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1 General 
Questions

1. WHY DO I HAVE TO LEARN MATHEMATICS?

The “why” question is perhaps the one encountered most frequently. It is not 
a matter of if but when this question comes up. And after high school, it will 
come up again in different formulations. (Why should I become a mathemat-
ics major? Why should the public fund research in mathematics? Why did 
I ever need to study mathematics?) Thus, it is important to be prepared for 
this question. Giving a good answer is certainly difficult, as much depends 
on individual circumstances. 

First, you should try to find an answer for yourself. What was it that 
convinced you to study and teach mathematics? Why do you think that 
mathematics is useful and important? Have you been fascinated by the 
elegance of mathematical reasoning and the beauty of mathematical 
results? Tell your students. A heartfelt answer would be most credible. Try 
to avoid easy answers like “Because there is a test next week” or “Because 
I say so,” even if you think that the question arises from a general unwill-
ingness to learn.

It is certainly true that everybody needs to know a certain amount of 
elementary mathematics to master his or her life. You could point out that 
there are many everyday situations where mathematics plays a role. Certainly 
one needs mathematics whenever one deals with money—for example, when 
one goes shopping, manages a savings account, or makes a monthly budget. 

Nevertheless, we encounter the “why” question more frequently in situ-
ations where the everyday context is less apparent. When students ask this 
question, it should be interpreted as a symptom indicating that they do not 
appreciate mathematics. This could have many reasons, but the common 
style of instruction certainly has an influence. Are we really doing our best 
to make sure that education in the classroom becomes an intellectually 
stimulating and pleasurable experience? If lessons can be attended without 
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fear of failure and humiliation, it is more likely that mathematics gets a 
positive image. Try to create an atmosphere where curiosity will be rewarded 
and where errors and mistakes are not punished but rather are welcomed as 
a necessary part of acquiring competence. It is most important that you 
always try to enrich your lessons with interesting facts, examples, and prob-
lems showing that mathematics is fascinating and intriguing, and well worth 
the effort.

It is wrong to say that studying mathematics should always be fun and 
entertaining. Mathematics, like most worthwhile things, requires a great 
deal of effort to master. Mathematics is the science of structured thinking, 
logical reasoning, and problem solving. It requires commitment and time 
to acquire these skills. To solve a given problem, students have to concen-
trate on a task, devote attention to details, keep up the effort for some time, 
and achieve understanding. But the students will be rewarded: Practicing 
precise logical thinking as well as learning many problem-solving tech-
niques will be useful for many different situations in many different 
aspects of one’s life.

Often, the “why” question originates in a basic misunderstanding of 
what mathematics is about. The basic fact is that mathematics is useful 
because it solves problems. In fact, it has been developed for at least 4,000 
years to solve problems of everyday life. In early times, mathematics was 
needed for trading, managing supplies, distributing properties, and even 
describing the motion of the stars and planets to create calendars and predict 
seasons for agricultural and religious activities.

Over time, the scope of the problems that can be solved by mathematics 
has widened considerably, and presently it encompasses all fields of human 
knowledge. Mathematics is not only useful for measurements and statistics; 
it also, in particular, is needed to formulate and investigate the laws of 
nature. With the help of computer technology, mathematics can deal even 
with very complicated real-world problems. Therefore, mathematical models 
provide us with useful and vital information about climate change, economic 
trends and predictions, financial crises, movements of the planets, and the 
workings of the human body, to name a few. Mathematics has played a major 
role in many technical developments; a few more recent examples are space 
exploration, CD players, mobile phones, Internet technologies (e.g., the 
compression algorithms used for storing music, pictures, and movies), and 
global positioning system technology for navigation.

So, one of the main reasons to learn mathematics is that it is useful. 
Today it is more useful than ever before, and it is of importance to more 
fields of knowledge than ever before. Correspondingly, mathematics is used 
in many different jobs by scientists, engineers, computer programmers, 
investment bankers, tax accountants, and traffic planners, to name just a 
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few. Refusing to learn mathematics would mean closing off many career 
opportunities. Students will perhaps understand that it is important to keep 
their options open.

However, the comparatively simple mathematics problems prevailing 
in school are bound to create a wrong impression of the importance of 
mathematics in the modern world. For students, it may be impossible to 
understand what calculus has to do with meteorology or risk analysis or 
automotive engineering, unless you make some attempts to explain these 
connections. You should point out, for example, that the derivative of a 
function could be used to describe a rate of change. Differential calculus 
would be needed where we need precise information about the rate of 
change of some observable quantity. It should therefore become clear that 
even the basics of science and technology cannot be understood without a 
solid background in math.

There is a final, and perhaps the most important, reason why one should 
learn math, although it is difficult to communicate: Mathematics is a huge, 
logically and deductively organized system of thought, created by countless 
individuals in a continuous collective effort that has lasted for several thou-
sand years and still continues at breathtaking pace. As such, mathematics is 
the most significant cultural achievement of humankind. It should be a natu-
ral and essential part of everyone’s general education.

2. IS THERE A LANGUAGE  
CONNECTION BETWEEN MATHEMATICAL  
TERMS AND COMMON ENGLISH WORDS?

Many mathematical terms are seen by students as words whose definitions 
must be memorized. Students rarely see applications of these words outside 
their mathematical context. This is akin to having someone learn words from 
another language simply for use in that language and then avoiding tying the 
words back to their mother tongue, even when possible. To learn the mean-
ings of the frequently used mathematical terms without connecting them 
back to common English usage deprives students of a genuine understanding 
of the terms involved and keeps them from appreciating the richness and 
logical use of the English language. 

The term perpendicular, which everyone immediately associates with 
geometry, is also used in common English, meaning “moral virtue, upright-
ness, rectitude.” The rays that emanate from the center of a circle to its cir-
cumference take on a name closely related, radius. 

The rectangle is a parallelogram that stands erect. And the right angle, 
whose German translation is rechter Winkel, shows us the connection to 
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the word rectangle. By itself, the word right has a common usage in the 
word righteous, meaning “upright, or virtuous.” 

The word isosceles typically is used in connection with a triangle or a 
trapezoid, as in isosceles triangle and isosceles trapezoid. The word isosce-
les evolved from the Greek language, with iso meaning “equal” and “skelos” 
meaning “leg.” The prefix iso is also used in many other applications, as in 
isomorphism (meaning equal form or appearance, and in mathematics, two 
sets in a one-to-one onto relation that preserves the relation between ele-
ments in the domain), isometric (meaning equal measure), or isotonic (in 
mathematics sometimes used as isotonic mapping, referring to a monotonic 
mapping, and in music meaning that which is characterized by equal tones), 
just to name a few.

The word rational used in the term rational number (one that can be 
expressed as a ratio of two integers) means “reasonable” in our common 
usage. In a historical sense, a rational number was a “reasonable number.” 
Numbers such as 2  were not considered as “reasonable” in the very early 
days of our civilization, hence the name irrational. The term ratio comes 
from the Latin ratio, meaning “a reckoning, an account, a calculation” from 
where the word rate seems to emanate. 

It is clear, and ought to be emphasized, that natural numbers were so 
named because they were the basis for our counting system and were 
“nature’s way” to begin in a study or buildup of mathematics. Real numbers 
and imaginary numbers also take their mathematical meanings from their 
regular English usage.

Even the properties called associative, commutative, and distributive 
have the meaning that describes them. The associative property “associates” 
the first pair of elements together (out of three elements) and then associates 
the second pair of these three elements. The commutative property changes 
position of the first element of two to the second position, much as one 
“commutes” from the first position (at home) to the second position (at 
work), and at the end of the workday, reverses the “commute” from work 
back to home. The distributive property “distributes” the first element to the 
two other elements.

It is clear that when we speak of ordinal numbers, we speak of the posi-
tion or order of a number, as in first, second, third, and so on. The cardinal 
numbers refer to the size or magnitude of a number—that is, its importance. 
In this sense, one might say that the larger the number is, the more “impor-
tant” it is. In English, we refer to something of “cardinal importance.”

From the word complete, we get the term complementary, as a comple-
mentary item completes something. In its most common usage, an angle is 
the complement of another if it “completes” a right angle with it.

Once the prefix con meaning “with” is understood, terms such as concen-
tric (circles having the same center), coplanar (in the same plane), or concyclic 
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(points lying on the same circle) are easily defined. So just pointing out to 
students these small hints gives the mathematics terms more meaning.

The word cave, a hollow in a mountain, is related to the term concave, 
and one can draw a similar mental picture. The term convex, stemming from 
the Latin convexus, meaning “vaulted, arched, . . . drawn together to a 
point,” refers to the opposite of concave. 

Some words speak for themselves, such as a bisector, which sections 
something into two (equal) parts. The use of the prefix bi in mathematics is 
usually clear. For example, we have biconditional (conditional in two direc-
tions), binomial (having two names or terms), or bilateral (two sided). The 
word triangle also is self-descriptive: “three-angled polygon.”

When one considers the definition of factor in its common English usage 
(i.e., “one of the elements contributing to a particular result or situation”), 
the mathematical definition of factor becomes clear (i.e., one of the numbers 
multiplied to get a product). 

If we stretch the imagination just a bit, the term fraction also makes 
sense. It comes from the Latin fractio, meaning “a breaking in pieces,” 
which is what a fraction represents: a piece. In some languages, such as 
German, a language with roots similar to those of English, the word for frac-
tion is “Bruch,” which also means “a break or piece,” just as the Latin deri-
vation of fraction does. When we fracture a bone, we break the bone.

In making students aware of the words used in mathematics, you also 
should make them aware of the prefixes that indicate magnitude, such as poly, 
bi, semi, tri, quad, pent, hex, sept, oct, non, dec, dodec, and so on. These pre-
fixes, when combined with suffixes such as gon, hedron, and so on, allow 
students to determine a word’s meaning.

Not to be overlooked is the term prime number, since it stems from the 
true definition of the word prime. As in the word primitive, referring to the 
basic elements, in a mathematical sense a prime number is one of the basic 
numbers from which, through multiplication, we build the other numbers.

Whenever a new word or term is introduced in mathematics, it should be 
related back to common English usage. This may require having a good 
dictionary at ready reference. The time it takes to tie mathematical terms 
back to ordinary English will help strengthen the mathematical understand-
ing as well as enlarge a student’s regular vocabulary. It is time well spent!

3. HOW MANY LEAVES ARE ON A TREE?

At first sight, this question does not seem to have much to do with mathemat-
ics. But it is about counting, and this is where mathematics starts. There is 
no need for special knowledge in biology, but it could be helpful to join 
forces with the biology teacher when attacking a problem like this in class.



6 •  
100 Commonly Asked Questions in Math Class

First, we need to know what type of answer is expected. For a typical 
tree during the summer, the result will certainly be a very large number. It is 
fairly hopeless to determine this number exactly by counting the leaves one 
by one. And indeed, an exact answer (like 51,641) does not appear to be very 
useful. We would certainly be happy with a rough estimate like “about 
50,000.” Special techniques of estimating and guessing are needed to obtain 
a plausible answer, and it is well worth training these abilities, as they are 
important for applied science and technology.

There are several possible approaches to this problem, and for all of 
these approaches it is best to consider a real tree and eventually perform 
measurements on that tree, as it is difficult to obtain good estimates from 
pictures or memory alone.

One might start to estimate or count the number L of leaves on a typical 
twig. Next, we need to know the approximate number T of twigs on a branch, 
and a typical number B of branches on a main branch. Finally, we would 
count the number M of main branches of the tree. Then a reasonable guess 
for the number of leaves would be L T B M⋅ ⋅ ⋅ .  Of course, the numbers will 
differ from branch to branch and from tree to tree. And it will be worth dis-
cussing what we mean by “typical values” for L, T, B, and M. Indeed, what 
is a typical branch? One could try to obtain several samples from a tree, 
count the number of leaves on each of these branches, and then compute the 
average (arithmetic mean). Depending on the situation and depending on 
whether you choose lower or higher numbers for these quantities, you will 
get probably something between 10,000 and 1,000,000 leaves. This should 
give you an idea of the order of magnitude (i.e., the power of 10) to be 
expected. It is a typical feature of this type of question that, no matter how 
we proceed, the final result will be far from unique. After all these estimates, 
we cannot say whether the result is right or wrong; we can at best judge the 
result as more or less plausible.

A rather ingenious method to estimate the number of leaves on a tree 
arises from some insight into the function of the leaves. Their main purpose 
is to collect sunlight for the process of photosynthesis. Therefore, the leaves 
are positioned to collect light from all directions, or at least from above. 
Assuming, for the sake of argument, that the crown of the tree is roughly a 
sphere, it would make sense to position the leaves in such a way that every 
point of the surface of this sphere (or at least the upper half of the sphere) is 
covered by one leaf (or perhaps by two leaves, but not many more, because 
the leaves outside would cast shadow on the leaves inside, thus making them 
rather useless for photosynthesis). So we could ask how many leaves are 
needed to cover the surface of a sphere that has the same diameter as the 
crown of our tree. To estimate the total number of leaves, we would (a) com-
pute the size of the spherical surface exposed to the sun in square meters and 
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(b) determine the number of leaves needed to cover 1 square meter with not 
too much overlap (this can be determined experimentally or from an estimate 
of the surface area of one leaf, which is an interesting problem in itself).

As an example, consider a tree whose crown has a diameter of about 
10 meters. For a sphere with a radius of r ≈ 5 meters, we get a surface of 
4πr2 ≈ 314 m2. Assuming, that about 1,000 leaves are needed to cover a 
square meter, we would need about 314,000 leaves to cover the surface of 
the crown.

There is another, related method. When the tree sheds its leaves in fall, we 
expect that the ground beneath the crown would be covered by leaves, proba-
bly by more than one layer. Assuming that the roughly spherical area under the 
crown (area πr2 ≈ 78.5 m2) is covered by four layers of leaves, we would get 
the same answer as above. Forestry scientists use a measure called Leaf Area 
Index (LAI). This is defined as the leaf area (one-sided) in the part of the 
crown above a unit of ground surface area. So LAI = 1 means that the leaves 
of the tree can be used to cover the ground just once, while LAI < 1 means that 
you can still see the ground between the leaves. LAI = 4 means that you can 
cover the area beneath the crown with four layers of leaves from that tree. In 
an oak wood, the LAI is typically 5 to 7; for a beach wood, the LAI is 6 to 8. 
Assuming a LAI of 6, a big old oak tree whose crown has a radius of 15 m 
could well have a total leaf surface of about 6 × 152 × π ≈ 4,250 m2. If the area 
covered by one big oak leaf is about 50 cm2, we would need about 200 leaves 
to cover 1 m2 of ground, and therefore we get about 200 × 4,250 = 850,000 
leaves for that oak tree. 

Questions like this have come to be known as Fermi questions, named 
after the famous physicist and Nobel laureate Enrico Fermi, who liked to 
pose questions like “How many piano tuners are in Chicago?” to train his 
students’ abilities to seek fast, rough estimates in situations where the avail-
able facts are incomplete or where a direct measurement seems to be difficult 
or impossible. Other examples of Fermi questions include the following: 

“How many hairs are on your head?”

“How many drops of water are in the Atlantic ocean?”

“How many words have you said so far in your life?”

“How many golf balls will fit into your classroom?”

“How long is the queue if all the people living in New York would line up?”

“What is the weight of the U.S. public debt in 100 dollar bills?” and so on. 

When approaching these questions, it is important to avoid giving up 
early with a shrug and the attitude “How could I know?” The main effect 
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is that students will have to create a strategy, think in big numbers, learn to 
change units as needed, and learn to make estimates and reasonable 
guesses. In short, they are forced to employ everyday reasoning when 
doing mathematics.

4. WHY DO WE HAVE TO LEARN  
ABOUT THE HISTORY OF MATHEMATICS?

Students study a variety of mathematical topics throughout their secondary 
school experience. They learn about the Pythagorean theorem, Pascal’s tri-
angle, Euclidean geometry, the Cartesian plane, Platonic solids, Boolean 
algebra, Gaussian arithmetic, Diophantine equations, Euler’s equation, 
Fibonacci numbers, and a multitude of other mathematical concepts and prin-
ciples. You may notice that the 10 aforementioned topics are named after 
great mathematicians, whose work and discoveries contributed to the growth 
and development of mathematical ideas.

It is essential for students to go beyond the rote and procedures of learn-
ing mathematical skills in the classroom. Discovering where all of these 
mathematical rules, axioms, conjectures, and theorems came from will help 
reveal to students how the developments in mathematics have helped to 
shape the cultures of the world, and how the cultures of the world influenced 
mathematics, for example, how the growth of numbers and numeration is 
revealed in language, how the concept of quantification led to different theo-
ries of arithmetic, how the concept of informal measurement led to geometry, 
how early theories of astronomy led to trigonometry and logarithms, and 
how analytic geometry and calculus were developed to gain a better under-
standing of motion. 

One reason why students should learn mathematics from a historical 
perspective is that mathematics has a rich cultural heritage. Studying the his-
tory of mathematics will help students appreciate this culture. Moreover, 
learning mathematics from a historical perspective will help students realize 
the connections of mathematics to other disciplines such as art, music, archi-
tecture, crafts, religion, and philosophy.

Learning about the history of mathematics can give students a deeper 
appreciation of mathematics, and therefore help them personalize mathe-
matics. In addition, by learning about the great mathematicians, students 
can appreciate the contributions of different cultures throughout the world. 
Students can also learn to value the persistent efforts and collected genius 
of these influential mathematicians, and subsequently discover how math-
ematics evolved throughout the ages and how new branches of mathemat-
ics were developed. Moreover, students will be able to recognize the value 
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of how the combined advances in mathematics transformed not only math-
ematics but also other sciences and civilization.

Learning about the history of mathematics motivates students and the 
mathematics becomes more functionally relevant to their lives, and in 
turn, they will become more interested, which helps to spur student 
achievement. Oftentimes, students take a small tidbit of historical facts 
revealed in the mathematics classroom to their history class, thereby 
forming a genuine link between the subjects. Each subject benefits from 
this connection.

5. WHO INTRODUCED THE HINDU-ARABIC 
NUMBERS TO THE WESTERN WORLD, AND WHEN?

In the early Middle Ages, Europeans still used the Roman numeral sys-
tem for commerce and trade. The Roman numeral system was quite lim-
ited in that it lacked a real system of place value as well as a value of 
zero. There were only seven symbols, and each represented a different 
number:

I = 1

V = 5

X = 10

L = 50

C = 100

D = 500

M = 1,000

Numbers were read from the left to the right, with the largest valued 
symbol appearing in the leftmost position. In addition, there was a 
minimal placement agreement that if a smaller valued symbol preceded 
a larger valued symbol, one would subtract the smaller value from the 
adjacent larger value. For example, the year 2013 would be represented 
as MMXIII and the year 1942 would be MCMXLII. The only additional 
representation this system offered was that if a horizontal line was 
placed over a symbol, it was meant to multiply its face value by 1,000, 
so V  would represent 5,000.

We retain Roman numerals for special uses today such as the num-
bering of preface pages in texts, memorializing the construction date of 
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significant buildings, naming subsequent heirs to a throne or members 
of a family such as John Smith III, and recording the release dates for 
movies.

When working in Roman numerals, one would often need to do calcula-
tions on an abacus. You can imagine how long a process would be needed 
for very large numbers that are common today, such as the U.S. national 
debt, which as of the beginning of the year 2013 stood at $16,436,821,542,578 
and is still growing. 

One of the most famous mathematicians of the Middle Ages was 
Leonardo of Pisa (also known as Fibonacci; c. 1170–1250). He was born in 
Italy but grew up in North Africa, near Algiers, where his father, Guglielmo, 
was stationed as a trade representative for the city-state of Pisa. He travelled 
widely with his father in the Middle East and was exposed at an early age to 
the Arab system of numeration and the use of zero. He studied under the 
leading Arab mathematicians and quickly realized the advantage of the 
Hindu-Arabic place-valued decimal system over the Roman numeral system. 
In 1202, at the age of 32, Fibonacci wrote Liber Abaci (The Book of 
Calculation), which was well received by educated Europeans. It introduced 
them not only to the Hindu-Arabic system and the number zero but also to 
our current notations for fractions and square roots. 

The Hindu-Arabic numeration system had 10 symbols, which have been 
modified and morphed from their appearances in the Middle Ages into our 
current mathematical number symbols. See the comparative chart of the 10 
symbols from medieval times to modern times below.

Hindu-Arabic ١ ٠ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩

European 0 1 2 3 4 5 6 7 8 9

By using the 10 symbols called digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and a 
place-value system based on the powers of 10, numbers of any size could 
easily be represented and used in calculations.

The place-value system permitted the digits to carry the “weight of their 
place” times their face value. For example, in the number 123,056, we note 
the place value below the digit face value, beginning with the rightmost digit.

1 2 3 0 5 6

Hundred-
thousands

Ten-
thousands

Thousands Hundreds Tens Ones

105 104 103 102 101 100
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To evaluate, start from the right end and the first digit, 6:

Digit 6 is in the units or ones column and represents 6 × 1 = 6 

Digit 5 is in the tens place and represents 5 × 10 = 50

Digit 0 is in the hundreds place and represents 0 × 100 = 000

Digit 3 is in the thousands place and represents 3 × 1,000 = 3,000

Digit 2 is in the ten-thousands place and represents 2 × 10,000 = 20,000

Digit 1 is in the hundred-thousands place and 
represents

1 × 100,000 = 100,000

Adding all these values gives us the original number 123,056

There is no limit to the size of the number you can represent using only 
the 10 digits and employing the zero as a placeholder.

The number above represents a whole number. If we expand to the right 
of the decimal point, the system works perfectly as digits that appear there 
have a place value continuing in order from left to right as 10−1, 10−2, 10−3 as 
tenths, hundredths, thousandths, and so on.

Acceptance and use of the Hindu-Arabic number system quickly 
spread and became practical and functional in everyday life as well as in 
spheres of trade and finance such as importing and exporting, banking, 
calculating interest, and money exchanges. These changes had a profound 
impact on all mercantile and merchandising activities throughout the 
European world.

6. WHAT ARE THE THREE  
FAMOUS PROBLEMS OF ANTIQUITY?

Unsolved problems have always fascinated people. The three geometric 
problems of antiquity are perhaps the most famous of all. They were posed 
by the ancient Greeks and remained unsolved for more than 2,000 years. The 
solution obtained in modern times, with the help of abstract algebra, was not 
quite satisfactory either.

The three problems are as follows:

 1. The trisection of an arbitrary angle

Given an angle, construct an angle one-third its measure.

 2. The doubling of a cube

Given a cube, construct a cube with double the volume.
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 3. The squaring of a circle

Given a circle, construct a square that has the same area as the circle.

But here is a hitch. The only tools allowed to accomplish these tasks are 
a compass and an unmarked straightedge (and a pencil, of course). Moreover, 
according to Euclidean geometry, the only operations that are allowed to be 
done with these tools are the following:

 1. Drawing points 

 2. Connecting two points with a line segment

 3. Drawing a circle centered at a given point with a given line segment 
as radius

 4. Marking intersection points (of two lines, of a line and a circle, of 
two circles)

When we say that something can be done with compass and unmarked 
straightedge, we mean that the whole construction can be reduced to a finite 
sequence of the four steps listed above. 

It turned out that the three problems of antiquity are impossible to 
accomplish with a compass and straightedge, and using only allowed opera-
tions. For a very similar reason, it is impossible to construct a regular hepta-
gon (a seven-sided polygon).

The impossibility of these constructions follows from modern algebra 
and is rather difficult to prove at secondary-school level. The general result 
is the following:

Starting with a line segment of unit length, a line segment of length L 
can only be constructed (using compass and unmarked straightedge) if L can 
be obtained from the rational numbers by a finite number of steps involving 
the operations addition/subtraction, multiplication/division, and taking 
square roots. Using the theory of fields, one can show that whenever a num-
ber L is constructible in this sense, then L is an algebraic number (i.e., a root 
of a polynomial with integer coefficients), and that the degree of its minimal 
polynomial is a power of 2 (the minimal polynomial is the polynomial with 
the smallest degree that has L as a root). It can be seen that problems 1 and 
2 lead to minimal polynomials of degree 3 and problem 3 would need the 
construction of the square root of π, which is a transcendental number (i.e., 
it is not the root of a nontrivial polynomial with integer coefficients).

Thus, all of these problems have been proven to be unsolvable. Of 
course, this result depends on the required usage of compass and unmarked 
straightedge only for its construction. It is possible to obtain solutions, if 
other tools are allowed or if the tools are used in nonstandard ways.
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Here we will provide an example for a trisection of an angle that was 
described by Pappus around AD 320 but is certainly much older (probably 
the oldest known construction of this type).

We are given an angle with vertex at P, as indicated in Figure 1.1. Draw 
a point A on one of the legs of the angle, thus creating a line segment PA of 
length a. Through point A, draw one line g parallel to the other leg of the 
angle, and one line h perpendicular to g.

h

h

BA

D

C

P

g

a

a

a
δ

δ

β

β

a

Figure 1.1  

Next, draw a line through the vertex P intersecting h at C and g at B in 
such a way that the length of the segment CB is precisely 2a. (This step can 
be achieved if we mark the length 2a on a ruler and move the ruler in the 
plane until it has the required position—unfortunately, this is not an allowed 
Euclidean operation.) 

The line segment PB cuts the given angle into two parts, which we call 
β and δ. Obviously, the angle at B also equals β.

The midpoint D of segment BC defines an isosceles triangle DAP so 
that the angle δ also appears at D, as indicated. But the triangle ADB is also 
isosceles so that the angle δ is easily shown to be 2β. Hence the original 
angle at P is β + δ = 3β. This shows that the newly constructed angle β 
trisects the given angle at P.

Another method was developed by Archimedes: Given an angle with 
vertex P, draw a circle with radius r around P. Let A be the intersection of 
that circle with one of the legs of the given angle. Through A, draw a straight 
line as in Figure 1.2, such that the segment CB has precisely the length r. 
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Then the indicated angle at C is precisely one-third of the given angle at P. 
This is rather easy to see and probably a good exercise for your students.

Fitting a line segment of a given length between two given lines in a certain 
way is called a “Neusis construction.” It requires that two points on a straight-
edge are marked, and the straightedge is moved until the two points have the 
desired position. Unfortunately, this is not an allowed Euclidean operation.

C

B

A

P

r
r

Figure 1.2  

These famous problems have attracted amateurs who tried to find solu-
tions, ignoring the proven fact that they cannot be solved. Even today, math-
ematicians are frequently approached by people who believe that they have 
a solution to one of these famous problems. What they really have is most 
probably either an approximate or a Neusis construction.

7. WHAT ARE THE FIBONACCI NUMBERS?

Leonardo of Pisa, called Fibonacci (1170–1250), was one of the best-known 
mathematicians of the Middle Ages. He lived in Bugia, a trading post in 
Algiers, where his father was probably the resident trade authority for the city-
state of Pisa. Fibonacci travelled widely with his father and was exposed to 
Eastern mathematical thoughts and ideas, and he carried the accomplishments 
of Persian (Iranian), Indian, and Arabic mathematicians back to Western civi-
lization. One of the most well-known examples of Eastern mathematics he 
worked with and introduced was the number sequence that bears his name.

The Fibonacci sequence1 is defined by giving its initial value(s) and a 
rule that determines the next term in the sequence. The first two terms of the 
Fibonacci sequence are

F1 = 1

F2 = 1
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Fibonacci Rule: Each proceeding [next] term is the sum of the previous 
two terms so that

F3 = F2 + F1 = 1 + 1 = 2

F4 = F3 + F2 = 2 + 1 = 3

F5 = F4 + F3 = 3 + 2 = 5

 F6 = F5 + F4 = 5 + 3 = 8 

And, in general: F F Fn n n= +− −1 2  with n ≥ 3

Obtaining the next dozen or so terms is usually easy for students, but it 
may be interesting to discuss whether there will be even and odd numbers, 
squares, cubes, primes, and composites coming up in the sequence. They 
quickly get 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, and they will ask, 
“So, what is so special about this sequence that it has enjoyed such long-
lasting popularity?” The answer is to demonstrate the amazing beauty and 
wealth of applications that developed from this simple sequence known to 
Indian mathematicians in the sixth century but popularized in European 
culture by Fibonacci in his well-received book Liber Abaci (1202). 

The Fibonacci numbers emanate from the discussion of the “Growth of a 
Pair of Rabbits,” which appears in Chapter 12 of Fibonacci’s book Liber 
Abaci: Here is a translation of the problem as it appeared in Fibonacci’s book. 

Beginning
1
First
2
Second
3
Third
5
Fourth
8
Fifth
13
Sixth
21
Seventh
34
Eighth
55

“A certain man had one pair of rabbits together in a certain enclosed 
place, and one wishes to know how many are created from the pair in 
one year when it is the nature of them in a single month to bear 
another pair, and in the second month those born to bear also. Because 
the above written pair in the first month bore, you will double it; there 
will be two pairs in one month. One of these, namely the first, bears in 
the second month, and thus there are in the second month 3 pairs; of 
these in one month two are pregnant and in the third month 2 pairs of 
rabbits are born and thus there are 5 pairs in the month; in this month 
3 pairs are pregnant and in the fourth month there are 8 pairs, of 
which 5 pairs bear another 5 pairs; these are added to the 8 pairs 
making 13 pairs in the fifth month; these 5 pairs that are born in 
this month do not mate in this month, but another 8 pairs are 
pregnant, and thus there are in the sixth month 21 pairs; to 
these are added the 13 pairs that are born in the seventh month; 
there will be 34 pairs in this month; to this are added the 21 pairs 
that are born in the eighth month; there will be 55 pairs in this month; 
to these are added the 34 pairs that are born in the ninth month; there

(Continued)
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The chart below summarizes this calculation.

(Continued)

Month Pairs

Number of 
pairs of 

adults (A)

Number of 
pairs of 

babies (B)
Total 
pairs

January 1   1   0   1

February 1   1   1   2

March 1   2   1   3

April 1   3   2   5

May 1   5   3   8

June 1   8   5  13

July 1  13   8  21

August 1   21  13  34

September 1  34  21  55

October 1  55  34  89

November 1  89   55 144

December 1 144  89 233

January 1 233 144 377

A

A B

A

A

A

A B B B B BA A A A A A A

A A A AB B B

A AB B

B A

Ninth
89
Tenth
144
Eleventh
233
Twelfth
377

will be 89 pairs in this month; to these are added again the 55 pairs that 
are both in the tenth month; there will be 144 pairs in this month; to 
these are added again the 89 pairs that are born in the eleventh month; 
there will be 233 pairs in this month. To these are still added the 144 
pairs that are born in the last month; there will be 377 pairs and this 
many pairs are produced from the above-written pair in the mentioned 
place at the end of one year.

You can indeed see in the margin how we operated, namely that we added 
the first number to the second, namely the 1 to the 2, and the second to 
the third and the third to the fourth and the fourth to the fifth, and thus 
one after another until we added the tenth to the eleventh, namely the 144 
to the 233, and we had the above-written sum of rabbits, namely 377 and 
thus you can in order find it for an unending number of months.”

The number of pairs of mature rabbits living each month determines the Fibonacci 
sequence (column 1): 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .
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Nature is full of examples of the Fibonacci 
sequence. Flowers of every sort have petals in 
the count of 5, 8, and even the popular “she loves 
me, she loves me not” daisy usually sports 34 
petals (Figure 1.3). Knowing that even number, 
you should always begin with the situation you 
do not want to end with. Only an odd number of 
petals, such as 33 or 35, will produce the situa-
tion you start with. The spiral of a seashell is the 
shape of a spiral formed by the Fibonacci num-
bers (Figure 1.4).

A closely aligned integer sequence was intro-
duced by Eduardo Lucas (1842–1891). His 
sequence began with the numbers 1, 3 instead of 
1, 1, which is the beginning of the Fibonacci 
numbers. Therefore, given L1 = 1, L2 = 3, using the “familiar” rule Ln+2 =  
Ln + Ln+1, the sequence of Lucas numbers would be 1, 3, 4, 7, 11, 18, 29, 
47, . . . 

The Lucas numbers are related to the Fibonacci numbers by several 
identities, one of which appears below:

L F F F Fn n n n n= + = +− + −1 1 12  

Mathematicians worldwide are still fascinated by the Fibonacci number 
sequence and continue to do research work on the sequence and related 
mathematics, producing university-level articles that are reviewed and pub-
lished by the Fibonacci Quarterly, the official publication of the Fibonacci 
Association. The Fibonacci Quarterly is a scientific journal that has been 
publishing articles since 1963. Research articles as well as those presenting 
and solving elementary and advanced problems in related fields dealing with 

Figure 1.3  

Source: Wikimedia Commons

Source: Chris 73/Wikimedia

34

55

21
13

85

Figure 1.4  
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Lucas numbers, primes, the golden ratio, graph coloring, the Pythagorean 
triples, and topics in advanced mathematics, music, computers, and art are 
submitted to the journal editorial staff for distribution to interested readers. 

8. WHAT IS THE GOLDEN RATIO?2 

Students may be familiar with the golden rectangle and the architectural 
beauty of the ratio of its sides. Extending these wonders, have the students 
take the ratio of any pair of consecutive Fibonacci numbers and consider 
their value. As the students use the larger Fibonacci numbers to calculate the 
ratio, they will find themselves getting closer and closer to the “ideal” ratio 
found in the length/width ratio of the golden rectangle, which is known as 
the golden ratio.

Ratio of Consecutive  
Fibonacci Numbers Value of Ratio

5

3

1.66667

8

5

1.60000

13

8

1.62500

21

13

1.61538

34

21

1.619048

233

144

1.618056

987

610

1.618033

f

f

n

n

+1
1.6180339887498948482045868 . . . 
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Furthermore, the Fibonacci numbers can be 
used as square blocks to build a close approxi-
mation of a golden rectangle, which is shown in 
Figure 1.5.

When we talk about the beauty of mathe-
matics, we tend to think of the most beautiful 
rectangle. This is the golden rectangle, which 
has been shown by psychologists to be the most 
esthetically pleasing rectangle. We will now 
consider this golden ratio from the algebraic 
point of view. 

Begin by having students recall the golden ratio: 
1

1

−
=

x

x

x
.

This gives us x2 + x – 1 = 0, and x =
−5 1

2
. 

We let 5 1

2

1−
=

φ
.

Not only does φ φ
φ φ

⋅ = − =
1 1

1 1 (obviously!), but .

This is the only number for which this is true.
Your students may want to verify this.3

By the way, students may want to know what value φ  has. They can 
easily determine it with the help of a calculator:

φ =1.61603398874989484820458683436563811772030917980576 

and 1

φ
 = .61603398874989484820458683436563811772030917980576 . . . 

There are many other interesting features of φ.  Your students ought to 
be guided to develop some after you give them the proper hints. They might 
want to show that this infinite continued fraction has the value φ.  

φ = +
+

+
+

+
+

+
+

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1 

8

5

3
2

1 1

2

8888888888

22222222

Figure 1.5  
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To do this, students ought to realize that nothing is lost by truncating the 
continued fraction at the first numerator. This will give them the following: 

φ
φ

= +1
1 , which yields the golden ratio.

Another curious relationship is

φ = + + + + + + + +1 1 1 1 1 1 1 1 

Each of these is easily verifiable and can be done with a similar tech-
nique. We shall do the second one here and leave the first one to be justified 
by your students.

x

x

x x

x

= + + + + + + + +

= + + + + + + + + +

= +
=

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1

2

2





φ from the  definition of φ.

It is fascinating to observe what happens when we find the powers of φ.

φ φ

φ φ φ φ φ φ φ φ φ

2

2

3 2 2

5 1

2

5 3

2

5 1

2
1 1

1 1

=








 = = + = +

= ⋅ = +( ) = + = +( ) + =

+ + +

22 1

1 1 2 1 1 2 1 3 2

2

4 2 2 2

5 3 2

φ

φ φ φ φ φ φ φ φ φ φ

φ φ φ

+

= ⋅ = +( ) +( ) = + + = +( ) + + = +

= ⋅ = φφ φ φ φ φ φ φ

φ φ φ φ φ

+( ) +( ) = + + = +( ) + + = +

= ⋅ = +( ) +( )
1 1 2 3 1 2 1 3 1 5 3

2 1 2 1

2

6 3 3 == + + = +( ) + + = +

= ⋅ = +( ) +( ) = + + =

4 4 1 4 1 4 1 8 5

3 2 2 1 6 7 2

2

7 4 3 2

φ φ φ φ φ

φ φ φ φ φ φ φ 66 1 7 2 13 8φ φ φ+( ) + + = +

and so on.
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A summary chart reveals a pattern among the coefficients of φ.

φ φ

φ φ

φ φ

φ φ

φ φ

φ φ

2

3

4

5

6

7

1

2 1

3 2

5 3

8 5

13 8

= +

= +

= +

= +

= +

= +

These are the Fibonacci numbers (see page 14).
By this time, your students are probably thinking that there is no end to 

the connections that one can draw to the golden ratio. Indeed, they are correct!

9. IS THERE A SMALLEST NUMBER,  
AND IS THERE A LARGEST NUMBER?

Before we can find the smallest or largest natural number, we have to define 
what we mean by natural number. Here we have two opinions. Some math-
ematicians define



, the set of natural numbers, as the set of nonnegative 
integers, while others call only the positive integers the natural numbers. If 
we take the first definition, then 

 = {0, 1, 2, 3, . . . } and the smallest natu-
ral number is zero. If we take the second definition, then 

 = {1, 2, 3, 
4, . . . } and the smallest natural number is one. In either case, there is a 
definite number we can identify as the smallest in the set of natural numbers.

If we now look for the largest number in the set 


, using either definition, 
we see that no matter what natural number we pick, there will always be a 
larger one as the members of the natural numbers differ from each other by 
one; thus, it is easy to create “the next natural number.” So if you say that “n” 
is the largest, one can counter that by creating the natural number “n + 1” and 
n + 1 > n, and we now have found a number that is definitely bigger than n. 
Therefore, there is no largest natural number. When this happens, we say that 
the set goes on forever or that its members increase without bound. When 
considering a largest value in sets that have this concept of unboundedness, 
we note a largest value by the symbol +∞,  which is translated as positive 
infinity and means that the set has no identifiable value as the largest, as the 
members of the set continue to grow in a positive direction. Think of standing 
on the natural number line and looking toward the right where the “horizon” 
lies. Looking toward the horizon, you begin to walk in that direction while 
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focused on reaching the horizon. But you never actually get there since the 
horizon continues to stretch to the right, beyond where you are.

It would be the same as we turn our attention to the set of positive real 

numbers, 

positive ,  and look for a largest member. We see that the set 



positive ,  as with the set , grows without an upper bound, and for every 

real number, there will always be a larger one. We say the upper limit of 



positive  is also +∞, which implies that the positive real numbers increase 
without bound.

Continuing, we look in the other direction to see if the set of positive 

real numbers, 

positive ,  has a smallest member, and we meet the concept 
of boundedness. Before we begin our search, consider this task: You are 
standing about 20 feet from the door. The door is point “0” and you must 
move toward that door by halving your distance from it in each move. Your 
first move brings you to 10 feet from the door, then 5 feet, then 2.5 feet, 
then 1.25 feet, and now you are close. Your next move brings you to .625 
feet (almost 7 1

2
 inches) from the door, and then you are .3125 feet (less 

than 4 inches) from the door. Watch out that you do not bump your nose as 
you move this close to the “zero” point! In theory, you get closer and closer 
to that door but you never really will be at the exact zero place—the door. 

We can now form an analogy with the positive real numbers. The set, 



positive ,  has a lower bound of zero that is not a member of this set since 
zero is in a class by itself and is neither positive nor negative. The positive 
numbers begin to the right of the zero point. As we find smaller and smaller 
positive real numbers, we are moving closer toward zero. We can always get 
a bit closer by halving the smallest real number we have, but we will never 
hit the zero. So there is no smallest positive real number. 

Moving on, let us consider the smallest number in the set of all the 
real numbers, , which would include all the negative numbers and zero, 
along with all the positive numbers. As the positive real numbers increase 
without bound, the negative real numbers decrease without bound. Taking 
all the real numbers into consideration, for every real number, you can 
find one less than it by just subtracting any positive amount from it. So if 
one claims that x is the smallest real number, you can offer x – .001 as 
smaller: x – .001 < x. Likewise, looking for the largest real number, if one 
claims that y is the largest, then you can offer y + .001 as a larger number. 
So the set of real numbers, 


, increases and decreases without bounds and 

ranges from “that horizon off to the left” known as negative infinity, −∞, 
to “that horizon off to the right” known as positive infinity, +∞. In interval 
notation, we write that 

  = (−∞, +∞). This is an “open” interval, meaning 
the +∞  and the −∞  represent the concept of the set of real values, having 
no bounds in either direction and having no smallest and no greatest real 
number.




