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CHAPTER 3. BUILDING A USEFUL  
EXPONENTIAL RANDOM GRAPH MODEL

Essentially, all models are wrong, but some are useful.

—Box and Draper (1979, p. 424), as  
cited in Box and Draper (2007)

For decades, network scientists struggled with statistical network models 
(e.g., the simple random graph model) that were not very useful in explain-
ing the structures found in observed social networks. The employment of 
the Markov dependence assumption and recent advances allowing for more 
general and complex dependence assumptions resulted in statistical net-
work models that are quite useful in representing, explaining, and predict-
ing observed social structures. While the underlying dependence assumption 
often differs, the interpretation of an exponential random graph model 
(ERGM) is similar to the interpretation of a binary logistic regression 
model. That is, a tie in a network is the outcome, and the characteristics of 
network members and network structures aid in explaining or predicting 
the probability of a tie (Hunter, Goodreau, & Handcock, 2008).

The sections that follow demonstrate the development of a complex 
ERGM. The demonstration begins with exploratory analysis to identify 
features of the observed network and network members that may be 
important to capture during model development. The model is built start-
ing with a simple random graph model only capturing network density. 
Main effects and interaction terms are then added to the model to repre-
sent the attributes of network members; this step results in a dyadic inde-
pendence model. Finally, geometric terms are added to account for 
underlying network structures not captured by main effects or interaction 
terms for a dependence model. Diagnostic tools, strategies for assessing 
model fit and selecting a model, and interpretation of model results are 
incorporated throughout.

A list of R commands to re-create the analyses is included in  
Appendix A online. The commands are numbered and marked throughout 
the demonstration wherever commands are available. When the text refers to 
“Command 1,” the command(s) to replicate the results shown is labeled 
Command 1 in Appendix A. Note that the software used to conduct the 
analyses shown in this monograph is open source; it can, and often does, 
change. The set of commands included was prepared using the software 
and package versions specified in the next section and may need  
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adjustments to work in future versions. Changes to commands can usually 
be identified by reading the associated help documentation for the com-
mand of interest. Occasionally in this chapter and the next chapter, com-
mands will be included within a paragraph. R commands embedded in 
paragraphs of text will use courier font; when the reader should replace 
part of a command with a specific file name or other information, the text 
will be underlined. For example, the command, read.paj('data 
file') indicates that the reader should replace the words data file with 
the name of a data file in order to use the command.

Obtaining and Preparing Software

Several packages are available for estimating network models, including 
PSPAR, Multinet, R-statnet, RSiena, and Pnet (Shumate & Palazzolo, 
2010). The analyses that follow were conducted in R-statnet, which is a 
suite of packages for developing ERGMs in R. A list of the developers can 
be found on the statnet website (http://statnet.csde.washington.edu/about_
us.shtml). R is free software available from the R Project for Statistical 
Computing website: http://www.r-project.org/. The R software functions 
as a platform for developers, who can develop and disseminate statistical 
packages for use in the R shell. In addition to installing R, users will need 
to install the statnet suite, which is separate from the R shell. As its name 
suggests, the R-statnet suite includes packages developed by the statnet 
team, including ergm, network, sna, and networkDynamic. In addition, the 
statnet suite includes a group of packages that statnet relies on, including 
robustbase, Martix, lattice, trust, nlme, and coda, that were developed by 
others outside the statnet team. Each package includes specific features, 
functions, and terminology useful in developing ERGMs. Help for a 
specific package can be found by typing help( package ) at the R 
prompt, replacing the word package with the name of the package. The 
analyses shown in this text were conducted in R version 2.15.2 using 
statnet version 3.0–1.

To install R-statnet, use the Packages menu in R, or type the following 
at the R prompt:

install.packages( 'statnet' ) Command 1

This command installs statnet from one of the many repositories of R 
packages. These repositories are called the Comprehensive R Archive 
Network (CRAN) and are located around the world (http://cran.r-project 
.org/). Each CRAN site contains identical material, including software 
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packages and documentation for R. If statnet is already installed, the 
update.statnet command also included in Command 1 can be used to update 
to the current statnet suite.

Once the statnet suite is installed, it must be loaded before it can be used 
each time you start R; only those packages that are loaded will work in any 
given R session. To load the statnet suite, enter the following at the R 
prompt:

library( 'statnet' ) Command 2

Accessing Data

The analyses in this chapter use a network data set obtained from the 
National Association of County and City Health Officials (NACCHO), 
which is available as an R package from the CRAN. Following the same 
steps as above, install and open the ergmharris package to access the 
data; start by using the install.packages( 'ergmharris' ) 
command, followed by the library( 'ergmharris' ) command. 
Additional data sets are available as part of the statnet package or other R 
packages and can also be used; to view a list of the data sets available in R, 
enter the following at the R prompt:

data() Command 3

A new window will open showing a list of all of the data sets available 
in R. This list will vary depending on the packages installed. Network data 
from outside of R can be read into R from many different types of files. For 
example, files saved in the Pajek network software as .paj or .net files can 
be read using the read.paj() function; files saved in the common net-
work edgelist format can be read in as matrices.

Once a network file is read in, depending on its format, it may need to 
be converted to the network data type, or network class in R parlance, in 
order to use statnet. To check the class of imported data, enter 
class(data name) at the R prompt. If ‘network’ is not returned, the 
file will need conversion to a network format before network modeling 
can be conducted with statnet. Depending on the format of the data, this 
may be as simple as using the command as.network(data name). 
For instructions on conversion of different data types to a network object, 
see Butts (2008).

The NACCHO data set used for the remainder of this chapter is a net-
work of communication relationships among local health department leaders 

©SAGE Publications



36

nationwide. The data were collected in 2010 through a survey sent to all 
local health departments (LHDs) in the NACCHO directory (http://www 
.naccho.org/about/LHD/). The survey instrument included questions about 
LHD structure, finances, leadership, and staffing, along with the types of 
health programming conducted by LHDs at a local level. To open the LHD 
network data in the ergmharris R package for use in the following tutorial, 
use Command 4 and type the following at the R prompt:

data( lhds ) Command 4

After the data are loaded, type the name of the network object, lhds, at 
the prompt to check that the data loaded properly:

lhds Command 5

The output resulting from Command 5 shows descriptive information 
about the network, including the network size (vertices = 1,283), whether 
the network is directed (directed = FALSE), how many edges the network 
includes (n = 2,708), and additional information about the network. Next in 
the output are names of the attributes of the network members (Vertex 
attribute names) included as part of the network object for use in the tuto-
rial. In this case, there were five attributes of the 1,283 local health depart-
ments stored with the network: state, nutrition, hivscreen, popmil, and 
years. These attributes were defined as follows:

state: the state where the LHD is located

nutrition: binary variable indicating whether the LHD does nutrition 
programming (nutrition = Y) or not (nutrition = N)

hivscreen: binary variable indicating whether the LHD does human 
immunodeficiency virus (HIV) screening (hivscreen = Y) or not 
(hivscreen = N)

popmil: LHD jurisdiction population in millions

years: number of years the current LHD leader has been in his or her 
position in categories of 1 to 2 years (years = 0), 3 to 5 years (years = 
1), 6 to 10 years (years = 2), and >10 years (years = 3)

Following Goodreau and colleagues (2008), a more complete summary of 
the network and its attributes can be obtained using Command 6 (Table 3.1). 
The summary shown in Table 3.1 starts with general network characteristics 
including network size, density, and whether the network is directed (e.g., 
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Network attributes: 
  vertices = 1283 
  directed = FALSE 
  hyper = FALSE 
  loops = FALSE 
  multiple = FALSE 
  bipartite = FALSE 
  title = lhds 
  total edges = 2708
  missing edges = 0
  non-missing edges = 2708
  density = 0.00329279

Vertex attributes: 

 hivscreen: 
   character valued attribute 
   attribute summary: 
  N   Y
461 804

 nutrition: 
   character valued attribute 
   attribute summary: 
  N   Y
326 941

 popmil: 
   numeric valued attribute 
   attribute summary: 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.
 0.00055  0.01722  0.04094  0.15860  0.12870 10.11000

 state: 
   character valued attribute 
   attribute summary: 
   the 10 most common values are: 
MO OH MA IL KS NJ WI NC FL MN
73 72 66 63 63 62 62 57 49 49
  vertex.names: 
   character valued attribute 
   1283 valid vertex names 

 years: 
   integer valued attribute 
   1283 values 

No edge attributes 

Network edgelist matrix: 
        [,1] [,2] 
   [1,]    2   10 
   [2,]    2   11

Table 3.1  Partial R output summarizing network data.
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directed = FALSE). After the general network information, there are 
descriptive statistics for the five attributes assigned to the network object. 
The attributes show that most local health departments are conducting HIV 
screening (Y = 804; N = 461) and nutrition programming (Y = 941; N = 
326), the popmil attribute indicates that LHDs have between 550 and 10.1 
million constituents, and Missouri and Ohio have the most LHDs in the 
network with 73 and 72, respectively.

Following the vertex attributes, there is a section for edge attributes. 
Edge attributes are additional characteristics of each edge in the network. 
For example, if the file included information on how far apart two LHDs 
were in miles, an edge attribute might indicate a distance in miles. The 
LHD network data set includes no edge attributes. The last piece of infor-
mation in the table is a full list of the edges in the network. For example, 
the first edge in the list is a link between the LHDs represented by node 2 
and node 10; this list was truncated in Table 3.1 due to its length but should 
be visible in R after running Command 6.

Exploring Network Data

As with all statistical modeling, data exploration is advised prior to network 
model development. In the case of network data, visualization and 
descriptive statistics can give some insight into the structure of a network 
that can be helpful during the development and evaluation of a statistical 
model.

Using the set of commands labeled Command 7 in Appendix A, a visual-
ization of the network with node color showing LHD attributes can aid in 
identifying patterns of ties among LHDs with different characteristics. There 
is some apparent clustering in the network graphic showing state; groups of 
nodes with the same color, indicating they are in the same state, are clustered 
together. This may indicate that an LHD is more likely to communicate with 
another LHD when the two are located in the same state (Figure 3.1). The 
network shaded by HIV screening in Figure 3.1 also demonstrates some 
clustering; the LHDs with lighter shading seem to cluster toward the middle 
of the network, while those with darker shading seem to be more on the 
periphery of the network. One hypothesis stemming from these visuals is that 
same-state communication appears more likely than would happen just by 
chance. Likewise, perhaps leaders in LHDs conducting the same types of 
programming (e.g., HIV screening) are more likely than expected to com-
municate. Note that Command 7 will not produce the exact spatial properties 
of the plots seen in Figure 3.1; the attributes of the nodes and the ties among 
them represent the data, but the location of each node in space is partially 
arbitrary and should not be interpreted as having a specific meaning.
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Having a large number of nodes in the network can sometimes obscure 
important patterns in a network graph. Displaying the largest component (i.e., 
largest connected group of nodes) in a network can aid in clarifying patterns. 
The largest component can be isolated and graphed using Command 8. In this 
case, the largest component contains most of the nodes in the network (n = 
1,083). Figure 3.2 shows the largest component with nodes shaded by 
whether or not the LHD has an HIV screening program. Note that Figure 3.2 
now includes a legend that is specified in Command 8; there are many 
options for creating and placing a legend in R. For a list of options and 
instructions on creating a graph legend in R, use help( legend ) at the 
R prompt. Other options for visual display of networks during exploratory 
analysis can be found in Goodreau and colleagues (2008), Butts (2008), and 
tutorials on the statnet website (http://statnet.csde.washington.edu/).

Figure 3.1   LHD network depicting communication among health 
departments with nodes shaded to show characteristics  
of the LHDs.
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Vertex size and vertex shape are other ways to visually discern patterns in 
network structure. Nodes should be sized by continuous or ordinal attributes 
only; nominal variables may be used for node color and shape. In the LHD 
network, most of the attributes are nominal; however, jurisdiction popula-
tion or LHD leader experience might be used to size the nodes. Network 
measures such as degree can also be used to size nodes in a network. Degree 
is the number of links a network member has. In this case, degree would 
represent the number of communication relationships for each LHD in the 
network. Unfortunately, use of Command 9 to create a degree attribute and 
plot the network using this attribute results in very large node sizes that 
overlap and obscure the ties. The size of the nodes can be reduced by reduc-
ing the values of degree in the attribute. Command 10 divides the original 
degree attribute by 6 and plots the network with larger nodes that have more 
connections to other LHDs. The graphic (Figure 3.3) now shows some pat-
terns around HIV screening programming; there appear to be more large 
white nodes than large black nodes, indicating that LHDs doing HIV screen-
ing (white) have higher degree (more connections with other LHDs) than 
LHDs not doing HIV screening (black). One possible explanation for this is 
that LHDs conducting HIV screening programs are in big cities and, there-
fore, may be more visible and well connected to other LHDs.

In addition to visualization, examining network and node characteristics 
can provide some insight into network structures and possible modeling 
strategies (Goodreau et al., 2008). Network size and density are shown in 
Table 3.1; the average number of links per node (mean degree), the frequency 

Figure 3.2   The largest component in the LHD network shaded by 
whether or not the LHD is conducting HIV screening.
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of each degree value, and the distribution of triads can be obtained using 
Command 11 (see Figure 1.5 for a graphic depiction of the four triad types). 
Note that the degree command is set to default to consider the network as 
directed; to specify that a network is undirected, use the gmode argument 
with the “graph” indicating undirected (“digraph” indicates directed).

> mean( degree( lhds, gmode = "graph" ) ) 
[1] 4.221356 

> sd( degree( lhds, gmode = "graph" ) ) 
[1] 2.895897 

> table( degree( lhds, gmode = "graph" ) ) 

  0   1   2   3   4   5   6   7   8   9  10

 14   8   6   8   4   3   1   1   1
 20  22
  1   1

> triad.census( lhds, mode = "graph" ) 
             0       1    2    3 
[1,] 347709795 3445061 9788 1437 

 58 117 182 223 226 172 104  67  35  25  26
 11  12  13  14  15  16  17  18  19

Figure 3.3   LHD network shaded by HIV screening program with nodes 
sized by the number of connections the LHD has within the 
network (degree).

 

The LHD network had an average degree of 4.22 (SD = 2.90); so, LHDs 
are connected to, and therefore communicating with, an average of 4.22 
other LHDs. With 1,283 LHDs and 2,708 links between them, an average 
of 4.22 may seem higher than you would expect. However, a single link 
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includes two LHDs, so the link between A—B would be included in the 
degree count for A and B. That is, each of the 2,708 links contributes to the 
degree count for two LHDs, for a total of 5,416 degrees (2,708 * 2) across 
1,283 LHDs. The 5,416 is divided by the 1,283 for an average degree per 
LHD of 4.22. The degree distribution table output above shows 58 LHDs 
with zero connections, 117 with one connection, and so on. The triad cen-
sus table shows 347,709,795 triads with no edges, 3,445,061 triads with 
one edge, 9,788 triads with two edges, and 1,437 complete triangles.

Graphic examination of degree, edgewise shared partners (ESP), and dyad-
wise shared partners (DSP) are also useful in understanding underlying net-
work structures. As is common in observed networks, the distribution of degree 
in the LHD network shows many low-degree nodes and few high-degree nodes 
compared with a random network of the same size and density (Command 12; 
Figure 3.4). Note that Command 12 may take 10 minutes or longer to run. 

Figure 3.4   Plots of degree and shared partnerships in the observed LHD 
network (left) and a randomly generated network of the same size 
and density (right).
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Edgewise and dyadwise shared partner distributions also differ in the observed 
and random networks (see Figure 2.3 for examples of ESP and DSP), with the 
observed LHD network having more network members with multiple DSP and 
ESP compared with the random network, which shows a large number of nodes 
with a single shared partner and little else in terms of shared partners.

The network visualizations above showed some potential clustering; 
another option for identifying clustering is to examine mixing matrices and 
correlation coefficients. Following Goodreau and colleagues (2008), a mix-
ing matrix can be used to examine the number of connected dyads (pairs of 
LHDs) for each possible combination of levels for a categorical node attri-
bute. For example, how many connected dyads have both LHDs doing HIV 
screening, or how many connected dyads are there with one LHD in 
Missouri and the other LHD in California? In the visualizations above, we 
found some evidence of clustering by state and by program area (HIV 
screening). Mixing matrices can help to confirm these patterns and explore 
other node attributes as well (Command 13; Table 3.2).

Table 3.2   Mixing matrices for HIV screening, nutrition programming, 
and years of leader experience.

> mixingmatrix( lhds, "hivscreen" ) 
    N    Y 
N 526  632 
Y 632 1498 
> mixingmatrix( lhds, "nutrition" ) 
    N    Y 
N 216  648 
Y 648 1812 
> mixingmatrix( lhds, "years" ) 
    0   1   2   3 
0  71 190 207 283 
1 190 120 259 355 
2 207 259 225 516 
3 283 355 516 389

 

The matrices show each level of each attribute in the network as both a 
column and a row; the numbers in the matrices represent the number of con-
nected dyads with the corresponding row and column attribute. For instance, 
a connected dyad where both LHDs were conducting nutrition programming 
would be counted among the 1,812 dyads in the lower right corner of the 
second mixing matrix shown in Table 3.2. A dyad where one LHD is not 
doing nutrition programming and the other is doing nutrition programming 
would be counted as one of the 648 dyads on the off-diagonal. The state 
attribute mixing matrix is not shown here given the large size of the matrix 
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(49 rows and 49 columns), but this will show in the output window after 
running Command 13. A review of this large matrix will show that connec-
tions tend to be between LHDs in the same state.

A few patterns emerge in the mixing matrices. Of the connected dyads, 
1,812 are connections between two LHDs doing nutrition programming, 
while 648 connected dyads include an LHD doing nutrition programming 
and one not doing nutrition programming, demonstrating a propensity for 
LHDs with similar programming to be connected (homophily of program-
ming). The HIV mixing matrix shows a similar pattern, although not as 
clearly, with 1,498 connected dyads where both LHDs are doing HIV 
screening. However, the leader years of experience matrix shows a differ-
ent connection pattern. In this mixing matrix, LHDs with the more experi-
enced LHD leaders seem to have more connections with others in all 
experience groups. For example, of the 751 connected dyads including a 
leader with the lowest experience level (coded 0), 283 (38%) are connec-
tions with an LHD with a leader in the top experience category (coded 3); 
in contrast, of the 1,543 connected dyads that include an LHD with a highly 
experience leader, just 18.3% include an LHD with a low-experience 
leader. The average number of connections for each experience category 
can be calculated and plotted to further examine the relationship between 
leader experience and network structure (Command 14; Figure 3.5); this 
graph shows that LHDs with more experienced leaders have more connec-
tions than those with less experienced leaders.

Further examination of node characteristics could provide additional 
insight into network structure. For example, for continuous attributes such 
as popmil, it may be useful to examine the correlation between the attribute 
and degree (Command 15). The resulting correlation coefficient of .27 
indicates that, as population in an LHD jurisdiction increases, the number 
of connections also increases. In addition, in some networks, it may be use-
ful to be able to examine the average number of connections for nodes with 
different attributes. Command 16 demonstrates an additional way to 
explore the attribute data using two-way tables.

These exploratory analyses aid in identifying numerous characteristics 
of the LHD network that may be useful during the model-building process. 
First, the network shows extensive homophily by state and moderate 
homophily by program area. Second, LHDs with more experienced lead-
ers have more connections; likewise, LHDs serving larger populations 
have more connections. Finally, underlying structural features in the LHD 
network are notably different from those in a random network of the same 
size and density. Specifically, the degree distribution is nonuniform, 
including more nodes with low degree and a few nodes with very high 
degree. There are also more nodes with multiple ESP and DSP in the LHD 
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network compared with the random network, indicating higher rates of 
transitivity and pretransitivity than expected by chance. The presence of 
homophily, a nonuniform degree distribution, and transitivity in the LHD 
network are all consistent with current network theory and modeling strat-
egies; each of these qualities can be incorporated into a statistical network 
model that could be used to better understand the social forces underlying 
the observed network structure.

Model Building

The Null Model

As with many forms of model building, statistical network modeling 
should begin with a null model. The null model is a simple random graph 

Figure 3.5   LHDs with more experienced leaders have more links to other 
LHDs.
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model, the simplest model described in Chapter 2, consisting of a single 
term representing the edges, or number of connections, in the network 
(Goodreau et al., 2008). The statistical model shown in Equation 6 can be 
modified to depict the null model:

 logit actors edges edgesP Y n Yij ij
c=( )( ) =1| , θ δ  (12)

where δedges is the change statistic for the edges term, and θedges represents 
the coefficient of the edges term. The null model estimated in R (Command 
17; Table 3.3) for the LHD network includes the edges coefficient (θedges= 
–5.71272) along with several other pieces of information.

Table 3.3   LHD network null model.

==========================
Summary of model fit 
==========================

Formula:   lhds ~ edges 

Iterations:  20

Monte Carlo MLE Results: 
      Estimate Std. Error MCMC % p-value
edges -5.71272    0.01925     NA  <1e-04 *** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

    Null  Deviance: 1140093  on 822403  degrees of freedom 
 Residual Deviance:   36365  on 822402  degrees of freedom 
          Deviance: 1103728  on      1  degrees of freedom 

AIC: 36367    BIC: 36379 

 

Using Equation 7, the probability of a tie in this network can be calcu-
lated from the information in this table. There is only one term in this 
model, the edges term. The column labeled “Estimate” is the column 
where the coefficient (θ) for each term in the model is found. In this case, 
the coefficient for the edges term is negative (–5.71272), indicating that 
the density of the network is below 50%; an edges term of 0 would rep-
resent a 50% or .5 density. A negative edges coefficient is a typical fea-
ture of an observed network; very few observed networks have a density 
of .5 or higher. Most network models will contain negative edges terms.
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Remember that the change statistic (δ) represents the change in the sta-
tistic of interest when an edge is added (as Yij goes from 0 to 1) (Hunter, 
Goodreau, & Handcock, 2008). The edges term will always have the same 
change statistic, δedges = 1, because the edges term accounts for the number 
of edges in the network, and the addition of one edge to the network 
changes the number of edges in the network by 1. The logistic function on 
the right-hand side can be calculated as usual for a logistic regression 

model: 1

1 1 1+ −e X( )θ
 (Field, 2009).

              P Y n Yij ij
c=( ) = ( )1| ,actors logistic edges edgesθ δ

               P Y n Yij ij
c=( ) = −( )1 5 71272 1| , . *actors logistic

P Y n Y
e

ij ij
c=( ) =

+
=

− −
1

1

1
0 003293

5 71272 1
| , .

( . * )
actors

The resulting probability of a link is, as expected, the same as the 
density of the LHD network, .0033. This model was estimated using the 
same maximum likelihood estimation methods used in standard binary 
logistic regression. Because the null model is a simple random graph 
model, there are no complex dependence assumptions to account for. 
While estimating a null model may seem like a complex way to demon-
strate the simple network characteristic of density, the null model pro-
vides a baseline for assessing model fit that is useful as more complex 
models are built.

Although the null model is a good representation of the observed den-
sity of the LHD network, it is unlikely to be a good representation of 
other observed network characteristics. Plots of network measures from 
simulated networks based on the null model can aid in understanding how 
well this model captures the structures (e.g., triangles) comprising the 
observed network. Following Goodreau and colleagues (2008), 100 net-
works can be simulated and the distribution of triangles across the simu-
lated networks graphed using Command 18. Figure 3.6 shows the 
distribution of triangles across 100 networks simulated from the null 
model; an X marks the spot for the 1,437 triangles in the observed LHD 
network, which is much higher than the number of triangles in any of the 
100 simulated networks. Clearly, a more complex model is needed to 
capture transitivity in this network.
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Adding Node Attributes

The first thing that researchers often consider to improve model fit is 
whether node attributes influence the likelihood of a link. In this case, do 
the characteristics of the LHDs and their leaders influence the likelihood 
they form communication ties? Descriptive statistics indicated that leader 
experience and jurisdiction population may influence the number of ties an 
LHD has. To examine the influence of these node attributes on the likeli-
hood of a tie, they are added to the model as main effects. Hypotheses 
testing the main effects of LHD attributes on the likelihood of a connection 
might be worded as follows:

Figure 3.6   Number of triangles in 100 networks simulated based on the 
null model; X marks the number of triangles in the observed 
LHD network.
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H0: There is no association between jurisdiction population and the 
likelihood of an LHD to form ties.

HA: There is an association between jurisdiction population and the 
likelihood of an LHD to form ties.

In adding main effects, it is important to use the command appropriate 
for the data type; Morris, Handcock, and Hunter (2008) present a compre-
hensive list of available statnet terms and specific directions for their use. 
For the LHD network model, leader experience will be included as a 
categorical variable, while jurisdiction population will be added as a con-
tinuous predictor (Command 19). In statnet, categorical main effects are 
added using nodefactor, and continuous main effects are included 
using nodecov. Nodefactor adds multiple statistics to the model, each 
one equal to the number of times a node with the specified attribute is at 
one end of an edge. The nodecov main effect term adds one network sta-
tistic to the model that sums the attribute of interest for the two nodes 
comprising the endpoints of each edge in the network. For example, if 
edge ij consisted of an LHD with a population of 1.2 million and an LHD 
with a population of .5 million, the edge would add 1.2 + .5 = 1.7 to the 
network statistic representing jurisdiction population.

==========================
Summary of model fit 
==========================

Formula:   lhds ~ edges + nodecov("popmil") + nodefactor("years") 

Iterations:  20

Monte Carlo MLE Results: 
                   Estimate Std. Error MCMC % p-value
edges              -6.22545    0.06353     NA < 1e-04 *** 
nodecov.popmil      0.19663    0.01431     NA < 1e-04 *** 
nodefactor.years.1  0.14379    0.04509     NA 0.00143 **
nodefactor.years.2  0.27927    0.04216     NA < 1e-04 *** 
nodefactor.years.3  0.33689    0.03983     NA < 1e-04 *** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

    Null  Deviance: 1140093  on 822403  degrees of freedom 
 Residual Deviance:   36166  on 822398  degrees of freedom 
          Deviance: 1103927  on      5  degrees of freedom 

AIC: 36176    BIC: 36234

Table 3.4  LHD network main effects model.
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To interpret the results in Table 3.4, it is necessary to know the reference 
group for any categorical variables. In the statnet package, the reference 
group in an ERGM defaults to the first group in the list shown in the sum-
mary of the network (see Table 3.1). In this case, 1 to 2 years of experience 
is the reference group for leader experience. As usual for a logistic regres-
sion model, the main effects model omits the reference groups and pro-
duces estimates for the other categories. Changes to the reference group can 
be made using the base argument. For example, note the form of the node-
factor years term in Command 19: nodefactor( 'years' ). The 
term has no arguments other than the name of the attribute, so the default 
value (first category) will be automatically selected as the reference group. 
To select the last category, which is >10 years of experience, add a base 
argument of 4 to indicate that the fourth category should be used, like this: 
nodefactor( 'years', base = 4 ), and run the model and sum-
mary command as before (Command 20). The summary table produced 
will include estimates for the first three experience categories, omitting the 
highest experience category as the reference group. Notice that there are 
four statistically significant main effects in Table 3.4 (population in mil-
lions and three categories of leader experience).

One of the benefits of working in R is the ability of the user to modify the 
underlying code directly, depending on code access provided by the package 
authors. It may be useful to customize the information included in the model 
summary to fit reporting preferences. For example, if reporting test statistics is 
a standard practice in a field for reporting logistic regression results, the ergm 
summary function can be edited to report the test statistic for each coefficient 
every time the summary function is called, reducing the number of additional 
commands needed to produce this information. To revise the R code for the 
ergm summary function, use thefix() command (Appendix B, online).

Follow the instructions in the first section of Appendix B to modify the 
ergm summary code and rerun the summary line only in Command 19 to 
obtain a main effects model summary, including Wald test statistics. There 
is no need to reestimate the model; the edits made changed only what is 
printed in the model summary. As a reminder, access to the underlying code 
through the fix command may change if the package developers modify 
settings in future versions of statnet. Alternatively, to obtain the test statis-
tics, the second half of Command 21 can be used (note that this code will 
only work after the first half of Command 21 has been run).

In the main effects model (Table 3.4), all estimates are significant and 
positive. This indicates an increased likelihood to form ties for LHDs when 
the LHD leader had more experience, compared to those with 1 to 2 years 
of experience, and for LHDs with larger jurisdiction populations. These 
results are consistent with the mixing matrices and correlation coefficient 
for jurisdiction population and leader experience.
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In addition to general interpretation of the significance and direction of the 
coefficients, the coefficients and their corresponding standard errors can be 
transformed for interpretation as odds ratios and confidence intervals for each 
individual attribute (Command 21; Table 3.5). To transform the coefficient, 
simply use an exponential transformation (eθ). Typically, odds ratios are 
reported with confidence intervals demonstrating the significance and preci-
sion of the estimate. The 95% confidence interval can be calculated using

 95 1 96% . . .CIθ
θ θ= ±e s e  (13)

For confidence intervals (CIs) that are larger or smaller (e.g., 99% CI; 
90% CI), replace the 1.96 with the appropriate value of z, which would be 
2.56 and 1.28, respectively. Odds ratios are interpreted with respect to the 
reference group for categorical variables. For continuous variables, an odds 
ratio is defined as the increase (or decrease) in odds of the outcome with 
each one-unit increase in the variable of interest. An odds ratio more than 
1 indicates increased odds, while odds ratios less than 1 indicate decreased 
odds. An odds ratio of 1 indicates no association; confidence intervals 
including 1, therefore, indicate nonsignificant relationships. Nonsignificant 
odds ratios and the odds ratio for the edges term may be reported but are 
not typically interpreted.

Table 3.5   Odds ratios and 95% confidence intervals for main effects 
model parameters.

                    Lower     OR  Upper 
edges              0.0017 0.0020 0.0022 
nodecov.popmil     1.1836 1.2173 1.2519 
nodefactor.years.1 1.0570 1.1546 1.2613 
nodefactor.years.2 1.2173 1.3222 1.4361 
nodefactor.years.3 1.2954 1.4006 1.5143

 

According to the main effects model, LHDs with leaders who have 3 to 5 
years of experience are 1.15 times more likely to form a tie with a given LHD 
compared to LHDs with leaders with 1 to 2 years of experience, all other 
network properties held constant. The 95% confidence interval ranges from 
1.06 to 1.26, indicating the range in which the true value of this relationship 
likely lies. Likewise, LHDs with leaders who have more than 10 years of 
experience are 1.40 times as likely to be connected to a given LHD as LHDs 
with leaders who have 1 to 2 years of experience, all else held constant.
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In addition to the coefficients and standard errors used to calculate odds 
ratios and confidence intervals, the R-ergm procedure produces many other 
objects that may be useful in interpreting and reporting a model. To obtain 
a list of the objects produced with an R-ergm model, use the names com-
mand (Command 22). Each of the objects listed is described in detail in the 
R-ergm help documentation.

Odds ratios (ORs) are commonly reported for logistic models in some 
fields; it may be worth incorporating columns of odds ratios and confidence 
intervals into the default summary statistics to print when the summary func-
tion is called for any given model. The second section of Appendix B provides 
instructions for modifying the summary ergm table to include odds ratios and 
confidence intervals. Table 3.6 shows the expanded version of Table 3.4.

With the summary output, we can now report the results of our original 
hypothesis test:

H0: There is no association between jurisdiction population and the 
likelihood of an LHD to form ties.

HA: There is an association between jurisdiction population and the 
likelihood of an LHD to form ties.

Based on the main effects model, the null hypothesis is rejected in favor 
of the alternate hypothesis (p < .05). There is a significant association 
between the likelihood of forming a tie and LHD jurisdiction population. 
For every additional 1 million people living in a jurisdiction, the likelihood 
of forming a tie increases 1.22 times, all else held constant (OR = 1.22; 95% 
CI = 1.18–1.25).

Predicting Probabilities Using the Model

Like the null model, the main effects model can also be used to predict 
the probability of tie formation between any two network members. 
Because attributes of the network members are now included in the model, 
the predicted probability of a tie can now be calculated for network mem-
bers with specified characteristics. For main effects predictors, the change 
statistic for each term is relatively straightforward. If the predictor is cate-
gorical, the value of the change statistic is 0, 1, or 2. If neither of the net-
work members in the dyad has the characteristic of interest, it is 0. A value 
of 1 indicates that one of the nodes in the dyad has the characteristic; a 2 
indicates that both nodes in the dyad have the characteristic. In the LHD 
network, then, for a link between two LHDs with highly experienced lead-
ers, the coefficient for nodefactor.years.3 would be multiplied by the 
change statistic of 2 to represent two LHDs with this characteristic; for a 
link between an LHD with a very experienced leader and one with a new 
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leader, the nodefactor.years.3 coefficient would be multiplied by 1 to rep-
resent the one LHD with the experienced leader; and so on. Following the 
notation of Hunter, Goodreau, and colleagues (2008), the δ corresponding 
to a categorical node attribute might be summarized as follows:

δcat

if both nodes and have the characteristic

if or has the ch=
2

1

i j

i j aaracteristic

if neither nor has the characteristic0 i j









For continuous predictors, δ represents the sum of the characteristic for 
the two LHD leaders in the dyad. In the case of the LHD network, jurisdic-
tion population is a continuous predictor, so if one LHD had 1 million 
constituents and the other had .5 million, the δ for population (δpopmil) would 
be 1 + .5 or 1.5.

To find the predicted probability of a tie between (1) an LHD in a jurisdiction 
with 2 million people (popmil = 2) with a leader who had been there 7 years 
(years = 2) and (2) an LHD in a jurisdiction with 100,000 people (popmil = .1) 
and a leader there 1 year (years = 0), the coefficients in the Estimate column of 
Table 3.6 would be multiplied by the change statistics for each term.

P Y n Yij ij
c=( ) = + +

1| ,actors logistic
edges edges popmil popmilθ δ θ δ θθ

δ θ δ θ δ
3 5

3 5 6 10 6 10 10 10

−

− − − > >+ +
years

years years years years yearss











The probability of a tie between these two LHDs with the characteris-
tics specified is .0023 or 0.23% (Figure 3.7). Although this may seem 
low, remember the density of this network was .0033, indicating that 
about one third of 1% of possible linkages actually exist in the LHD net-
work. So, the likelihood of this particular connection is a little lower than 
might be expected.

P Y n Yij ij
c=( ) = − + +1 6 23 20 34| , . . .actors logistic * *edges popmilδ δ ** yearsδ6 10−( )

P Y n Yij ij
c=( ) = − + +( )1 6 84 1 20 2 1 34 1| , . * . * . . *actors logistic

P Y n Y
e

ij ij
c=( ) = −( ) =

+
=

− −
1 6 08

1

1
0023

6 08
| , . .

( . )
actors logistic
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Adding Interaction Terms

While node attributes account for characteristics of each individual net-
work member, interaction terms for nodal attributes account for the attri-
butes of both members of a dyad (Morris et al., 2008). The most commonly 
used interaction terms may be those accounting for homophily (two nodes 
sharing an attribute, e.g., both male) and heterophily (two nodes different 
on an attribute, e.g., one male and one female).

Figure 3.7   Probability of a tie between two LHDs based on the main effects 
model.

100,000 constituents
Leader with 1 year of experience

2,000,000 constituents
Leader with 7 years of experience

.23%

 
Interaction terms continue to treat each dyad as independent; models 

including interaction terms continue to be dyadic independence models. 
Remember, dyadic independence models assume that each dyad is indepen-
dent of all other dyads in the model, so the likelihood of a link between Pam 
and Michelle would be considered independent from the likelihood of a 
link between Phil and Pam, even though Pam is in both dyads.

Based on the exploratory analysis, LHDs appear to form more connections 
with other LHDs in the same state and conducting the same programs. That 
is, there seems to be some homophily of state and programming in connected 
dyads across the LHD network. Interaction terms for each of these attributes 
can be used to test this hypothesis in a new model (Command 23).

The resulting model shows significant positive coefficients for state and 
programming homophily in the network. That is, two LHDs in the same 
state are more likely to be connected, as are two LHDs conducting the same 
programming (Table 3.7); homophily terms are indicated in the R com-
mands and output by “nodematch” and are highlighted in Table 3.7. All of 
the main effects (nodefactor and nodecov terms) remain positive and sig-
nificant. Note that main effects for programming are not entered into this 
model; because each LHD only has two possible values for each program 
(Y, N), it is not possible to enter both the main effects and interaction terms 
for a program given the limited degrees of freedom available. Many other 
terms are available for testing additional main effects and interactions 
(Goodreau et al., 2009; Morris et al., 2008).
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There was some indication in the exploratory analyses that program 
homophily was different for LHDs conducting the program compared with 
those not conducting the program; LHDs were more likely to have contact 
with other LHDs conducting the same programs, but the converse was not 
necessarily the case. That is, LHDs not conducting the program were not 
necessarily more likely to be linked to other LHDs not conducting the pro-
gram. Homophily can be estimated for each level of a categorical variable; 
this is called differential homophily. By specifying differential homophily 
for programs, homophily terms will be included separately for conducting 
and not conducting the program (Command 24; Table 3.8). Differential 
homophily is shown in the command by the use of diff=T following the 
name of the attribute in a nodematch term.

At this point, if you have not closed and reopened R since beginning 
analyses, you may be experiencing slowness in model estimation or even 
memory allocation errors. There are a few strategies you can use to improve 
the speed without closing and reopening R. First, you can remove any 
objects you no longer need. To do this, use the ls() command to list all 
objects currently open in R. From this list, identify objects you no longer 
need and use the command remove( object ) to delete each one. Once 
you have removed objects you no longer need, you can use the garbage col-
lector to clean up the memory by running the command gc(). Finally, once 
objects are removed and the garbage collector is done, you can increase the 
allocation of memory by using memory.size( 8000 ).

Note that the output now shows the category for each homophily term, 
highlighted in Table 3.8. The model including differential homophily terms 
demonstrates a significant increase in the likelihood of a tie between two 
LHDs both conducting the specified programming, but not between two 
LHDs that are both not conducting the programming.

It may be useful to keep only the terms for program homophily when the 
LHDs are both conducting the program and to drop homophily terms for 
LHDs not conducting programming. To do this, specify which terms you 
want to keep in the nodematch command. In this case, not doing a program 
is coded as “N” and doing a program is coded as “Y”; since N comes before 
Y, the first homophily term estimated by nodematch will be two LHDs not 
doing programming (N-N), and two LHDs doing programming (Y-Y) will 
be the second. To keep only the homophily term for two LHDs both con-
ducting programs, add keep=2 to the nodematch command (Command 25).

Homophily and differential homophily change statistics are similar to 
main effects change statistics, although since the unit of interest is now the 
dyad, there are now only two possible values. Following Hunter, Goodreau, 
and colleagues (2008) and Goodreau and colleagues (2009), the change 
statistics can be denoted as follows.
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Homophily change statistic:

δhom =
1 if and have the same value for a categorical covariate

0 oth

i j

eerwise





Differential homophily change statistic:

      δdiff =
1if and have the same value for a certain category

of a catego

i j

rrical covariate

otherwise0









Calculating the probability of connection between the two LHDs in 
Figure 3.7 can demonstrate the use of dyad-level terms. In addition to 
each LHD having its own characteristics for leader experience and juris-
diction population, the two LHDs in this dyad may match on state (i.e., 
both LHDs in Missouri) and nutrition programming but may not match on 
HIV screening (perhaps the larger LHD offers HIV screening, the smaller 
does not). There are 10 terms in this model; the full model is shown first, 
but only the terms that apply to the LHDs in question are shown with 
substituted values. The probability that the two LHDs are linked is calcu-
lated (for the sake of brevity, homophily is abbreviated as “Hom”):

P Y n Yij ij
c=( ) = − − +

1
9 56 33 32
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. . .

actors logistic
* *edges popmilδ δ **
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







. .

P Y n Yij ij
c=( ) = − − + + +1 9 56 1 33 2 1 32 1 25 1| , . * . * . . * . *actors logistic 66 31 1. *( )
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
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
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This is much higher than the probability calculated with the main effects 
model due primarily to the large coefficient for being in the same state. 
Based on this model, these two LHDs have a 3.3% chance of being con-
nected (Figure 3.8).

Although many of the predictors in the model demonstrate statistical sig-
nificance and reflect the patterns seen in exploratory analyses, giving face 
validity to the model, it is important to more systematically examine how 
well the estimated model actually captures observed network structure.

Model Fit

There are several ways to examine model fit for statistical network mod-
els. The simplest way is to compare the statistical measures of log-likelihood 
(LL) and related measures of deviance (–2LL), the Akaike information cri-
terion (AIC), or the Bayesian information criterion (BIC). Log-likelihood is 
calculated by summing the differences between the predicted probabilities 
of Yij and the observed value of Yij (Field, 2009).

 log-likelihood ln= ∑ + −( ) − ( )( )
=i

N

ij ij ij ijY P Y Y P Y
1

1 1[ ( ( )) ln ]  (14)

In a nutshell, the LL sums the product of the differences between the 
predicted probability of a tie for each dyad and the actual observed pres-
ence or absence of a tie in each dyad.

For example, consider a situation where there was an existing connection 
(Yij = 1) between the two LHDs shown in Figure 3.6. The differential 
homophily model estimated a .23% chance of these two LHDs being 

Figure 3.8   Probability of a tie between two LHDs based on the differential 
homophily model.

100,000 constituents
Leader with 1 year of experience

No HIV screening
Nutrition programming

in Missouri

2,000,000 constituents
Leader with 7 years of experience

HIV screening
Nutrition programming

in Missouri

3.3%
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connected (P(Yij) = .0023). If a tie existed between these two in the 
observed network, the contribution of this dyad to the log-likelihood score 
for the model would be

Y P Y Y P Yij ij ij ijln ln( ( )) ( ) ( ( ))+ − −1 1

1 0023 1 1 1 0023 6 07*ln . *ln . . .( ) + −( ) −( ) = −

If there were no tie (Yij = 0) between these two LHDs, the contribution 
of this dyad to the overall log-likelihood score would be

Y P Y Y P Yij ij ij ijln ln( ( )) ( ) ( ( ))+ − −1 1

0 0005 1 0 1 0005 0023*ln . *ln . . .( ) + −( ) −( ) = −

Because the predicted probability of a tie between these two was very 
low (.23%), the magnitude of the contribution to the log-likelihood score 
in the event that they were actually connected was much greater than the 
magnitude for no connections. The log-likelihood, therefore, grows in 
magnitude when the predicted probability is far from the observed value; 
the worse the predicted values are, the larger the magnitude of the log-
likelihood. In quantifying the lack of fit, the LL is conceptually similar 
to the residual sum of squares in linear regression (Field, 2009). The LL 
is often negative, making comparisons intuitively more difficult. To 
combat this, deviance is often used in place of the LL. Deviance is sim-
ply the LL multiplied by –2, usually resulting in a positive value. 
Deviance is also considered a measure of lack of fit; the larger the devi-
ance, the greater the lack of fit.

The deviance of a larger model can be compared with the deviance of a 
smaller nested model to determine whether the larger model is statistically 
significantly better than the smaller model in terms of fit. The difference 
between two deviance scores for nested models follows a chi-squared 
distribution with degrees of freedom equal to the difference in the number 
of parameters in the two models. In this case, the main effects model has 
a deviance of 1,103,927 with 5 degrees of freedom; the differential 
homophily model has a deviance of 1,120,635 with 10 degrees of free-
dom. The difference between the two is 16,708 with 10 – 5 = 5 degrees 
of freedom. Comparing this value to a chi-squared distribution, we find a 
p value less than .0001, indicating that the differential homophily model is 
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a significantly better fit for the data than the main effects model (χ2(5) = 
16,708; p < .0001). Adding homophily terms to the model significantly 
improved model fit.

AIC and BIC are two additional measures of fit that are variations on the 
deviance (–2LL) of a model. Deviance will always be smaller when more 
parameters are added to a model; the AIC and BIC account for this by 
penalizing models with more parameters that do not explain enough addi-
tional information to be considered a better fit (Akaike, 1973; Schwarz, 
1978). In this way, they serve a somewhat similar function as the adjusted 
R2 in linear regression, although they have no direct interpretation and 
therefore are used only to compare models. In Equation 15, p stands for the 
number of parameters in the model, and N represents the sample size.

AIC = Deviance + 2p.

 BIC = Deviance + p*ln(N). 

(15)

AIC and BIC are more flexible than deviance since they can be used to 
compare nonnested models. In the case of the LHD models, the null 
model had an AIC of 36,367, the main effects model had an AIC of 
36,176, the differential homophily model AIC dropped to 19,477, and the 
second differential homophily model AIC dropped just slightly to 19,473. 
Based on these AIC values, the second differential homophily model is 
the best fit so far.

Given that these measures of fit were developed for data meeting the 
independence of observations assumption, other measures of model fit are 
generally considered a better choice for assessing how well an ERGM cap-
tures the observed network characteristics. So far, the null, main effects, 
and homophily models meet the assumption of independence for dyads, so 
deviance, AIC, and BIC are still useful; once more complex models that 
assume dyadic or other dependencies are developed, simulation-based 
assessments of model fit should be used instead.

One simple way to use simulation to assess model fit is to simulate a 
single network based on the model and compare the characteristics of the 
simulated network with the characteristics of the observed network. 
Simulation of one network based on each of the models developed so far 
can be examined and compared using this strategy (Command 26).

Note that there are some differences between the simulated networks and 
the observed network (Table 3.10); for example, they all have fewer iso-
lates and fewer triangles than the observed LHD network (highlighted in 
the first row). While there is still room for improvement, it is also important 
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Table 3.10   Number of edges, nodes with degrees from 0 to 5, and triangles 
in the LHD network and simulated networks based on estimated 
models.

                 edges degree0 degree1 degree2 degree3 degree4 degree5 triangle 
lhds              2708      58     117     182     223     226     172     1437 
Null              2647      18      97     159     243     276     196       17 
Main effects      2660      29      95     166     243     246     202       32 
Homophily         2704      48     127     149     234     244     168     1223 
Diff homophily    2707      45     125     169     224     231     174     1249 
Diff homophily 2  2713      48     112     182     222     233     170     1249 

 

to note that the characteristics of the simulated networks are getting consid-
erably closer to those of the observed network with each addition of terms 
accounting for some underlying social process. Take triangles, for example; 
there is no triangle term in the models, but the number of triangles in the 
simulated networks goes from 17 in the simple random graph model (null) 
to 1,249 in the differential homophily models.

Increasing the number of simulations such as the one used for Table 3.10 
can provide additional insight into model fit. Simulating 10 networks (or 
any number) from a model allows comparison of average network statistics 
from simulations with network statistics from the observed network 
(Command 27). For example, partial output from Command 27 shows the 
nodefactor.popmil (jurisdiction population) network statistic as ranging 
from 1,285.733 to 1,351.685 in 10 simulated networks from the second 
differential homophily model:

Stored network statistics: 
      edges nodecov.popmil 
 [1,]  2701       1333.655 
 [2,]  2689       1315.555 
 [3,]  2704       1338.370 
 [4,]  2710       1351.434 
 [5,]  2711       1345.763 
 [6,]  2722       1347.097 
 [7,]  2710       1351.685 
 [8,]  2720       1329.238 
 [9,]  2717       1287.713 
[10,]  2719       1285.733 

The network statistic for a continuous main effect (nodecov) equals the 
sum of the values of the variable for each time the node is at one end of an 
edge. To find the observed value for jurisdiction population in the observed 
LHD network, use Command 28 to obtain
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nodecov.popmil
      1345.815

The network statistic in the observed LHD network for jurisdiction 
population is 1,345.815, which is in the range (1,285.733–1,351.685) for 
the simulated networks based on the second differential homophily model.

A comparison of how well the main effects and second differential 
homophily models capture the transitivity in the LHD network can be 
examined by comparing the observed number of triangles in the network 
with the distribution of the number of triangles in 100 simulated networks 
(or any number of simulations) based on the main effects model and 100 
simulated networks based on the second differential homophily model 
(Commands 29–31; Figure 3.9) (Goodreau et al., 2008).

Of the 100 simulated networks from the main effects model, only 5 
included more than 100 triangles. All simulated networks based on the 
second differential homophily model included 500 or more triangles, which 
was an improvement over the main effects model. However, the second 
differential homophily model still demonstrated an underestimation of the 
number of triangles in the observed LHD network, with 1,437 triangles 
(marked in Figure 3.9 by an X). This indicates that transitivity in the LHD 
network is not well represented by either model.

Model simulations built into the goodness-of-fit procedures can compare 
other network characteristics for simulated networks and the observed net-
work. Comparisons of simulated and observed network degree distribution, 

Figure 3.9   Distribution of triangles in 100 simulations for the main effects 
and second differential homophily models. The X marks the 
observed number of triangles in the LHD network.
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edgewise shared partners, and dyadwise shared partners are built into a 
goodness-of-fit procedure within the ergm package. Using the results of 
this procedure, goodness of fit can be assessed in two ways. First, observed 
frequencies for each network statistic can be compared with frequencies in 
the simulated models (Command 32).

Table 3.11  Goodness of fit for the differential homophily model.

Goodness-of-fit for degree
   obs min   mean max MC p-value 
0   58  32  58.78  78       0.96 
1  117 111 134.76 176       0.12 
2  182 159 190.23 217       0.62 
3  223 177 205.45 233       0.16 
4  226 151 188.28 237       0.08 
5  172 120 152.33 196       0.28 
6  104  86 116.71 144       0.22 
7   67  59  84.98 109       0.04 
8   35  29  55.45  74       0.02 
9   25  20  37.61  60       0.08 
10  26  15  24.70  42       0.80 
11  14   8  14.97  26       0.84 
12   8   2   9.03  17       0.88 
13   6   1   4.43  10       0.54 
14   8   0   1.96   7       0.00 
15   4   0   1.05   4       0.08 
16   3   0   0.50   3       0.02 
17   1   0   0.50   3       0.76 
18   1   0   0.28   3       0.50 
19   1   0   0.23   2       0.44 
20   1   0   0.22   1       0.44 
21   0   0   0.11   1       1.00 
22   1   0   0.11   2       0.20 
23   0   0   0.10   1       1.00 
24   0   0   0.11   1       1.00 
25   0   0   0.07   1       1.00 
26   0   0   0.04   1       1.00 
29   0   0   0.01   1       1.00 

Goodness-of-fit for edgewise shared partner
      obs min    mean  max MC p-value 
esp0  696 923 1652.45 1808       0.00 
esp1  750 647  723.50  805       0.56 
esp2  630 153  232.33  578       0.00 
esp3  382  33   63.65  322       0.00 
esp4  156   5   15.72  109       0.00 
esp5   56   0    4.50   47       0.00 
esp6   25   0    1.04   18       0.00 
esp7    8   0    0.32    7       0.00 
esp8    3   0    0.09    2       0.00 
esp9    0   0    0.05    1       1.00 
esp10   1   0    0.03    1       0.06 
esp11   1   0    0.03    1       0.06 

Goodness-of-fit for dyadwise shared partner
         obs    min      mean    max MC p-value 
dsp0  813034 811054 811708.89 812789       0.00 
dsp1    6329   6795   8477.22   9143       0.00 
dsp2    1928   1543   1767.79   1929       0.02 
dsp3     732    270    367.36    649       0.00 
dsp4     253     40     66.60    204       0.00 
dsp5      80      3     12.55     71       0.00 
dsp6      33      0      2.03     27       0.00 
dsp7       9      0      0.36      7       0.00 
dsp8       3      0      0.09      2       0.00 
dsp9       0      0      0.05      1       1.00 
dsp10      1      0      0.03      1       0.06 
dsp11      1      0      0.03      1       0.06
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Goodness-of-fit for degree
   obs min   mean max MC p-value 
0   58  32  58.78  78       0.96 
1  117 111 134.76 176       0.12 
2  182 159 190.23 217       0.62 
3  223 177 205.45 233       0.16 
4  226 151 188.28 237       0.08 
5  172 120 152.33 196       0.28 
6  104  86 116.71 144       0.22 
7   67  59  84.98 109       0.04 
8   35  29  55.45  74       0.02 
9   25  20  37.61  60       0.08 
10  26  15  24.70  42       0.80 
11  14   8  14.97  26       0.84 
12   8   2   9.03  17       0.88 
13   6   1   4.43  10       0.54 
14   8   0   1.96   7       0.00 
15   4   0   1.05   4       0.08 
16   3   0   0.50   3       0.02 
17   1   0   0.50   3       0.76 
18   1   0   0.28   3       0.50 
19   1   0   0.23   2       0.44 
20   1   0   0.22   1       0.44 
21   0   0   0.11   1       1.00 
22   1   0   0.11   2       0.20 
23   0   0   0.10   1       1.00 
24   0   0   0.11   1       1.00 
25   0   0   0.07   1       1.00 
26   0   0   0.04   1       1.00 
29   0   0   0.01   1       1.00 

Goodness-of-fit for edgewise shared partner
      obs min    mean  max MC p-value 
esp0  696 923 1652.45 1808       0.00 
esp1  750 647  723.50  805       0.56 
esp2  630 153  232.33  578       0.00 
esp3  382  33   63.65  322       0.00 
esp4  156   5   15.72  109       0.00 
esp5   56   0    4.50   47       0.00 
esp6   25   0    1.04   18       0.00 
esp7    8   0    0.32    7       0.00 
esp8    3   0    0.09    2       0.00 
esp9    0   0    0.05    1       1.00 
esp10   1   0    0.03    1       0.06 
esp11   1   0    0.03    1       0.06 

Goodness-of-fit for dyadwise shared partner
         obs    min      mean    max MC p-value 
dsp0  813034 811054 811708.89 812789       0.00 
dsp1    6329   6795   8477.22   9143       0.00 
dsp2    1928   1543   1767.79   1929       0.02 
dsp3     732    270    367.36    649       0.00 
dsp4     253     40     66.60    204       0.00 
dsp5      80      3     12.55     71       0.00 
dsp6      33      0      2.03     27       0.00 
dsp7       9      0      0.36      7       0.00 
dsp8       3      0      0.09      2       0.00 
dsp9       0      0      0.05      1       1.00 
dsp10      1      0      0.03      1       0.06 
dsp11      1      0      0.03      1       0.06

 

These comparisons include five columns of information: obs, min, mean, 
max, and MC p value (Table 3.11). The first column lists the value of each 
statistic (degree, ESP, DSP). The obs column shows the number of nodes 
in the observed LHD network with the value listed in the first column. Min 
shows the minimum number of nodes with the specified degree, ESP, or 
DSP across the simulated networks. The mean column shows the average 
number with the value of degree, ESP, or DSP across the simulated net-
works. The max column shows the maximum number of degree, ESP, or 
DSP with each value in the simulated networks. The MC p value column is 
the proportion of the simulated values of the statistic that are at least as 
extreme as the observed value. Large values of the MC p value are indica-
tors that the simulated networks are similar to the observed network on the 
characteristic of interest (i.e., not significantly different). Small p values 
show a difference between observed and simulated frequencies; p values 
less than .05 would therefore be interpreted as demonstrating a significant 
difference between the simulated and observed networks. This would indi-
cate the model is not fitting the data well. All p values less than .05 in Table 
3.11 are shaded, showing the observed network characteristics that the 
simulations failed to accurately represent.

The goodness of fit for degree in Table 3.11 shows that the observed 
LHD network had 58 isolates (nodes with a degree of 0) according to the 
first row of values in the table. The simulated networks had an average of 
58.78 isolates and a range of 32 to 78 isolates. The range and average num-
ber of isolates show that the simulated networks are doing a good job of 
capturing this observed network characteristic. Consequently, the MC p 
value for a degree of 0 is .96; the observed network and the simulated net-
works are not significantly different in the number of nodes that have a 
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degree of 0. The simulated networks are good at capturing the number of 
nodes for most values of degree. One hundred seventeen nodes in the 
observed network have a degree of 1, and 134.76 nodes on average in the 
simulated networks also have a degree of 1. The p value of .12 indicates 
that the simulated networks represented this well; the observed and simu-
lated networks are not significantly different. Generally speaking, the fewer 
the p values less than .05 in these tables, the better the model fits.

Table 3.11 demonstrates some lack of fit for ESP and DSP. Few of the 
edgewise shared partner frequencies were well captured, and only dyads 
with 9, 10, or 11 shared partners (DSP = 9, DSP = 10, DSP = 11) were 
appropriately represented by the second differential homophily model. 
Given that ESP and DSP are indicators of transitivity, the poor fit of the 
simulations for these two measures is consistent with the lack of triangles 
in the simulated networks compared with the observed network (Figure 3.9). 
This is further evidence that the second differential homophily model is not 
capturing observed transitivity.

It is important to note that the tables do not show all the values possible 
for each network statistic. For example, each node in the LHD network 
could have up to 1,282 links to others since the network has 1,283 mem-
bers, but the output above only shows a degree of 0 to 29. Command 33 can 
be used to see all rows in each table if this is of interest; the output will be 
extremely long.

The goodness-of-fit procedure in statnet also includes triangle census 
and geodesic distance options. For measures not available in the built-in 
process, a separate simulation procedure can be used to assess how well 
the model captures the measures (e.g., see Commands 29–31 for triangle 
simulations).

In addition to comparing the frequencies of the observed and simu-
lated values for each network statistic, the goodness-of-fit procedure 
produces graphics. Instead of comparing the frequency of each network 
statistic value, the graphics compare the proportion of nodes in the 
observed network with the proportion of nodes in the simulated net-
works with the same characteristic (Command 34). Or, if the plot setting 
is changed, the graphics compare the log-odds for each parameter in the 
observed network and the range of log-odds in the simulated networks. 
For example, the tables compare the number of isolates in the observed 
network (n = 58) with the number of isolates in the simulated networks 
(n = 32–78); the graphs compare the proportion of nodes that are isolates 
(4.5%) with the proportion that are isolates in the simulations (Figure 
3.10, top row). The bottom row in Figure 3.10 compares the log-odds of 
each measure in the observed networks with the range of log-odds of the 
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same measure across simulated networks. Because the fit is easier to 
discern in the log-odds plots, this format will be used for remaining 
goodness-of-fit plots.

In Figure 3.10, the thick black line represents the observed LHD net-
work, and the gray lines show the 95% confidence interval of simulated 
network measures. When the black line falls between the gray lines, the 
simulated networks are capturing the characteristics of the observed net-
work. In this case, based on simulations, degree and DSP seem well 
explained by the model, but there are some problems with fit for ESP.

Note that, although there should be consistency in model fit between 
Table 3.11 and Figure 3.10, these two displays of simulated data are dem-
onstrating different things. Table 3.11 compares frequencies of specific 
values of statistics between observed and simulated networks, while the 
Figure 3.10 graphs compare proportions (or log-odds) of observed and 
simulated networks with specific values of statistics.

Three ways to examine goodness of fit have been demonstrated:

1. AIC and BIC are included in the modeling output and can be used 
to compare models with one another, with lower AIC and BIC indicating 
better fit.

2. Simulating one or more networks and comparing the characteris-
tics to those of the observed network can provide some insight into how 
well basic characteristics (e.g., degree and triangles) are being captured 
by the model.

3. Goodness-of-fit procedures in statnet provide tables and graphics 
comparing observed measures to simulated measures for the structural 
characteristics of degree, distance, edgewise shared partners, dyadwise 
shared partners, and triangle census. The tables provide a p value and the 
graphs provide a confidence interval that can be used to determine 
whether the observed and simulated measures come from the same dis-
tribution. These built-in procedures are similar to the second strategy in 
this list.

Although the second differential homophily model has so far demon-
strated better fit than the main effects model based on several measures, it 
was not generally a great fit for the observed network. This is a common 
occurrence for dyadic independence models; although the maximum likeli-
hood estimation procedure finds the model with highest possible probability 
of replicating the observed network, this might still be a very low probability 
(Hunter, Goodreau, et al., 2008). The goodness-of-fit measures show that the 
models have failed to accurately represent transitivity through main effects 

©SAGE Publications



71

and homophily terms. Terms accounting for underlying distributions and 
complex dependencies may aid in improving model fit.

Adding Dependence Terms

To account for complex dependencies in an observed network, Snijders 
and colleagues (2006) proposed three terms subsequently modified by 
Hunter and Handcock (2006) to simplify interpretation: geometrically 
weighted degree (GWD), geometrically weighted edgewise shared partner-
ships (GWESP), and geometrically weighted dyadwise shared partnerships 
(GWDSP). The modified terms were implemented in statnet and are used 
here to estimate dependence models. The three modified terms accounted 
for the degree distribution and transitivity stemming from complex patterns 
of dependence in observed networks (see Chapter 2 for more information 
on these terms).

The maximum likelihood estimation used for the dyadic independence 
models is computationally prohibitive for dyadic dependence models. For 
instance, calculating the constant in Equation 6 would require summing 

over all possible network configurations, which consists of 2 2

n








 net-
works. For a network with just nine nodes, this is 68,719,476,736 configu-
rations (Cranmer & Desmarais, 2011). Models incorporating dyadic 
dependence terms therefore use a Markov chain Monte Carlo (MCMC) 
parameter estimation algorithm to calculate an approximate log-likelihood 
(Snijders, 2002). By default, maximum pseudolikelihood is used to deter-
mine the starting values for model estimation. The MCMC algorithm then 
works by selecting a network from all possible realizable networks, ran-
domly selecting a dyad or dyads from the network, toggling the dyad or 
dyads from 0 to 1 or from 1 to 0, and comparing the new network to the 
pretoggle network to determine if it is a better fit. The algorithm then 
accepts the new network or keeps the pretoggle network and draws another 
random dyad or dyads to toggle for the next proposal. This propose- 
compare-decide process is repeated until the specified MCMC chain 
length is reached (Morris et al., 2008).

As discussed in Chapter 2, even models incorporating homophily and 
other terms may exhibit problems with degeneracy, indicating that observed 
structures were not adequately captured. Degeneracy in network modeling 
is often manifested by a model that produces simulated networks that are 
either nearly empty or nearly complete (see Robins et al., 2007, Figure 1, 
for an excellent visual example). Adding geometric terms accounts for 
structures that, in early statistical network modeling, often resulted in these 
degenerate models; the geometric terms (GWD, GWDSP, GWESP) are part 
of what is being modeled.
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In addition to the what, changes can be made to how the model is esti-
mated. Specifically, several additional steps can be taken to reduce the likeli-
hood of model nonconvergence, including selecting adequate MCMC sample 
size, burn-in, and interval (Goodreau et al., 2008; Morris et al., 2008). The 
sample size controls how many networks will be sampled in the MCMC 
chain (the length of the chain described in the previous paragraph), the burn-
in indicates how many networks to ignore at the beginning of the sample, and 
the interval specifies how many networks to skip over between sampled 
networks. If a network model exhibits signs of degeneracy, increasing the 
value of each of these settings and reestimating the model may aid with con-
vergence. Note that, with increased MCMC sample size, most users will 
notice a substantial increase, often hours, in the amount of time it takes R to 
estimate a model. These three settings are specified in the control.ergm com-
mand. To produce model estimates that can be replicated, a seed value can 
also be added to the command, directing the model to start at the same place 
each time. The seed value is also added as part of the control.ergm command.

Following advice from Goodreau and colleagues (2008; see Chapter 2) 
that α be selected by starting at .1 and increasing until the log-likelihood 
ceases to improve, models with geometric terms were estimated for several 
values of α starting with α = .1 (Command 35). For readers following along 
using commands, please note that each of these models may take a very long 
time to converge (i.e., hours). While parallel processing is possible in R in 
some forms, for many users, R has limitations that permit the use of only 
one core regardless of how many cores a computer has. Without advanced 
computing capabilities, the speed of model estimation is difficult to increase. 
The statnet development team has begun to work on adding parallel process-
ing functionality; see ergm-parallel in the R documentation for the ergm 
package (http://cran.r-project.org/web/packages/ergm/ergm.pdf).

Although graphic measures of fit are preferred for dependence models, 
AIC and BIC are usually consistent with the graphic measures and may 
suffice for quick comparisons during the selection of α. The model esti-
mates from Command 35 resulted in AIC of 18019, 17943, 17875, 17814, 
17759, 17732, 17700, 17660, 17667 for α of .1, .2, .3, .4, .5, .6, .7, 1, and 
1.1, respectively. The BIC demonstrated a similar trajectory. In this case, 
the best fit based on AIC and BIC was α = 1 (see bold AIC above). The 
three geometrically weighted terms using α = 1 were included with the 
other variables from the second differential homophily model to estimate a 
dyadic dependence model (Table 3.12).

The dependence model includes positive significant coefficients indicat-
ing an increased likelihood of a tie for state homophily, program homoph-
ily, jurisdiction population, years of leader experience, GWD, and GWESP. 
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A positive and significant coefficient for a geometric term indicates that, 
given the distribution of degree, ESP, or DSP in the observed network, the 
likelihood of a tie between any two given LHDs is greater than would hap-
pen by chance, all else held constant. Calculations demonstrating the influ-
ence of these terms on tie likelihood are found in the next section.

MCMC Model Diagnostics

In addition to checking model fit using the strategies discussed, model diag-
nostics can help determine whether the estimating algorithm has converged or 
there are degeneracy problems and if the model itself or the estimation settings 
need adjustment. The first strategy is to examine the changes in log-likelihood 
during the iterations; these are printed as the estimation is proceeding if  
verbose = T is included in the model command, as in Command 35. The 
amount the log-likelihood improves is an indicator of how far the iterations 
were from the starting values; large improvement numbers indicate the starting 
values for the estimation were off. The MCMC algorithm stops if the changes 
in LL are greater than 20 for any iteration, which may indicate a degenerate 
model or a model with starting values that are very far from the final estimates. 
Generally, changes should be small and decreasing with each iteration.

In addition to examining changes in LL, it may be useful to examine 
graphic MCMC diagnostics (Command 36). Graphic diagnostics show 
what is going on in the model during the final iteration (Figure 3.11); the 
graphs on the left in Figure 3.11 show the MCMC chain as a time series for 
each statistic in the model, while the right shows the same chain in a histo-
gram (Goodreau et al., 2008).

If the model has converged, these graphics should show each statistic 
varying stochastically around a mean of 0, where 0 represents the value of 
the statistic in the observed data. In this case, the graphics appear to be 
varying stochastically around 0 for most of the measures, with the excep-
tion of nutrition programming homophily and few others that have a slight 
skew. Overall, the diagnostics indicate a stable model.

For interested readers, more technical information about the MCMC 
diagnostics implemented in statnet can be found in Plummer and col-
leagues (Plummer, Best, Cowles, & Vines, 2006), and information about 
MCMC diagnostics in general can be found in Cowles and Carlin’s (1996) 
review of the topic.

Curved Exponential Family Model

Rather than selecting an α a priori, the α resulting in the best-fitting 
model can be estimated during model estimation. Models that estimate the 
α, rather than specifying it a priori, are called curved exponential family 

©SAGE Publications



75

Figure 3.11   MCMC diagnostics for several terms in the dependence model with α = 1.
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models (CEF); try reestimating the model as a CEF model using Command 
37. Note that the process of selecting α based on fitting several models 
shown previously may be considered, by some, as an alternate way to esti-
mate the α for a CEF model (Hunter, 2007).
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The estimated α values for the geometric terms in the CEF model are 
shown just after the corresponding geometric term. In this case, the esti-
mated α for GWD is listed in Table 3.13 as gwdegree.decay and is .838, the 
GWESP α is listed as gwesp.alpha and is .9451, and the GWDSP α is listed 
as gwdsp.alpha and is 1.822. The three estimated α values are highlighted 
in Table 3.13.

There was some difference in the magnitude of the covariates between 
the dependence and CEF models. The AIC and BIC both decreased in the 
CEF model as compared with the dependence model, indicating an increase 
in model fit. Adding the dependence and CEF models to Table 3.11, we can 
examine the change in fit for some of the basic network structures 
(Command 38; Table 3.14).

Table 3.14   Network measures for the LHD network and a network 
simulated from each of the models.

                 edges degree0 degree1 degree2 degree3 degree4 degree5 triangle 
LHD               2708      58     117     182     223     226     172     1437 
Null              2647      18      97     159     243     276     196       17 
Main effects      2660      29      95     166     243     246     202       32 
Homophily         2704      48     127     149     234     244     168     1223 
Diff homophily    2707      45     125     169     224     231     174     1249 
Diff homophily 2  2713      48     112     182     222     233     170     1249 
Dependence        2589      26     129     207     254     207     177     1151 
CEF model         2652      54     135     218     195     198     150     1306

 

The network simulations show several differences in model fit, includ-
ing a lack of triangles in the less complex models. The CEF model 
appeared to come the closest to capturing triangles, while the three dyadic 
independent homophily models were best at capturing the total edges in 
the network, and the second differential homophily model was best at 
capturing the degree distribution. While these results appear to indicate 
that there is not a single best model to capture all characteristics of the 
network, this is just one simulation from each model and should not be the 
only measure of fit examined.

In 100 simulations, the number of triangles is underestimated in net-
works based on the differential homophily, dependence, and CEF models 
where most of the simulated networks fall to the left of the X that points 
to the observed number of triangles (Command 39; Figure 3.12). 
However, the simulations from the dependence and CEF models were 
closer to capturing the number of triangles in the observed network, with 
the CEF model appearing to be the most consistently close to the observed 
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value. Of the 100 simulated networks, 0 networks from the dependence 
model and CEF model simulations had more triangles than the observed 
data; just one from the CEF model had exactly 1,437 triangles. Neither of 
these models is doing a perfect job at capturing the transitivity in the 
LHD network, although both appear better than the dyadic independence 
models.

Additional plots of degree, distance, ESP, and DSP demonstrate fit for 
the dependence model and the CEF model (Command 40; Figure 3.13). 
Both appear to be reasonably well fitting, with the CEF perhaps capturing 
degree more closely.

Model Selection

A comparison of multiple statistical and graphic fit indicators for the 
seven models (null, main effects, homophily, differential homophily, sec-
ond differential homophily, dependence, and CEF) has demonstrated that 
the CEF model has the best fit. The biggest increases in fit during the mod-
eling process came from adding the homophily terms to account for LHDs 
with similar characteristics (state, programming) being connected and add-
ing the dependence terms to account for degree distribution and transitivity. 
In addition to examining the fit statistics and graphics from all models, 
there may be some utility in examining the changes in model fit represented 
visually in the network through the stages of model building for smaller 
networks; for networks as large as the LHD network, it is difficult to dis-
cern much difference once the homophily effects were added (Command 
41; Figure 3.14).

Although the homophily and CEF model simulation networks appear 
similar, note the similarity in clustering patterns by program in the CEF 
model simulation and in the LHD network. The CEF model would there-
fore likely be selected as the final model for reporting purposes, given the 
lower AIC and BIC and the demonstration of fit in the simulation proce-
dures. A figure like Figure 3.14 or a table like Table 3.15 displaying the 
model-building process might be used to demonstrate model development 
and as a rationale for the selection of a final model.

Interpreting the Results for the Dependence Model

The dependence model yielded significant homophily terms for HIV 
screening programs, nutrition programs, and state. Connections were 
1.23 times as likely in dyads where both LHDs were conducting HIV 
screening compared with other dyads. Being in the same state was sig-
nificantly related to ties (OR = 137.4; 95% CI = 114.3–165.2). 
Programming homophily was significant for nutrition programming, 
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where two LHDs conducting nutrition programming were 1.21 times 
(95% CI = 1.11–1.32) more likely to form a connection than dyads where 
both LHDs were not conducting nutrition programming. Table 3.15 sum-
marizes model development, showing coefficient estimates and standard 
errors for four of the models; the same table could be reported with odds 
ratios and confidence intervals depending on which is more useful for 
the audience.

Once GW terms are added to the model, predicting the probability of a 
tie between any two network members becomes more complex due to the 
calculations and interpretation challenges of the change statistic for each 
geometric term. In the case of the GWD term, if a single edge were added 
to the network, the Di(y) and Di + 1(y) terms added as part of the summation 
of the weighted degrees on the right-hand side of Equation 9 would be 

Figure 3.14   The observed LHD network and simulated networks from 
three of the models.
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Estimate (SE)

Null Model Main Effects
Differential 

Homophily 2 CEF

Edges (constant) –5.71 (.02) –6.23 (.06) –9.56 (.11) –9.12 (.77)

Main effects

    Population 
(millions)

 .20 (.01)  .33 (.02)  .23 (.03)

   Years experience

      1–2 Reference Reference Reference

      3–5  .14 (.05)  .18 (.05)  .13 (.04)

      6–10  .28 (.04)  .32 (.04)  .24 (.04)

      11+  .34 (.04)  .35 (.04)  .28 (.04)

Homophily

   State  6.31 (.08)  4.92 (.09)

    Conducts nutrition 
program

 .25 (.05)  .19 (.04)

    Conducts HIV 
screening

 .46 (.04)  .21 (.04)

Structural terms 

   GWD  1.11 (.18)

   GWESP  .97 (.03)

   GWDSP  –.08 (.08)

Fit

   AIC

   BIC

36,367

36,379

36,176

36,234

19,473

19,566

17,015

17,178

Table 3.15   Summary of model results for the null, main effects, 
differential homophily 2, and CEF models.
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replaced by Di(y) – 1 and Di + 1(y) + 1. To examine how the addition of this 
edge influences the likelihood of a graph (all else held constant), the change 
in odds for the graph can be examined by substituting the old and new 
degrees into Equation 8 (Hunter, 2007). Readers interested in additional 
detail in demonstrating how the change statistics for GWD follow from the 
overall model through this substitution can consult Hunter (2007) in deriv-
ing the following:

 
P Y

P Y
e

ij after

ij before

=( )
=( )

= −( )−
1

1
1exp { }θ α i

Note that P Yij before
=( )1  is shorthand for P Y n Yij ij

c

before
=( )1| ,actors . 

Since the addition of a new edge would increase the degree of both nodes 

it attached to, the increase would instead be θ α α[ ]1 1−( ) + −( )− −e e
i j

 

(Hunter, 2007). The change statistic for the GWD term is therefore 
defined as

 δ α α
GWD = −( ) + −( )− −1 1e e

i j

Remember, as degree increases, 1−( )−e
iα
 decreases geometrically. So, 

with a positive and significant θGWD, the log-odds of a tie increases for all 
degree values of i and j, but this increase would be of smaller magnitude when 
i and j already have higher degree. At some point, the increase levels off and 
stays constant at any higher degree level for j. For a smaller α, this leveling off 
happens more quickly (Figure 3.15). The GWD network statistic weights 
higher degrees more, resulting in a larger value of the statistic for networks 
with more high-degree nodes. The corresponding change statistic demon-
strates a preference for adding edges that is strongest in low-degree nodes.

There is more complexity in how overall network structures change for 
GWESP and GWDSP, since adding a tie will change the number of ESP 
and DSP not just for the two incident nodes but also for other nodes across 
the network. Readers interested in how the change statistics for GWESP 

(16)

(17)
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and GWDSP follow from the overall model can consult Hunter (2007) in 
deriving the following:

δ α
GWESP = −( )−1 e

ijESP

δ α
GWDSP = −( )−1 e

ijDSP

In the LHD dependence model with α = 1.0, the calculation

1 1 631 0− = − =− −e eα . .

can be substituted into Equations 17 to 19 to determine the change statistics 
for the three terms:

δGWD = +. .63 63i jd d

Figure 3.15   Change in log-odds of a tie between i and j when i has one 
link (degree = 1) and j has different degree values for several 
levels of α.
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δGWESP = .63ijESP

δGWDSP = .63ijDSP

δGWD indicates the log-odds of a tie would increase the most when adding 
an edge between i and j when i and j both have 0 degrees; the increase in 
log-odds of a tie would shrink as i and j have more connections (Hunter, 
2007). The same general pattern holds for predicting the log-odds of a tie 
between two specific network members (all else held constant) using the 
GWESP and GWDSP change statistics. The decreased log-odds with 
increases in degree, ESP, and DSP in the GW terms could be considered 
antipreferential attachment (Hunter, 2007).

Generally speaking, interpretations of the GWD, GWDSP, and GWESP 
coefficients are consistent with interpretations of other model coefficients. 
A positive and significant coefficient for a geometric term indicates that the 
likelihood of adding a tie between any given i and j is greater than would 
happen by chance, all else held constant. Likewise, a negative and signifi-
cant coefficient indicates that the likelihood of adding a tie between any 
given i and j is less than would happen by chance, and a nonsignificant 
coefficient would be interpreted as no significant difference from chance in 
the probability of adding a tie between i and j, all else held constant.

Although the coefficients appear straightforward, the change statistics 
can complicate deeper interpretation. As described above, the change sta-
tistics aim to capture the change in the value of the network statistic (see 
Equations 9–11 in Chapter 2) if a tie were added to the network between 
nodes i and j (Hunter, Goodreau, et al., 2008). Given the influence of a 
single tie on the shared partner distribution across the network, caution 
should be taken in overinterpreting the coefficients for the GWESP and 
GWDSP terms in particular. Following Hunter (2007, Section 5), it should 
be made clear that interpretations of the GWESP and GWDSP coefficients 
are made “assuming nothing else changes and all other model effects have 
been accounted for” (p. 227, emphasis added).

Finally, because DSP measures share partners for each dyad, connected 
or not, and ESP measures share partners for only connected dyads, it is 
important to consider the geometric terms accounting for these distribu-
tions added to the model alone and together. If GWDSP is added to the 
model without GWESP, the resulting coefficient may be driven by the 
distribution of shared partners across connected and unconnected pairs. If 
GWESP is added to the model without GWDSP, it will account only for the 
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distribution of shared partners in connected dyads. When GWESP is added 
to the model with GWDSP, GWESP accounts (or controls) for the distribu-
tion of shared partners in connected dyads, allowing the GWDSP to 
account for the distribution of shared partners for unconnected dyads.

The addition of GW terms to the model increases the amount of informa-
tion needed to use the model for prediction. For example, consider the 
predictions previously made for the two LHDs: One LHD has a leader with 
1 year of experience (years = 0), has 100,000 constituents (popmil = .1), is 
not conducting HIV screening (hivscreen = 0), but is doing nutrition pro-
gramming (nutrition = 1). The other LHD has a leader with 7 years of 
experience (years = 2), has 2 million constituents (popmil = 2), and is 
conducting HIV screening (hivscreen = 1) and nutrition programming 
(nutrition = 1). The main effects model predicted the likelihood of a tie 
between these leaders to be .0023, and the differential homophily model 
predicted the likelihood of adding a tie between these two to be .033. To 
predict the probability of a tie based on the dependence model, we now 
need to know not only the attributes of the two network members but also 
the degree for each person in the dyad and the number of edgewise and 
dyadwise shared partnerships for the dyad. The change statistics for GWD, 
GWESP, and GWDSP as shown above are substituted into the model along 
with coefficients and change statistics for the attributes:

P Y n Yij ij
c=( ) = − + +1 10 07 20| , ( . .

.

actors logistic * *edges popmilδ δ

114 25 30 19

18

3 5 6 10 10* * * *years years HIVHomδ δ δ δ− − >+ + + +. . .

.

years

** * *

* *
nutritionHom stateHom GWD

GWESP GW

δ δ δ

δ δ

+ + +

−

5 02 19

96 04

. .

. . DDSP

Values of predictors can be substituted into the model to predict the 
probability of adding a tie for some specific cases. Because the model now 
has a large number of terms, only those terms used to estimate this prob-
ability are shown in the calculations below. Case 1 revisits the likelihood 
of a tie between the two LHDs predicted to be .0023 or .23% by the main 
effects model and .033 or 3.3% by the differential homophily model. 
Because the dependence model now includes structural terms for degree, 
ESP, and DSP, we now must specify these characteristics for the two 
LHDs in the calculations.

Case 1: One Missouri LHD with a leader with 1 year of experience, 
100,000 constituents, no HIV screening, and nutrition programming and 
the other Missouri LHD with a leader with 7 years of experience, 2 million 
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constituents, HIV screening, and nutrition programming, with degrees of 3 
and 4, respectively, and 0 ESP and 3 DSP.

P Y n Yij ij
c=( ) = − + + +1 10 07 1 20 2 1 25 1

18

| , ( . * . * . . *

. *

actors logistic

11 5 02 1 19 63 63 96 63 04 633 4 0 3+ + + + −. * . *(. . ) . *. . *. )

        
P Y n Yij ij

c=( ) = −( )1 3 17| , .actors logistic

        P Y n Yij ij
c=( ) =1 040| , .actors

Case 2: Two Oregon LHD leaders, both with more than 10 years of expe-
rience, both with 25,000 constituents, both conducting HIV and nutrition 
programs, with degrees of 2 and 4, 1 ESP, and 2 DSP.

P Y n Yij ij
c=( ) = − + + +1 10 07 1 20 05 30 2 19| , ( . * . *. . * . *actors logistic 11

18 1 5 02 1 19 63 63 96 63 04 632 4 1 2

+

+ + + + −. * . * . *(. . ) . *. . *. )

  P Y n Yij ij
c=( ) = −( )1 3 38| , .actors logistic

  P Y n Yij ij
c=( ) =1 033| , .actors

Case 3: Two California LHD leaders, both with more than 10 years of 
experience, both with 2 million constituents, both conducting HIV and 
nutrition programs, with degrees of 2 and 4, 1 ESP, and 2 DSP.

P Y n Yij ij
c=( ) = − + + + +1 10 07 1 20 4 30 2 19 1| , ( . * . * . * . *actors logistic

.. * . * . *(. . ) . *. . *. )18 1 5 02 1 19 63 63 96 63 04 632 4 1 2+ + + + −

   
P Y n Yij ij

c=( ) = −1 2 59| , ( . )actors logistic

    P Y n Yij ij
c=( ) =1 070| , .actors
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These cases provide some additional insight into connections in the LHD 
network. For example, the magnitude of the coefficient for popmil does not 
stand out on its own; however, when it is multiplied by the combined 
populations of the two LHDs in a dyad, it can make a big difference in the 
probability of connection. Case 2 and Case 3 only differ by the population 
size of the two LHD jurisdictions, and the probability of a connection 
increases dramatically from 3.3% to 7.0%.

Predicting probabilities for CEF models is even more complex since 
each geometric term estimates its own value for α. In this case, the CEF 
model produced α values of .838 for GWD, .9451 for GWESP, and 1.822 
for GWDSP. Using these values, we can calculate the change statistics for 
each GW term by first calculating the base value for each:

1 1 57838− = − =− −e eα . .

1 1 619451− = − =− −e eα . .

1 1 841 822− = − =− −e eα . .

Each value is then substituted into the corresponding equation to deter-
mine the change statistics for the three terms:

δGWD = +.57 57i jd d

δGWESP = .61ijESP

δGWDSP = .84ijDSP

The full CEF model with coefficients would then be written:

P Y n Yij ij
c=( ) =

− + +

1

9 12 23 1

| ,

( . . .

actors

logistic * *edges popmilδ δ 33 24

28 21

3 5 6 10

10

* *

* *

years years

HIVscreenHo

δ δ

δ δ
− −

>

+ +

+

.

. .years mm nutritionHom

stateHom GWD GWESP

*

* * *

+

+ + + −

.

. . . .

19

4 92 11 97 0

δ

δ δ δ 88* GWDSP)δ
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And the three predicted probabilities for the three cases shown above 
would be calculated:

Case 1: One Missouri LHD with a leader with 1 year of experience, 
100,000 constituents, no HIV screening, and nutrition programming and 
the other Missouri LHD with a leader with 7 years of experience, 2 million 
constituents, HIV screening, and nutrition programming, with degrees of 3 
and 4, respectively, and 0 ESP and 3 DSP.

P Y n Yij ij
c=( ) =

− + + + +
1

9 12 1 23 2 1 24 1 19 1
| ,

. * . * . . * . *
actors logistic

44 92 1

11 57 57 97 61 08 843 4 0 3

. *

. * . . . *. . *.

+

+( ) + −















Case 2: Two Oregon LHD leaders, both with more than 10 years of expe-
rience, both with 25,000 constituents, both conducting HIV and nutrition 
programs, with degrees of 2 and 4, 1 ESP, and 2 DSP.

P Y n Yij ij
c=( ) = − + + +1 9 12 1 23 05 28 2 21 1| , ( . * . *. . * . *actors logistic ++ +

+ + + −

. *

. * . *(. . ) . *. . *. )

19 1

4 92 1 11 57 57 97 61 08 842 4 1 2

Case 3: Two California LHD leaders, both with more than 10 years of 
experience, both with 2 million constituents, both conducting HIV and 
nutrition programs, with degrees of 2 and 4, 1 ESP, and 2 DSP.

P Y n Yij ij
c=( ) = −( )1 2 33| , .actors logistic

P Y n Yij ij
c=( ) =1 088| , .actors

P Y n Yij ij
c=( ) = −( )1 2 65| , .actors logistic

P Y n Yij ij
c=( ) =1 066| , .actors
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P Y n Yij ij
c=( ) =

− + + + +
1

9 12 1 23 4 28 2 21 1 1
| ,

. * . * . * . * .
actors logistic

99 1 4 92 1

11 57 57 97 61 08 842 4 1 2

* . *

. * . . . *. . *.

+ +

+( ) + −















Refining the Model Using Constraints

Until now, model building has focused primarily on the types of terms to 
include in the model and some recommended settings for estimation. Some 
research questions might benefit from constraining the space of possible 
networks that are considered during the estimation process for any given 
model. For example, participants in some network surveys are limited in 
the number of connections they can name. In a situation like this, it may be 
useful to constrain the possible networks estimated to a maximum degree 
for each node. Constraints are available to limit the maximum or minimum 
degree of a node, to preserve the exact degree of each node or the entire 
degree distribution, and to preserve the number of edges in the network. 
These constraints are described in more detail by Morris and colleagues 
(2008) and are defined in the R-ergm help documentation accessible from 
the R prompt. Since we know little about the social forces at work in any 
given network, it is not usually advisable to constrain the pool of realizable 
networks; however, if necessary, this function is available.

P Y n Yij ij
c=( ) = −( )1 1 74| , .actors logistic

P Y n Yij ij
c=( ) =1 150| , .actors
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