
137

6
Debug anD Optimize

Now that you are beginning to be fairly competent in MATLAB, we should
talk about what to do when you’re making your own code and things aren’t
going as planned. Errors can be frustrating to all of us, especially those with-
out much previous experience in programming.

6.1 General Practices

In general, save often but also save backups of previous versions of your code
(e.g., using revision numbers as done in this book or using last-edited dates).
Having previous versions of your scripts and functions saved can go a long way
in helping you solve an error, as you can “roll back” parts of your script and
potentially easily correct your error and avoid more involved debugging issues.

6.2 Breaking Out of Unresponsive Code

For beginners, one type of error is even more problematic than an actual
error in MATLAB being unresponsive because it is still “busy” when it really
should have finished running the script or function. The usual cause of this
is a bug in a for or while loop that prevents the loop from ever finishing.
One way to prevent this from happening in the first place is to use disp to
get status updates as your script runs, but this isn’t a particularly helpful sug-
gestion when your MATLAB process is already unresponsive.

To have MATLAB abort the current command without killing its process
directly (e.g., “End Task,” “Force Quit,” or “kill”), press CTRL+C. You may have

©SAGE Publications

138 An Introduction to MATLAB for Behavioral Researchers

to press this several times if MATLAB was stuck in a nested loop. MATLAB will
report an error on the line where it was when it aborted, but this line is usu-
ally not related to the actual issue. You can also have MATLAB automatically
abort the current script or function if a certain condition is met by using the
break function in conjunction with an if statement. Note that break can
only abort the innermost loop (see help for more details).

6.3 Locating the Error

If you’re working on code in the MATLAB command window, usually you can
locate your errors fairly easily, even if you don’t yet know what is wrong with
the code. When working with scripts and functions, this isn’t as easy. Though
MATLAB will provide you with a line number for where your code is produc-
ing an error, sometimes that’s not the best place to actually fix the code.

In the case of scripts, the best approach is to use disp to get status
updates and see which portions of your code are being run and which are
not. Another option is to use pause, which causes MATLAB to pause the
script and wait for you to press a key before it will continue. echo is also use-
ful to see what portions of the code are being run. When you get an error,
you may also want to use who or whos to see which variables are in your
workspace and what their values are.

With functions, debugging is a bit more difficult, as functions have their
own internal workspace that you can’t access if the code returns an error or
if you use CTRL+C or break to abort the code. In this situation, the best func-
tion you can use is keyboard. This function is great in that it pauses the func-
tion where it stands and lets you take over with the keyboard. As a result, you
can now check the contents of variables that are internal to the function and
work to ascertain what is wrong with your code. After you are done, type
return to have MATLAB continue running the function from where it
paused. You can also alternatively type dbquit to exit this debug mode and
completely abort the current function or code.

6.4 Common Errors: Typing Related

Now that we are better able to localize our problematic lines of code, we
need to learn what errors that MATLAB reports really mean and what is the
likely cause. Here, we will go through the most common MATLAB errors that

©SAGE Publications

Debug and Optimize 139

you are likely to encounter, along with a simple example that can create them
and where to look to remedy them.

Expression or statement is incorrect—possibly
unbalanced (, {, or [

This error simply means that the number of brackets you open (of any
type, (, [, or {) does not match the number that you close. MATLAB usually
tries to point out where in the line the error is, but it may not be correct. This
is a particularly common error and arises when you combine many functions
within one line of code.

1 >> disp(sprintf(Today is %s.,date))
2 Today is 06-Jan-2013.
3 >> disp(sprintf((Today is %s.,date))
4 ??? disp(sprintf((Today is %s.,date))
5 |
6 Error: Expression or statement is incorrect--possibly unbalanced (, {,
7 or [.

1 >> disp(sprintf(Today is %s.,date))
2 Today is 06-Jan-2013.
3 >> disp(sprintf(Today is %s.),date)
4 ??? Error using ==> disp
5 Too many input arguments.
6 >> disp(Today is %s.,date)
7 ??? Error using ==> disp
8 Too many input arguments.

The simplest solution for this is to take apart the line of code and work
back from the inside out and see how much of it works, and confirm that the
values returned actually make sense. Below is an example of how this can look.

Too many input arguments

This error message means that you are providing more input variables
into a function than it is designed to handle. However, it is more likely that
you either made a mistake with the brackets, where you have all the brackets
you need (i.e., not an imbalance), but that one or more of them is in the
wrong position. It is also possible that you may have accidentally skipped
over a step in the logic and missed using one of your functions. Here are
examples of either likely mistake.

©SAGE Publications

140 An Introduction to MATLAB for Behavioral Researchers

Undefined function or variable . . .

This error is fairly straightforward: You made a typo, such that the func-
tion or variable you are referring to doesn’t exist. Since the errors tell you
what doesn’t exist, it should be easy to search your code for the typo.

1 >> disp(sprintf(Today is %s.,date))
2 Today is 06-Jan-2013.
3 >> disp(sprintf(Today is %s.,dat))
4 ??? Undefined function or variable dat.

1 >> disp(sprintf(Today is %s.,date))
2 Today is 06-Jan-2013.
3 >> dis(sprintf(Today is %s.,date))
4 ??? Undefined function or method dis for input arguments
5 of type char.
6 >> disp(sprint(Today is %s.,date))
7 ??? Undefined function or method sprint for input arguments
8 of type char.

1 >> ones(2,4) * ones(2,4)
2 ??? Error using ==> mtimes
3 Inner matrix dimensions must agree.
4 >> ones(2,4) .* ones(2,4)
5 ans =
6 1 1 1 1
7 1 1 1 1

Undefined function or method . . . for input
arguments of type . . .

This is almost the same as the previous error, but it occurs when your
function has inputs specified.

Inner matrix dimensions must agree

This error is usually caused by accidentally telling MATLAB to do matrix
multiplication (*) rather than element-wise multiplication (.*). (Also see p. 12.)

6.5 Common Errors: Value Related

The previous common errors were all based on some sort of typing error
where MATLAB was confused by the bracket placement or was not sure what

©SAGE Publications

Debug and Optimize 141

variable you were referring to. The next set of common errors comprises
those related to the contents of your variables and how you are attempting
to interact with them.

Index exceeds matrix dimensions

This error occurs when you try to refer to an index that does not exist in
the matrix. Specifically, the index you provided was larger than that of the
matrix.

In the case of this error, you are likely to have accidentally swapped your
indexes for the row and column dimensions. Here, we’ll make a quick exam-
ple matrix, so we can try and reproduce and isolate these errors.

 1 >> M = rand(8,4)
 2 M =
 3 0.1656 0.2290 0.1067 0.2599
 4 0.6020 0.9133 0.9619 0.8001
 5 0.2630 0.1524 0.0046 0.4314
 6 0.6541 0.8258 0.7749 0.9106
 7 0.6892 0.5383 0.8173 0.1818
 8 0.7482 0.9961 0.8687 0.2638
 9 0.4505 0.0782 0.0844 0.1455
10 0.0838 0.4427 0.3998 0.1361
11 >> M(3,6)
12 ??? Index exceeds matrix dimensions.
13 >> M(6,3)
14 ans =
15 0.8687

1 for i = 1:length(M)
2 meanM(i) = mean(M(:,i));
3 end
4 meanM

Attempted to access . . . index out of
bounds because size . . .

This error is very similar to the previous one, but here we are referring to a
whole row or column of the matrix rather than a single index.

A likely cause of this error is using length when your dimension of inter-
est is not the longest. Here you should use size. Note that length is effec-
tively the same as max(size).

©SAGE Publications

142 An Introduction to MATLAB for Behavioral Researchers

Using size, we can see that we should be using the second dimension.

1 ??? Attempted to access M(:,5); index out of bounds because
2 size(M)=[8,4].

1 >> size(M)
2 ans =
3 8 4

1 for i = 1:size(M,2)
2 meanM(i) = mean(M(:,i));
3 end
4 meanM

1 >> M(1)
2 ans =
3 0.1656
4 >> M(0)
5 ??? Subscript indices must either be real positive integers
6 or logicals.
7 >> M(3.4)
8 ??? Subscript indices must either be real positive integers
9 or logicals.

The corrected code would look as follows.

As noted earlier, using size(M,1) in this particular case would be effec-
tively the same as using length, as length(M)==max(size(M)).

Subscript indices must either be real positive
integers or logicals

This error occurs when you attempt to access an index of a variable that
is simply not possible, such as a zero or a non-integer (i.e., a number that has
decimals).

In all likelihood, you did not type this yourself and instead fed one vari-
able in as the index for the other. You probably forgot to include the find
function or maybe round.

Using length produces the following error:

©SAGE Publications

Debug and Optimize 143

 1 >> N = nan(4,2);
 2 >> N(1,:)
 3 ans =
 4 NaN NaN
 5 >> M(1,:)
 6 ans =
 7 0.1656 0.2290 0.1067 0.2599
 8 >> N(1,:) = M(1,:)
 9 ??? Subscripted assignment dimension mismatch.
10 >> M(1,:) = N(1,:)
11 ??? Subscripted assignment dimension mismatch.
12 >> length(N(1,:))
13 ans =
14 2
15 >> length(M(1,:))
16 ans =
17 4

 1 >> M(1,1:length(N(1,:))) = N(1,:)
 2 M =
 3 NaN NaN 0.1067 0.2599
 4 0.6020 0.9133 0.9619 0.8001
 5 0.2630 0.1524 0.0046 0.4314
 6 0.6541 0.8258 0.7749 0.9106
 7 0.6892 0.5383 0.8173 0.1818
 8 0.7482 0.9961 0.8687 0.2638
 9 0.4505 0.0782 0.0844 0.1455
10 0.0838 0.4427 0.3998 0.1361

Subscripted assignment dimension mismatch

This error occurs when you copy values from one matrix to another, but
the variables aren’t of the same length. The same error is produced regard-
less of which is longer.

This one is a bit harder to fix, as it really depends on what you meant to
do. Nonetheless, one possible solution is to only copy the number of values
that would fit. Depending on which variable is the longer one, you may need
to change the left or the right side of the equal sign. In either case, the key
point is to accommodate the shorter of the two variables.

©SAGE Publications

144 An Introduction to MATLAB for Behavioral Researchers

In an assignment A(I) = B, the number of
elements in B and I must be the same

This error is quite similar to the last, but this one occurs when you try and
store multiple values from one variable into a single index of another variable.
This can usually be solved by adjusting your code to store the multiple values of
one variable into the same number of values in the second variable, but you
should be particularly careful here to make sure that this is what you intended.

1 >> N(1,:) = M(1,1:length(N(1,:)))
2 N =
3 0.1656 0.2290
4 NaN NaN
5 NaN NaN
6 NaN NaN

1 >> A = ones(1,4)
2 A =
3 1 1 1 1
4 >> A(1) = M(1,:)
5 ??? In an assignment A(I) = B, the number of elements in B
6 and I must be the same.
7 >> A(1,:) = M(1,:)
8 A =
9 0.1656 0.2290 0.1067 0.2599

 1 >> M(1,:)
 2 ans =
 3 0.1656 0.2290 0.1067 0.2599
 4 >> N(1,:)
 5 ans =
 6 NaN NaN
 7 >> [M(1,:) N(1,:)]
 8 ans =
 9 0.1656 0.2290 0.1067 0.2599 NaN NaN
10 >> [M(1,:); N(1,:)]
11 ??? Error using ==> vertcat
12 CAT arguments dimensions are not consistent.

CAT arguments dimensions are not consistent

This error is produced when you try and concatenate two variables that
are of different lengths. This error occurs regardless of whether you are using
[], cat, horzcat, or vertcat.

©SAGE Publications

Debug and Optimize 145

For this error, it is particularly difficult to suggest how you fix it, as the
uses of concatenation can vary greatly. Whatever you do choose, make sure
you manually confirm that the resulting output is what you were expecting.

That’s all for the common errors. It is quite possible that you will come
across other errors as well, but hopefully you will now find the MATLAB error
messages a bit less cryptic and you now have a better idea how to resolve
them. Good luck!

6.6 Timing Your Code With Tic–Toc

Moving on from debugging, let’s work on optimizing your code. In other
words, for the sections of Chapter 6 from this point forward, we are assuming
that your code works, and you are interested in making it more efficient.

Your first functions toward optimizing your code are tic and toc. When
you use tic, MATLAB starts a timer (i.e., a stopwatch). When you use toc,
MATLAB checks the time elapsed since the last tic and outputs it in the com-
mand window.

1 >> tic
2 >> toc
3 Elapsed time is 2.185080 seconds.

 1 >> tic
 2 >> toc
 3 Elapsed time is 2.185080 seconds.
 4 >> toc
 5 Elapsed time is 7.660244 seconds.
 6 >> tic
 7 >> toc
 8 Elapsed time is 2.335965 seconds.
 9 >> toc
10 Elapsed time is 20.789621 seconds.
11 >> toc
12 Elapsed time is 26.334178 seconds.

You can also use toc multiple times to get the time since the most recent
tic. Using tic again will reset to start from zero again.

©SAGE Publications

146 An Introduction to MATLAB for Behavioral Researchers

You might be wondering: “What’s so special about tic and toc? Why
would I care about the time when I’m writing my code?” The answer is to try
and optimize your code so that it runs faster. Let’s try this out. If you go in
the demo folder, you will find a script called timer1.m. The contents of this
script are copied below. Run this script and see how long it takes to run.

1 >> tic
2 >> now = toc
3 now =
4 9.1857

1 tic
2
3 numbers = 1:1000;
4 nSum = sum(numbers);
5
6 elapsed2 = toc

1 >> timer1
2 elapsed1 =
3 0.0034

1 tic
2
3 numbers = 1:1000;
4 nSum = 0;
5 for i = numbers
6 nSum = nSum + numbers(i);
7 end
8
9 elapsed1 = toc

This code is intended to add up all of the numbers from 1 to 1,000. It is
intentionally written a bit badly, but hopefully you can still tell that’s what it
does. Let’s run it and see what elapsed1 is.

Now, let’s compare this to a much more efficient version of this, which
has been saved as timer2.

You can also store the time from toc in a variable.

©SAGE Publications

Debug and Optimize 147

Clearly elapsed2 is a smaller value. Now, you might be thinking that
these aren’t very big numbers; does 0.0034 seconds really matter? Well, these
are intended to be extremely simple cases, much simpler than your own
analyses. It can be very helpful to measure the time it takes for your code to
run, especially if you end up doing mathematical simulations, where the
same block of code is run tens of thousands of times. Even still, we can also
readily see that the small change between timer1.m and timer2.m made the
code run just over 100 times faster.

1 >> timer2
2 elapsed2 =
3 3.0986e-05

1 >> elapsed1/elapsed2
2 ans =
3 108.2763

 1 >> timer3
 2 nSum =
 3 1
 4 nSum =
 5 3
 6 nSum =
 7 6
 8 nSum =
 9 10
10 ...
11 elapsed3 =
12 0.0213

6.7 Semicolons Are Your Friend

Toward the aim of optimizing your code, one of the smallest changes you can
make that will make a world of difference is to add semicolons to the ends of
lines that output text to the MATLAB command window. This is especially
important if the line of code is contained within a for loop. Let’s remove a
semicolon from timer1.m, save the file as timer3.m, and see how much dif-
ference it makes.

©SAGE Publications

148 An Introduction to MATLAB for Behavioral Researchers

Removing that one character/key press made our script take more than
6 times as long and nearly 700 times as long as our “optimized” version.
Clearly, printing to the MATLAB command window can slow scripts down
markedly. (Remember that you can use CTRL+C to abort code that takes too
long to run!) Suppressing the output can easily speed up your code. This
suggestion works well as long as you don’t particularly need to be informed
of the output of that line of code. If you do want to know its contents, such
as a counter in a loop that iterates through participant data or some other
counter, you can use if in conjunction with mod to get periodic updates on
the counter.

mod is a particularly interesting function, but the breadth of its usefulness
will probably surprise you. Back in grade school, we learned how to do long
division and find the remainder. In analyses, this operation can be quite use-
ful and is more formally known as “modulo.” In many programming lan-
guages, ‘modulo’ is abbreviated to ‘mod’ and uses % as the operator symbol
(e.g., 23 % 4 = 3). However, as you know, % is used for other purposes in
MATLAB.

One good example of the uses of mod is to determine if a number is odd
or even, by dividing it by 2 and seeing what the remainder is.

1 >> elapsed3/elapsed1
2 ans =
3 6.3477
4 >> elapsed3/elapsed2
5 ans =
6 687.3026

1 >> mod(23,4)
2 ans =
3 3
4 >> mod(23,2)
5 ans =
6 1
7 >> mod(22,2)
8 ans =
9 0

Similarly, we can also easily extract the “ones” digit of a number by look-
ing at the remainder after dividing a number by 10.

That was a lot slower, but how much?

©SAGE Publications

Debug and Optimize 149

Additionally, mod is quite useful in conjunction with floor.

1 if mod(i,100) == 0
2 i
3 end

1 >> mod(12,10)
2 ans =
3 2
4 >> mod(113,10)
5 ans =
6 3
7 >> mod(19208,10)
8 ans =
9 8

 1 tic
 2
 3 numbers = 1:1000;
 4 nSum = 0;
 5 for i = numbers
 6 nSum = nSum + numbers(i);
 7 if mod(i,100) == 0
 8 i
 9 end
10 end
11
12 elapsed4 = toc

 1 >> value = 23;
 2 >> divisor = 4;
 3 >> mod_value = mod(value,divisor)
 4 mod_value =
 5 3
 6 >> floor_value = floor(value/divisor)
 7 floor_value =
 8 5
 9 >> divisor*floor_value+mod_value
10 ans =
11 23

Returning to our current situation with optimizing code, we can use mod
in an if statement to only print the contents of a variable periodically, such
as every 100th cycle of our for loop, as shown below.

We have copied timer1.m, added in this code, and saved it as timer4.m.

©SAGE Publications

150 An Introduction to MATLAB for Behavioral Researchers

Let’s run it and see how it compares.

 1 >> timer4
 2 i =
 3 100
 4 i =
 5 200
 6 i =
 7 300
 8 i =
 9 400
10 i =
11 500
12 i =
13 600
14 i =
15 700
16 i =
17 800
18 i =
19 900
20 i =
21 1000
22 elapsed4 =
23 0.0132

1 >> elapsed4/elapsed1
2 ans =
3 3.9286
4 >> elapsed4/elapsed3
5 ans =
6 0.6189

 1 >> timer5
 2 i =
 3 1
 4 i =

This version is definitely slower than timer1.m but not as bad as
timer3.m. Keep in mind that there is also a cost to adding this additional
code for the if and mod, as MATLAB has to do more calculations on every cycle
of the for loop. To make this more apparent, let’s set the mod function to
divide by 1, effectively making the code in the if statement always run. This
file is saved as timer5.m.

©SAGE Publications

Debug and Optimize 151

Clearly, this made the script run much slower. That about covers it for
tic and toc, but hopefully, that gave you some idea that even though there
are many ways to code an analysis in MATLAB, they are not all equally opti-
mal. That being said, it may sometimes also be better in the long run to make
your code more flexible so that it can be reused in a different analysis, despite
making the code a bit slower to run.

6.8 Profiling Your Code

If tic and toc aren’t enough for you, MATLAB does have more powerful
tools to help you optimize your code. Just like the FBI profilers you see on
TV profile unsavory people to better understand what makes them tick, you
can use the profile function to profile your MATLAB code to better under-
stand what makes your code work. This is the function that you need to
clean up complex, resource-hungry MATLAB code. You can find the bottle-
necks by profiling your code. A screenshot of the profile viewer is shown
in Figure 6.1.

 5 2
 6 i =
 7 3
 8 i =
 9 4
10 i =
11 5
12 ...
13 elapsed5 =
14 0.0483

1 >> elapsed5/elapsed1
2 ans =
3 14.3882
4 >> elapsed5/elapsed4
5 ans =
6 3.6624
7 >> elapsed5/elapsed3
8 ans =
9 2.2667

©SAGE Publications

152 An Introduction to MATLAB for Behavioral Researchers

Figure 6.1. Screenshot of the profile viewer.

When you are ready to start profiling, just type profile on. When you’re
all done and ready to see the report, type profile viewer.

1 >> profile on
2 >> % run your code/script here
3 >> profile viewer

6.9 A Fresh Pair of Eyes

As a final note, when you’re not sure how to solve an error or could use some
direction in optimizing your code, don’t be afraid to ask a friend to take a
look. Hopefully, you know someone else working through this book or who
already knows MATLAB. A fresh pair of eyes looking through your code can
make all the difference. You sometimes need to ask someone else to proof-
read a paper you write; your code is no different.

©SAGE Publications

Debug and Optimize 153

EXERCISES

This time will be a bit different; here we will fix errors and optimize code.

 1. Load the worddb data set.

Find the error produced by each line of code, and try and correct the mistake.

 2. Code:

1 scatter(worddata{10},worddata{8}(1:460))

1 div3 =
2 279 282 285 288 291 294 297 300

1 imagTab = mean(worddata{20}(find(strcmp,worddata{2},taboo)))

1 types=unique(worddata(2,1:460))

 1 % find numbers divisible by 3 within certain range
 2 numbers = 277:300;
 3 div3 = [];
 4
 5 for n = numbers
 6 if (n/3) == round(n/3)
 7 div3 = [div3 n];
 8 end
 9 end
10
11 div3

 3. Code:

 4. Code:

 5. Try to optimize this script:

Output:

See page 209 for the solutions. Next, we will add basic statistics to our MATLAB skills.

©SAGE Publications

154 An Introduction to MATLAB for Behavioral Researchers

 FUNCTION REVIEW

General: mod

Debug: break pause keyboard return dbquit

Timing: tic toc profile

©SAGE Publications

