive their own likelihood functions or pos-
terior distributions and maximize or explore
these forms, software like WinBUGS and its
cousin JAGS are popular (Bayesian) solutions
(Mp1lus is also a helpful choice).

1.3 FOUNDATIONAL MODELS

The development of multilevel models starts
with the simple linear model specification for
individual i that relates the outcome variable,
yi, to the systematic component, x; 81, with
unexplained variance falling to the error term,
&, giving:

yi = Bo + xif1 +¢i, (L.

which is assumed to meet the standard Gauss—
Markov assumptions (linear functional form,
independent errors with mean zero and con-
stant variance, no relationship between x;
and errors). The normality of the errors is
not a necessary assumption for making infer-
ences since standard least squares procedures
produce an estimate of the standard error
(Amemiya 1985, Ravishanker and Dey 2002),
but with reasonable sample size and finite
variance the central limit theorem applies.
For maximum likelihood results, which pro-
duce the same estimates as does least squares,
the derivation of the estimator begins with
the assumption of normality of population
residuals. See the discussion on pages 583—
6 of Casella and Berger (2001) for a detailed
derivation.

1.3.1 Basic Linear Forms,
Individual-Level
Explanatory Variables

How does one model the heterogeneity that
arises because each i case belongs to one of
j=1,...,J groups where J < n? Even if
there does not exist explanatory variable infor-
mation about these J assignments, model fit
may be improved by binning each i case into
its respective group. This can be done by loos-
ening the definition of the single intercept, o,
in (1.1) to J distinct intercepts, Bo;, which
then groups the n cases, giving them a com-
mon intercept with other cases if they land in
the same group. Formally, fori = 1,...,n;
(where n is the size of the jth group):
yij = Poj + xij 1 + &ij,

where the added j subscript indicates that this
case belongs to the jth group and gets inter-
cept Bo;j. The By ; are group-specific intercepts
and are usually given a common normal dis-
tribution with mean B¢ and standard deviation
oy, The overall intercept By is referred to as a
Jfixed effect and the difference ug; = Bo; — Bo
is a random effect. Subscripting the u with
0 denotes that it relates to the intercept term
and distinguishes it from other varying quan-
tities to be discussed shortly. Since the S
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1.3 FOUNDATIONAL MODELS 7

Figure 1.1 Varying Intercepts

coefficient is not indexed by the grouping
term j, this is still constant across all of the
n =nj+ -+ ny cases and evaluated with
a standard point estimate. This model is illus-
trated in Figure 1.1, which shows that while
different groups start at different intercepts,
they progress at the same rate (slope). This
model is sufficiently fundamental that it has its
own name, the varying-intercept or random-
intercept model.

In a different context, one may want to
account for the groupings in the data, but
the researcher may feel that the effect is not
through the intercept, where the groups start
at a zero level of the explanatory variable
x, having reason to believe that the group-
ing affects the slopes instead: as x increases,
group membership dictates a different change
in y. So now loosen the definition of the single
slope, B1,1n (1.1) to account for the groupings
according to:

yij = Bo + xijB1j + &ij,

where the added j subscript indicates that the
n; cases in the jth group get slope B;;. The
intercept now remains fixed across the cases
in the data and the slopes are given a common
normal distribution with mean S and stan-
dard deviation oy,,. In this situation, B is a
fixed effect and the difference u1; = B1; — p1

Figure 1.2 Varying Slopes

is arandom effect, and subscripting the u with
1 denotes that these random effects relate to
the slope as opposed to the intercepts. This is
illustrated in Figure 1.2 showing divergence
from the same starting point for the groups as
x increases. This model is also fundamental
enough that it gets its own name, the varying-
slope or random-slope model.

Suppose the researcher suspects that the
heterogeneity in the sample is sufficiently
complex that it needs to be modeled with both
a varying-intercept and a varying-slope. This
is a simple combination of the previous two
models and takes the form:

yij = Boj + xijB1j + €ij.

where membership in group j for case ij
has two effects, one that is constant and one
that differs from others with increasing x. The
vectors (Bo;, B1;) are given a common mul-
tivariate normal distribution with mean vec-
tor (Bo, B1) and covariance matrix ,. The
vector of means (Bo, B1) is the fixed effect
and the vectors of differences (ugj,u1;) =
(Boj — Bo, B1j — B1) are the random effects. A
synthetic, possibly exaggerated, model result
is given in Figure 1.3. Not surprisingly, this
is called the varying-intercept, varying-slope
or random-intercept, random-slope model.
Notice from the simple artificial example in
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8 THE MULTILEVEL MODEL FRAMEWORK
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Figure 1.3 Varying Intercepts and Slopes

the figure that it is already possible to model
quite intricate differences in the groups for
this basic linear form.

Before moving on to more complicated
models, a clear explanation of what is meant
by fixed effects and random effects is neces-
sary. Fixed effects are coefficients in the mean
structure that are assumed to have point val-
ues, whereas random effects are coefficients
that are assumed to have distributions. For
example, in the models thus far considered
the random effects have been assumed to have
a common Gaussian distribution. A distinc-
tion must be made, then, for when group-
level effects are assumed to be fixed effects
or random effects. In the random-intercepts
model, for example, the By; can be assumed
to be point values instead of being modeled as
coming from a distribution, as fixed effects as
opposed to random effects. This distinction is
quite important and modifies both the assump-
tions of the models as well as the estimation
strategy employed in analyzing them.

1.3.2 Basic Linear Forms, Adding
Group-Level Explanatory
Variables

The bivariate linear form can be additively
extended on the right-hand side to include

more covariates, which may or may not
receive the grouping treatment. A canon-
ical mixed form is one where the inter-
cept and the first ¢ explanatory variables
have coefficients that vary by the j =
1,...,J groupings (for a total of ¢ + 1
modeled coefficients), but the next p coef-
ficients, g + 1,9 + 2,...,q + p, are fixed
at the individual level. This is given by the
specification:

yij = Boj +x1iP1j + -+ xgiByj
+ X(g+1)iBg+1
+ o XgpiBatp + Eijs

where membership in group j for case ij has
q + 1 effects. The vectors of group-level coef-
ficients (Boj, ..., Bq;) are given a common
distribution, which for now will be assumed
to be Gaussian with mean vector (B, ..., By)
(the fixed effects) and covariance matrix €2,,.
As before, the vectors of differences u; =
(Boj — Bos....Byj — Byg) are the random
effects for this model.

An important aspect of these models, which
greatly facilitates their use in generalized lin-
ear models and nonlinear models, is writing
them in a hierarchical fashion. The model is
written as a specification of a regression equa-
tion at each level of the hierarchy. For exam-
ple, consider the model where

vij = Boj + x1ijB1j + x2i B2 + €ij, (1.2)

where there are two random coefficients and
one fixed coefficient. The group-level coeffi-
cients can be written as

Bij = p1+ui; (1.3)

and the ug;, u; appear as errors at the sec-
ond level of the hierarchy. Assumptions are
then made about the distributions of the
individual-level errors (¢;;) and group-level
errors (ugj,u1;). For example, a common
set of assumptions in linear regression is &;;
are independent and identically distributed
(iid) with common variance, and (ug;, u1;) is
bivariate normal with mean 0 and covariance
matrix €2.

Boj = Bo + uoj

“Handbook_Sample.tex” — 2013/7/25 — 11:25 — page 8



1.3 FOUNDATIONAL MODELS 9

The model given in (1.2), (1.3) does not
impose explanatory variables at the second
level, given by the J groupings, since u; ~
N, (0, ) by assumption. Until explanatory
variables at this second level are added, there
is not a modeled reason for the differences in
the group-level coefficients. The fact that one
can model the variation at the group level is a
key feature of treating them as random effects
as opposed to fixed effects. Returning to the
linear model with two group-level coefficients
and one individual-level coefficient in (1.2),
yij = Boj + x1ijB1j + x2ij B2 + &ij, model
each of the two group-level coefficients with
their own regression equation and index these
byj=1toJ:

Boj = Bo + B3xzj + uo;

Bij = P1 + Baxa; +uyj, (1.4

and the group-level variation is modeled
as depending on covariates. The explana-
tory variables at the second level are called
context-level variables, and the idea of contex-
tual specificity is that of the existence of legit-
imately comparable groups. These context-
level variables are constant in each group and
are subscripted by j instead of ij to identify
that they only depend on group identification.

Substituting the two definitions in (1.4) into
the individual-level model in (1.2) and rear-
ranging produces:

yij = (Bo + B3x3j + uoj)
+ (B1 + Baxaj + u1j)xiij
+ Baxaij + €ij
= (Bo + Bix1ij + Bax2ij + B3x3;j
+ Baxajxiij)

+ (uoj +uyjxy; +e&i;)  (1.5)

for the ijth case. The composite fixed effects
now have a richer structure, accounting for
variation at both the individual and group lev-
els. In addition, the error structure is now
modeled as being due to specific group-
level variables. In this example, the com-
posite error structure, (u1;x1;; + uo; + &ij),
is heteroscedastic since it is conditioned on

levels of the explanatory variable xy;;. This
composite error shows that uncertainty is
modified in a standard linear model (¢;;)
by introducing terms that are correlated for
observations in the same group. Though it
seems that this has increased uncertainty in
the data, it is just modeling the data in a fuller
fashion. This richer model accounts for the
hierarchical structure in the data and can pro-
vide a significantly better fit to observed data
than standard linear regression.

It is important to understand the exact role
of the new coefficients. First, By is a univer-
sally assigned intercept that all i cases share.
Second, B; gives another shared term that
is the slope coefficient corresponding to the
effect of changes in xy;;, as does 8, for x;;.
These three terms have no effect from the
multilevel composition of the model. Third,
B3 gives the slope coefficient for the effect of
changes in the variable x3; for group j, and
are applied to all individual cases assigned
to this group. It therefore varies by group
and not individual. Fourth, and surprisingly,
B4 is the coefficient on the interaction term
between x1;; and x4;. But though no inter-
action term was specified in the hierarchical
form of the model this illustrates an important
point. Any hierarchy that models a slope on the
right-hand side imposes an interaction term if
this hierarchy contains group-level covariates.
While it is easy to see the multiplicative impli-
cations from (1.5), it is surprising to some that
this is an automatic consequence.

In the Laird-Ware form of the model,
the fixed effects are separated from the ran-
dom effects as in (1.5). In this formula-
tion, the covariates on the random effects
are represented by zs rather than xs in order
to distinguish the two. This structure can
be written (in matrix form) for group j as
y; =X;jB+Z;u;+¢;. Here,y; is the vector
of observations, X; is the fixed effects design
matrix, and Z; is a the random effects design
matrix for group j. The vector B is the vector
of fixed effects, which are assumed to have
point values, whereas u; is the vector of ran-
dom effects for group j which are modeled
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10 THE MULTILEVEL MODEL FRAMEWORK

by a distributional assumption. Finally, ¢; is
a vector of individual-level error terms for
group j. From this formulation, it is apparent
that multilevel models can be expressed in a
single-level expression, although this does not
always lead to a more intuitive expression.

1.3.3 The Model Spectrum

In language that Gelman and Hill (2007)
emphasize, multilevel models can be thought
of as sitting between two extremes that are
available to the researcher when groupings
are known: fully pooled and fully unpooled.
The fully pooled model treats the group-level
variables as individual variables, meaning that
group-level distinctions are ignored and these
effects are treated as if they are case-specific.
For a model with one explanatory variable
measured at the individual level (x;) and
one measured at the group level (x7), this
specification is:

yi = Bo+x1;81 + x2i B2 + ;.

In contrast to (1.5), there is no up; modeled
here. This is an assertion that the group dis-
tinctions do not matter and the cases should all
be treated homogeneously, ignoring the (pos-
sibly important) variation between categories.
At the other end of the spectrum is a set of
models in which each group can be treated
as a separate dataset and modeled completely
separately:

vij = Poj +xijP1j + &ij,

for j = 1,..., J. Note that the group-level
predictor x; does not enter into this equation
because xy; B, is constant within a group and
therefore subsumed into the intercept term.
Here there is no second level to the hierarchy
and the Bs are assumed to be fixed parame-
ters, in contrast to the distributional assump-
tions made in the mixed model. The fully
unpooled approach is the opposite distinction
from the fully pooled approach and asserts
that the groups are so completely different
that it does not make sense to associate them
in the same model. In particular, the values
of slopes and intercept from one group have

no relationship to those in other groups. Such
separate regression models clearly overstate
variation between groups, making them look
more different than they really should be.

Between these two polar group distinctions
lies the multilevel model. The word “between”
here means that groups are recognized as dif-
ferent, but because there is a single model
in which they are associated by common
individual-level fixed effects as well as distri-
butional assumptions on the random effects,
the resulting model therefore compromises
between full distinction of groups and the full
ignoring of groups. This can be thought of as
partial-pooling or semi-pooling in the sense
that the groups are collected together in a sin-
gle model, but their distinctness is preserved.

To illustrate this “betweeness”, consider
a simple varying-intercepts model with no
explanatory variables:

(1.6)

which is also called a mean model since
Boj represents the mean of the jth group.
If there is an assumption that By; = B is
constant across all cases, then this becomes
the fully pooled model. Conversely, if there
are J separate models each with their own
Boj which do not derive from a common
distribution, then it is the fully unpooled
approach. Estimating (1.6) as a partial
pooling model (with Gaussian distributional
assumptions) gives group means that are a
weighted average of the n; cases in group j
and the overall mean from all cases. Define
first:

yij = Boj + &ij,

¥,  fully unpooled mean for group j

y  fully pooled mean

o? within-group variance (variance of the 8;‘./)
oi between-group variance (variance of the ;)

n; size of the jth group.

Then an approximation of the multilevel
model estimate for the group mean is given

) Vit 2y
Boj Oﬂ+i (1.7)
o5 = of

This is a very revealing expression. The esti-
mate of the mean for a group is a weighted
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1.4 EXTENSIONS BEYOND THE TWO-LEVEL MODEL 1

average of the contribution from the full sam-
ple and the contribution from that group,
where the weighting depends on relative vari-
ances and the size of the group. As the size
of arbitrary group j gets small, y; becomes
less important and the group estimate bor-
rows more strength from the full sample. A
zero size group, perhaps a hypothesized case,
relies completely on the full sample size, since
(1.7) reduces to Bo j =Y. On the other hand,
as group j gets large, its estimate dominates
the contribution from the fully pooled mean,
and is also a big influence on this fully pooled
mean. This is called the shrinkage of the mean
effects towards the common mean. In addi-
tion, as 012 — 0, then ﬁo ; — ¥, and as
012 — 00, then BO,/ — ¥;. Thus, the group
effect which is at the heart of a multilevel
model, is a balance between the size of the
group and the standard deviations at the indi-
vidual and group levels.

1.4 EXTENSIONS BEYOND THE
TWO-LEVEL MODEL

Multilevel models are not restricted to linear
forms with interval-measured outcomes over
the entire real line, nor are they restricted to
hierarchies which contain only one level of
grouping or nested levels of grouping. The
stochastic assumptions at each level of the
hierarchy can be made in any appropriate fash-
ion for the problem being modeled. This added
flexibility of the MLM provides a much richer
class of models and captures many of the mod-
els used in modern scientific research.

1.4.1 Nested Groupings

The generalization of the mixed effects model
to nested groupings is straightforward and
is most easily understood in the hierarchical
framework of (1.2), (1.3) as opposed to the
single equation of (1.5).

Consider the common case of survey
respondents nested in regions, which are then
nested in states, and so on. The individual level
comprises the first hierarchy of the model and

captures the variation in the data that can be
explained by individual-level covariates. In
this example, the outcome of interest is mea-
sured support for a political candidate or party,
with covariates that are individualized such
as race, gender, income, age, and attentive-
ness to public affairs. The second level of the
model in this example is immediate region
of residence, and this comes with its own set
of covariates including rural/urban measure-
ment, crime levels, dominant industry, coastal
access, and so on. The third level is state, the
fourth level is national region, and so on. Each
level of the model comes with a regression
equation where the variation in intercepts or
slopes that are assumed to vary do so with the
possible inclusion of group-level covariates.

Consider a three-level model with
individual-level covariate x;, level-two
group covariate xp, and level-three covariate
x3. The data come as y;j, indicating the
ith individual in the jth level two group
which is contained in the kth level three
group. In the previous example, i represents
survey respondents, j represents immediate
region, and k represents state. Allowing both
varying-intercepts and varying-slopes in the
regression equation at the individual level,
gives:

Yijk = Bojk + B1jkX1ijk + €ijks

where the &;j; are assumed to be indepen-
dently and normally distributed. At the second
level of the model, there are separate regres-
sion equations for the intercepts and slopes:

Bojx = Bok + Barxzjk + uojk
Bijk = Bik + Barxzjk + uiji,

where the vectors of (g jx, 11 jx) are assumed
to have a common multivariate normal distri-
bution. At the third level of the model, there
are separate regression equations for the inter-
cepts and slopes:

Bok = Po + Baxzk + usk
Bok = PBo+ Bsxzp + uak
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12 THE MULTILEVEL MODEL FRAMEWORK

Bik = B1 + Bexsk + us
B3k = B3 + Brxsk + uek,

where the vectors of level three residuals
(usg, ugr, usy, ugr) are assumed to have a
common multivariate normal distribution. In
analogy to (1.5), this model includes eight
fixed effects parameters capturing the inter-
cept (Bo), the three main effects (81, B2, B4),
the three two-way interactions (83, Bs, Bs),
and the three-way interaction of the covariates
(B7) as well as a rich error structure capturing
the nested groupings within the data. Just from
this simple framework, extensions abound.
For example, since the level two residuals are
indexed by both j and k, a natural relaxation
of the model is to let the distribution of u j;
depend on k and then bring these distribu-
tions together at the third level. Alternatively,
one can specify the model such that the level
three covariate only affects intercepts and not
slopes, or that slopes and intercepts vary at
level two but only intercepts vary at level
three, both of which are easy modifications
in this hierarchical specification.

1.4.2 Non-Nested Groupings

In order to generalize to the case of non-nested
groupings, consider data with two different
groupings at the second level. In an economics
example, imagine modeling the income of
individuals in a state who have both an imme-
diate region of residence and an occupation.
These workers are then naturally grouped by
the multiple regions and the jobs, where these
groups obviously are not required to have the
same number of individuals: there are more
residents in a large urban region than a nearby
rural county, and one would expect more
clerical office workers than clergymen, for
example. This is non-nested in the sense that
there are multiple people in the same region
with the same and different jobs. Represent
region of residence with the index r and
occupation with the index o, letting iro
refer to the ith individual who is in both

the rth region class and the oth occupation
class. Of course, such an individual does not
necessarily exist—there may be no ranch-
ers in New York City. A regression equation
with individual-level covariate x and inter-
cepts which vary with both groupings is given
by:

Yiro = Bo + XiroB1 + tr + o + €iro, (1.8)

where the random effects u, have one com-
mon normal distribution and the random
effects u, have a different common normal
distribution. To add varying slopes to (1.8),
simply modify the equation to be

Yiro = Bo + XiroB1 + uor + oo + U1rXiro

+ UioXiro + Eiro,

and make appropriate distributional assump-
tions about the random effects.

The addition of a random effect u,, to
(1.8) that depends on both region and occu-
pation would give this model three levels:
the individual level, the level of intersections
of region and occupation, and the level of
region or occupation. The second level of the
hierarchy would naturally nest in both of the
level three groupings. There are many ways
to extend the MLM with crossed groupings
to take into account complicated structures
that could generate observed data. The key
to effectively using these models in practice
is to consider the possible ways in which dif-
ferent groupings can affect the outcome vari-
able and then include these in appropriately
defined regression equations.

1.4.3 Generalized Linear Forms

The extension to generalized linear models
with non-Gaussian distributional assumptions
at the individual level is also straightfor-
ward. This involves inserting a link func-
tion between the outcome variable and the
additive-linear form based on the right-hand
side with the explanatory variables. For a
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1.5 VOCABULARY 13

two-level model, this means modeling the
linked variable as:

nij = [Boj +x1ijB1jl + -+ + XqijBgj
+ X(g+1)ijBg+1
+ o+ Xg+pijBPa+p

where this is then related to the conditional
mean of the outcome, n;; = g(E[yi;lB;]),
where there is conditioning on the vector of
group-level coefficients B;. This two-level
model is completed by making an assump-
tion about the distribution of B ;. In contrast to
(1.5), the stochastic components of the model
at the individual and group levels cannot sim-
ply be added together because the link func-
tion g is only linear in the case of normally
distributed data. Thus, the random effects
are difficult or impossible to “integrate out”
of the likelihood, and the marginal likeli-
hood of the data cannot be obtained in closed
form.

To illustrate this model, consider a simpli-
fied logistic case. Suppose there are outcomes
from the same binary choice at the individual
level, a single individual-level covariate (x1),
and a single group-level covariate (x2). Then
the regression equation for varying-intercepts
and varying-slopes is given by:

pOij = 1Boj. 1) =logit™" (Boj+ x1i1B1,)
-1 (1 +eﬁ0j+X1ijﬂ1j)_l
Boj = Bo + Baxzj + uo;
B1j = B1 + Bsxaj +uyj.

Assume that the random effects u; are multi-
variate normal with mean 0 and covariance
matrix 2. The parameters to be estimated
are the coefficients in the mean structure (the
fixed effects), and the elements of the covari-
ance matrix 2. Notice that the distribution at
the second level is given explicitly as a nor-
mal distribution whereas the distribution at the
first level is implied by the assumption of hav-
ing Bernoulli trials. It is common to stipulate
normal forms at higher levels in the model
since they provide an easy way to consider
the possible correlation of the random effects.

However, it is important to understand that
the assumption of normality at this level is
exactly that, an assumption, and thus must be
investigated. If evidence is found to suggest
that the random effects are not normally dis-
tributed, this assumption must be relaxed or
fixed effects should be used.

Standard forms for the link function in
g(E[yijIB;]) include probit, Poisson (log-
linear), gamma, multinomial, ordered cate-
gorical forms, and more. The theory and esti-
mation of GLMM s is discussed in Chapter 15,
and the specific case of qualitative outcomes
is discussed in Chapter 16. Many statistical
packages (see Chapter 26) are available for fit-
ting a variety of these models, but as assump-
tions are relaxed about distributional forms
or more exotic generalized linear models are
used, one must resort to more flexible estima-
tion strategies.

1.5 VOCABULARY

An unfortunate consequence of the develop-
ment of multilevel models in disparate liter-
atures is that the vocabulary describing these
models differs, even for the exact same spec-
ification. The primary confusion is between
the synonymous terms of multilevel model
or hierarchical model and the descriptions
that use effects. Varying-coefficients mod-
els, either intercepts or slopes, are often
called random effects models since they are
associated with distributional statements like
Boj ~ N(Bo + Bixoj, auz). A related term
is mixed models, meaning that the specifica-
tion has both modeled and unmodeled coeffi-
cients. The term fixed effects is unfortunately
not used as cleanly as implied above, with
different meanings in different particular set-
tings. Sometimes this is applied to unmodeled
coefficients that are constant across individu-
als, or “nuisance” coefficients that are uninter-
esting but included by necessity in the form
of control variables, or even in the case where
the data represent a population instead of a
sample.

The meanings of “fixed” and “random” can
also differ in definition by literature (Kreft

“Handbook_Sample.tex” — 2013/7/25 — 11:25 — page 13



14 THE MULTILEVEL MODEL FRAMEWORK

and De Leeuw 1988; Section 1.3.3, Gelman
2005). The obvious solution to this confu-
sion is to not worry about labels but to pay
attention to the implications of subscripting
in the described model. These specifications
can be conceptualized as members of a larger
multilevel family where indices are purposely
turned on to create a level, or turned off to
create a point estimate.

1.6 CASE STUDY: PARTY
IDENTIFICATION IN WESTERN
EUROPE

As an 1illustration, consider 23,355 citizens’
feeling of alignment with a political party in
ten Western European countries! taken from
the Comparative Study of Electoral Systems
(CSES) for 16 elections from 2001 to 2007.
The natural hierarchy for these eligible voters
is: district, election, and country (some coun-
tries held more than one parliamentary elec-
tion during this time period). The percentage
of those surveyed who felt close to one party
varies from 0.29 (Ireland 2002) to 0.65 (Spain
2004).

Running a logistic regression model on
these data using individual-, district-, and
country-level covariates as though they are
individual-specific (fully pooled) requires
dramatically different ranges for the explana-
tory variables to produce reliable coefficients.
Since Western European countries do not
show such differences in individual-level
covariates and the country-level covariates do
not vary strongly with the outcome variable
(correlation of —0.25), the model needs to
take into account higher-level variations. This
is done by specifying a hierarchical model to
take into account the natural groupings in the
data.

The CSES dataset provides multiple ways
to consider hierarchies through region and
time. Respondents can be nested in voting
districts, elections, and countries. Addition-
ally, one could add a time dynamic taking
into account that elections within a single
country have a temporal ordering. Twelve of
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Figure 1.4 Empirical Proportion of “Yes”
Versus Age, by Gender

the elections considered belong to groupings
of size two (grouped by country), and in
four countries there was a single election.
If a researcher expects heterogeneity to be
explained by dynamics within and between
particular elections, the developed model will
be hierarchical with two levels based on
districts and elections. In Figure 1.4 this is
shown by plotting the observed fraction of
“Yes” answers for each age, separated by gen-
der (gray dots for men, black dots for women),
for these elections. Notice that in the aggre-
gated data women are generally less likely to
identify with a party for any given age, even
though identification for both men and women
increases with age.

The outcome variable for our model is
a dichotomous measure from the question
“Do you usually think of yourself as close
to any particular political party?” coded
zero for “No” and one for “Yes” (numbers
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1.6 CASE STUDY: PARTY IDENTIFICATION IN WESTERN EUROPE 15

B3028, C3020_1). Here attention is focused
on only a modest subset of the total num-
ber of possible explanatory variables. The
individual-level =~ demographic  variables
are: Age of respondent in years (number
2001); Female, with men equal to zero and
women equal to one (number 2002); the
respondent’s income quintile labeled
Income; and the respondent’s municipality
coded Rural/village, Small/Middle
Town, City Suburb, City Metropolitan,
with the first category used as the reference
category in the model specification (numbers
B2027, C2027). Subjects are nested within
electoral districts with a district-level variable
describing the number of seats elected by pro-
portional representation in the given district.
Additionally, these districts are nested within
elections with an election-level variable
describing the effective number of parties in
the election. The variable Parties (number
5094) gives the effective number of political
parties in each country, and Seats (number
4001) indicates the number of seats contested
in each district of the first segment of the
legislature’s lower house where the respon-
dent resides. Further details can be found at
http ://www.cses.org/varlist/varli
st_full.htm.

For an initial analysis, ignore the nested
structure of the data and simply ana-
lyze the dataset using a logistic general-
ized linear model. The outcome variable is
modeled as

b >=Xiﬁ,
1= pi

yilpi ~ Bern(p;) log (
where x; is the vector of covariates for the
ith respondent and B is a vector of coeffi-
cients to be estimated. The base categories
for this model are men for Female, the first
income quantile, and Rural/village for
region. Table 1.1 provides this standard logis-
tic model in the first block of results.

For the second model, analyze a two-level
hierarchy: one at district level and one at
the election level, represented by random

intercept contributions to the individual level.
The outcome variable is now modeled as:

Yijk|pijx ~ Bern(p;jx)
Pijk
s (22 o
1 — pijk
Bojk = Bok + Bseats
X Seatsjk + Uojk

IBOk = ,30 + IBParties
X Partiesg + Uk

ugjr ~ N, 07)
uor ~ N0, Gez).

Therefore, Seats and Parties are predic-
tors at different levels of the model. Since
Parties is constant in an election, it predicts
the change in intercept at the election level of
the hierarchy. Seats is constant in districts
but varies within an election, so it predicts
the change in intercept at the district level.
In addition, all of the district-level random
effects have a common normal distribution
which does not change depending on election,
and the election-level random effects have a
different common normal distribution. The
three levels of the hierarchy are evident and
stochastic processes are introduced at each
level: Bernoulli distributions at the data level
and normal distributions at the district and
election level.

The multilevel model fits better by several
standard measures, with a difference in AIC
(Akaike information criterion) of 525 and a
difference in BIC (Bayesian information cri-
terion) of 509 in favor of the multilevel model.
This shows that the multilevel model fits the
data dramatically better than the GLM. As a
description of model fit, also consider the per-
cent correctly predicted with the naive crite-
rion (splitting predictions at the arbitrary 0.5
threshold). The standard GLM gives 57.367%
estimated correctly, whereas the multilevel
model gives 60.522%.

In Table 1.1 there are essentially no
differences in the coefficient estimates
between the two models for Age, Female,
Income Level 4, Income Level 5, and
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16 THE MULTILEVEL MODEL FRAMEWORK

Table 1.1 Contrasting Specifications, Voting Satisfaction

Standard Logit GLM

Random Intercepts Version

Estimate Std Error z-score Estimate Std Error z-score
Intercept —0.3946 0.0417 -9.46 -0.1751 0.0944 -1.855
Age 0.0156 0.0008 19.25 0.0168 0.0008 20.207
Female —-0.2076 0.0267 -1.76 —0.2098 0.0272 -7.709
Income Level 2 0.1178 0.0425 2.77 0.0350 0.0436 0.801
Income Level 3 0.2282 0.0427 5.35 0.1474 0.0439 3.357
Income Level 4 0.2677 0.0443 6.04 0.2468 0.0453 5.454
Income Level 5 0.2388 0.0451 5.30 0.2179 0.0466 4,673
Small/Middle Town 0.0665 0.0392 1.70 —-0.0822 0.0429 -1.916
City Suburb 0.1746 0.0431 4.05 —-0.0507 0.0500 -1.014
City Metropolitan 0.1212 0.0359 3.38 0.0636 0.0417 1.525
Parties —0.0408 0.0142 -2.87 -0.1033 0.0846 -1.222
Seats 0.0047 0.0010 4.82 0.0027 0.0019 1.403
Residual Deviance 31608 on 23343 df 31079 on 23341 df
Null Deviance 32134 on 23354 df 31590 on 23352 df

og4 =0.2402, 0, = 0.32692

Small/Middle Town. However, notice the
differences between the two models for
the coefficient estimates of Income Level
2, Income Level 3, City Suburb, City
Metropolitan,Parties,and Seats.Inall
cases where observed differences exist, the
standard generalized linear model gives more
reliable coefficient estimates (smaller stan-
dard errors), but this is misleading. Once the
correlation structure of the data is taken into
account, there is more uncertainty in the esti-
mated values of these parameters.

To further evaluate the fit of the regular
GLM, consider a plot of the ranked fitted
probabilities from the model against binned
estimates of the observed proportion of suc-
cess in the reordered observed data. Figure
1.5 indicates that although the model does
describe the general trend of the data, it misses
some features since the point-cloud does not
adhere closely to the fitted line underlying the
assumption of the model. The curve of fitted
probabilities only describes 47% of the vari-
ance in these empirical proportions of success.
This suggests that there are additional fea-
tures of the data, and it is possible to capture
these with the multilevel specification. The
fitted probabilities of the multilevel model

describe 71% of the variation in the binned
estimates of the observed proportion of
success.

After running the initial GLM, one could
have improperly concluded that the number
of seats in a district, the effective number of
political parties, and city type significantly
influenced the response. However, these vari-
ables in this specification are mimicking the
correlation structure of the data, which was
more effectively taken into account through
the multilevel model framework, as evidenced
by the large gains in predictive accuracy. This
is also apparent taking the binned empirical
values and breaking down their variance in
various ways. To see that the random effects
have a meaningful impact on data fit, com-
pare how well the fixed effects and the full
model predict the binned values. Normally, a
researcher would be happy if the group-level
standard deviations were of similar size to the
residual standard deviation, as small group
effects relative to the residual effect indicate
that the grouping is not effective in the model
specification. Use of the binned empirical val-
ues mimics this kind of analysis for a general-
ized linear mixed model. The variance of the
binned values minus the fixed effectsis 0.0111
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and the variance of the binned values minus
the fitted values from the full model is 0.0060,
indicating that a significant amount of varia-
tion in the data that is indeed captured by the
random effects.

1.6.1 Computational
Considerations

Multilevel models are more demanding of sta-
tistical software than more standard regres-
sions. In the case of the Gaussian—Gaussian
multilevel model such as the one-way random
effects model, it is possible to integrate out all
levels of the hierarchy to be left with a like-
lihood for y which only depends on the fixed
effects and the induced covariance structure.
Maximum likelihood (or restricted maximum
likelihood) estimates for the coefficients on
the fixed effects as well as the parameters of
the variance components can be computed.
Moving beyond the simple Gaussian—
Gaussian model greatly complicates

estimation considerations. This includes
both relaxations of the assumptions of the
linear mixed effects models and complica-
tions arising from nonlinear link functions
in generalized linear mixed models. A
sophisticated set of estimation strategies
using approximations to the likelihood have
been developed to overcome these difficulties
and are discussed in Chapter 3. Alternatively,
the Bayesian paradigm offers a suite of
MCMC methods for producing samples
from the posterior distribution of the model
parameters. These alternatives are discussed
in Chapter 4.

1.7 SUMMARY

This introduction to multilevel models pro-
vides an overview of a class of regression
models that account for hierarchical structure
in data. Such data occur when there are nat-
ural levels of aggregation whereby individ-
ual cases are nested within groups, and those
groups may also be nested in higher-level
groups. It provides a general description of the
model features that enable multilevel models
to account for such structure, demonstrates
that ignoring hierarchies produces incorrect
inferential statements in model summaries,
and has illustrated that point with a simple
example using a real dataset.

Aitkin and his co-authors (especially, 1981,
1986) introduced the linear multilevel model
in the 1980s, concentrating on applications
in education research since the hierarchy in
that setting is obvious: students in classrooms,
classrooms in schools, schools in districts, and
districts in states. These applications were all
just linear models and yet they substantially
improved fit to the data in educational settings.
Since this era more elaborate specifications
have been developed for nonlinear outcomes,
non-nested hierarchies, correlations between
hierarchies, and more. This has been a very
active area of research both theoretically and
in applied settings. These developments are
described in detail in subsequent chapters.

Multilevel models are flexible tools
because they exist in the spectrum between
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18 THE MULTILEVEL MODEL FRAMEWORK

fully pooled models, where groupings are
ignored, and fully unpooled models, where
each group gets its own regression statement.
This means that multilevel models recognize
both commonalities within the cases and
differences between group effects. The
gained efficiency is both notational and
substantive. The notational efficiency occurs
because there are direct means of expressing
hierarchies with subscripts, nested subscripts,
and sets of subscripts. This contrasts with
messy “dummy” coding of group definitions
with large numbers of categories. Multilevel
models account for individual- versus group-
level variation because these two sources
of variability are both explicitly taken into
account. Since all non-modeled variation
falls to the residuals, multilevel models are
guaranteed to capture between-group vari-
ability when it exists. These forms are also
a convenient way of estimating separately,
but concurrently, regression coefficients
for groups. The alternative is to construct
separate  models whereby between-group
variability is completely lost. In addition,
multilevel models provide more flexibility
for expressing scientific theories, which
routinely consider settings where individual
cases are contained in larger groups, which
themselves are contained in even larger
groups, and so on. Moreover, there are
real problems with ignoring hierarchies in
data. The resulting models will have the
wrong standard errors on group-affected
coefficients since fully pooled results assume
that the apparent commonalities are results
of individual effects. This problem also spills
over into covariances between coefficient
estimates. Thus, the multilevel modeling
framework not only respects the data, but
provides better statistical inference which can
be used to describe phenomena and inform
decisions.

NOTE

1 These are: Switzerland, Germany, Spain, Fin-
land, Ireland, Iceland, Italy, Norway, Portugal, and
Sweden.
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