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Learning Objectives

In this chapter you will 

1. Understand and use bivariate and multiple linear regression analysis 

2. Understand the concept of the regression line and how it relates to the regres-
sion equation

3. Understand the assumptions behind linear regression

4. Be able to correctly interpret the conceptual and practical meaning of coeffi-
cients in linear regression analysis

5. Be able to use SPSS and Excel to conduct linear regression analysis

Predicting Relationships

Emily’s Case

“It was a great conference,” Leo exclaimed as he slipped into the back-
seat of Emily’s car. 

Mei-Lin agreed enthusiastically as she got in the front passenger 
side. “This was really good. Thank you, Emily.” 

“My pleasure,” Emily replied with a laugh as she settled behind the 
driver’s wheel. “People liked Leo, don’t you think?”

Mei-Lin turned toward the back. “I was so proud of you!” 
“It’s true,” Emily continued, “you did a great job making the statis-

tical analysis on the impact of the diversity training understandable. 
HR professionals are not usually into statistics, but I think they liked it.” 

As they drove back to Westlawn, they talked about the things they learned at the con-
ference. Emily and Mei-Lin were particularly interested in a presentation where the speaker 
talked about the cumulative effects of training and employee education. The point was that 
a one-time training is not enough to make an impact on employee development. The 
speaker emphasized the importance of having a long-term strategic plan for training and 
employee education and to track the results. 
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“She made a good point,” Mei-Lin argued. “We need to continue the diversity trainings 
if we really want to make an impact.” 

Emily smiled. “We just need to secure the resources to keep it going.”
Leo leaned forward between them. “You know, it occurs to me that this ‘cumulative 

effect’ of training; if it’s true, it should show up in our survey data.” Neither Emily nor 
Mei-Lin responded, so Leo explained what he meant. “We have a question that asks 
how many diversity trainings the employee has attended in the past. We had quite a 
few who responded. I wonder if we can predict the level of cultural competence by the 
number of diversity trainings they attended in the past. If it’s cumulative, then the level 
of cultural competence should be higher with the people who attended more trainings, 
right?”

Mei-Lin picked up on the significance of the idea first. She was writing a proposal to 
justify a new round of diversity training, and this looked like a useful piece of evidence.

“That’s a great idea, Leo.” Mei-Lin responded. “I would really like to see what that looks 
like. Is it easy to run that analysis?”

“Hey, he’s Leo,” Emily joked. They all laughed.
“Sure, I can do that pretty quickly,” Leo confirmed. He was already curious. “I’ll get on it 

tonight.”

Mary’s Case

Mary was a little frustrated that nobody at Health First showed much interest in 
her research-based approach to volunteer recruitment and retention. She needed a 
sounding board. Yuki, her grad-school friend who headed the research department 
at one of the major foundations in the area would certainly understand. She had 
helped Mary get started on this project. Mary sent Yuki an invitation and met her 
the next day at a coffee shop about halfway between their two offices.

“It’s such a nice day, let’s sit outside,” Yuki said, holding a latte in her hand. 
As soon as they sat down at a metal table outside the coffee shop, Yuki jumped 

right to the topic she knew was on Mary’s mind. “So, how’s your research on the 
volunteers going?” 

Typical Yuki style, Mary thought. No “how’s your parents?” or “how’s your boyfriend?” or 
“how’s your dog?” niceties. This was one thing she liked about Yuki. She smiled apprecia-
tively as she responded.

“I read your qualitative research books. Thanks for loaning them to me. I want to keep 
them a little longer, if you don’t mind.” 

“That’s fine,” replied Yuki. 
Mary sipped her coffee and continued, “I’ve been spending a lot of time thinking about 

whom I should interview and what questions I should ask.” 
Yuki nodded and said, “As you should be.” 
“In the mean time, I obtained data from HR on the background of the volunteers, and 

I’ve been analyzing it.” Mary told Yuki about the correlation and chi-square analyses she 
had conducted using the volunteer profile data. 
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Yuki answered with a knowing look: “Not surprising you are doing statistics. You like 
quantitative data. Sounds like you are getting interesting results.” 

Encouraged by Yuki’s interest, Mary shared her thoughts on another analysis she was 
thinking about. “At Health First, we don’t have much money to put into a major volunteer 
recruitment campaign, so we need to focus our resources on the most efficient ways to 
recruit volunteers.” Mary paused to be sure Yuki was following. 

“Go on,” Yuki encouraged. 
“We don’t have very much information about the current volunteers, but we do ask when 

they start how many hours they are willing to put in for their volunteer work. It appears 
from feedback from other managers that the number of hours the volunteers actually work 
is pretty close to what they said they would work. So—”

Yuki leaned forward, anticipating the punch.
“—I thought, in addition to increasing the number of volunteers themselves, I should 

focus on volunteers who are willing to work more hours. That gives us a better return on our 
investment.”

Yuki laughed and said, “I can’t believe you use a phrase like ‘return on investment’ about 
the volunteers. You were always so opposed to the business approach in nonprofit manage-
ment.” She saw Mary was a little startled. “But what you say makes sense.” 

Yuki, looked down and stirred her latte, and continued, “So, I suppose this idea of yours 
means you have a new plan for your research?” 

“You are right on.” Mary was glad she had a friend she could talk to about research 
without worrying about coming across too geeky. She opened up: “Literature suggests that 
people who have more income tend to volunteer more. I don’t know if that’s the case with 
the volunteers in our region, but I was thinking about running a regression analysis that 
predicts volunteer hours with our volunteers’ level of income.” 

“Interesting idea,” Yuki nodded. “What other volunteer background information do you 
have? Do you know their age and gender, and anything else? You can run a multiple 
regression and see which volunteer background information predicts volunteer hours signifi-
cantly and also has the strongest relationship with the volunteer hours.”

“Brilliant idea, Yuki!” Mary exclaimed. She pursued Yuki’s suggestion, and the two 
friends blithely slipped into geekdom, talking about regression analysis. They did not notice 
their drinks getting cold. 

Linear Regression Analysis

In Chapter 11, we introduced a way to examine the relationship of two continuous 
variables. In this chapter, we will build on this idea with an analytical tool, called 
linear regression analysis that uses correlation as a basis to predict the value of 
one variable from the value of a second variable or the combination of several 
variables. 

In regression analysis, the variable that the researcher intends to predict is the 
dependent variable (sometimes called outcome variable or criterion variable). 
Typically the notation “Y” is used to describe the dependent variable. The variable 

©SAGE Publications



258  ❖  SECTION II DATA ANALYSIS

that the analysis uses to predict the value of the dependent variable is the indepen-
dent variable (sometimes called predictor variables). The notation “X” is used to 
describe the independent variable. Linear regression analysis provides information 
about the strength of the relationship between the dependent variable and indepen­
dent variable. When there is only one independent variable in the regression analy­
sis, it is called bivariate (or simple) linear regression analysis. When there are two 
or more independent variables involved in the analysis, it is called multiple regres-
sion analysis. 

In Mary’s case, she is considering using bivariate linear regression analysis to pre­
dict volunteer hours (dependent variable) with the volunteers’ income level (indepen­
dent variable). Yuki suggested a multiple regression analysis to predict volunteer hours 
(dependent variable) with not only the income level, but also age, gender, and other 
information that might be available on the volunteers (independent variables). By 
examining the relative strength of the relationship of each independent variable with 
the dependent variable, Mary can identify the kind of volunteers she needs to maxi­
mize volunteer hours. 

As with all statistical tests we introduced in this book, linear regression analysis is 
also based on a set of assumptions (Fox, 1991; Kahane, 2008), as follows: 

1. Linearity: The relationship between the dependent variable and the indepen­
dent variables are linear in nature. 

2. Normality: The dependent variable is measured as a continuous variable and is 
normally distributed. The basic form of linear regression also assumes that the 
independent variables in the linear regression are continuous and are normally 
distributed. There are ways, however, to incorporate and interpret categorical 
independent variables in the regression analysis as dummy variables.

3. Homoscedasticity: The word homoscedasticity is derived from the Greek homo 
for same and skedastickos for dispersion (Merriam­Webster, 2012). It means 
having same variance. This assumption requires the degree of random noise in 
the dependent variable to remain the same regardless of the values of the inde­
pendent variables. 

Regression Equation and Regression Line: Basis for Prediction 

Let’s use Mary’s example to illustrate the logic of prediction. Starting with her first 
question, she wants to predict volunteer hours (dependent variable) based on the vol­
unteers’ level of income (independent variable). Basically, prediction means estimating 
an unknown outcome based on a known outcome (Upton & Cook, 2011). For Mary to 
predict the unknown volunteer hours using income level information, she can use the 
known pattern of the relationship between volunteer hours and income level. So let’s 
look at the pattern of the relationship between volunteer hours and income level with 
a scatterplot (Figure 13.1). 
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On the scatterplot, the value of the dependent variable is plotted on the Y­axis and 
the value of the independent variable is plotted on the X­axis. You can draw a line 
through the scatterplot to represent the minimum distance between the line and each 
one of the actual points. This is called a regression line. As you can see in Figure 13.2, 
once you identify the regression line, then you can use the line to estimate what the 
dependent variable (Y) would be if you know the value of the independent variable 
(X). A regression line is also called the line of best fit (Munro, 2004), because it is the 
line that best represents the pattern of the relationship between the dependent variable 
and the independent variable. 

Once we identify the pattern of the relationship between the dependent variable Y 
and the independent variable X as a regression line, then we can describe the line with 
a formula. The basic equation for the regression line is as follows: 

Formula 13.1 Basic Equation for the Regression Line

Y a bX= +

Figure 13.1   Scatterplot of the Volunteers’ Income Level and the Volunteer Hours
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Where 

Y=the dependent variable (value on the vertical axis)

X=the independent variable (value on the horizontal axis)

a=the point where the regression line crosses the Y axis, called the intercept (the 
value of Y when X is zero)

b = the slope of the regression line, indicating how much the Y value changes 
when there is a one­unit change in the value of X. It indicates the strength of the 
relationship between X and Y (the regression coefficient).

The relationship between the equation and the visual representation of the regres­
sion line is presented in Figure 13.3.

The slope of the regression line can be positive (+) or negative (−). When the slope 
is positive, that means the line goes up toward the upper right corner. When the slope 
is negative, that means the line goes down towards lower right corner. In other words, 

Figure 13.2   Scatterplot of the Volunteers’ Income Level and the Volunteer Hours With 
Regression Line
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the slope also indicates the direction of the relationship between X and Y. The intercept 
(a) and the slope (b) can be calculated based on the value of X and Y. 

The formula for the slope (b) is: 

Formula 13.2 The Formula for the Slope (b) of a Regression Line

b XY X Y n

X X
n

= ∑ − ∑ ∑

∑ − ∑

( ) /

[( ) ]2
2

Once you have the slope (b) then you can use it to calculate the intercept (a): 

Formula 13.3 The Formula for the Intercept (a) of a Regression Line

a Y b X
n

= ∑ − ∑
 

Figure 13.3   Relationship Between the Regression Equation and the Visual Representation 
of Regression Line
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Of course, you don’t have to calculate the slope and the intercept by hand. The 
SPSS and the Excel programs can do the calculation for you. In Mary’s example, it 
turned out that the intercept (a) is 1.05 and the slope (b) is .90 (which you will see in 
the SPSS and Excel output). That means, in Mary’s example, the regression equation is: 

Y = 1.05 + .90 X 

Once Mary obtains this regression formula, she can plug in a volunteer’s income 
level and predict how many hours this particular person is likely to volunteer. For 
example, with this regression equation, Mary can expect that if a volunteer reports an 
income level as “5” ($60,000 to $70,000), then the estimated number of volunteer 
hours will be 5.55 hours per week, as shown in the calculation below. 

Y = 1.05 + .90 X

 = 1.05 + .90 * 5

 = 1.05 + 4.5

 = 5.55

Assessing the Prediction: Coefficient of Determination (R2)

Once we identify the regression line, it is important to assess how well it predicts an 
outcome from the basis of a known variable. You can see from the scatterplot that the 
dispersion of the points will affect how accurate the estimate is likely to be. With this 
predictive model, we calculate a coefficient of determination (R2) to measure how 
much of the variance in one variable is explained by variance in another. 

R2 is obtained by examining first how much the actual score in the dependent 
variable differs from the mean. This gives us a familiar measure of variance, with a 
total sum of squares (denoted SST). Then we measure how much the actual score in 
the dependent variable differs from the value estimated by the regression equation. 
This is called a residual sum of squares (denoted SSR). 

The formula for R2 is: 

Formula 13.4 Calculating the Coefficient of Determination (R2)

R SSR
SST

2 1= −

From the formula, you can see that R2 will take a value between zero and 1. The 
closer the R2 is to 1, the better the prediction. When R2 is 1, the regression equation has 
a perfect prediction. 

Let’s unpack these concepts a little. In Mary’s case, she could get an idea of how 
many volunteer hours to expect from her volunteers by looking at the mean. However, 
the actual hours put in by most of the volunteers will probably not equal the mean. The 
difference between the mean and the actual volunteer hours represents what we called 
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deviance in the discussion of measures of central tendency and variance in Chapter 7. 
Here we think of the same concept as an error in prediction when using the mean to 
predict. Remember earlier that we used a sum of squares to measure variance, because 
otherwise the sum of the plus and minus differences from the mean cancel each other 
out and always add up to zero. We use the same procedure here. This produces a total 
sum of squares (SST), as represented in the following formula (Formula 13.5) and 
illustrated in Figure 13.4:

Formula 13.5 Calculating the Total Sum of Squares (SST)

SST = Σ (Observed value − Mean)2

The regression equation identifies the line that minimizes the distance between 
the line and the observed values. The regression line offers a more sophisticated 
approach for prediction than just using the mean, but the prediction still does not 
perfectly match the observed values. There is still some inaccuracy. The differences 
are referred to as the residuals, or the error in prediction. Similar to deviance, sum­
ming up the residuals will result in a zero value because the directions of the differ­
ences cancel out. Therefore, we square the residuals before we add them all up to 
capture the overall error in prediction in the regression equation. This total is referred 

Figure 13.4   Visual Representation of the Total Sum of Squares (SST)
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to as the sum of residuals (SSR), as represented in the following Formula 13.6 and 
illustrated in Figure 13.5:

Formula 13.6 Calculating the Total Sum of Residuals (SSR)

SSR = Σ (Observed value − predicted value)2

The assessment on how well the regression equation predicts one outcome from 
another can be determined by calculating R2. In the formula for R2, we see that the 
quotient for SSR/SST—the sum of squares residual (SSR) over the sum of squares 
(SST)—will equal 1 if SSR and SST are exactly the same, meaning R2 (=1−SSR/SST) will 
be zero. This result would indicate that the prediction using the regression equation is 
no different from the prediction using the mean and did not improve the prediction. 
When the SSR is smaller than the SST, then SSR/SST will be less than 1, and R2 (=1−
SSR/SST) will be greater than zero, meaning the prediction using the regression line is 
incrementally better than the prediction using the mean. When R2 is closer to 1, the 
prediction is better (Field, 2009). 

R2 can also be explained as a measure of association between the dependent vari­
able and the independent variable. It indicates the proportion of variance explained in 

Figure 13.5  Visual Representation of the Sum of Squares (SSR)
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the dependent variable by variance in the independent variable. When R2 is zero, that 
means none of the variance is shared between the two variables. They are unrelated. 
When R2 is 1—which would only be possible if the sum of residuals (SSR) equaled 
zero—then 100% of the variance is shared. This would mean that an exact prediction 
of the value of one variable would be possible by knowing the value of the other. 
Intermediate values for R2 provide a good measure of the degree of the relationship 
between the independent and dependent variables (Pedhazur, 1997). 

The null hypothesis for R2 would state that there is no relationship between the 
independent and dependent variables. We can test the null hypothesis by calculating 
an F­statistic, as we did with ANOVA in Chapter 10. If the result of the test is signifi­
cant, with the p­value below .05, then we reject the null hypothesis that R2 is zero and 
accept the research hypothesis that R2 is significantly different from zero, and there is 
a relationship between the independent and dependent variables in the population 
(Cohen, 2010). 

Assessing Individual Predictors: Regression Coefficient (b)

In the regression equation, the independent variable X that we use to predict the value 
of Y has a coefficient (b). In the bivariate regression analysis, where there is only one 
independent variable X, the value of b represents the slope of the regression line. It 
indicates the change in the dependent variable Y, when there is a one­unit change in 
the independent variable X. When the regression coefficient b is zero, then a unit 
change in the value of the independent variable X results in no change in the depen­
dent variable Y. In the regression analysis, we can conduct a t­test to test the null 
hypothesis that the regression coefficient b is zero. If the result of the t­test is signifi­
cant, with a p­value below .05, then we reject the null hypothesis that b is zero and 
accept the research hypothesis that b is significantly different from zero. This means 
the independent variable X significantly contributes to the value of the dependent 
variable. 

Running Bivariate Regression Using Software Programs

Let’s take a look at Mary’s case to see if she can predict volunteer hours by volunteer 
income level, using a bivariate regression analysis. We will go through the procedure 
in SPSS and then in Excel.

Running Bivariate Regression Using SPSS 

The following steps outline how Mary will examine the relationship of volunteer hours 
to level of income with a bivariate regression analysis in SPSS: 

1. Open Mary_Volunteer_profile.sav

2. Click AnalyzeàRegressionàLinear.
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3. Move the variable hours_week into the Dependent Variable box.

4. Move the variable income into the Independent Variable box.

5. Click statistics and check Descriptives box.

6. Click OK.

Figure 13.6  Menu Selection for Linear Regression

Figure 13.7  Input Variables for Linear Regression in SPSS
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There will be multiple tables in the output, including the descriptive statistics of 
the variables in the analysis. The table labeled Model Summary (Figure 13.8) includes 
information about R, R square (R2), and Adjusted R Square. 

Figure 13.8  Bivariate Linear Regression Model Summary Output From SPSS

Figure 13.9  Bivariate Linear Regression ANOVA Output From SPSS

R is the square root of R2. We introduced R in Chapter 11 as the Pearson product 
moment correlation coefficient, indicating the strength and the direction of the linear 
relationship between the dependent variable (volunteer hours) and the independent 
variable (income level). In Mary’s data, volunteer hours and volunteer income level are 
positively correlated, and the strength of the relationship is strong at .795. 

R­Square (R2) in Mary’s analysis is .631, which suggests that volunteer income 
level explains 63.1% of the variance of their volunteer hours. This indicates that the 
relationship between volunteer income level and volunteer hours is moderately strong. 

Adjusted R­Square (R2) adjusts the value of R2 when the sample size is small, 
because an estimate of R2 obtained when the sample size is small tends to be higher 
than the actual R2 in the population. The rule of thumb is to report adjusted R2 when 
it substantially differs from R2 (Green & Salkind, 2010). In this analysis, the difference 
is very small (adjusted R2 = .625). Therefore, Mary can report the unadjusted R2.

The SPSS output table labeled ANOVA (Figure 13.9) provides the results of a test of 
significance for R and R2 using the F­statistic. In this analysis, the p­value is well below 
.05 (p < .001). Therefore, Mary can conclude that the R and R2 between volunteer hours 
and the volunteer’s income level is statistically significant (different than zero). 
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The table in the SPSS output labeled Coefficients (Figure 13.10) provides informa­
tion that is useful for understanding the regression equation. Under the column 
marked Unstandardized Coefficient and sub­column B, the numerical value on the first 
row, labeled (Constant), is the value for the intercept (a) in the regression equation. 
The numerical value on the second row, labeled as Income in this case (representing 
the independent variable), is the value for the slope (b) for the regression equation. 
Based on these results, Mary can report the following regression equation, predicting 
volunteer hours based on level of income. 

Y (Volunteer hours) = 1.05 + .895X (income level)

Taking these values for the slope and intercept in the resulting regression equation, 
we can make the following statement: According to the intercept, when income is zero, 
the average number of hours will be 1.05, and according to the slope, for each addi­
tional unit change in the income level (by defined income categories), the volunteer 
hours (per week) will increase by .895 hours. Notice in the table that the p­value is 
repeated here (p <. 001). 

Under the column Standardized Coefficient and the sub­column Beta, the value 
shown in the second row indicates the slope (b) when the independent and dependent 
variables are converted into scores that have a mean of zero and a standard deviation 
of 1 (scores with these properties are called z-scores). This standardized regression 
coefficient β (Beta) is useful when making comparisons of the relationship between the 
variables when the units of measurement are different. We will discuss this concept 
further below in the section on multiple regression. 

Figure 13.10  Bivariate Regression Coefficients SPSS Output
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Running Bivariate Regression Using Excel 

The bivariate regression analysis can be conducted using Excel with the following steps: 

1. Open the Data Analysis window and choose regression.

2. Click in the Input Y Range to activate.

3. Highlight cells C1 through C61.

4. Once you are finished highlighting these cells, C1:C61 will appear in the Input 
Y Range box.

5. Click on Input X Range to activities.

6. Highlight cells F1 through F61.

7. Again, after highlighting, they should appear in the box.

8. Be sure and click Labels. 

9. Specify your output range and click OK.

Your window should look similar to the Figure 13.11 below.

Figure 13.11  Input Variables for Bivariate Regression in Excel
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The output from Excel appears below in Figure 13.12. Note that the p­value in this 
case is reported in scientific notation as a very small value, which we can interpret as 
in the SPSS output as p < .001.

Figure 13.12  Bivariate Regression Output From Excel

Multiple Regression

Multiple regression is an extension of bivariate regression. Rather than having only one 
independent variable in the regression equation, multiple regression includes more 
than one independent variable in the equation. By incorporating more than one 
independent variable in the analysis, multiple regression predicts the dependent 
variable taking multiple factors into account. It also examines the effect of each 
independent variable on the dependent variable while holding the effect of other 
variables constant. In other words, multiple regression identifies the unique contribution 
of the individual independent variables, while controlling for the effects of other 
independent variables.

The regression equation remains essentially the same for multiple regression, 
appearing as follows (the subscripts identify additional variables): 

Formula 13.7 Equation for Multiple Regression

Y a b X= + 1 1  + b X2 2 + …. + b Xi i  

In conducting multiple regression analysis, it is important to think carefully 
about what independent variables should be included in the analysis (Allison, 1999). 
An effort should be made to include all relevant independent variables in explaining 
the dependent variable, and there should be a good theoretical basis for the inclusion 
of each variable. Additional independent variables should explain differences in the 
dependent variable that the other independent variables do not. All the independent 
variables included in the analysis, in combination, should predict the dependent 
variable better than any one of the independent variables alone. 
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Multicollinearity

In addition to the assumptions for the linear regression analysis noted earlier, in mul­
tiple regression analysis, there is one more important assumption that needs to be met. 
In multiple regression, independent variables included in the analysis should not have 
a strong linear relationship to each other. When there is a strong relationship among 
the independent variables it is referred to as multicollinearity. When there is multi­
collinearity, the two independent variables already share much of the information 
about the dependent variable and the analysis will not be able to distinguish the effects 
of one over the other (Allison, 1999; Norusis, 2009).

One way to examine if there is multicollinearity among the independent variables is to 
run correlations of all pairs of independent variables. When the correlation is high (rule of 
thumb is above .8), there is a likelihood that you have multicollinearity. SPSS will conduct 
a diagnosis for multicollinearity by computing what is called a variance inflation factor 
(VIF). The general rule of thumb is when any VIF is greater than 10 there is a multicol­
linearity problem (Stevens, 2009). (Some researchers suggest using 5 to be conservative.) If 
SPSS indicates there is a multicollinearity problem, examine the direct correlation between 
each pair of independent variables and take out one from a pair that has a high correlation. 

Using Dummy Variables in the Multiple Regression

As previously mentioned, a basic premise of linear regression analysis is that the vari­
ables are continuous. Yet, there are research questions that hypothesize categorical 
variables—such as race, gender, political party affiliation—may affect the variance in 
the dependent variable. Including a categorical variable in the analysis may make the 
prediction of the dependent variable more accurate. Linear regression analysis allows 
the inclusion of categorical independent variables as dummy variables.

Dummy variables take a value of 0 or 1. The value 0 indicates the absence of the 
attributes of the category, and the value 1 indicates the presence of the attribute of the 
category. For example, gender has two attributes, male and female. As a dummy vari­
able, male could be designated as 0, and female as 1. In the regression equation, then, 
the coefficient for the dummy variable would indicate how the female attribute (1) has 
an effect on the dependent variable in contrast, or in reference, to the male attribute 
(0). The category designated as 0 in the dummy variable is called the reference group.

In Mary’s case, she is considering a second analysis that examines multiple volun­
teer characteristics to predict volunteer hours (dependent variable), including income 
level (independent variable 1), age (independent variable 2), and gender (independent 
variable 3). Notice that gender is a categorical variable. In this case, gender can be 
added as a dummy variable to the regression equation as follows: 

Formula 13.8 Equation for Multiple Regression With Categorical Gender Variable

Y (Volunteer hours) = a + b X1 1  (income level ) + b X2 2 (age) + b X3 3 (gender)

In interpreting the regression coefficients in this equation, the value of a indi­
cates the intercept, or mean volunteer time for male volunteers (the reference 
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group), when (hypothetically) the volunteer has no income and is zero years old. In 
other words, the intercept represents the value of the dependent variable when the 
values of all the independent variables are zero. We expect a relationship between 
volunteer time (dependent variable) and income level (independent variable 1) 
indicated by b1  and the relationship between volunteer time (dependent variable) 
and age (independent variable 2) indicated by b2. We expect these relationships to 
be the same for both male and female volunteers (independent variable 3). The 
coefficient b3 indicates the mean difference in the dependent variable between the 
group coded as 1 (female) and the reference group (male). When the regression 
coefficient for the dummy variable gender is significant, it means the difference in 
the mean volunteer time between male and female volunteers is significantly differ­
ent from zero. 

Creating a dummy variable for a categorical variable with more than two attributes 
is more complicated. For example, if Mary wanted to include a region variable to indi­
cate the part of town in which the volunteers live, she would have four categorical 
attributes (or groupings): North, South, East, and West. Including region in a regres­
sion analysis would require three dummy variables as follows: 

Dummy Variable 1 (North): North = 1, Other region designation = 0 

Dummy Variable 2 (South): South =1, Other region designation = 0 

Dummy Variable 3 (East): East =1, Other region designation = 0

Notice that we only need to define three of the four regions. In this case, West is 
designated as the reference group, with a value of 0, for all three of the created dummy 
variables. With a categorical variable like this with multiple attributes, all the dummy 
variables need to be entered as a block. The coding in this example is summarized in 
Table 13.1.

If Mary adds these dummy variables in the regression analysis, the equation will 
appear as follows: 

Dummy Variable 1
(North)

Dummy Variable 2
(South)

Dummy variable 3
(East)

North 1 0 0

South 0 1 0

East 0 0 1

West 0 0 0

Table 13.1 Dummy Variable Coding

©SAGE Publications



Chapter 13 Regression Analysis  ❖  273

Formula 13.9 Equation for Multiple Regression With Categorical Gender Variable 
and Dummy Coded Region Variable

Y (Volunteer hours) = a + b X1 1  (income level ) + b X2 2 (age) + b X3 3 (gender) +  
            b X4 4 (North) + b X5 5 (South) + b X6 6 (East)

The interpretation of the regression coefficient is similar to the case described 
above with a dummy variable for gender. When the regression coefficient (b4, b5, b6) for 
the dummy variable is significant, it means the difference in the mean volunteer time 
between the region represented by the dummy variable (North, South, East respec­
tively) and the reference group (West) is significantly different from zero. 

Running Multiple Regression Using Software Programs

Now let’s look at Mary’s case to see if she can predict volunteer hours better with 
multiple independent variables in a multiple regression analysis, including volunteer 
income level, age, and gender. We will go through the procedure in SPSS and Excel.

Running Multiple Regression Using SPSS 

1. Open Mary_Volunteer_profile.sav

2. Click AnalyzeàRegressionàLinear.

Figure 13.13  Menu Selections for Linear Regression

3. Move the variable hours_week into the Dependent Variable box.
4. Move the variable income, age, dummy_gender into the Independent 

Variable(s) box.
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Figure 13.14  Input Variables for Multiple Regression in SPSS

Figure 13.15  Statistics Options for Linear Regression in SPSS

5. Click Statistics. The Estimates and Model Fit should already be selected as a default. 

6. Click Collinearity diagnostics. (You can also click Descriptives if you want to 
have the descriptive statistics.) 

7. Click Continue. 

8. Click OK.

Just as in the bivariate regression output in SPSS, the table labeled Model Summary 
(Figure 13.16) includes information about R, R square (R2), and Adjusted R Square. In this 
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case, with multiple regressions, all three R values indicate the degree to which the linear 
combination of the independent variables in the regression analysis predicts the dependent 
variable. We will explain the idea of linear combination in the discussion below.

In the multiple regression, the value of R is different than in the bivariate regres­
sion. Here, it represents the Pearson product moment correlation coefficient between 

Figure 13.16  Multiple Regression Model Summary SPSS Output

the observed value of the dependent variable and the predicted value of the dependent 
variable using the regression equation. R for multiple regression is referred to as 
Multiple R (Field, 2009). The characteristics of the metric are the same, with a range 
from 0 to 1, a larger value indicating a larger correlation and 1 representing an equa­
tion that perfectly predicts the observed value of the dependent variable. Multiple R is 
an indicator of how well the overall regression equation predicts the observed data. In 
the current multiple regression analysis for Mary, the result of .799 indicates that the 
linear combination of the three independent variables (income, age, and gender) 
strongly predicts the actual dependent variable. 

R Square (R2) indicates the proportion of variance that can be explained in the 
dependent variable by the linear combination of the independent variables. The values 
of R2 also range from 0 to 1. Mary’s analysis suggests that the linear combination of 
volunteers’ income, age, and gender explains 63.9% of the variance in volunteer hours. 
Note that this is a slight increase from the bivariate model, which was 63.1%. 

Typically, anytime more variables are added to the regression equation, the value 
of R2 increases. As a note of caution, adding variables haphazardly to increase the 
explanation of the variance in the dependent variable is not a good research practice. 
As noted earlier, each independent variable should be added with a purpose that comes 
from the research question and the theory. Sometimes there is a tendency to treat 
multiple regression analysis like making soup; the cook will add a bunch of leftovers 
just because they are there and need to be used. This kind of arbitrary, nontheoretical 
approach can produce misleading results (Baltagi, 2011). 

Adjusted R Square (R2), as noted for the bivariate regression analysis, adjusts the 
value of R2 to more accurately represent the population of interest when the sample 
size is small. Also when there are a large number of independent variables included in 
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the multiple regression equation, it tends to produce a higher estimation of the R2 

in the population, and therefore, Adjusted R Square adjusts the value. In Mary’s analysis, 
the adjusted R2 is 61.0%—more conservative than the unadjusted R2 of 63.1%. It is 
different enough from the unadjusted R2 to be worth reporting. 

The table labeled ANOVA in the SPSS output (Figure 13.17) provides the results of 
a test of significance for R and R square using the F­statistic. In this analysis, the 
p­value is well below .05 (p < .001), and therefore, Mary can conclude that R, R2, and 
Adjusted R2 for the multiple regression she conducted predicting volunteer hours 
based on the linear combination of income, age, and gender is statistically significant. 

The information in the table labeled Coefficients in the SPSS output (Figure 13.18) 
can be interpreted in the same way as we discussed in the bivariate regression section 
above. It provides information that is useful for understanding the regression equation.

Figure 13.17  Multiple Regression ANOVA SPSS Output

Again, under the column marked Unstandardized Coefficient and sub­column B is the 
value for the intercept (a) in the regression equation on the first row, labeled (Constant). 
The numbers below it in the same column are the values for the regression coefficients for 
income, age, and gender. Based on these results, the regression equation that predicts vol­
unteer hours based on the linear combination of income, age, and gender is as follows:

Formula 13.10 Regression Equation That Predicts Volunteer Hours

Y (volunteer hours) =1.29 +.88X1 (income) + .01X2 (age) + (−.76)X3 (gender_reference male)

This result indicates, first, that the intercept is 1.29 hours when all independent 
variables have a value of zero. Then, moving through the equation, holding volunteer age 
and gender constant, the volunteer hours (per week) increase by .88 hours for each addi­
tional increase in the income level. The p­value for this coefficient is statistically signifi­
cant (p < .001), meaning that volunteer income is a significant predictor of volunteer 
hours. Holding income and gender constant, the volunteer hours increase by only .01 
hours (per week), according to the equation, and this coefficient is not statistically signif­
icant (p = .695). Volunteer age is not a significant predictor of the volunteer hours. 
Finally, the regression coefficient for the gender dummy variable, with male as the refer­
ence group, is −.76, which means that holding volunteer income level and age constant, 
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female volunteers put in an average of .76 hours less (per week) than male volunteers. 
However, the p­value for gender is also not statistically significant (p = .333).

As with the bivariate regression analysis, the values in the Coefficients table under 
the column Standardized Coefficient and sub­column Beta is the regression coefficient 
when the independent and dependent variables are converted to a z­score. In the mul­
tiple regression, this standardized regression coefficient Beta (β) is useful, because it 
allows you to compare the relative strength of each independent variable’s relationship 
with the dependent variable. In this case, the regression coefficients (b) provide you 
with information on how much change can be expected with a one­unit change in each 
independent variable, but they don’t tell you the relative strength of the relationship 
between the dependent variable and each of the independent variables. With the Beta 
values here, we can see in Mary’s analysis that income (.777) has the strongest relation­
ship with volunteer hours, compared to age (.035) and gender (−.079). Besides, the 
Beta for age and gender are not statistically significant. 

In the same table, the information under the column Collinearity Statistics and 
sub­column VIF indicates if there is multicollinearity among the independent vari­
ables. In this current analysis, all VIF is lower than 5, and therefore, Mary can be 
assured that there is no multicollinearity problem in her analysis. If any of the VIF is 
higher than 5, Mary needs to check the correlation of that particular variable with 
other independent variables and eliminate one of the variables with high correlation.

Running Multiple Regression Using Excel

Running multiple regression analysis in Excel follows the same procedure that we used 
for bivariate regression. The only key difference is that the multiple independent vari­
ables need to be placed in columns that are contiguous to each other. Therefore, move 
the independent variables to be used in the analysis in columns next to each other or 
copy a column so that it is contiguous to your other independent variable(s). When the 

Figure 13.18  Multiple Regression Coefficients SPSS Output
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Input X range box is activated, then highlight all of the columns of the independent 
variables (again, they must be contiguous).

Mary’s Case

Mary ran her finger over the output she obtained from her multiple regression 
analysis to predict volunteer hours by income level, age, and gender. She talked 
herself through it. 

“OK, R square is about .64, so this regression equation accounts for about 
64% of the variances, and it is significant. That’s not too bad. So it looks like 
this is a good regression equation model to predict volunteer hours.” 

She then directed her attention to the regression coefficients. 
“Hmm … so age and gender are not significant. That means age may not be a 

good predictor for volunteer hours. And there may not be a generalizable difference 
between male and female volunteers. Still, the coefficient for the gender dummy 
variable is a fairly strong negative value, which suggests that female volunteers put 

in less volunteer time when income level and age are constant. That’s interesting.” 
Mary decided to check the descriptive statistics, comparing actual volunteer time for 

male and female volunteers, and indeed, female volunteers had a lower average. It may not 
be generalizable, she thought, but it was interesting, because it went against the assump-
tion she had heard that women put in more time. 

The regression coefficient for income level was more startling. 
“Wow, it’s .875 and significant. Income level clearly matters more than anything else. 

Does that mean I should try to target higher-income volunteers?”
Somehow this conclusion did not sit well with her. Although the data definitely sug-

gested this relationship of income and volunteer hours, she wondered if there might be 
other factors that were not captured in the volunteer background information—something 
that coincided with higher income.

“I still think I need to interview volunteers and get their perspectives.” 
Mary shut down SPSS and opened the list of volunteers she had marked for interviews. 

Brief Comment on Other Types of Regression Analyses

In this chapter, we introduced two types of regression analysis that can be used when 
the dependent variable is continuous. There is another type of regression analysis 
called logistic regression, which can be used to predict the outcome when the 
dependent variable is dichotomous. To learn more about logistic regression, see 
Kleinbaum and Klein (2011), and Menard (2008). 

Another variation of regression analyses that is commonly used by public and 
nonprofit mangers or policymakers is time series analysis, which is useful when 
observing trends and making forecasts based on past observations at equally spaced 
time intervals. To learn more about time series analysis, see Brockwell and Davis 
(2002), and Ostrom (1990). 

When you evaluate a policy or program, you have multiple observation points 
before and after an intervention, resulting in a time series that looks like the following 
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notation, where O indicates observations and X indicates the implementation of the 
policy or program: 

O1  O2  O3  O4  X  O5  O6  O7  O8

With this design, you can use an interrupted time series analysis. To learn more 
about interrupted time series analysis, see McDowall (1980). 

Chapter Summary

This chapter introduced bivariate and multiple linear regression analyses. Linear regression analysis 
identifies a regression equation that allows a researcher to predict the scores of the dependent 
variable based on the scores of one or more independent variables. It also provides information on 
the strength of the relationship between the dependent variable and the independent variables.

Review and Discussion Questions and Exercises

1. Based on the Emily’s case description at the beginning of the chapter, run a bivariate regression 
analysis to answer Leo’s question. Write a regression equation based on the result you obtained.

2. Are there any other independent variables that are appropriate to include in the analysis you 
conducted in (1) above? Conduct a multiple regression analysis and report the result. 

3. Create dummy variables for region in Mary’s data and conduct multiple regression analysis 
with the dummy variables. (See Appendix A for the instructions on how to recode the variable 
in SPSS to create dummy variables.)

4. Describe the importance of the multicollinearity assumption in linear regression.

5. Describe Total Sum of Squares and Residual Sum of Squares and how it relates to Coefficient 
of Determination. 

6. Describe the difference between standardized regression coefficient β and the unstandardized 
regression coefficient b. 

7. When is it appropriate to report adjusted R2?
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