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Figure 4.2 Scatter Plots Between the Log Number of Sold Packages and the Own Price
in Four Different Stores. Each plot displays the log-sales versus price in two outlets using
different symbols (plus signs and black dots)

Table 4.1 Posterior Means, Standard Devi-
ations and 95% Credible Intervals for Fixed
Effects and Random Effects Variances

Variable post.mean stdev 95% CI re var.

intercept 4.00 0.069 [3.86,4.13] 0.254
logp −2.54 0.062 [−2.66,−2.41] 0.177
logpc1 0.45 0.033 [0.39,0.52] 0.005
logpc2 1.11 0.033 [1.04,1.18] 0.013
logpc3 0.54 0.027 [0.49,0.59] 0.015

with a priori independent random effects
given by uik ∼ N (0, δ2

k ), k = 0, . . . , 4.
The model is estimated with the pro-
gram BayesX (Brezger et al., 2005,
2007) using MCMC simulations based
on 100,000 iterations after a burn-in
period of 2000 iterations. Of the 100,000
samples, every 100th sample has been stored
and used for posterior inference.

Table 4.1 shows the estimated posterior
mean, standard deviation, and 95% credi-
ble intervals for the fixed effects. The last
column of Table 4.1 shows the estimated
variances δ2

k , k = 0, . . . , 4 of the correspond-
ing outlet-specific random effects.

The estimated log-linear price effects are
in agreement with economic theory. Increas-
ing own-prices reduce sales while increasing

prices of competing brands lead to increased
sales forTree Fresh.The strength of the outlet-
specific random variation across stores mea-
sured through the random effects variances
in the last column of Table 4.1 is quite dif-
ferent. While the random intercept (measur-
ing the outlet-specific overall sales level) and
the own-price random effects are compara-
bly strong, with variances of δ2

0 = 0.254 and
δ2

1 = 0.177 (compared to the posterior mean
of the overall variance of σ 2

= 0.19), the ran-
dom effects of cross-price effects are compa-
rably small. A way to get an intuition about
the store-specific heterogeneity is to plot the
store-specific price curves. This is done for
four outlets in Figure 4.3, showing consider-
able own-price heterogeneity.

Model comparison in hierarchical Bayesian
models estimated with MCMC simulations
can be done via the deviance information cri-
terion (DIC), as proposed by Spiegelhalter
et al. (2002); see also Section 4.5 for a criti-
cal discussion of the DIC in multilevel mod-
els. Comparing the full random effects model
(4.12) with a model without random effects,
we obtain a DIC reduction of more than 140
points (8278 for the parametric model versus
8136 for the random effects model) which
is another clear indicator for the existence
of store-specific heterogeneity. However, it is
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Figure 4.3 Log-Sales Versus Log-Price Curves for Four Different Outlets together with
Corresponding Partial Residuals

less clear that the cross-price random effects
ui2, . . . , ui4 are really needed. Estimation
without these random effects reveals a DIC
of 8148, so that the full random effects model
is still slightly better (in terms of the DIC) than
the reduced random effects model.

A somewhat unsatisfactory aspect of our
models so far is that the type of nonlinearity
of the price effects is determined in advance
using a log-transformation of prices. To inves-
tigate whether the log-transformation is really
appropriate we can replace the linear fixed
effects in (4.12) by Bayesian P-splines (com-
pare Section 4.2.2) leading to the model

yi j = β0 + f1(logpi j )+ f2(logpc1i j )

+ f3(logpc2i j )+ f4(logpc3i j )+ ui0

+ui1logpi j + ui2logpc1i j

+ui3logpc2i j

+ui4logpc3i j + εi j . (4.13)

We assumed a priori a monotonically decreas-
ing effect of the own price and monotoni-
cally increasing effects of cross prices. Impos-
ing monotonicity constraints is comparably
straightforward in a Bayesian approach; see
Brezger and Steiner (2008) for details. If the
log-transformation is sufficient to capture the
nonlinearity, the estimated curves f̂1, . . . , f̂4

should be approximately linear. Figure 4.4

shows the estimated price effects. The plots
reveal that the log-transformation is a reason-
able approximation to the nonlinear effects,
although considerable additional nonlinearity
remains.The DIC of this model is 6606, which
is approximately 1500 units below the strictly
parametric models. This is a huge improve-
ment in the goodness of fit and confirms our
claim that there is considerable additional
nonlinearity beyond the log-transformation.
The size of the random effects measured
through the random effects variances is in
the same range as in the parametric model
(4.13). To demonstrate the outlet-specific het-
erogeneity, Figure 4.5 shows some outlet-
specific log-sales own-price curves which are
now additively composed of the nonlinear log-
price effect f1 and the linear log-price random
effect ui1logpi j .

A different approach to deal with nonlin-
earity of price effects and outlet-specific het-
erogeneity simultaneously has been proposed
in Lang et al. (2011a). The paper assumes the
model

yi j = β0 + ui0 + f1(pi j )(ui1 + 1)

+ f2(pc1i j )(ui2 + 1)
+ f3(pc2i j )(ui3 + 1)

+ f4(logpc4i j )(ui4 + 1)+ εi j ,
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Figure 4.4 Estimated Price Effects in the Model (4.13). Shown are the posterior mean
together with 80% and 95% pointwise credible intervals

−2
−1

0
1

2
3

0 .2 .4 .6 .8
log(Own price)

−1
0

1
2

3

.2 .4 .6 .8 1
log(Own price)

Figure 4.5 Log-Sales Versus Log-Price Curves in Model (4.13) for Four Different Outlets
together with Corresponding Partial Residuals

where

• f1 is an unknown smooth nonlinear decreasing
function of the brand’s own price, and f2, . . . , f4
are unknown smooth nonlinear increasing func-
tions of prices of competing brands;

• ui0 is a random store effect accounting for hetero-
geneity in baseline sales across stores; and

• ui1 + 1, . . . , ui4 + 1 are store-specific scaling
factors accommodating heterogeneity of the non-
parametric own- and cross-item price effects across
stores (while the overall functional forms remain
constant from store to store).

More details on the approach and results
are given in Lang et al. (2011a); see also Lang
et al. (2011b).

4.4 EXTENSIONS TO MODELS
WITH NON-GAUSSIAN PRIORS

One of the main advantages of taking a
Bayesian approach to multilevel modeling
is the flexibility in defining extended model
types and classes by adding additional lay-
ers to the hierarchical prior structure. In the
following, we will briefly discuss some of
these extended models with non-Gaussian pri-
ors arising either by adding suitable hyperpri-
ors to the variance parameters, leading to scale
mixture of normal priors, or by replacing the
usual, parametric iid prior with mixture distri-
butions of different type. When using suitable
prior choices involving conjugate priors, it is
often possible to retain Gibbs sampling steps
at several places in the MCMC algorithms.
In addition, due to the modularity of MCMC



“Handbook_Sample.tex” — 2013/7/25 — 12:20 — page 64

64 BAYESIAN MULTILEVEL MODELS

0
1

2
3

E�
ec

t

0 .2 .4 .6 .8 1
log(p)

Own price

−.
75

−.
5

−.
25

0
.2

5
E�

ec
t

0 .5 1 1.5
log(pc1)

Price premium

−.
5

0
.5

1
E�

ec
t

0 .2 .4 .6 .8 1
log(pc2)

Price national

−.
2

0
.2

.4
E�

ec
t

0 .2 .4 .6 .8 1
log(pc3)

Dominicks

Figure 4.4 Estimated Price Effects in the Model (4.13). Shown are the posterior mean
together with 80% and 95% pointwise credible intervals
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Figure 4.5 Log-Sales Versus Log-Price Curves in Model (4.13) for Four Different Outlets
together with Corresponding Partial Residuals
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tions of prices of competing brands;
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parametric own- and cross-item price effects across
stores (while the overall functional forms remain
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More details on the approach and results
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et al. (2011b).

4.4 EXTENSIONS TO MODELS
WITH NON-GAUSSIAN PRIORS

One of the main advantages of taking a
Bayesian approach to multilevel modeling
is the flexibility in defining extended model
types and classes by adding additional lay-
ers to the hierarchical prior structure. In the
following, we will briefly discuss some of
these extended models with non-Gaussian pri-
ors arising either by adding suitable hyperpri-
ors to the variance parameters, leading to scale
mixture of normal priors, or by replacing the
usual, parametric iid prior with mixture distri-
butions of different type. When using suitable
prior choices involving conjugate priors, it is
often possible to retain Gibbs sampling steps
at several places in the MCMC algorithms.
In addition, due to the modularity of MCMC
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