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This chapter discusses technical issues that are general to meta-analysis. 
That is, these issues apply whether meta-analysis is applied to correla-

tions, to d values, or to other statistics (e.g., odds ratios). Also, these issues 
apply whether the methods used are those presented in this book, those of 
Hedges and Olkin (1985), Borenstein et al. (2009), those of Rosenthal 
(1984, 1991), or any other methods. The issue of fixed versus random 
effects meta-analysis models is general in nature but is not included in this 
chapter because it has been fully addressed in Chapters 5 and 8. New devel-
opments in meta-analysis methods occur with some frequency (Schmidt, 
1988). Some of these developments are explored in this chapter.

First, we discuss the contention that large-sample studies are a substi-
tute for meta-analysis and show why this view is incorrect. Second, we 
discuss the various methodological issues involved in detecting modera-
tors (interactions) in meta-analysis, including subgrouping of studies and 
meta-regression. Next, we introduce second-order sampling error (the 
sampling error remaining in the results of a meta-analysis), and we present 
methods for second-order meta-analysis (meta-analysis of meta-analyses) 
that address some of the problems created by second-order sampling error. 
We then provide a complete technical treatment of second-order sampling 
error and its effect on confidence intervals in meta-analysis. In this con-
nection, we point out differences in the way confidence intervals for  
random effects meta-analyses are computed in the Hedges-Olkin and 
Hunter-Schmidt methods. Next, the technical issue of how to update a 
meta-analysis when new studies become available and the question of 
optimal study weights in meta-analysis are discussed. This is followed by 
a discussion of a more informative way to view and interpret percent vari-
ance accounted for in a meta-analysis. Finally, we present a discussion  
of a statistical index of effect sizes not treated elsewhere in this book: the 
odds ratio. Last, we present the reader with three exercises: conducting  
second-order meta-analysis in two different ways.

9General Technical  
Issues in Meta-Analysis
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Large-N Studies Versus Meta-Analysis

Some have argued that the need for meta-analysis is merely a consequence 
of small-sample studies with their typically low levels of statistical power. 
The argument is made that researchers should conduct only large-sample 
studies (i.e., studies with Ns of 2,000 or more) and that such studies, with 
their higher statistical power, would make meta-analysis unnecessary (see, 
e.g., Bobko & Stone-Romero, 1998; Murphy, 1997). We question this posi-
tion for three reasons: (1) It leads to a reduction in the total amount of 
information available in the literature for the calibration of correlations 
and effect sizes, (2) it reduces the ability to detect the presence of potential 
moderators, and (3) it does not eliminate the need for meta-analysis.

Loss of Information. For practical reasons, many researchers cannot obtain 
large sample sizes, despite their best efforts. If a requirement for large Ns is 
imposed, many studies that would otherwise be conducted and published 
will not be conducted—studies that could contribute useful information to 
subsequent meta-analyses (Schmidt, 1996). This is what has happened in 
the area of validity studies in personnel psychology. After publication of the 
study by Schmidt et al. (1976) showing that statistical power in traditional 
validity studies averaged only about .50, the average sample sizes of pub-
lished studies increased from around 70 to more than 300. However, the 
number of studies declined dramatically, with the result that the total 
amount of information created per year or per decade (expressed as Ns in 
a meta-analysis) for entry into validity generalization studies decreased. 
That is, the total amount of information generated in the earlier period 
from a large number of small-sample studies was greater than that gener-
ated in the later period for a much smaller number of larger-sample studies. 
Hence, there was a net loss in ability to calibrate validities.

Reduced Ability to Detect Potential Moderators. The situation described 
previously creates a net loss of information even if there are no moderator 
variables to be detected, that is, even if SDρ = 0 in all validity domains 
studied. Although SDρ = 0 is a viable hypothesis in the predictor domains 
of ability and aptitude tests (Schmidt et al., 1993), this hypothesis may not 
be viable in some other predictor domains (e.g., assessment centers, col-
lege grades). And it is certainly not viable in many research areas outside 
personnel selection. If SDρ = 0, the total number of studies does not mat-
ter; all that matters in determining the accuracy of the meta-analysis study 
is the total N across all studies in the meta-analysis. As described previ-
ously, this total N has been reduced in recent years. If SDρ> 0, however, it 
is critical to have an accurate estimate of SDρ. In estimating  SDρ, N is the 
number of studies. Hence, holding the total N in the meta-analysis con-
stant, a small number of large studies provides a less accurate estimate of 
SDρ than does a large number of small studies. A large number of small 
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studies samples a much more numerous array of potential moderators—in 
fact, each small study samples different potential moderators that might 
contribute to SDρ > 0. For example, suppose total N for the meta-analysis 
is 5,000. If this total N consists of four studies each with N = 1,250, then 
the estimate of SDρ is based on only four data points: four samples from the 
distribution of ρ. On the other hand, if this total N consists of 50 studies 
of N = 100 each, then the estimate of SDρ is based on 50 data points sam-
pled from the ρ distribution—and is therefore likely to be much more 
accurate. This greatly increases what Cook and Campbell (1976, 1979) 
called “external validity.”

Bobko and Stone-Romero (1998) argued that this same level of preci-
sion of estimation for SDρ can be obtained with a single large-N study by, 
in effect, dividing the one large study into many smaller ones. This is 
unlikely to be true. The single large study reflects the way a single 
researcher or set of researchers conducted that one study: same measures, 
same population, same analysis procedures, and so forth. It is unlikely to 
contain within itself the kinds of variations in the methods and potential 
moderator variables that are found in 50 independently conducted studies. 
Another way to see this is to consider the continuum of different types of 
replications of studies (Aronson, Ellsworth, Carlsmith, & Gonzales, 1990). 
In a literal replication, the same researcher conducts the new study in 
exactly the same way as in the original study. In an operational replication, 
a different researcher attempts to duplicate the original study. In system-
atic replication, a second researcher conducts a study in which many fea-
tures of the original study are maintained but some aspects (e.g., types of 
subjects) are changed. Literal and operational replications contribute in 
only a limited way to external validity (generalizability) of findings, but 
systematic replications are useful in assessing the generalizability of find-
ings across different types of subjects, measures, and so on. Finally, in the 
case of constructive replications, the researcher attempts to vary most of 
the aspects of the initial study’s methods, including subject type, measures, 
and manipulations. Successful constructive replication adds greatly to the 
external validity of a finding. Breaking up a large study into “pieces” is 
similar to the creation of several smaller literal replications and does not 
contribute to external validity or generalizability of findings. However, in 
a meta-analysis of a large number of small studies, the studies in the 
meta-analysis constitute systematic or constructive replications of each 
other; that is, many study aspects vary across studies. In these circum-
stances, a finding of a small SDρ (or a small SDδ) provides strong support 
for generalizability—that is, this result is strong evidence of external valid-
ity of the finding. As discussed in Chapter 4, this finding is common in the 
personnel selection area. If the number of studies in the meta-analysis is 
small, even if each study is a large-sample study, the meta-analysis is 
weaker because the number of systematic or constructive replications 
underlying the final results is smaller, and hence, external validity is more 
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questionable. This is another approach to understanding why a large num-
ber of small studies are better than a small number of large studies.

Meta-Analysis Still Necessary. Finally, even if all studies conducted are 
large-sample studies, it is still necessary to integrate findings across studies to 
ascertain the meaning of the set of studies as a whole. Because meta-analysis 
is the statistically optimal method for doing this, meta-analysis is still neces-
sary. In concluding that meta-analysis would no longer be necessary, advo-
cates of the position we are critiquing appear to be thinking of the fact that 
large-N studies, with their high statistical power, will show agreement on 
statistical significance tests: If there is an effect, all studies should detect it as 
statistically significant. However, this does not mean meta-analysis is unnec-
essary. What is important is the estimates of effect size magnitudes. Effect size 
estimates will still vary across studies, and meta-analysis is still necessary to 
integrate these findings across studies. Hence, we cannot escape the need for 
meta-analysis.

We conclude therefore that a movement to a smaller number of larger 
N studies would not contribute to the advancement of cumulative knowl-
edge in any area of research. In fact, it would be detrimental to knowledge 
generation and discovery. And it would not eliminate the need for 
meta-analysis. 

Detecting Moderator Variables in Meta-Analysis

A variety of issues arise when meta-analysis is used to detect moderators 
(or interactions). One of these issues is capitalization on sampling error 
when focusing on only those potential moderators that show statistical 
significance when a larger number of potential moderators are examined. 
This issue was explored in some detail near the end of Chapter 2. The 
related issues discussed in this chapter include (a) detecting moderators 
not hypothesized a priori, (b) use of hierarchical meta-analysis in moder-
ator detection, (c) meta-regression in moderator detection (including 
“mixed models” of meta-analysis), and (d) multilevel meta-analysis and 
hierarchical linear models (HLM).

DETECTING MODERATORS NOT HYPOTHESIZED A PRIORI

When the moderator variable is not specified or hypothesized in advance 
by theory, the statistical power of a meta-analysis with respect to the vari-
ance of ρ or δ is the probability that the meta-analysis will detect variation 
in ρ or δ values across studies when such variation does, in fact, exist. One 
minus this probability is the probability of a Type II error: concluding that 
all the variance across studies is due to artifacts when, in fact, some of it is 
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real. When all variance is indeed artifactually caused, there is no possibility 
of a Type II error, and there can be no statistical power question. Just as 
second-order sampling error becomes more of a problem as the number of 
studies becomes smaller, statistical power also becomes lower. A number  
of statistical tools have been used to make the decision about whether any 
of the observed variance is real. In our meta-analytic research on test valid-
ities, we have used the 75% rule of thumb: If 75% or more of the variance 
is due to artifacts, we conclude that all of it is, on grounds that the remain-
ing 25% is likely to be due to artifacts for which no correction has been 
made. Another method is the chi-square test of homogeneity. As pointed 
out in Chapters 5 and 8 and again in this chapter, this test has low power 
under most realistic circumstances (Hedges & Pigott, 2001; National 
Research Council, 1992). In addition, it has all the other disadvantages of 
significance tests, as discussed in Chapter 2. Callender and Osburn (1981) 
presented a third method, one based on simulation.

Extensive computer simulation studies have been conducted to estimate 
the statistical power of meta-analyses to detect variation in ρ using these 
decision rules (Aguinis et al., 2008; Osburn, Callender, Greener, & Ashworth, 
1983; Sackett, Harris, & Orr, 1986; Spector & Levine, 1987). These estimates 
have been obtained for different combinations of (1) numbers of studies,  
(2) sample size of studies, (3) amount of variation in ρ, (4) mean ρ values, and 
(5) levels of measurement error. The findings of the Sackett et al. (1986) study 
are consistent with the others and are probably the most relevant to 
meta-analysis in general. Sackett et al. found that, under all conditions, the 
75% rule had “statistical power” greater than (or equal to) the other methods, 
including the Q statistic (although the 75% rule also showed a higher Type I 
error rate: concluding there was a moderator when there was not). The term 
statistical power is placed in quotation marks here because that term applies 
only to significance tests, and the 75% rule is not a significance test but rather 
a simple “rule of thumb” decision rule. The advantage in statistical power for 
the 75% rule was relatively the greatest when the number of studies was small 
(4, 8, 16, 32, or 64) and the sample size of each study was small (50 or 100). 
However, when the assumed population variance to be detected ( )2sρ  was 
small, and both the number of studies and the sample size of the studies were 
small, all methods had relatively low statistical power. For example, if there 
were four studies (N = 50 each) with ρ = .25 and four studies (N = 50 each 
also) with ρ = .35 (corresponding to sρ =2 .01), and if rxx = ryy = .80 in all studies, 
statistical power was .34 for the 75% rule and only .08 for the other methods. 
However, a total sample size of 8(50) = 400 is very small, and 8 is a small 
number of studies for a meta-analysis. Also, a difference of .10 is very small. 
If the difference in this example is raised to .30, power rises to .75. This dif-
ference between ρs is more representative of the moderators that it would be 
theoretically and practically important to study. Nevertheless, it is true that 
individual meta-analyses have less than optimal statistical power in some 
cases. As the reader of this book is by now aware, we recommend against the 
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use of significance tests (see, e.g., Chapter 2). These simulation studies show 
that our simple 75% rule typically is more accurate than significance tests 
used to assess homogeneity. However, no decision rule for judging homoge-
neity versus heterogeneity in meta-analyses of realistic sets of studies has 
perfect accuracy.

The preceding discussion applies to “omnibus” tests for moderator 
variables—moderator variables that are not specified in advance by theo-
ries or hypotheses. In such cases, the existence of moderators must be 
detected by determining whether the variance of study effect sizes is 
larger than can be accounted for by the presence of variance-generating 
artifacts. The story is very different when the moderator hypotheses are 
specified in advance. In such cases, the studies in the meta-analysis can 
be subgrouped based on the moderator hypothesis (e.g., studies done on 
blue- vs. white-collar employees), and credibility and confidence intervals 
can be placed around the means ( δ  or ρ) of the subgroup meta-analyses, 
as described in earlier chapters (Chapters 3, 4, 5, 7, and 8) and later in this 
chapter. Confidence intervals are most relevant in assessing moderator 
variables if the main focus of interest is on mean differences. Credibility 
intervals are most relevant if the focus of interest is on whole distributions 
of parameters. This procedure is much more effective in identifying mod-
erators than operating without a priori moderator hypotheses and 
attempting to assess the presence of moderators by testing for heteroge-
neity in observed d or r values.

In most areas of research, there should be sufficient development of 
theory to generate hypotheses about moderators. However, in one major 
meta-analytic research area—the generalizability of employment test 
validities—this has not been the case. It has not been possible to use the 
subgrouping approach to test the “situational specificity” hypothesis in 
personnel selection. To use this approach, the moderators must be speci-
fied. There must be a theory, or at least a hypothesis, that is specific 
enough to postulate that, for example, correlations will be larger for 
females than for males, or larger for “high-growth-need” individuals than 
for “low-growth-need” individuals, or larger in situations where supervi-
sors are high in “consideration” than where supervisors are low in consid-
eration. The situational specificity hypothesis does not meet this criterion; 
it postulates merely that there are unspecified subtle but important differ-
ences from job to job and setting to setting in what constitutes job perfor-
mance, and that job analysts and other human observers are not proficient 
enough as information processors to detect these critical elusive differ-
ences (Albright, Glennon, & Smith, 1963, p. 18; Lawshe, 1948, p. 13). 
When the operative moderators are actually unknown and unidentifiable, 
it is not possible to subgroup studies by hypothesized moderators. How-
ever, if one can show that all observed validity variance is due to artifacts, 
one has shown that no moderators can possibly be operating. This 
approach does not require that the postulated moderators be identified or 
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even identifiable. Given that there is a broad and heterogeneous range of 
situations represented in one’s meta-analysis, one can show that the postu-
lated moderators do not exist, even without knowing what the moderators 
might be.

However, some might make statements like the following: “There are 
many factors that could affect outcomes. Supervisory style may have 
important effects; group membership, geographical location, type of indus-
try, and many other variables would be expected to be moderators.” Such 
statements are usually not based on theoretical reasoning or empirical evi-
dence. They are usually just unsupported speculations and, thus, are not 
scientifically useful. Because the number of hypothesized potential modera-
tors is essentially unlimited, it will never be possible to test them all using the 
second, more effective, procedure. However, the first procedure—the omni-
bus procedure we have used to test the situational specificity hypothesis—
can be used to test all such moderators simultaneously, even those that have 
not yet been named by the critic. If the meta-analysis is based on a large 
group of studies that is heterogeneous across all potential moderators, then 
a finding that artifacts account for all between-study variance in correlations 
or effect sizes indicates that none of the postulated moderators are, in fact, 
moderators. Even when all the variance is not accounted for by artifacts, the 
remaining variance may often be small, demonstrating that even if some 
moderators might exist, their effect is far more limited in scope than implied 
by the critic. In fact, the results may often indicate that the moderators have 
at best only trivial effects (Schmidt et al., 1993). In this connection, it should 
always be remembered that the variance remaining after correction for arti-
facts indicates the upper bound of the effects of the moderators. This will 
almost always be true because, as described in Chapters 3, 4, 5, and 7 there 
will almost always be some artifacts operating to create variance for which 
no corrections will be possible.

The facts of second-order sampling error and less than perfect “statistical 
power” in individual meta-analyses point to another reason for the impor-
tance of a principle we stated in Chapters 1 and 2. The results of a meta- 
analysis should not be interpreted in isolation but rather in relation to a 
broader set of linked findings from other meta-analyses that form the founda-
tion for theoretical explanations. Estimating a particular relationship is only 
the immediate objective of a meta-analysis; the ultimate objective is to contrib-
ute pieces of information that can be fitted into a wider developing mosaic of 
theory and understanding. However, just as the results of a meta-analysis can 
contribute to this bigger picture understanding, so also can the resulting big-
ger picture understanding contribute to the interpretation of particular 
meta-analysis results. Results of “small” meta-analyses (those based on few 
studies and small-sample studies) that are inconsistent with the broader 
cumulative picture of knowledge thereby become suspect, while the credibility 
of those that are consistent is enhanced. This is the universal pattern in science 
of reciprocal causation between data and theory.
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Some have worried that the inadequate ability of meta-analysis to detect 
moderators might be an almost insurmountable problem limiting scientific 
progress (even while admitting that better alternatives to meta-analysis do 
not exist). The critical difficulty with this argument is that it focuses on single 
meta-analytic studies. Just as earlier researchers focused on the individual 
study, failing to realize that single studies cannot be interpreted in isolation, 
this position focuses on single meta-analyses—in particular, on the some-
times weak ability of single meta-analyses to identify moderators—not seeing 
that it is the overall pattern of findings from many meta-analyses that is 
important in revealing the underlying reality.

Consider an example in which the overall pattern of findings was criti-
cal. In personnel selection, the theory of situational specificity holds that 
the true (population) validity of any employment test varies substantially 
from one organization to another even for highly similar or identical jobs. 
This is the hypothesis that Sρ >2 0 . In meta-analysis (called validity gener-
alization when used in personnel selection), this hypothesis is tested by 
determining whether artifacts such as sampling error account for the vari-
ation of observed validity coefficients across studies conducted in different 
organizations on similar jobs using measures of the same ability (e.g., 
arithmetic reasoning). In the initial validity generalization studies, the 
average percentage of the observed validity variance accounted for by arti-
facts was less than 100%. However, these meta-analyses were based on 
published and unpublished studies from a wide variety of sources and 
researchers, and we pointed out in all our studies that there were several 
sources of between-study variance that we could neither control for nor 
correct for (e.g., programmer errors, transcriptional errors; see Chapter 5 
and Schmidt et al., 1993). When all studies going into a validity general-
ization analysis are conducted by the same research team, strong efforts 
can be made to control these sources of errors. In two large-scale, nation-
wide consortium studies, such efforts were made (Dunnette et al., 1982; 
Peterson, 1982). In both cases, these studies found that, on average, all 
variance across settings (i.e., companies) was accounted for by artifacts. 
The same was found to be true in data from studies conducted in 16 com-
panies by Psychological Services, Inc. (Dye, 1982). Thus, our prediction 
that improved control of sources of error variance would show that all 
between-study variance is due to artifacts was borne out. These findings 
are strong evidence that there is no situational specificity in the validity of 
employment tests of cognitive ability.

There were more aspects to the pattern of evidence against situational 
specificity, however. The situational specificity hypothesis predicts that if 
the situation is held constant and the tests, criteria, and job remain 
unchanged, validity findings should be constant across different studies 
conducted in that setting. That is, because the setting is constant, observed 
validities should be constant because it is differences between settings that 
are hypothesized to cause differences in observed validities. Meta-analytic 
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principles predict that such observed validities will vary substantially, 
mostly because of sampling error. We tested these predictions in two stud-
ies (Schmidt & Hunter, 1984; Schmidt, Ocasio, et al., 1985) and found that 
observed validities within the same situation varied markedly, disconfirm-
ing the situational specificity hypothesis. In the second of these studies, the 
data from a large-sample validity study (N = 1,455) were divided into 
smaller, randomly identical studies (21 studies of n = 68 each). Because 
situational variables were held constant, the specificity hypothesis pre-
dicted that all the smaller studies would show the same observed validity. 
This was not the case, however. Instead, there was great variance among 
studies in both magnitude of validity and statistical significance level, as 
predicted by the theory of artifacts, which is the basis of meta-analysis and 
validity generalization. A key finding was that the variation in validities 
was as great as that typically found across similar studies conducted in 
entirely different settings.

The final piece of evidence that fits into this framework is this: Recent 
refinements in validity generalization methods have led to the conclusion 
that published validity generalization studies substantially underestimate 
the percentage of observed validity variance that is due to artifacts, further 
undercutting the situational specificity hypothesis. There are three such 
refinements. First, non-Pearson validity coefficients are removed, because 
the sampling error formula for Pearson correlations substantially underes-
timates the sampling error in non-Pearson correlations such as the biserial 
and the tetrachoric (see Chapter 5). Second, within each meta-analysis, the 
population observed correlation used in the sampling error formula is 
estimated by the mean observed validity instead of the individual observed 
validity from the study at hand. This provides a more accurate estimate of 
sampling error (see Chapter 5). Third, the problem created by nonlinearity 
in the range restriction correction (cf. Chapter 5 and Law et al., 1994a, 
1994b) is solved by a new set of computational procedures. Schmidt et al. 
(1993) applied these improvements in the massive validity database in 
Pearlman et al. (1980), which consisted of approximately 3,600 validity 
coefficients from published and unpublished studies from many organiza-
tions, researchers, and more than periods ranging over 70 years. Each of 
these methodological refinements resulted in increases in the percentage 
of validity variance accounted for and smaller estimates of SDρ. Even in 
this heterogeneous group of studies, almost all validity variance (nearly 
90%) was found to be due to artifacts. This research is discussed in more 
detail in Chapter 5.

All these pieces of interlocking evidence point in the same direction: 
toward the conclusion that, for employment tests of cognitive abilities, the 
situational specificity hypothesis is false. The only conclusion consistent with 
the total pattern of evidence is that there is no situational specificity (or that 
situational effects are so tiny that it is reasonable to consider them to be 0; 
some prefer this latter conclusion, which we regard as scientifically identical).
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In some research areas, there may be no related meta-analyses with 
which one’s meta-analytic results can be cross-referenced and checked for 
consistency. In such cases, one’s results should be compared with the 
broader pattern of general research findings. Where even this is not pos-
sible, meta-analyses based on small numbers of studies should indeed be 
interpreted with caution, even though the meta-analysis provides the 
most accurate summary possible of existing research knowledge at that 
point in time. We stress that, in cases such as this, the problem is created 
not by meta-analysis methods but by the limitations of the research liter-
ature. These limitations do not have to be permanent. Consider an exam-
ple. McDaniel et al. (1988b) found that only 15 criterion-related studies 
had ever been conducted on the validity of the behavioral consistency 
method of evaluating applicants’ past job-related achievements and 
accomplishments. Based on these 15 studies, mean true validity is esti-
mated at .45 (SD = .10; 90% credibility value = .33; percentage variance 
accounted for = 82%). The appropriate interpretation of these findings is 
different from the interpretation that would be appropriate for exactly the 
same findings based on exactly the same number of studies in a 
meta-analysis of cognitive ability. There are literally hundreds of 
meta-analyses of cognitive abilities and job performance to which the 
latter findings could be cross-referenced to check for consistency. In the 
case of the behavioral consistency method, there are no other meta- 
analyses. Furthermore, we have very little information as to precisely 
what the behavioral consistency procedure measures. For example, there 
are no reported correlations between cognitive ability test scores and 
behavioral consistency scores. Behavioral consistency scores are not yet 
part of a rich, structured, complex, and elaborated network of established 
knowledge as cognitive abilities are. Therefore, this meta-analysis must 
stand alone to a much greater extent. We cannot be really certain that the 
results are not substantially influenced by outliers or by second-order 
sampling error. (For example, the actual amount of variance due to arti-
facts may be 100%, or it may be 50%.) For these reasons, McDaniel et al. 
(1988b) stated that these findings must be considered preliminary and 
recommended that additional validity studies be conducted, not to esti-
mate “local validities” from local studies for local settings but to have 
more studies to combine into the meta-analysis.

There are other areas of research in industrial-organizational psychol-
ogy completely outside the area of personnel selection and many areas 
outside the field of industrial-organizational psychology where (1) the 
number of studies now available is small, and (2) there is no elaborated 
structure of empirical and theoretical knowledge against which the 
meta-analytic results can be checked. When meta-analytic results have 
less evidentiary value because the number of individual studies in the 
meta-analysis is small and there is no related structure of empirical and 
theoretical knowledge against which the meta-analytic results can be 
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checked, the alternative is neither reversion to reliance on the single study 
nor a return to the narrative review method of integrating study findings; 
both are vastly inferior to meta-analysis in information yield. The appro-
priate reaction is to accept the meta-analysis provisionally while conduct-
ing (or awaiting) additional studies, which are then incorporated into a 
new and more informative meta-analysis. During this time, other forms 
of evidence bearing on the hypothesis in question may appear—forms of 
evidence analogous to the within-setting studies (Schmidt & Hunter, 
1984; Schmidt, Ocasio, et al., 1985) in the area of situational specificity, in 
that they represent different approaches to the same question. Such evi-
dence then constitutes the beginning of the kind of structured pattern of 
evidence described previously.

HIERARCHICAL ANALYSIS OF MODERATOR  
VARIABLES VIA SUBGROUPING

One approach to detection of moderators is subgrouping of studies. But 
the results of subgrouping can be deceptive if moderators are correlated. 
In searching for moderator variables using meta-analysis, some authors 
have used partially hierarchical subgrouping. First, all studies are included 
in an overall meta-analysis. The studies are then broken out by one key 
moderator variable, then the studies are recombined and broken out by 
another key moderator variable, and so on. The meta-analysis of assess-
ment center validities by Gaugler et al. (1987) is an example of this 
approach. This type of analysis, however, is not fully hierarchical because 
the moderator variables are not considered in combination, which can 
result in major errors of interpretation. These errors are analogous to 
problems in analysis of variance due to confounding and interaction. An 
analysis of each moderator separately may lead to quite misleading results. 
In a meta-analysis by Rodgers and Hunter (1986) of the effects of manage-
ment by objectives (MBO) on productivity, the initial analysis suggested 
two moderator variables: top-level management commitment and length 
of the intervention period. Their initial analysis suggested that MBO pro-
grams with the strong support of top management increased productivity 
by an average of 40%, while programs without the strong support of top 
management had little effect. Their initial analysis also suggested that 
studies based on an assessment period of more than 2 years showed much 
larger effects than studies based on less than 2 years. However, when the 
studies were broken down by the two moderator variables together, the 
effect of time virtually vanished. Most of the long-term studies were stud-
ies with strong top-management commitment, while most of the short-
term studies were studies with weak top-management commitment. Thus, 
the apparent impact of time horizon as a moderator variable was due to 
the fact that it was confounded with managerial commitment. The 
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 difficulty in conducting fully hierarchical moderator analyses in meta-anal-
ysis is often that there are too few studies to yield adequate numbers of 
studies in cells beyond the two-way breakout. This simply means that it is 
not possible to address all moderator hypotheses at that time. As more 
studies accumulate over time, more complete moderator analyses can be 
performed.

The MBO meta-analysis illustrates the potential problems of confound-
ing between moderators, that is, “spurious” (in the language of path anal-
ysis) mean differences for one potential moderator are produced by real 
differences on another. Thus, confounding results from the fact that the 
moderators are correlated.

The second problem is potential interaction between moderator vari-
ables. Suppose two moderator variables A and B have been found to 
moderate effect sizes when analyzed separately, and assume the modera-
tor variables are independent (uncorrelated) across studies. Can we then 
conclude that A and B always moderate effect size? We cannot. Consider 
an example. Suppose the mean effect size is .30 when A is present versus 
.20 when A is absent, and suppose the mean effect size is .30 when B is 
present versus .20 when B is absent. Assume that the frequency of A is 
50% and the frequency of B is 50% and that A and B are independent. 
Then each of the four cells obtained by considering A and B together will 
have a 25% frequency. Consider the mean effect sizes in the following 
joint breakdown table:

Moderator A

Present Absent Ave.

Moderator B Present .40 .20 .30 

Absent .20 .20 .20

Ave. .30 .20 .25

Consider the 50% of studies in which moderator B is absent. Within 
those studies, the presence or absence of A does not matter; the mean 
effect size is .20 in either case. Thus, A is a moderator variable only for the 
studies in which B is present. The statement that “A moderates the effect 
of X on Y” is false for the 50% of the studies where B is absent. Consider 
the 50% of studies in which moderator A is absent. Within those studies, 
the presence or absence of B does not matter; the mean effect size is .20 in 
either case. Thus, B is a moderator variable only for the studies in which A 
is present. To say “B moderates the effect of X on Y” is false for the 50% of 
the studies where A is absent. This means that A and B are inextricably 
linked as moderator variables. Within the 75% of studies in which one or 
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the other is absent, the mean effect size is .20, regardless of whether either 
variable is present or absent. The only moderating effect is that studies in 
which both A and B are present together differ from the other studies.

There is a rule in analysis of variance that states “If there is an interaction 
between two or more factors in the design, then interpretation of lower 
order main effects or interactions may be quite erroneous.” This same rule 
applies to interaction between moderators. If moderators have interacting 
effects, then the interpretation of separate effects may be erroneous.

If the hierarchical breakdown reveals moderator variables, then the 
overall analysis without moderator variables is likely to be misleading. If 
the hierarchical analysis shows that moderator variables are correlated 
and/or interact, then the analysis of moderator variables separately is likely 
to be misleading. Thus, if a hierarchical breakdown is presented, it is crit-
ical to focus the interpretation solely on the full breakdown of the data.

Consider the partially hierarchical analysis in the meta-analysis of 
personnel selection validities by Schmitt, Gooding, Noe, and Kirsch 
(1984). These researchers first pooled correlations across all predictors 
(biodata, tests, interviews, and more) and all criterion measures (perfor-
mance ratings, tenure, advancement, etc.). They then broke the data 
down by predictor and criterion separately, and finally by the two 
together. The combinatorial breakdown showed a strong interaction 
between predictor and criterion variables as moderators—as had been 
found in past analyses. Had they based their conclusions solely on that 
last analysis, they would have made no error of interpretation. Unfortu-
nately, they based some of their conclusions on the earlier global analyses. 
For example, they claimed that their meta-analysis yielded results at odds 
with the comparable meta-analysis by Hunter and Hunter (1984). How-
ever, Hunter and Hunter broke their data down by both predictor variable 
and criterion variable from the beginning. Thus, the only table in Schmitt 
et al. comparable to the analysis of Hunter and Hunter is their final table, 
the combinatorial breakdown. There is no contradiction between their 
results in that analysis and that of Hunter and Hunter. This was brought 
out in a side-by-side presentation in Hunter and Hirsh (1987) that 
showed the analyses to be in agreement.

The analysis of multiple moderator variables separately (i.e., one by one) 
will be correct only if one can correctly make two assumptions: One must 
assume that (1) the moderator variables are independent and (2) the mod-
erator variables are additive in their effects. In the MBO analysis of Rodgers 
and Hunter (1986), the commitment and time moderator variables were 
correlated across studies. Thus, the large difference due to the commitment 
variable produced a “spurious” mean difference between studies of differ-
ent time lengths. If the two potential moderator variables had been inde-
pendent, there could have been no spurious effect for time produced by 
commitment. The AB combination example showed that interactive mod-
erators must always be considered together to generate correct conclusions.
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If a fully hierarchical analysis is presented, it is critical to base conclu-
sions on the highest level of interaction (i.e., the full hierarchical analysis). 
Schmitt et al. (1984) made an error of interpretation because they went 
back to an analysis with confounded interactions for one of their conclu-
sions. Finally, it is important to recognize that one often will not have 
enough studies to conduct a fully hierarchical moderator analysis. If the 
number of studies in the cells of the fully hierarchical analysis is very 
small, the conclusions about moderators can only be tentative. Firmer 
conclusions must await the accumulation of a larger number of studies.

Use of Multiple Regression in Moderator  
Analysis and Mixed Meta-Analysis Models

This section explores meta-regression, multilevel meta-analysis, hierarchi-
cal linear modeling (HLM), and the mixed effects (ME) meta-analysis 
model. As we will see, these procedures are all closely related to one 
another.

META-REGRESSION: ADVANTAGES AND DISADVANTAGES

In meta-regression, r or d values are regressed onto measures of poten-
tial moderator variables that have been coded as study characteristics. This 
procedure has been used in meta-analyses of psychotherapy outcome 
studies (Smith & Glass, 1977) and the effects of class size (Smith & Glass, 
1980) and many other more recent meta-analyses. Glass (1977) was the 
first to advocate using multiple regression to identify moderator variables 
in meta-analysis. He recommended and used ordinary least squares (OLS) 
regression, but others (e.g., Hedges & Olkin, 1985) later recommend 
weighted least squares regression (WLS). The use of meta-regression has 
the advantage that it controls (at least in theory) for any potential correla-
tions among moderator variables, hence avoiding the problems that can 
plague nonhierarchical subgrouping of studies in meta-analysis. It also has 
the advantage of being better able to deal with continuous moderators.

The same considerations that apply to other applications of regression 
apply to meta-regression. Unless sample sizes are sufficiently large relative to 
the number of variables (predictors) in the regression equation, there is a 
great deal of sampling error in regression weights. As a result, simulation 
studies have found that the multiple Rs produced by regression weights are 
often less accurate in estimating population multiple R values than simple 
equal weighting of the predictor variables (Schmidt, 1971), even when there 
is no ex post facto selection of predictors. Under realistic conditions, with 
two predictors, one must have an N of at least 50 for regression weights to be 
superior to equal weights. With six predictors, N must be at least 100. With 
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8 predictors, N must be at least 150, and with 10 predictors, at least 200 
(Schmidt, 1971). Keep in mind that in meta-regression, N = k, the number 
of studies. How many meta-regression studies that examine 8 potential 
moderators have k = 150 studies? Most do not. The extent of sampling error 
in regression weights can be illustrated by drawing multiple samples from 
the same realistic population, computing regression weights on each sample, 
and then computing the average correlation of regression weights across 
samples. That is, the regression weights are treated as a vector of scores 
whose reliability is measured by the average correlation between these vec-
tors of weights across samples. With four predictors, it requires an N of 500 
to produce a correlation of .85 (Schmidt, 1972, Table 1). For a larger number 
of predictors, larger Ns are required to attain this level of reliability for the 
regression weights. These findings apply to meta-regression as well as to 
other applications of regression analysis.

Meta-regression has eight serious disadvantages. The first and most 
serious is the potential for massive capitalization on chance resulting in 
inflated multiple Rs (Raudenbush, 2009), as described near the end of 
Chapter 2. The square of the multiple R is then falsely interpreted as the 
proportion of variance in r or d values explained by the “moderators.” In 
meta-regression applications in the literature, the appropriate shrinkage 
formula to adjust for the inflation in the multiple R (Cattin, 1980) is 
almost never applied. Even if a shrinkage formula is applied, the multiple 
R is still inflated if there is any ex post facto selection of the potential 
moderators included in the meta-regression, a frequent practice. As 
noted in Chapter 2, some who use this procedure focus not on the multi-
ple R but on the statistically significant regression weights. But these are 
also distorted by capitalization on chance if there is any ex post facto 
selection of the potential moderators to be included in the regression. For 
example, this occurs when only those potential moderators with a large 
or statistically significant correlation with the effect sizes are included in 
the meta-regression equation, a common practice. The second major 
problem is that statistical power is typically low, because the number of 
studies (k is the relevant N) is almost never large. Because of low power, 
the regression weights for most real moderators will be nonsignificant. At 
least they should be, given known statistical principles, yet most moder-
ators in the literature are significant, which raises suspicions about capi-
talization on chance and/or selective reporting (see Chapter 13). The 
third disadvantage is susceptibility to distortion by outlier data points. 
This consideration exists in all applications of regression, but it is much 
more serious when sample sizes are small in relation to the number of 
predictors (Stevens, 1984). In meta-regression, the sample size (the num-
ber of studies, k) is often as small as 15, 20, or 30, and the number of 
potential moderators (predictors) may be as large as 5 or 10 (or more). 
The fourth disadvantage stems from the fact that the obtained regression 
weights are unstandardized (raw score) regression weights. Because of 
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this, they are difficult or impossible to interpret in any substantive way and 
any given weight cannot be compared with other regression weights in the 
meta-regression, as discussed in the second section of Chapter 5. For 
example, the size of the regression weight on any hypothesized moderator 
depends on how that moderator is scaled or measured. Because different 
moderators are measured on different scales with different SDs, the mag-
nitudes of the regression weights are not comparable and their magnitudes 
cannot be compared to each other, so it is not apparent which are the most 
important moderators. This fact leads users of meta-regression to focus 
almost entirely on p values in comparing moderators, an undesirable 
emphasis; p values become an inappropriate index of importance.

The fifth disadvantage is the fact that meta-regression results are inaccu-
rate when the d or r values have not been corrected for measurement error 
(and for range restriction, where applicable) (Ones, Viswesvaran, & 
Schmidt, 2012). While all the values will be biased downward by measure-
ment error, some will be biased more than others, undercutting the con-
struct validity of the observed d s or r s as measures of the real effects and, 
hence, artifactually reducing the apparent strength of all true moderators. 
It is rare in published meta-regressions for these corrections to be made. 
The correction for measurement error that is necessary for accuracy of 
meta-regression results causes significance tests, standard errors, and con-
fidence intervals for regression coefficients to be inaccurate with most 
computer programs. Hunter (1995) developed special software that yields 
accurate standard error values when the data have been corrected for mea-
surement error. (Corrections to individual r or d values are not possible 
when artifact distribution meta-analysis is used, which makes the use of 
meta-regression even more questionable in such cases.) The sixth problem 
is measurement error in the measures of the hypothesized moderator vari-
ables. As noted in Chapter 3, Orwin and Cordray (1985) showed that fail-
ure to correct for measurement error in the measures of the moderator 
variables leads to serious errors in the meta-regression results. This finding 
is important because almost no meta-analyses in the literature using 
meta-regression make this correction, meaning their moderator results are 
suspect (see also Cordray & Morphy, 2009). Seventh, even if the d or r val-
ues are corrected for measurement error and other artifacts, there is still the 
problem created by the fact that much (often most, sometimes all) of the 
variance in the d values or rs (i.e., the dependent variable) is due to sam-
pling error and other artifacts, creating low reliability for the dependent 
variable and, hence, low statistical power to detect moderator effects (as 
discussed in Chapters 2, 3, and 7; Cook et al., pp. 325–326). (Aloe, Becker, 
and Pigott, 2010, have proposed an adjustment for the sampling error in the 
effect sizes [which functions as measurement error in meta-regression]. 
This adjustment partials the effects of sampling error out of the multiple 
correlation and is similar to the correction for effect size unreliability illus-
trated in Chapter 3 in the Tibetan Employment Service example.) The 
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eighth disadvantage stems from problematic data requirements. Use of 
meta-regression requires estimates of the correlations among the potential 
moderators (predictors). Often, estimates of some of these correlations are 
not available and must be guessed at or somehow imputed. This potential 
adds additional error to the meta-regression results.

In articles and textbooks, meta-regression is often presented and described 
without any mention of these disadvantages (e.g., Lipsey & Wilson, 2001). 
In light of these serious limitations, it can be seen that it is only under rare 
and unusual circumstances that meta-regression will produce reliable and 
valid results. Meta-regression is used quite frequently in the literature today, 
and it is highly likely that most of the results are not trustworthy.

Hedges and Olkin (1985, pp. 11–12, 167–169) argued for use of weighted 
least squares (WLS) regression rather than OLS in meta-regression. They 
pointed out that the assumption of homogeneity of sampling error variances 
is usually not met in meta-analysis data sets. The sampling error variance of 
each “observation” (i.e., each d or r value) depends on the sample size on 
which it is based (and on the size of the observed d or r value). If these sam-
ple sizes vary substantially, as they usually do, then different effect size esti-
mates will have different sampling error variances. In meta-regression, study 
sampling error variance plays the same role as measurement error in a pri-
mary study analysis. Heterogeneity of variances can affect the validity of 
significance tests; actual alpha levels may be larger than nominal levels (e.g., 
.10 vs. the nominal .05). Estimates of the regression weights of moderators 
and multiple correlations can also be affected. Hedges and Olkin (1985, 
chap. 8) described a WLS regression procedure that circumvents these 
potential problems by weighting each study by the inverse of its sampling 
error variance. However, when Hedges and Stock (1983) used this method 
to reanalyze the Smith and Glass (1980) studies on class size, they obtained 
results that were quite similar to the original results, suggesting that the 
problem identified by Hedges and Olkin (1985) may not be serious when the 
number of d or r values is large (which was the case in the Smith and Glass, 
1980, study). The general finding has been that most statistical tests are 
robust with respect to violations of the assumption of homogeneity of vari-
ance (see, e.g., Glass, Peckham, & Sanders, 1972; or Kirk, 1995).

In an attempt to address this question, Steel and Kammeyer-Mueller 
(2002) compared OLS and WLS using computer simulation. They focused 
only on continuous moderators and only on the accuracy of the multiple R 
resulting from predicting observed effect sizes from the continuous modera-
tor variables. They did not look at the accuracy of the standardized regression 
weights, which provide the needed information on the size and importance 
of each individual moderator variable. They found that when the distribution 
of study sample sizes (N) was approximately normal, there was little differ-
ence in the accuracy of OLS and WLS. However, when the distribution of 
study Ns was skewed to the right, WLS produced more accurate estimates of 
the multiple R. However, the level of skew they examined was somewhat 
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extreme (skew = 2.66) and might occur only infrequently in real research 
literatures. The Steel and Kammeyer-Mueller study did not address or discuss 
the problem of capitalization on sampling error in the use of either type of 
regression weighting. Nor did the study address the other disadvantages of 
meta-regression discussed above.

There are reasons to be cautious about the use of WLS. If there is an 
outlier (in either direction) with an extremely large N, the WLS esti-
mates will be greatly influenced by such a study. Hence, with WLS, it is 
especially important to be concerned with outliers. There are also 
potential problems in the weighting of studies with small N s. When N 
is small, very large r or d values can occur due to large sampling errors. 
The observed value of r or d affects the computed sampling error vari-
ance (as can be seen by inspecting the formulas for sampling error 
variance for r and d) and, therefore, affects the weight the study gets. As 
Steel and Kammeyer-Mueller (2002) noted, a study based on N = 20 
with an r of .99 would be given the same weight as a study based on N = 
20,000 but with an r of .60! One solution to this latter problem is to use 
mean r or d in the sampling error variance formulas for r and d, in place 
of the r and d values from the individual study, as discussed and recom-
mended in Chapters 3, 4, 5, and 7. Because both OLS and WLS regres-
sion methods have (different) problems, Overton (1998) recommended 
applying both and comparing the results. If they are similar, one’s con-
fidence in the results is supported. However, the eight disadvantages  
of meta-regression discussed above remain whether WLS or OLS is 
used. Modification of the study weights does not make these problems 
go away.

With these cautions in mind, when moderators are continuous and the 
decision has been made to use regression, it is probably advisable in typical 
cases to emphasize WLS results in preference to OLS results. In most 
meta-analyses that use meta-regression, the meta-regression analysis is 
conducted after the main meta-analysis. However, some applications of 
meta-analysis consist of only a meta-regression analysis. In general, this is 
not an approach that we recommend because it does not produce an over-
all corrected mean and standard deviation for the population parameters. 
In addition, the results produced by this approach will be stable only if k, 
the number of studies, is very large. The meta-analysis by Nye, Su, Rounds, 
and Drasgow (2012) used this approach effectively. This meta-analysis 
included 568 correlations, so sampling error in the regression analysis was 
greatly reduced. Such large k values are rare, however. An example of this 
approach to meta-analysis is the structural equation modeling (SEM)–
based meta-analysis methods of M. W. L. Cheung (2008), discussed in 
Chapter 11. In practice, this form of meta-analysis, including Cheung’s 
approach, is usually a mixed effects meta-analysis (discussed later). This 
approach to meta-analysis can be viewed as a form of hierarchical linear 
modeling (discussed later).
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If moderators are dichotomous or categorical (e.g., sex or race), the 
subgrouping approach to moderator analysis is superior. However, it is 
important to bear in mind that moderators are often correlated and that it 
is important to use hierarchical moderator analysis to avoid confounding 
of correlated moderators. When moderators are continuous, the sub-
grouping method has the disadvantage of requiring dichotomization of 
the continuous variables to produce the subgroups, thus losing informa-
tion. When there is only one hypothesized moderator to be examined and 
it is continuous, simple correlation can be used, as described in Chapters 3 
and 7. That correlation is then the standardized regression weight for pre-
dicting the effect sizes or correlations. In this case, there is no capitaliza-
tion on chance. When there is more than one continuous moderator, 
simple correlation is maximally informative only if the moderators are 
uncorrelated. If the continuous moderators are correlated, OLS or WLS 
can be used to assess the moderators (bearing in mind the limitations of 
meta-regression). Hierarchical meta-analysis via subgrouping can also be 
used, but it requires dichotomizing (or perhaps trichotomizing) the con-
tinuous moderator variables, which is not desirable. It is not clear which of 
these two options is to be preferred in a case like this. Some advice on use 
of meta-regression in moderator detection is provided by Aguinis and 
Gottfredson (2010) and Aguinis and Pierce (1998).

MULTILEVEL MODELS IN META-ANALYSIS AND HLM

The use of meta-regression as described in the previous section is often 
referred to as “multilevel” meta-analysis. In this nomenclature, the first 
level is the meta-analysis of d or r values, and the second level is the regres-
sion of the effect sizes onto a set of potential moderator variables. In a 
sense, this is a form of hierarchical linear modeling (HLM; Raudenbush, 
2009; Raudenbush & Bryk, 2002). But HLM is typically used when effect 
sizes are not independent. For example, in educational research, teachers 
are nested within classrooms, and therefore the academic achievement 
scores of students within the same classroom are not independent (Rauden-
bush & Bryk, 2002), because the achievement of all the students is affected 
by the competence of their particular teacher. In meta-analysis, HLM is 
typically restricted to the case in which the same sample or study contrib-
utes multiple r or d values, which creates a similar violation of the assump-
tion of independence. HLM can handle this problem. Freund and Kasten 
(2012) is an example of such an application of HLM in a meta-analysis. 
However, as seen in Chapter 10, we recommend that steps be taken to 
ensure that the effect sizes within a meta-analysis are statistically indepen-
dent of each other. We also present evidence that violations of the indepen-
dence assumption have less of a distorting effect on meta-analysis results 
than is usually assumed. It has been suggested that the HLM can be viewed 
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as a general approach to conducting meta-analyses (Raudenbush & Bryk, 
2002). As such, it is a form of linear mixed effects meta-analysis (discussed 
in the next section). However, in practice, HLM has typically been restricted 
to cases in which the independence assumption has been violated. Hedges, 
Tipton, and Johnson (2010a, 2010b) have presented an approach to HLM 
that is simpler to use and is robust to the distributional assumptions made 
by other HLM approaches. A major limitation of HLM in general is that  
it is very difficult, if not impossible, to correct for the distorting effects of 
measurement error and range restriction or enhancement, causing inaccu-
racy in the results. HLM has all of the eight disadvantages of meta-regression 
discussed in the previous section. In addition, most applications of HLM use 
maximum likelihood (ML) estimation methods, which require larger sample 
sizes. As in the case of meta-regression, it is only under rare circumstances 
that one has data sufficient to cause HLM to produce accurate results.

MIXED EFFECTS MODELS IN META-ANALYSIS

In Chapters 5 and 8, we presented discussions of fixed effects (FE) and 
random effects (RE) models in meta-analysis. There is a related concept 
called the “mixed effects (ME) model.” The ME model is viewed as a 
mixture of RE and FE models. Suppose a meta-analyst applies the RE 
model to a set of effect sizes and stops after calibrating the variation in 
the population effect sizes, with no attempt to test or identify modera-
tors. This occurs when the meta-analyst views this variation as com-
pletely random; that is, produced by unknown (and maybe unknowable) 
factors. This is referred to by Hedges (1982c, 1983b) as the “simple ran-
dom effects model.” Alternatively, the meta-analyst might hypothesize 
that certain specific factors account for at least some of the between-
study variability in population values. The meta-analyst would then 
attempt to test these hypotheses using meta-regression (Raudenbush, 
2009). According to Hedges (1983b), if these hypothesized moderators 
are related to study outcomes, they are then viewed as “fixed factors,” 
meaning that they constitute all the potential moderators that the 
researcher is or would ever be interested in. This is the definition of fixed 
factors in analysis of variance (National Research Council, 1992). There-
fore, in the weighted meta-regression, the studies are weighted by the 
inverse of their FE sampling error variances and not by the inverse of 
their larger RE sampling error variances (Overton, 1998; Raudenbush, 
2009), which would be the study weights used if the moderators were 
viewed as just a sample of possible moderators. If there is no further 
variation in population effect sizes beyond sampling error in the sub-
groups in which these moderators are held constant (i.e., if the hypothe-
sized moderators produce a [properly adjusted] multiple R of 1.00 with 
the actual study effect sizes), then the overall model is said to be an FE 
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model, because there is no unexplained variation left. This outcome is 
rare in real data, if it exists at all. If, on the other hand, the postulated 
moderators account for some but not all the variation in the rho or delta 
values, the resulting model is said to be an ME model. The RE part of 
this conclusion stems from the fact that there is still remaining unex-
plained variance in population parameters, variance not accounted for 
by the moderators. The FE part of this conclusion stems from the fact 
that the postulated moderator variables are assumed to be fixed factors 
(FE factors). Vevea and Citkowicz (2008) showed via simulation that this 
approach often results in “seriously inflated Type I errors” in testing 
potential moderators that are in fact unrelated to the effect sizes. But in 
addition to this statistical problem there is also a conceptual problem here. 
If variance in population parameters remains after controlling for the fixed 
factors, there must be other moderators operating. This fact casts doubt on 
the definition of the fixed factors as constituting all the moderators that 
the researcher is interested in or could ever be interested in (National 
Research Council, 1992). The SEM-based methods of M. W. L. Cheung 
(2008) are ME meta-analysis methods, as noted earlier.

This way of thinking about meta-analysis models stemmed from an early 
conception of meta-analysis models in the 1985 Hedges and Olkin 
meta-analysis book. At that time, the hope was that the FE model as 
described above would turn out to be the case. That is, the hope was that 
postulated moderator variables would account for all the variation beyond 
sampling error in study population values. If so, then the FE model as 
defined above would actually apply. However, as meta-analyses accumulated 
in the literature, it became apparent that postulated moderators almost 
never explained all the variance in population parameters. (This result could 
be due in part to the fact that these meta-analysis methods do not control 
for variation due to artifacts such as measurement error; see Chapter 11. It 
is possible that these artifacts account for the remaining variance.)

Second-Order Sampling Error: General Principles

The outcome of any meta-analysis based on a small number of studies 
depends to some extent on which studies randomly happen to be available; 
that is, the outcome depends in part on study properties that vary randomly 
across studies. This is true even if the studies analyzed are all that exist at 
that moment. This phenomenon is called “second-order sampling error.” It 
affects meta-analytic estimates of standard deviations more than it affects 
estimates of means. This is also the case with ordinary, or first-order, sam-
pling error and ordinary statistics: Ordinary sampling error affects stan-
dard deviations more than means. Ordinary, or first-order, sampling error 
stems from the sampling of subjects within a study. Second-order sampling 
error stems from the sampling of studies in a meta-analysis.
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Consider a hypothetical example. Suppose there were only 10 studies 
available estimating the relationship between Trait A and job performance. 
Even if the mean sample size per study were only 68 (the median for pub-
lished validity studies reviewed by Lent et al., 1971a, 1971b), the mean 
validity would be based on N = 680 and would be reasonably stable. The 
observed variance across studies would be based on only 10 studies, how-
ever, and this variance, which we compare to the amount of variance 
expected from sampling error, would be based on only 10 data points. 
Now suppose sampling error were, in fact, the only factor operating to 
produce between-study variance in observed correlations (validities). 
Then, if we randomly happened to have one or two studies with large pos-
itive sampling errors, the observed variance across studies would likely be 
larger than the variance predicted by the sampling error variance formula, 
and we might falsely wind up concluding, for example, that sampling error 
accounts for only 50% of the observed variance of validities across studies. 
On the other hand, if the observed validity coefficients of, say, five or six 
of the studies randomly happened to be very close to the expected value 
(population mean), then the observed variance across studies would likely 
be very small and would underestimate the amount of variance one would 
typically (or on the average) observe across 10 such randomly drawn stud-
ies (from the population of such hypothetical studies that could be con-
ducted). In fact, the observed variance might be smaller than the variance 
predicted from sampling error. The computed percentage variance 
accounted for by sampling error would then be some figure greater than 
100%, for example, 150%. Of course, in this case, the correct conclusion 
would be reached: All the observed variance could be accounted for by 
sampling error. However, some people have been troubled by such out-
comes. They are taken aback by results indicating that sampling error can 
account for more variance than is actually observed. Sometimes they are 
led to question the validity of the formula for sampling error variance (see, 
e.g., H. Thomas, 1988, and the reply by Osburn & Callender, 1990). This 
formula correctly predicts the amount of variance sampling error will pro-
duce on average. However, sampling error randomly produces more than 
this amount in some samples and less in other samples. The larger the 
number of studies (other things being equal), the smaller the deviations of 
observed from expected sampling variance. If the number of studies is 
small, however, these deviations can be quite large on a percentage basis 
(although absolute deviations are usually small even in such cases).

Negative estimates of variances occur using other methods of statisti-
cal estimation. In one-way analysis of variance (ANOVA), for example, 
the variance of sample means is the sum of two components: the vari-
ance of population means and the sampling error variance. This is 
directly analogous to the meta-analytic breakdown of the observed vari-
ance of sample correlations across studies into the variance of population 
correlations (the real variance) and the sampling error variance (the false 

©SAGE Publications



Chapter 9  General Technical Issues in Meta-Analysis 393

or spurious variance). In estimating the variance of population means in 
ANOVA, the first step is to subtract the within-group mean square from 
the between-group mean square. This difference can be, and sometimes 
is, negative, as a result of sampling error. Consider a case in which the 
null hypothesis is true; the population means are then all equal and the 
variance of population means is 0. The variance of observed means (i.e., 
sample means) is then determined entirely by sampling error. This 
observed between-group variance will vary randomly from one study to 
another. About half the time, the within-group mean square will be 
larger than the between-group mean square, while half the time, the 
within-group mean square will be smaller. That is, if the variance of 
population means is 0, then in half of the observed samples, the esti-
mated variance of population means will be negative. This is exactly the 
same as the situation in meta-analysis if all the population correlations 
are equal: The estimated variance will lie just above 0 half the time and 
will lie just below 0 half the time. The key here is to note that the vari-
ance of population correlations is estimated by subtraction: The known 
sampling error variance is subtracted from the variance of sample cor-
relations, which estimates the variance of sample correlations across a 
population of studies. Because the number of studies is never infinite, 
the observed variance of sample correlations will depart by sampling 
error from the expected value. Thus, when the variance of population 
correlations is 0, the difference will be negative half the time.

Another example is the estimation of variance components in general-
izability theory. Cronbach and his colleagues (Cronbach, Gleser, Nanda, 
& Rajaratnam, 1972) proposed generalizability theory as a liberalization 
of classical reliability theory, and it is now widely used to assess the reli-
ability of measuring instruments in situations where the techniques of 
classical reliability theory are considered inadequate. Generalizability 
theory is based on the well-known ANOVA model and requires estimated 
variance components for its application. One or more of the estimated 
variance components may be negative, as noted by Cronbach et al. (1972, 
pp. 57–58) and Brennan (1983, pp. 47–48), even though, by definition, 
population variance components are nonnegative. The same phenome-
non was also noted by Leone and Nelson (1966). Cronbach et al. (1972) 
recommended substituting 0 for the negative variance, and Brennan 
(1983) agreed with this recommendation.

Negative estimated variances are not uncommon in statistical estima-
tion. The occurrence of negative estimates of variance in empirical 
research does not call into question a statistical theory such as ANOVA or 
a psychometric theory such as meta-analysis. As described previously, 
existing statistical sampling theory provides a sound rationale for observed 
negative estimates of variance in meta-analysis when the actual variance of 
true validities is 0 or close to 0. W. A. Thompson (1962) provides an ana-
lytical discussion of negative variance estimates.
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Second-Order Meta-Analyses  
Across Different Independent Variables

A second-order meta-analysis is a meta-analysis of meta-analyses. A form 
of second-order meta-analysis can be applied in cases in which the differ-
ent meta-analyses have nonidentical in dependent variables to which the 
same theoretical and methodological considerations apply. In such cases, 
the effect sizes cannot be combined because the in dependent variables are 
different, but the problem of second-order sampling error can be addressed 
by computing the average percent variance accounted for by artifacts. 
Validity generalization research on cognitive ability tests is an example. 
Under the situational specificity hypothesis, the hypothesized situational 
moderators would be essentially the same for different abilities (e.g., ver-
bal, quantitative, reasoning, spatial), and under the alternate hypothesis, 
all variance would be hypothesized to be artifactual for all abilities. The 
second-order meta-analysis would involve computing the average per-
centage of variance accounted for across the several meta-analyses. For 
example, in a large consortium study conducted by Psychological Services, 
Inc., in 16 companies, the percentage of variance accounted for by sam-
pling error ranged over different abilities from about 60% to more than 100%. 
The average percentage accounted for across abilities was 99%, indicating 
that once second-order sampling error was considered, all variance of 
validities across the 16 companies was accounted for by sampling error for 
all the abilities studied.

Such a finding indicates that the meta-analyses with less than 100% of 
the observed variance accounted for are explained as cases of second-order 
sampling error (specifically, secondary second-order sampling error, as 
defined later in this chapter). The same is true of meta-analyses with more 
than 100% of the observed variance accounted for. It should be clear that in 
conducting a second-order meta-analysis, figures greater than 100% should 
not be rounded down to 100%. Doing so would obviously bias the mean for 
these figures, because those that are randomly lower than 100% are not 
rounded upward.

There is an important technical issue in this form of second-order 
meta-analysis: The average percentage of variance accounted for must be 
computed in a particular way or it will be inaccurate. This technical issue 
is best illustrated by a study conducted by Spector and Levine (1987). 
Spector and Levine conducted a computer simulation study aimed at eval-
uating the accuracy of the formula for the sampling error variance of r. In 
their study, the value of ρ was always 0, so the formula for the sampling 
error variance of observed rs was S Ne

2 = 1/( 1).−  They conducted simula-
tion studies for various values of N, ranging from 30 to 500. The number 
of observed rs per meta-analysis was varied from 6 to 100. For each com-
bination of N and number of rs, they replicated the meta-analysis 1,000 
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times and then evaluated the average value of S Se r
2 2/  across 1,000 

meta-analyses. That is, they focused their attention on the average ratio of 
variance predicted from the sampling error formula to the average 
observed variance of the r s across studies. They did not look at S Sr e

2 2− , 
the difference between predicted and observed variances. They found that 
for all numbers of rs less than 100, the ratio S Se r

2 2/  averaged more than 
1.00. For example, when there were 10 rs per meta-analysis and N = 75 in 
each study, the average ratio was 1.25. Kemery, Mossholder, and Roth 
(1987) obtained similar results in their simulation study. The smaller the 
number of rs per meta-analysis, the more the ratio exceeded 1.00. They 
interpreted these figures as demonstrating that the formula for Se

2  overes-
timates sampling variance when the number of correlations in a 
meta-analysis is less than 100. Their assumption was that if the Se

2  for-
mula were accurate, the ratio S Se r

2 2/  would average 1.00.
The Spector-Levine (1987) study was critiqued by Callender and 

Osburn (1988), who showed that if one assessed accuracy by the difference 
S Sr e

2 2− , the sampling error variance formula was shown to be extremely 
accurate, as had also been demonstrated in their numerous previous sim-
ulation studies. There was no bias. They also demonstrated why the aver-
age ratio S Se r

2 2/  is greater than 1.00 despite the fact that Se
2  is an unbiased 

estimate of sampling variance. When the number of correlations in a 
meta-analysis is small, then, by chance, the Sr

2  will sometimes be very 
small; that is, by chance, all observed rs will be very similar to each other. 
Because Sr

2  is the denominator of the ratio, these tiny Sr
2  values lead to 

very large values for S Se r
2 2/ , sometimes as large as 30 or more. Further-

more, if Sr
2  should, by chance, be 0, the ratio is infinitely large. These 

extreme values raise the mean ratio above 1.00; the median ratio is very 
close to 1.00. The analysis by Callender and Osburn (1988) fully explains 
the startling conclusions of Spector and Levine (1987) and demonstrates 
that the fundamental sampling variance formula for the correlation is, in 
fact, accurate.

It should be noted that Spector and Levine would not have reached the 
conclusion they reached had they used the reciprocal of their ratio. That 
is, if they had used S Sr e

2 2/  instead of S Se r
2 2/ , they would have found that 

the mean ratio was 1.00. With this reversed ratio, the most extreme possi-
ble value is 0 (rather than infinity), and the distribution of ratios is much 
less skewed. This point has important implications for second-order 
meta-analyses of the sort discussed in this section. As noted earlier, this 
form of second-order meta-analysis is conducted by averaging the per-
centage of variance accounted for by artifacts over similar meta-analyses. 
In any given meta-analysis, this percentage is the ratio of artifact-predicted 
variance (sampling variance plus variance due to other artifacts) to the 

©SAGE Publications



396 GENERAL ISSUES IN META-ANALYSIS

observed variance. One over this ratio is the reversed ratio, S Sr e
2 2/ . In 

second-order meta-analysis, this reversed ratio should be averaged across 
studies, and then the reciprocal of that average should be taken. This pro-
cedure prevents the upward bias that appeared in the Spector-Levine study 
and results in an unbiased estimate of the average percentage of variance 
across the meta-analyses that is due to artifacts. For an example applica-
tion, see Rothstein et al. (1990).

Meta-analysis has made clear how little information there is in single stud-
ies because of the distorting effect of (first-order) sampling error. An examina-
tion of second-order sampling error shows that even several studies combined 
meta-analytically contain limited information about between-study variance 
(although they provide substantial information about means). Accurate anal-
ysis of between-study variance requires either meta-analyses based on a sub-
stantial number of studies (we have had up to 882; cf. Pearlman et al., 1980) or 
meta-analyses of similar meta-analyses (second-order meta-analyses). These 
are the realities and inherent uncertainties of small-sample research in the 
behavioral and social sciences (or in any other area, e.g., the biomedical area). 
There is no perfect solution to these problems, but meta-analysis is the best 
available solution. As the number of studies increases, successive meta-analyses 
will become increasingly more accurate.

Second-Order Meta-Analysis With  
a Constant Independent Variable

When there are number of independent meta-analyses that focus on the same 
independent and dependent variables, another form of second-order 
meta-analysis becomes possible (Schmidt & Oh, 2013). For example, Oh 
(2009) conducted separate meta-analyses of the validity of five personality 
traits for predicting job performance in four East Asian countries. Each 
meta-analysis contained only studies conducted in that country, so there were 
no overlapping studies between meta-analyses. Mean validity values differed 
across countries but a second-order meta-analysis using the methods 
described in this section showed that most of the between-country variance in 
mean correlation values was due to second-order sampling error. For one 
personality trait—Conscientiousness—all the between-country variability was 
due to second-order sampling error, indicating that this trait has the same 
mean validity in all the countries. Schmidt and Oh (2013) present other such 
applications. The number of meta-analyses of the same independent and 
dependent variables conducted in different countries or regions is increasing, 
and so this form of second-order meta-analysis is becoming more important.

In this section, we present the essential equations and computations for 
second-order meta-analysis applied to (a) bare-bones meta-analyses (as 
described in Chapter 3), (b) meta-analyses that corrected each value indi-
vidually (as described in Chapter 3), and (c) meta-analyses that used the 
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artifact distribution method to correct for artifacts (as described in 
Chapter 4). The presentation is in terms of correlations, but analogous 
equations apply when the outcome statistic is the d value.

SECOND-ORDER META-ANALYSIS OF  
BARE-BONES META-ANALYSES

Equation (9.1) is the fundamental equation when the first-order 
meta-analyses entering the second-order meta-analysis have corrected 
only for sampling error:

 
σρ  xy

i

S E S
r e

r

2 2 2= − ( )  (9.1)

where the term on the left side of the equation is the estimate of the pop-
ulation variance of the uncorrected mean correlations ( ρ xy

) across the 
meta-analyses after second-order sampling error has been subtracted out. 
The first term on the right side of Equation (9.1) is the weighted variance 
of the mean correlations across the m meta-analyses, computed as follows:
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and where Sri
2  is the variance of the observed correlations (rs) in the  

ith meta-analysis, ri  is the estimate of the mean effect size for the ith 

meta-analysis, r  is the estimate of the (weighted) grand mean effect size 
across the m meta-analyses, ki is the number of primary studies included 
in the ith meta-analysis, and the wi is the weight applied to the ith 
meta-analysis. The second term on the right side of Equation (9.1) is the 
expected (weighted average) second-order sampling error variance across 
the m meta-analyses:
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Equation (9.1d) reduces to Equation (9.1e):
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To summarize, each meta-analysis will have reported a mean uncor-
rected (i.e., mean observed) correlation, ri . The first term on the right in 
Equation (9.1) is the weighted variance of these mean correlations. This 
computation is shown in Equations (9.1a) and (9.1b). The weights (wi) used 
in Equations (9.1a), (9.1b), (9.1d), and (9.1e) are as defined in Equation 
(9.1c). Each weight is the inverse of the random effect (RE) sampling error 
variance for the mean correlation in the ith meta-analysis (Schmidt, Oh, & 
Hayes, 2009). The second term on the right in Equation (9.1) is the sam-
pling error variance of these mean correlations. Each of the meta-analyses 
will have reported the variance of the observed correlations in that 
meta-analysis. Dividing each such variance by ki (the number of studies in 
that meta-analysis) yields the RE sampling error variance of the mean r ( ri ) 

in that meta-analysis (Schmidt, Oh, & Hayes, 2009). (This reflects the well-
known principle that the sampling error variance of the mean of any set of 
scores is the variance of the scores divided by the number of scores [and the 
standard error of the mean is the square root of this value.]) The weighted 
average of these values across the m meta-analyses estimates the RE sam-
pling error variance of the mean rs as a group, as shown in Equations (9.1d) 
and (9.1e). The square root of this value divided by the square root of m is 
the standard error ( SE

r
) and can be used to put confidence intervals 

around the estimate of the (weighted) grand mean ( r ; computed in Equa-
tion [9.1b]). Also, using the square root of the value on the left side of 
Equation 9.1 ( σρ xy

), one can construct a credibility interval (see Chapters 5 

and 8) around the grand mean correlation across the m meta-analyses, 
within which a given percentage of the first-order population meta-analytic 
(mean) effect sizes ( ρ xy) is expected to lie. For example, 80% would be 
expected to lie within the 80% credibility interval. If the value on the left 
side of Equation (9.1) is zero, the conclusion is that the mean population 
correlation values are the same across the meta-analyses. In that case, all the 
observed variance is accounted for by second-order sampling error, and the 
conclusion is that there are no moderators. If it is greater than zero, one can 
compute the proportion of variance between meta-analyses that is due to 
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second-order sampling error. This is computed as the ratio of the second 
term on the right side of Equation (9.1) to the first term on the right side, 
that is,

 ProportionVar = E S S
e r r

i

( ) /
 

2 2
 (9.1f)

and 1 − ProportionVar denotes the proportion of the variance across 
first-order meta-analytic (bare-bones) mean correlations that is “true” 
variance (i.e., variance not due to second-order sampling error). As such, 
this number is the reliability of the meta-analytic correlations (considered 
as a set of values, one for each first-order meta-analysis; see Chapters 3 and 
7). This follows because reliability is the proportion of total variance that 
is true variance (Magnusson, 1966; Nunally & Bernstein, 1994). As dis-
cussed later, this value can be used to produce enhanced accuracy for 
estimates of these mean (meta-analytic) correlations from the first-order 
meta-analyses by regressing them toward the value of the grand mean 
correlation (the mean across the first-order meta-analyses). Both of these 
analyses are unique to second-order meta-analysis and cannot be per-
formed using other analysis methods.

SECOND-ORDER META-ANALYSIS WHEN  
CORRELATIONS HAVE BEEN INDIVIDUALLY CORRECTED

Measurement error is present in all research, and it biases all relation-
ships examined in research. Therefore, it is important to include correc-
tions for these biases. One approach in meta-analysis is to correct each 
correlation individually for the downward bias created by measurement 
error and other artifacts as appropriate (see Chapter 3). When the 
first-order meta-analyses entering the second-order meta-analysis have 
corrected each correlation individually for measurement error (and range 
restriction and dichotomization, if applicable), the fundamental equation 
for second-order meta-analysis is

 σ
ρ ρ ρ


 

2 2 2= −S E Se
i

( )  (9.2)

where the term on the left in Equation (9.2) is the estimate of the actual 
(nonartifactual) variance across the m meta-analyses of the population 
mean disattenuated correlations ( ρ ), that is, the variance after variance 
due to second-order sampling error has been subtracted out. The first 
term on the right side of Equation (9.2) is the variance of the mean indi-
vidually corrected correlations across the m meta-analyses, computed as 
follows:
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and where Srci

2  is the weighted variance of the disattenuated (individually 

corrected) correlations in the ith meta-analysis, ρ i is the mean meta-ana-
lytic disattenuated correlation in that meta-analysis, ρ  is the (weighted) 
grand mean effect size across the m meta-analyses, ki is the number of 
primary studies included in the ith meta-analysis, and the wi

*  is the weight 
applied to the ith meta-analysis. The second term on the right side of 
Equation (9.2) is the weighted average second-order sampling error vari-
ance across the m meta-analyses:
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Equation (9.2d) reduces to Equation (9.2e):
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where the wi
*  are as defined in Equation (9.2c).

To summarize, each first-order meta-analysis will have reported an 
estimate of the mean disattenuated correlation (the meta-analytic mean 
correlation, ρ i). The first term on the right side of Equation (9.2) is the 
variance of these meta-analytic mean correlations across first-order 
meta-analyses. This computation is shown in Equations (9.2a) and (9.2b). 
Equation (9.2c) shows the weights that are used in Equations (9.2a) and 
(9.2b). The second term on the right side of Equation (9.2) is the expected 
value of the second-order sampling error variance of these meta-analytic 
correlations. Each meta-analysis will have reported an estimate of the vari-
ance of the corrected correlations it included, preferably to four decimal 
places, for precision. Dividing this value by k (the number of studies in the 
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meta-analysis) yields the RE sampling error variance of the meta-analytic 
correlation for that meta-analysis (Schmidt, Oh, & Hayes, 2009). (As noted 
earlier, this reflects the well-known statistical principle that the sampling 
error variance of the mean of any set of scores is the variance of the scores 
divided by the number of scores [and the standard error of the mean is the 
square root of this value].) As shown in Equations (9.2d) and (9.2e), the 
weighted mean of these values across the m meta-analyses yields the sec-
ond-order sampling error variance needed in Equation (9.2).

The square root of this value divided by the square root of m is the 
standard error ( SE

ρ
) and can be used to put confidence intervals 

around the grand mean ( ρ ; shown in Equation [9.2b]).
The term on the left side of Equation (9.2) is the estimate of the actual 

(nonartifactual) variance across meta-analysis of the population mean 

disattenuated correlations (the ρ i), that is, the variance across first-order 
meta-analytic estimates after removal of variance due to second-order 

sampling error. Using the square root of this value (σρ ), credibility inter-

vals can be placed around the grand mean computed in Equation (9.2b).
If the value on the left side of Equation (9.2) is zero, the indicated conclu-

sion is that the mean population correlation values are the same across the 
multiple meta-analyses. All the variance is accounted for by second-order 
sampling error. If this value is greater than zero, one can compute the pro-
portion of variance across meta-analyses that is explained by second-order 
sampling error. This is computed as a ratio of the second term on the right 
side of Equation (9.2) to the first term on the right side, that is,

 ProportionVar = E S Se
i

( ) /
ρ

ρ


2 2  (9.2f)

and 1 – ProportionVar denotes the proportion of the variance across the 
first-order meta-analysis mean population correlation values that is true 
variance (i.e., variance not due to second-order sampling error). As such, 
this number is the reliability of the estimated mean first-order popula-
tion correlations (see Chapter 3), because reliability is the proportion of 
total variance that is true variance (Magnuson, 1966; Nunnally & Bern-
stein, 1994). This value can be used to refine the estimates of these 
first-order meta-analysis mean values by regressing them toward the 
value of the grand mean disattenuated correlation (the mean across the 
m meta-analyses, computed in Equation [9.2b]). In addition, when S

ρ
2  

is zero, the ProportionVar is 100% and the reliability of the vector of m 
first-order meta-analytic mean estimates is zero (e.g., Conscientiousness 
in Table 2 of Schmidt & Oh, 2013). This is the same as the situation in 
which all examinees get the same score on a test, making the reliability 
of the test zero.
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SECOND-ORDER META-ANALYSIS WITH  
ARTIFACT DISTRIBUTION META-ANALYSES

Often the information needed to correct each correlation individually for 
measurement error is unavailable for many or most of the studies. In such 
literatures, meta-analysis can nevertheless correct for measurement error by 
use of measurement error estimates (reliability estimates) from other credible 
sources, as indicated earlier. This method of meta-analysis is called artifact 
distribution meta-analysis (see Chapter 4). Equation (9.3) is the fundamental 
equation for second-order meta-analysis when the first-order meta-analyses 
have applied the artifact distribution method of meta-analysis.

 σ
ρ ρ ρ




2 2 2= −S E Se
i

( )  (9.3)

where the term on the left side of Equation (9.3) is the estimate of the nonar-
tifactual variance of the population meta-analytic (disattenuated) correlations 
(population parameter values) across the m first-order meta-analyses. This is 
the variance remaining after variance due to second-order sampling error has 
been subtracted out. The first term on the right side of Equation (9.3) is the 
variance of the mean disattenuated correlations across the m meta-analyses, 
computed as follows:
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and where Sri
2  is the variance of the observed correlations within a given 

meta-analysis, ρ i  is the mean disattenuated correlation in that meta-anal-

ysis, ri  is the meta-analytic (bare-bones) mean correlation in that 

meta-analysis, ρ  is the (weighted) grand mean effect size across the m 
meta-analyses, ki is the number of primary studies included in the ith 
meta-analysis, and wi

**  is the weight applied to the ith meta-analysis. The 

©SAGE Publications



Chapter 9  General Technical Issues in Meta-Analysis 403

second term on the right side of Equation (9.3) is the weighted average 
second-order sampling error variance across the m meta-analyses:
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Equation (9.3d) reduces to Equation (9.3e):
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The wi
**  are as defined in Equation (9.3c). Equation (9.3) has the same 

form as Equation (9.2), but some of the terms in it are estimated differ-
ently, so some explanation is indicated. The first term on the right side of 
Equation (9.3) is the computed variance across the meta-analyses of the 
first-order meta-analytic mean disattenuated population correlations. 
Computation of this value is shown in Equations (9.3a) and (9.3b). Equa-
tion (9.3c) shows the weights that are applied in Equations (9.3a) and 
(9.3b). The second term on the right in Equation (9.3) is the sampling error 
variance of these estimates. As shown in Equations (9.3d) and (9.3e), this 
sampling error is estimated as the weighted average across meta-analyses of 
the product of the square of the mean correction factor and the mean sam-

pling error variance of the bare-bones (uncorrected) meta-analytic correla-

tions ( Ser

2 ; see Equation [9.1d]). Each meta-analysis will have reported the 
variance of the observed correlations it included. Dividing this variance by 
k (the number of studies in the meta-analysis) yields the RE sampling error 
variance of the mean of the observed (uncorrected) correlations in that 
meta-analysis. As shown in Equations (9.3d) and (9.3e), the weighted aver-
age of the product of these values and the square of the correction factors 
across the m meta-analyses is the random effects sampling error variance 
estimate needed for Equation (9.3) (see Chapter 4). (As noted in the discus-
sion of first-order artifact distribution-based meta-analysis in Chapter 4, this 
is based on the well-known principle that if one multiples a distribution of 
scores by a constant, the standard deviation is multiplied by that constant and 
the variance is multiplied by the square of that constant. Here the constant is 
the mean measurement error correction [ ρ

i ir / ].) The square root of the value 
on the left side of Equation (9.3d) divided by the square root of m is the 
standard error (SE

ρ
) and can be used to put confidence intervals around the 

grand mean ( ρ ; computed in Equation [9.3b]).
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The value on the left side of Equation (9.3) is the estimate of the nonar-
tifactual variance of the population disattenuated correlations across the m 
meta-analyses. This is the variance remaining after subtraction of variance 
due to second-order sampling error. When this value is negative (i.e., second- 
order sampling error variance is greater than the observed variance across 
the first-order meta-analytic mean estimates), it is set to zero. Using the 

square root of this value ( σρ ), credibility intervals around the grand mean 

correlation can be computed, as described earlier. If the value on the left 
side of Equation (9.3) is zero, the indicated conclusion is that these mean 
population correlations are the same across the m meta-analyses. All vari-
ance is accounted for by second-order sampling error, leading to the con-
clusion that there are no moderators. If this value is greater than zero, one 
can compute the proportion of between meta-analyses variance that is 
accounted for by second-order sampling error variance. This is computed 
as the ratio of the second term on the right side of Equation (9.3) to the 
first term; that is,

 ProportionVar = E S Se( ) /
ρ ρ
i

2 2
 

 (9.3f)

where 1 – ProportionVar denotes the proportion of the variance of the 
population disattenuated correlations that is true variance (i.e., variance 
not due to second-order sampling error). Because of this, this number is 
the reliability of the vector of mean corrected correlations across the m 
first-order meta-analyses. This follows from the fact that reliability is 
defined as the proportion of total variance that is true variance (i.e., vari-
ance not due to error; Magnusson, 1966; Nunnally & Bernstein, 1994). 
This reliability reflects the extent to which the mean first-order corrected 
correlations discriminate between the first-order meta-analysis results.

MIXED SECOND-ORDER META-ANALYSIS

In some cases, some of the first-order meta-analyses might have cor-
rected each correlation individually while others applied the artifact distri-
bution method. How, then, should the second-order meta-analysis be 
conducted? The meta-analyses that corrected each coefficient individually 
can be “converted” to artifact distribution meta-analyses, and the equa-
tions for second-order artifact distribution meta-analysis can be applied to 
all the first-order meta-analyses. The quantities needed in these equations 
(Equations [9.3] and [9.3a] through [9.3f]) are typically reported in 
meta-analyses that have corrected each correlation individually, making 
this conversion possible.
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CONSIDERATIONS IN SECOND-ORDER META-ANALYSIS

One limitation of second-order meta-analysis methods is that the 
requirement for statistical independence of meta-analysis may limit the fre-
quency with which the methods can be applied. The extent to which mod-
erate violations of this assumption affect the results is unknown, but Cooper 
and Koenka (2012), in discussing an older, cruder form of second-order 
meta-analysis, suggest that minimizing the lack of independence might be 
sufficient to produce reasonably accurate results, and they give several 
examples of such published second-order meta-analyses. Tracz, Elmore, and 
Pohlmann (1992), in a simulation study, found that violations of the 
assumption of independence in first-order meta-analyses had minimal 
effect on the accuracy of results. Issues related to the importance of the inde-
pendence assumption are discussed further in Chapter 10.

Second-order meta-analysis is not directly concerned with the variability 
of study population correlations within each of the first-order individual 
meta-analyses. To be sure, this variability within meta-analyses (i.e., nonar-
tifactual variability between primary studies in first-order meta-analyses) is 
taken into account mathematically in second-order meta-analysis methods, 
as can be seen in Equations (9.1a), (9.1b), (9.1c), (9.2a), (9.2b), (9.2c), (9.3a), 
(9.3b), and (9.3c). But a finding that second-order sampling error accounts 
for all of the variability in the mean values across first-order meta-analyses 
does not imply that population parameters do not vary within first-order 
meta-analyses. Such a finding simply means that the mean values are equal 
across the different first-order meta-analyses. For example, the Schmidt and 
Oh (2013) finding that the mean meta-analytic operational validity for Con-
scientiousness is the same across different East Asian countries does not 
mean that this validity cannot vary somewhat across subpopulations within, 
for example, South Korea. If this is the case, this variability will be reflected 
in the results of the first-order meta-analysis. It is the purpose of the original 
first-order meta-analyses to address this nonartifactual variability between 
primary studies within each first-order meta-analytic context. The purpose 
of second-order meta-analysis is to gauge the true (nonartifactual) variabil-
ity between meta-analyses (e.g., cross-country, cross-region, cross-criterion, 
cross-setting) for mean values of ostensibly the same relationship and to use 
this information to improve accuracy of estimation for each first-order 
meta-analytic mean estimate.

A possible objection to second-order meta-analysis is the following: 
Instead of second-order meta-analysis, why not conduct an overall 
meta-analysis, pooling all primary study data from all meta-analyses 
(which will yield the same grand mean as the second-order meta-analysis), 
and then break out into sub-meta-analyses based on hypothesized  
moderators (which yields the same subgroup means as those used in the 
second-order meta-analysis)? First, this is often an impossible or imprac-
tical alternative, because the primary studies used in all first-order 
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meta-analyses are often not available. Some journals (e.g., Journal of 
Applied Psychology) in the fields of organizational behavior and human 
resource management have only recently required that meta-analyses 
report all data from primary studies used in the meta-analysis (Aytug, 
Rothstein, Zhou, & Kern, 2012; Kepes, Banks, McDaniel, & Whetzel, 
2012). As mentioned, second-order meta-analysis can be conducted 
using only first-order meta-analytic results (k, mean observed r, mean 
corrected r, and variance across observed or corrected rs), and thus it can 
be applied to most if not all previous first-order meta-analyses. Second, 
and perhaps more important, this procedure does not allow one to esti-
mate the variance (and the percentage of variance) across subgroup 
meta-analyses that is (and is not) due to second-order sampling error 
variance, because second-order sampling error variance is not computed 
(or computable) in the omnibus meta-analysis approach. This is because 
omnibus meta-analyses and their subgroup meta-analyses are both 
first-order meta-analyses. For example, application of this approach to 
the Conscientiousness validity data in our first example would not have 
revealed that all the variance across the four East Asian countries in 
meta-analytic operational validity values was due to second-order sam-
pling error. Instead, the values would have been taken at face value. So the 
omnibus meta-analysis procedure is not a substitute for second-order 
meta-analysis.

A variation on this objection is the following: Why not just conduct 
an omnibus, pooled meta-analysis along with subgroup meta-analyses 
based on hypothesized moderators and then look at the relative vari-
ances? The difference between the estimated population parameter vari-
ance in the omnibus meta-analysis and the average of this figure across 
the subgroup meta-analyses estimates the variance of the subgroup 
means (the variance of means across subgroup meta-analyses). This 
statement reflects the well-known ANOVA principle that total variance 
is the sum of between-group variance and average within-group vari-
ance. However, knowing the variance of the subgroup means does not 
allow one to estimate how much of this variance is (or is not) due to 
second-order sampling error and therefore does not allow computation 
of the proportion of this variance that is due to second-order sampling 
error. As a result, the analyses presented in the example in Schmidt and 
Oh (2013) cannot be conducted. For example, if all the between-mean 
variance was accounted for by second-order sampling error (as was the 
case with Conscientiousness in our first example application), there 
would be no way for one to know this. The procedure advocated here 
allows one to compute the percentage of total variance that is accounted 
for by between-group variance in mean values, but this is not the same 
as the percentage of between-group variance in mean values that is due 
to second-order sampling error variance. So again, this is a procedure 
that is not a substitute for second-order meta-analysis.
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Another possible objection is this: Why not just compute a meta-regression 
in which coded hypothesized moderators are used to predict the primary study 
correlations pooled across all the first-order meta-analyses? (These correlations 
can be either observed correlations, as in bare-bones meta-analysis, or correla-
tions corrected for measurement error.) This procedure fails for the same rea-
son as above: The squared multiple correlation will reveal the percentage of the 
total variance that is accounted for by the hypothesized moderator or modera-
tors. But it will not reveal the percentage of the variance in the mean values that 
is explained by second-order sampling error, and therefore the analyses allowed 
by second-order meta-analysis cannot be done. So this procedure is also not 
capable of being a substitute for second-order meta-analysis.

In conclusion, the methods of second-order meta-analysis provide 
unique information that cannot be obtained using the more traditional 
methods of first-order meta-analysis. The methods are particularly useful 
in conducting cross-culture generalization studies (i.e., synthesizing 
first-order meta-analyses conducted in different countries for the same 
relationship using within-country studies) and meta-analytic moderator 
analyses (i.e., comparing first-order meta-analytic results of the same rela-
tionship across different settings and/or groups; e.g., racial or social class 
groups). This unique information can be important from the point of view 
of cumulative knowledge and understanding, as illustrated in the several 
empirical examples presented in Schmidt and Oh (2013).

Second-Order Sampling Error: Technical Treatment

This section presents a more technical and analytical treatment of  
second-order sampling error and statistical power in meta-analysis. For 
the sake of simplifying the presentation, the results are presented for 
“bare-bones” meta-analyses, that is, meta-analyses for which sampling 
error is the only artifact that occurs and for which a correction is made. 
However, the principles apply to the more complete forms of meta-analysis 
presented in this book.

If a meta-analysis is based on a large number of studies, then there is 
little sampling error in the meta-analytic estimates. However, if the 
meta-analysis is based on only a small number of studies, there will be 
sampling error in the meta-analytic estimates of means and standard 
deviations. This is called second-order sampling error. There are poten-
tially two kinds of second-order sampling error: sampling error due to 
incompletely averaged sampling error in the primary studies and sam-
pling error produced by variation in effect sizes across studies. We will 
call unresolved sampling error from the primary studies “secondary 
second-order sampling error,” or “secondary sampling error” for short. 
We will call sampling error due to variation in effect sizes “primary 
second-order sampling error.” Table 9.1 shows the circumstances in 
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which the two types of second-order sampling errors occur. The key to 
this table is whether we have the homogeneous or heterogeneous case 
in the population. In the homogeneous case, there is no variance in ρ or 
δ in the population. In the heterogeneous case, the population values of 
ρ or δ do vary. As we noted in Chapters 5 and 8, the heterogeneous case 
is much more common in real data. Note that regardless of whether the 
set of studies is homogeneous or heterogeneous, there is always second-
ary second-order sampling error. This occurs because, in real data sets, 
it is never the case that the number of studies is infinite or that all stud-
ies have infinite sample size—the only conditions that can completely 
eliminate secondary second-order sampling error. However, primary 
second-order sampling error occurs only in the heterogeneous case. 
That is, when there is variance in ρ or δ, then primary second-order 
sampling error will be produced by the sampling of particular values of 
ρi or δi in individual studies. This cannot happen in the homogeneous 
case, because different values of ρ or δ cannot be sampled, because there 
is only a single value of ρ or δ in all studies. Because the homogeneous 
case is rare in real data, however, there will typically be both kinds of 
second-order sampling error in real meta-analyses. That is, typical real-
world meta-analyses fall into the bottom row of Table 9.1.

Table 9.1  Second-order sampling error: Schematic showing when the two types 
of second-order sampling error occur.

Secondary Second-Order
Sampling Error

Primary Second-Order
Sampling Error

Homogeneous Case

( ;S Sp
2 20 0)= δ = Yes No

Heterogeneous Case

( ;S Sp
2 2> 0 0)δ > Yes Yes

For simplicity, the following discussion will be written for analyses of 
the d statistic, but analyses based on correlations or other statistics are also 
subject to second-order sampling error when the number of studies is not 
large. In particular, second-order sampling error for correlations is directly 
analogous to that for d values.

Consider secondary sampling error. Meta-analytic estimates are aver-
ages. Thus, the sampling error in individual studies is averaged across 
studies. If enough studies are averaged, then the average sampling error 
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effects become exactly computable and, hence, exactly correctable. How-
ever, if the number of studies is small, then the average sampling error 
effects will still be partly random. For example, consider the mean effect 
size. Ignoring the small bias in the d statistic (see Chapters 7 and 8), the 
average d for the meta-analysis is

 Ave Ave Ave( ) = ( ) ( )d eδ +  (9.4)

If the number of studies is large, then the average sampling error across 
studies, Ave(e), will equal its population value of 0. That is, if we average 
across a large number of particular sampling errors, the sampling errors 
will cancel out exactly and yield an average of 0. If Ave(e) = 0, then

 Ave Ave( ) = ( )d δ  (9.5)

That is, if the average sampling error in the meta-analysis is 0, then the 
average observed effect size in the meta-analysis is equal to the average 
population effect size in the meta-analysis. If Ave(e) differs from 0, that is 
the effect of secondary sampling error.

If secondary sampling error were 0, then the average effect size in the 
meta-analysis would equal the average population effect size in the stud-
ies included in the meta-analysis. The number that we want to know, 
however, is the average population effect size across the entire research 
domain. The average effect size in the meta-analysis might differ from 
the average for the whole domain. If there were no variance in effect 
sizes across studies (the homogeneous case), then Ave(δ) = δ for any 
meta-analysis, and there can be no difference between the mean for the 
meta-analysis and the mean for the research domain. If there is variation 
across studies (the heterogeneous case), however, then the mean in the 
meta-analysis could differ by chance from the mean in the domain as a 
whole. This is primary second-order sampling error.

If the number of studies is large and if the studies are representative of 
the research domain, then the average population effect size in the 
meta-analysis, Ave(δ), will differ little from the average effect size across 
the research domain. That is, if the number of studies is large, then the 
Ave(d) value in the meta-analysis will be almost exactly equal to the aver-
age across the entire potential research domain. Thus, for a large number 
of studies, there will be no primary second-order sampling error in the 
meta-analysis mean.

In the next section, we will derive a confidence interval to estimate the 
potential range of second-order sampling error in the meta-analysis mean.

Both the mean ( , )i.e. orρ δ   and the standard deviation (i.e., SDρ or 

SDδ) estimated in meta-analysis have second-order sampling error, 
although the exact relationship is more complicated in the case of stan-
dard deviations than it is for means. If the number of studies is large, then 
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the variance of the particular sampling errors in the meta-analysis, 
Var(e), will equal the value predicted from statistical theory. If the num-
ber of studies is small, then the observed sampling error variance may 
differ from the statistically expected value. Similarly, if the number of 
studies is large, then the variance in the particular effect sizes included in 
the meta-analysis, Var(δ), will equal the variance for the research domain 
as a whole. However, if the number of studies is small, then the variance 
of study population effect sizes in the meta-analysis may differ by chance 
from the variance of population effect sizes. This can also be stated as 
follows: If the number of studies is large, then the covariance between 
effect size and sampling error will be 0, but if the number of studies is 
small, then this covariance in the meta-analysis may differ by chance 
from 0.

Let us consider primary second-order sampling error in more detail. 
One key question is whether there is any primary second-order sampling 
error. There are two possible cases. First, there is the “homogeneous case” 
in which the population effect sizes do not differ from one study to the 
next (i.e., Sδ

2 = 0) . Second, there is the “heterogeneous case” where there 
is variation in population effect sizes across studies (i.e., Sδ

2 > 0) . Consider 
first the case in which the population study effect, δi, does not vary across 
studies. That is, in the homogeneous case, we have

δi = δ for each study i in the domain

As discussed in Chapters 5 and 8 and earlier in this chapter, the homo-
geneous case is probably rare in real data. In the homogeneous case, it is 
possible to speak of “the” population effect size δ. Because δi is the same 
for each study,

Ave for any set of studies from thedomain
Var or any set

( ) =
( ) = 0
δ
δ

i

i f
δ

oof studies from thedomain

The meta-analysis mean observed effect size is

 
Ave Ave Ave

Ave
( ) = ( ) ( )

= ( )
d e

e
i i i

i

δ
δ

+
+

 (9.6)

Thus, the meta-analytic average effect size differs from the effect size  
δ only to the extent that the average of the sampling errors in the 
meta-analysis differs from 0. That is, the only second-order sampling 
error in the mean effect size in the meta-analysis is the secondary sam-
pling error, the sampling error resulting from primary sampling errors 
that by chance do not average to exactly 0.
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In the homogeneous case, the population effect size is constant across 
studies. Thus,

Var Var( ) = ( )d ei i

If the number of studies were large, then the variance of the particular 
sampling errors in the meta-analysis would equal the variance predicted 
by the statistical theory for the research domain as a whole. However, if the 
particular sampling errors in the meta-analysis have a variance that is dif-
ferent by chance from the domain variance, then that unresolved primary 
sampling error will not have been eliminated from the meta-analysis. 
Thus, in the homogeneous case, the only second-order sampling error in 
the variance of observed effect sizes will be secondary sampling error, that 
is, unresolved first-order study sampling error.

Now let us consider the heterogeneous case in which population effect 
sizes do differ from one study to the next ( > 0)2i.e., Sδ . The average 
observed effect size in a meta-analysis is

 Ave Ave Ave( ) = ( ) ( )d ei i iδ +  (9.7)

If the number of studies is small, then there can be error in each of the 
two terms: the average sampling error, Ave(ei), and the average population 
effect size, Ave(δi). Consider the average sampling error, Ave(ei). By 
chance, the average sampling error for that meta-analysis, Ave(ei), is likely 
to depart from 0 by at least some small amount. That is secondary sam-
pling error. Secondary sampling error always converges to 0 if the number 
of studies is large enough. However, it is possible for secondary sampling 
error to be small even if the number of studies is small. If the sample sizes 
in the primary studies were all very large—an unlikely event in psycholog-
ical research—the average of the individual sampling errors would be near 
0. The average sampling error would then be near 0 even though the num-
ber of studies is small.

Now consider the other term in the average effect size, Ave(δi), the aver-
age population effect size for the meta-analysis. If the number of studies is 
large, then the average population effect size in the meta-analysis will 
differ little from the average population effect size for the whole research 
domain. However, if the number of studies is small, then the particular 
values of (δi) observed in the meta-analysis are only a sample of the effect 
sizes from the domain as a whole. Thus, by chance, the average effect size 
in the meta-analysis may differ by some amount from the average effect 
size for the entire research domain. This departure is primary second- 
order sampling error. Even if all primary studies were done with an infinite 
number of subjects (i.e., even if every primary study sampling error ei were 
0), then the particular effect sizes in the meta-analysis need not have an 
average that is exactly equal to the domain average.
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Thus, in the heterogeneous case, both the mean and the standard devi-
ation of population effect sizes in the meta-analysis will depart from the 
research domain values because the studies observed are only a sample of 
studies. This is “primary second-order sampling error.”

THE HOMOGENEOUS CASE

In defining the word homogeneity, it is important to distinguish 
between actual treatment effects and study population treatment effects. 
There are few studies that are methodologically perfect and, thus, few 
studies in which the study population treatment effect is equal to the 
actual treatment effect. In a research domain in which the actual treatment 
effect is the same for all studies, artifact variation across studies (e.g., vary-
ing levels of measurement error in different studies) will produce artifac-
tual differences in study effect sizes. In most current textbooks on 
meta-analysis, the definition of homogeneous is obscured by implicit sta-
tistical assumptions. The definition of homogeneity requires that the study 
population effect sizes be exactly uniform across studies. In particular, 
most current chi-square homogeneity tests thus assume not only that the 
actual treatment effect is constant across studies but also that there is no 
variation in artifact values (e.g., measurement error) across studies. This 
assumption is very unlikely to hold in real data.

Most contemporary meta-analyses of experimental treatments have 
been bare-bones meta-analyses; no correction has been made for error of 
measurement or variation in strength of treatment, or variation in con-
struct validity, or other artifacts. For a bare-bones meta-analysis, it is very 
unlikely that the study population effect sizes would be exactly equal for 
all studies. To have uniformity in the study effect sizes, the studies would 
have to be not only uniform in actual effect size but uniform in artifact 
values as well. All studies would have to measure the dependent variable 
with exactly the same reliability and the same construct validity. All stud-
ies would have to have the same degree of misidentification—inadvertent 
treatment failure—in group identification, and so on. (See the discussion 
of fixed vs. random meta-analysis models in Chapters 5 and 8; fixed effects 
meta-analysis models assume the homogeneous case; see also Chapters 2 
and 6.) However, it may be useful in some cases to think of the homoge-
neous case as an approximation.

For purposes of this exposition of second-order sampling error, we 
assume homogeneity, and we denote the uniform study effect size by δ. 
Assume the average sample size to be 50 or more so that we can ignore bias 
in mean d values. Then, for each study individually, the treatment effect 
differs from δ only by sampling error. That is,

 d ei i= δ +  (9.8)
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We then have

 Ave Ave( ) = ( )d eiδ +  (9.9)

 Var Var( ) = ( )d ei  (9.10)

The average differs from δ only if the average sampling error is not the 
expected value of 0, that is, only if the number of studies is too low for 
errors to average out to the expected value (to within rounding error). The 
variance of observed effect sizes differs from Var(e) only if the variance of 
sampling errors Var(ei) differs from the expected variance Var(e). This 
would not occur for a meta-analysis on a large number of studies. However, 

the sampling error in the variance estimate ( )
2

Sδ  is larger than the sampling 

error in the estimate of the mean ( )δ . Thus, in most meta-analyses, the 
sampling error in the estimate of the variance of effect sizes is much more 
important than the sampling error in the estimate of the average effect size.

In the homogeneous case, the sampling error in the mean effect size 
for a bare-bones meta-analysis is obtained from the sampling error 
equation

d = δ ε+

where d  is the mean effect size and ε is the average sampling error. The 
distribution of meta-analytic sampling error ε is described by

E( ) = 0ε

 Var Var( ) = ( ) /ε e K  (9.11)

where K is the number of studies and Var(e) is the average sampling error 

variance across the studies in the meta-analysis. Var ( ) =
1
2ε εSD . Thus, 

under the assumption of homogeneity, the 95% confidence interval for the 
mean effect size in a bare-bones meta-analysis is

Ave Ave( ) 1.96 < < ( ) 1.96d SD d SD− +ε εδ

(See Chapters 5 for and 8 methods of computing this confidence inter-
val when artifacts beyond sampling error are corrected for.)

The sampling error in the estimated variance of effect sizes for a bare-
bones meta-analysis is obtained by considering a variance ratio. For a large 
number of studies, the condition of homogeneity could be identified by 
computing the following ratio:

Var(d) / Var(e) = 1
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For a small number of studies, this ratio will depart from 1 by sampling 
error. Many writers recommend that a chi-square test be used to assess the 
extent to which there is variance beyond sampling error variance. The 
statistic Q is defined as

Q = KVar(d) / Var(e)

We recommend that you not use the Q statistic. The Q statistic is the 
comparison variance ratio multiplied by the number of studies. Under the 
assumption of homogeneity, Q has a chi-square distribution with K − 1 
degrees of freedom. This is the most commonly used “homogeneity test” 
of contemporary meta-analysis. The homogeneity test has all the serious 
flaws of any significance test. These flaws were discussed in Chapter 2. If 
the number of studies is small, then a real moderator variable must be 
enormous to be detected by this test. That is, the power of the test is low 
unless the moderator effect (interaction) is very large (Hedges & Pigott, 
2001; National Research Council, 1992). On the other hand, if the number 
of studies is large, then any trivial departure from homogeneity, such as 
departures from artifact uniformity across studies, will suggest the pres-
ence of a moderator variable where there may be none. Because of these 
problems, we recommend against use of the homogeneity test.

THE HETEROGENEOUS CASE

If the research domain is heterogeneous ( , > 0)2i.e. Sδ , then there can be 
primary second-order sampling error—error due to the fact that the num-
ber of studies is not infinite. In a real meta-analysis in the heterogeneous 
case, there will therefore be two kinds of error: secondary sampling error 
and primary second-order sampling error. For purposes of discussion, we 
will focus first on just primary second-order sampling error. To do this, we 
will make a very unrealistic assumption: We will assume either (1) that all 
studies are done with infinite size or (2) (which is the same thing) that all 
study population effect sizes are known. After consideration of the special 
case, we will return to the realistic case of primary as well as second-order 
sampling error.

To make primary second-order sampling error clearly visible, let us 
eliminate first-order sampling error. That is, we assume all study Ns are 
infinite. Suppose population effect sizes do vary across studies (i.e., 
Sδ

2 > 0) . The individual study effect size is δi. Under these assumptions, 
meta-analysis will compute the average and variance of the study effect 
sizes in the studies located:

Ave Ave
Var Var

( ) = ( )
( ) = ( )
d
d

i

i

δ
δ
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However, if the number of studies is small, the average population effect 
size in the studies in the meta-analysis is only a sample average of the pop-
ulation effect sizes across all possible studies in the research domain.

The simplest case of a moderator variable is the binary case, for example, 
studies done with males versus studies done with females. The statistical 
description of a binary variable includes four pieces of information: the two 
values that are taken on by the binary variable and the probability of each 
value. Denote the two values by X1 and X2  and denote the respective prob-
abilities by p and q. Because the sum of probabilities is 1, p + q = 1 and, 
hence, q = 1 − p. The mean value is

 E X pX qX( ) = 1 2+  (9.12)

Let D denote the difference between the values; that is, define D by

D = X1 − X2

The variance of the binary variable is

 Var X pqD( ) = 2  (9.13)

Suppose a research domain has a moderator variable such that for 50% of 
studies, the effect size is δ = .20, while for the other 50% of studies, the effect 
size is δ = .30. For the research domain as a whole, the mean effect size is

Ave( ) = .50(.20) .50(.30) = .25δ +

The variance is given by

Var( ) = = (.50)(.50)(.30 .20) = .00252 2δ pqD −

Thus, the standard deviation is SDδ = .05. Consider a meta-analysis with 
K = 10 studies. If the studies are split 5 and 5, then for that meta-analysis, the 
mean effect size would be .25 and the standard deviation would be .05. Sup-
pose, however, the studies by chance are split 7 and 3. The mean would be

Ave( ) = (7 /10)(.20) (3/10)(.30) = .23d +

rather than .25. The variance would be

Var( ) = (7 /10)(3/10)(.30 .20) = (.21)(.01) = .00212d −

instead of .0025. That is, the standard deviation would be .046 rather than 
.05. These deviations in the mean and standard deviation of effect sizes are 
primary second-order sampling error, variation due to the fact that the 
sample of studies has chance variations from the research domain, which 
is the study population.
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How large is primary second-order sampling error? The answer is sim-
ple for the mean effect size:

 Var Ave Var[ ( )] = ( ) /δ δ K  (9.14)

The primary second-order sampling error variance of the variance esti-

mate ( )
2

Sδ  depends on the shape of the effect size distribution. That discus-
sion is beyond the scope of the present book.

Consider now the case of a real meta-analysis with a small number of 
heterogeneous studies. There will be both primary and second-order sam-
pling error. For the mean effect size in a bare-bones meta-analysis, each 
can be computed separately and easily:

 

Var Ave Var Ave Var Ave
Var Var
Var

[ ( )] = [ ( )] [ ( )]
= ( ) / ( ) /
=[

d e
K e K
δ

δ
+

+
(( ) ( )]/

= ( ) /
δ + Var

Var
e K

d K
 (9.15)

The square root of this quantity is the standard error of d  and is used 
to create confidence intervals around d . This formula holds for whatever 
set of weights is used in the basic estimation equations (see Hunter & 
Schmidt, 2000; Schmidt, Hunter, & Raju, 1988; Schmidt, Oh, & Hayes, 
2009). Equation (9.15) applies to bare-bones meta-analysis; see Chapter 8 

and 5 for methods of computing confidence intervals for δ  or ρ , respec-
tively, in the heterogeneous case (random effects model) when measure-
ment error and other artifacts in addition to sampling error are corrected 

for. The standard error of the standard deviation ( )
2

or of Sδ  is much more 
complex and is beyond the scope of this book (cf. Raju & Drasgow, 2003).

A NUMERICAL EXAMPLE

Consider the first numerical example presented in Chapter 7:

N d

100 .01

 90 .41

 50 .50

 40 –.10

*Significant at the .05 level.
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The meta-analysis using the more accurate formula found the following:

T
K
N
d
d
e

= 280
= 4
= 70

( ) = .20
( ) = .058854
( ) = .059143

Ave
Var
Var

Here all observed variance is accounted for by sampling error, so the 
standard deviation of effect sizes is 0. Thus, the only second-order sam-
pling error would be the secondary sampling error in the mean effect size. 
As described earlier, for the homogeneous case, the sampling error in the 
mean for a bare-bones meta-analysis is given by

Var Ave Var[ ( )] = ( ) / = .059143 / 4 = .014786d e K

and thus, the standard error of the mean is .12. The 95% confidence inter-
val for the effect size δ is

.20 1.96(.12) < < .20 1.96(.12)
.04 < < .44

− +
−

δ
δ

Thus, the sampling error in this meta-analysis is substantial. We cannot 
be sure that the effect size is actually positive.

The problem in the previous meta-analysis is the total sample size. A 
total sample size of 280 would be a small sample size even for a single 
study. Thus, this meta-analysis can be expected to have considerable sam-
pling error. To make this very explicit, suppose the number of studies was 
K = 40 rather than K = 4. The total sample size would then be T =  2,800, 
which is far from infinite but still substantial. The sampling error variance 
would be

Var Ave Var[ ( )] = ( ) / = .059143 / 40 = .001479d e K

and the standard error would be .04. The confidence interval would be

.20 1.96(.04) < < .20 1.96(.04)

.12 < < .28
− +δ

δ

Thus, given 40 studies with an average sample size of 70, the average 
value of δ is known to be positive and the width of the 95% uncertainty 
interval shrinks from .48 to .16.

If the number of studies were 400, the total sample size would be 28,000 
and the 95% confidence interval would shrink to

.18 < δ < .22
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Thus, under these assumptions, meta-analysis will eventually yield very 
accurate estimates of effect sizes. However, if the average sample size in the 
primary studies is very small, the number of studies required may be quite 
large.

ANOTHER EXAMPLE: LEADERSHIP TRAINING BY EXPERTS

Consider the leadership bare-bones meta-analysis from Table 7.1 in 
Chapter 7. Let us illustrate the computation of confidence intervals about 
those estimates. We have a heterogeneous case here, so we must use Equa-
tion (9.15) to compute the sampling error variance of our estimate of the 
mean. The sampling error variance in the mean effect size is

Var A Var[ ( )] = ( ) / = .106000 / 5 = .021200ve d d K

and the corresponding standard error is .146. The 95% confidence interval 
for the mean effect size is thus

.20 1.96(.146)< ( ) < .20 1.96(.146)
.09 < ( ) < .49

− +
−

Ave
Ave

δ
δ

This is a random effects standard error and a random effects confidence 
interval. Thus, with a total sample size of only 200, the confidence interval 
for the mean effect size is very wide.

This would also be true, however, for a single study with a sample size 
of only 200. For a single study with a sample size of 200 and an observed 
d of .20, the sampling error variance would be

Var( ) =[199 /197][4 / 200][1 .20 / 8] = .0203042e +

The corresponding standard error would be .142, and the 95% confi-
dence interval would be

.20 1.96(.142) < < .20 1.96(.142)
.08 < < .48

− +
−

δ
δ

The key to accuracy in the estimate of the mean effect size is to gather 
enough studies to generate a large total sample size.

For this example with a total sample size of 200, the 95% confidence 
interval for the mean effect size is −.09 < Ave(δ) < .49. In particular, 
because the confidence interval extends below 0, we cannot be sure that 
the mean effect size is positive. On the other hand, it is equally likely to be 
off in the other direction. Just as the mean effect size might be .00 rather 
than the observed mean of .20, so with equal likelihood it could be .40 
rather than the observed value of .20.
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Assume now that we obtained similar results not for 5 studies but for 500 
studies. For 500 studies with an average sample size of 40, the total sample 
size would be 500(40) = 20,000. There would be little sampling error in the 
meta-analysis estimates. The sampling error in the mean effect size would be

Var A Var[ ( )] = ( ) / = .106000 / 500 = .000212ve d d K

and the standard error would be .015. The 95% confidence interval for the 
mean effect size would be

.20 1.96(.015) < ( ) < .20 1.96(.015)
.17 < ( ) < .23

− +Ave
Ave

δ
δ

MODERATOR EXAMPLE: SKILLS TRAINING

Consider the overall bare-bones meta-analysis of the studies in Table 7.2 
of Chapter 7. We have

T
K
N T
d
d

e

= 40 40 = 400
=10
= /10 = 40

( ) = .30
( ) = .116000

( ) =[

+ +

Ave
Var

Var 339 / 37][4 / 40][1 .30 / 8]= .106591
( ) = .116000 .106591= .009

2+
−Var δ 4409

= .097SDδ

This is again a heterogeneous case. The estimated standard deviation of 
effect sizes is .097, which is large relative to the mean of .30. However, the 
total sample size is only 400.

Because the total sample size is only 400, we should worry about the 
sampling error in the mean effect size. The sampling error in the mean 
effect size is thus

Var Ave Var[ ( )] = ( ) / = .116000 /10 = .011600d d K

and the standard error is .108. The confidence interval for the mean effect 
size is thus

.30 1.96(.108) < ( ) < .30 1.96(.108)
.09 < ( ) < .51

− +Ave
Ave

δ
δ

That is, with a total sample size of 400, there is a large amount of sam-
pling error in the mean effect size.

©SAGE Publications



420 GENERAL ISSUES IN META-ANALYSIS

On the other hand, suppose we obtained these results not with 10 
studies but with 1,000 studies. The total sample size would be 1,000(40) 
=  40,000, and there would be very little sampling error in the mean effect 
size. The 95% confidence interval for the mean effect size would be

.30 1.96(.0108) < ( ) < .30 1.96(.0108)
.28 < ( ) < .32

− +Ave
Ave

δ
δ

Confidence Intervals in Random Effects Models:  
Hunter-Schmidt and Hedges-Olkin

The way in which the standard error of the mean r or d is estimated in a 
random effects meta-analysis differs between the methods presented in 
this book and the method presented by Hedges and Vevea (1998).

Estimation procedures are simpler for the Hunter-Schmidt (H-S) 
approach (Schmidt, Hunter, & Raju, 1988), so we present those procedures 
first.

The Hunter-Schmidt Random Effects (RE) Procedure. Our presentation is in 
terms of the d statistic, but procedures are similar and analogous for r and 
other indices of effect size. In the H-S RE procedure, the sampling error 
variance of the mean d is estimated as the variance of the observed ds 
across studies divided by k, the number of studies:

 Sed

2
 = V

k
S
k

e + δ
2

 = 
S
k
d
2

 (9.16)

The square root of Equation (9.16) is the SE that is used in computing CIs:

 SEd  = 
SD

k
d  = 

V S
k

e + δ
2

 (9.17)

In this model, Ve is conceptualized as the sample size weighted mean of 
the Vei

 values. The equation for Sd
2  is

 Sd
2  = N d di i( )−∑ 2  / ΣNi (9.18)

where

 d = ΣNi di / ΣNi (9.19)

The rationale for this procedure can be seen in the fact that Sd
2  = Se

2  + Sδ
2. 

That is, the expected value of Sd
2  is the sum of simple sampling error vari-

ance and the variance of the study population parameters (Chapters 3 

and 7; Field, 2005; Hedges, 1989). Hence, Sd
2  divided by k is the sampling 
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error variance of the mean. Osburn and Callender (1992) showed that this 
equation holds both when Sδ

2  > 0 and when Sδ
2  = 0 (i.e., when the 

assumption underlying the FE model holds). The study weights in the H-S 
RE model are (total) study sample sizes, Ni, used because these weights 
closely approximate the inverse of the simple sampling error variances  
(1 / Vei

) (see Chapter 3) and are less affected by sampling error variance 
(Brannick, 2006). Hedges (1983b) stated that in the heterogeneous case  

( Sδ
2  > 0), weighting by sample size “will give a simple unbiased estimator 

[of the mean] that is slightly less efficient than the optimal weighted esti-
mator” (p. 392). Osburn and Callender (1992) showed via simulation that 

weighting by sample size produces accurate SE estimates both when Sδ
2  = 0 

and when Sδ
2  > 0. Also using simulation, Schulze (2004) found that for 

heterogeneous population data sets, the H-S RE procedure weighting by 
sample size produced accurate (more accurate than other procedures eval-
uated) estimates of CIs (see his Table 8.13, p. 156); estimates for the mean 
correlation were also acceptably accurate (with a tiny median negative bias 
of .0022, much less than rounding error; Table 8.4, p. 134; see pp. 188–190 
for a summary). Brannick (2006) reported similar results. Further details 
can be found in Osburn and Callender (1992) and Schmidt, Hunter, and 
Raju (1988). We note here that in the H-S RE method, when the ds are 
corrected for measurement error, the procedure is analogous except that 
Sd

2  is now the variance of the corrected ds. The same is true for r value 
meta-analyses. Standard errors of the mean for corrected mean values are 
given in Chapter 5 for r values and Chapter 8 for d values. The Hedges- 
Vevea (H-V) procedure does not include corrections for artifacts.

The Hedges-Vevea RE Procedure. The Hedges and Vevea (1998) RE 
procedure estimates the two components of RE sampling error variance 
separately. The simple sampling error variance component is estimated 
exactly as it is in the FE model:

 
Sed

2  = 1 / Σwi (9.20)

where the wi are 1 / Vei
.

The second component, σδ
2

 (symbolized as τ
∧2

 by Hedges and Vevea), 
is estimated as follows:

 σδ
2

 = 
Q k

c
if
if

Q k
Q k

− −





≥ −
< −

( )1

0

1
1

 (9.21)

where Q = χ2  overall homogeneity test and c is a function of the study 
weights and is given in Equation (11) from Hedges and Vevea (1998):
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c w

w
wi

i

i
= ∑ −

∑
∑

( )2

 
(9.22)

where the study weights wi are the FE study weights as defined in our 
Equation (9.20).

The estimated mean value is then

 δ = d = Σ w di i
*

 / Σ
wi

*  (9.23)

The sampling error variance is

 Sed

2
 = 1 / Σ wi

*  (9.24)

where the wi
*  are 1 / [Vei

 + σδ
2

].

When the effect size statistic is the correlation, this RE procedure first 
converts rs to the Fisher’s z transformation, conducts the calculations in 
that metric, and then back transforms the resulting means and CIs into the 
r metric (Hedges & Olkin, 1985). The Fisher’s z transform is discussed in 
Chapter 5. See Hedges and Vevea (1998), Field (2005), and S. M. Hall and 
Brannick (2002) for a complete technical description of this RE procedure.

σδ
2

 in Equation (9.21) is set to zero when Q – (k – 1) yields a negative value, 
because by definition a variance cannot be negative. Hedges and Vevea (1998) 
discuss the positive bias that characterizes this estimate as a result of setting 
negative values to zero, and they tabulate this bias in their Table 2 for various 
conditions. This bias causes the SE to be upwardly biased, causing the resulting 
CIs to be too wide; that is, the probability content of the CIs is larger than the 
nominal value (Hedges & Vevea, 1998, p. 496). Overton (1998, pp. 371, 374) 
found this same bias for this procedure and also for an iterative procedure he 
used to estimate Sρ

2  and Sδ
2 . Hedges and Vevea state that bias becomes 

smaller as k (the number of studies) increases and is generally small when k is 
20 or more. However, Overton (1998) pointed out that the bias also depends 
on the actual size of Sδ

2  (or Sρ
2 ). For example, if this value is zero, then 50% of 

the estimates are expected to be negative due to sampling error, creating a 
positive bias regardless of the number of studies. If this value is small but not 
zero, then less that 50% of the estimates of Sδ

2  are expected to be negative, and 
the positive bias is smaller. When Sδ

2  is large, the positive bias is negligible. 

Overton (1998) stated that when Sδ
2  is small, the RE model overestimates 

sampling error variance and produces CIs that are too wide. This effect is not 
due to any inherent property of the RE model; it is due to the positive bias in 
the procedures he examined for estimating the standard error of the mean 
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meta-analysis value. Some researchers have mistakenly cited Overton’s state-
ment as a rationale for preferring the FE model to the RE model in their 
meta-analyses (e.g., Bettencourt, Talley, Benjamin, & Valentine, 2006).

Because of its different mode of estimating the sampling error variance 
(described earlier), the H-S RE procedure does not have this upward bias. 
As shown earlier, in the H-S RE procedure, the two components of the RE 
sampling error variance are estimated jointly rather than separately. Note 
that if Sδ

2  is in fact zero, the H-S RE estimate of sampling error variance 
has the same expected value as the FE estimate of sampling error variance 
(Osburn & Callender, 1992; Schmidt, Hunter, & Raju, 1988; Schmidt, Oh, 
& Hayes, 2009). As shown by Hedges and Vevea (1998), this is not the case 
for the H-V RE procedure.

Updating a Meta-Analysis When a  
New Study Becomes Available

When a new study becomes available, there are two ways in which one 
can update the meta-analysis to include this study. First, one can rerun 
the meta-analysis including the new study. Second, one can take a 
Bayesian approach. In that approach, one would treat the existing fully 
corrected meta-analysis mean and SD as the Bayesian prior distribution 
and multiply this distribution times the likelihood function from the 
new study, using the usual Bayesian equation. The likelihood function 
or distribution has as its mean the fully corrected r or d value from the 
new study, and its SD is the standard error (SE) of that estimated cor-
rected r or d value (i.e., the square root of the sampling error variance 
of the corrected value from the study). Either of these procedures can 
also be applied when there are multiple new studies. Schmidt and Raju 
(2007) have examined the properties of these two procedures in detail. 
They conclude that it is virtually always best to rerun the meta-analysis 
including the new study or studies.

What Are Optimal Study Weights in  
Random Effects Meta-Analysis?

Considerable attention has been devoted in the literature to the question 
of how the studies in a meta-analysis should be weighted. In the H-V pro-
cedure, because of the nature of the study weights used to produce the 
weighted mean d value (or r value), it is necessary when using these 
weights to have a separate estimate of σδ

2  (Field, 2005; Hedges & Vevea, 
1998). As noted earlier, the weight applied to each study is wi

*  = 1 / [Vei
+ 

σδ
2

], where Vei
is the simple sampling error variance for that study.  

The H-S procedure weights each study by its (total) sample size (Ni) and 
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therefore does not require a separate estimate of σδ
2 . (As noted in Chapter 

3, when correlations are corrected individually, the H-S procedure weights 
studies by the product of the study N and the compound attenuation fac-
tor.) Of course, the H-S RE model does estimate σδ

2  for other purposes 
(such as credibility intervals), and this estimate does have a positive bias 
(discussed in Chapter 5), but this estimate is not used in the weights 
applied to the studies and so does not affect the computation of weighted 
mean values, SEs, or confidence intervals (Schmidt, Hunter, & Raju, 1988; 
Schmidt, Oh, & Hayes, 2009; see also Schulze, 2004, p. 190). The H-V 
weights were derived within the context of large sample statistical theory, 
that is, under the assumption the number of studies and study Ns are very 
large. In such a hypothetical situation, the H-V study weights are in expec-
tation more accurate for RE models (Hedges, 1983a, 1983b; Hedges & 
Vevea, 1998; Raudenbush, 1994; Schulze, 2004, 2007). But even within large 
sample theory, this advantage is slight (Hedges, 1983b, p. 393). The prob-
lem in using these weights with actual data is that the small theoretically 
expected advantage for these study weights is not realized with the smaller 
numbers of studies and study Ns that are typical in real meta-analyses, 
because of inaccuracies induced by sampling error in the estimates of the 
σδ

2  component of the weights (e.g., see Brannick, 2006; Raudenbush, 
1994, p. 317; and Schulze, 2004, pp. 84 and 184; 2007). Because of this 
effect, Schulze (2004, pp. 193–194), based on the results of his extensive 
Monte Carlo studies, recommended weighting studies by sample size in 
the heterogeneous case (i.e., σδ

2  or σρ
2  > 0), as well as the homogeneous 

case. Kulinskaya, Morgenthaler, and Staudte (2010) reached this same 
conclusion, as did Shuster (2009). Brannick (2006) conducted an extensive 
simulation study in the r metric. He found that sample size study weights 
produced estimates that were less biased and had smaller root mean 
square error than weighting by inverse sampling error variances. He con-
cluded that the accuracy problems of the inverse study weights stemmed 
from the fact that sampling error often causes the r statistic to take on 
extreme values, which cause extreme study weights, which, in turn, cause 
inaccurate estimates of mean correlations. In a later study, Brannick, Yang, 
and Cafri (2011) confirmed these results favoring N-weighting for the  
r metric but found that in the case of the d metric, weighting by inverse 
variance had a slight advantage over weighting by N. Marin-Martinez and 
Sanchez-Meca (2010) also reported this result. However, Sanchez-Meca 
and Marin-Martinez (1998), in another simulation study in the d metric, 
found that weighting studies by sample size resulted in unbiased esti-
mates of mean d under all conditions, while inverse sampling variance 
weights produced slightly (negatively) biased estimates. At the same 
time, weighting by inverse variance was slightly (2.8%) more statistically 
efficient. In the case of the d metric, the differences between the two 
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weighting methods appear to be very tiny and not of practical signifi-
cance in research.

The random effects study weights used in the Hedges procedure are less 
unequal across studies than sample size weights. Hence, that procedure 
gives relatively more weight to studies based on small sample sizes, which 
can cause problems in applying widely used methods for the detection of 
publications bias (see Chapter 13).

Bonett (2008, 2009) has challenged both these approaches to weighting 
of studies when used with the RE meta-analysis model. He argues that the 
RE model is based on the assumption that the studies in the meta-analysis 
are a random sample of a defined population of studies and that this 
assumption cannot be justified because meta-analysts cannot appropri-
ately define or delimit such a population. Because of this problem, he 
advocates that all studies be weighted equally. He is correct that in the RE 
model, the studies in the meta-analysis are viewed as a random sample 
from a larger universe of studies that exist or could be conducted. Hedges 
and Vevea (1998) pointed out that this larger universe is often poorly 
defined and ambiguous in nature. However, Schulze (2004, pp. 40–41) 
noted that this is not a problem specific to meta-analysis or RE models in 
meta-analysis but one that characterizes virtually all samples used in pri-
mary and other research. Rarely in research is the target population of 
subjects fully enumerated and delimited; in fact, data sets used frequently 
consist of something close to convenience samples (i.e., a set of subjects for 
whom it was possible to obtain data). Viewed in this light, this problem 
appears less serious. We can ask how different meta-analytic results would 
be using equal study weights. Brannick et al. (2011) evaluated equal 
weights in their simulation study. They found that both sample size 
weights and inverse variance weights were more accurate and efficient 
than equal weights, but the differences were often negligible from a prac-
tical point of view. However, this study does not speak directly to Bonett’s 
(2008, 2009) objection, because in the Brannick et al. simulation study, 
there was in fact a clearly defined population of studies from which studies 
were sampled.

The Meaning of Percent Variance  
Accounted for in Meta-Analysis

In the first part of Chapter 5, we presented the case against percent vari-
ance accounted for as a useful statistic in any kind of research. Yet in 
Chapters 3, 4, and 7, we often presented figures for the percentage of vari-
ance in r or d values accounted for by sampling error and other artifacts  
in meta-analysis. In doing this, we have tried to point out a more mean-
ingful interpretation of this meta-analytic result: The square root of the 
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proportion of variance explained is the correlation between the observed 
r or d values, on one hand, and the sampling errors and other artifactual 
perturbations in the effect sizes, on the other. For example, if 81% of the 
variability across effect sizes is explained by artifacts, then the observed 
effect sizes are correlated .90 (the square root of .81) with artifact- produced 
perturbations in the observed values. If 50% is accounted for, this correla-

tion is .71 (r = .50). The correlation is much easier for readers and 
research users to understand than percent variance. Correlations (i.e., 
linear relations) exist in the real world while variances do not; a variance 
is a quadratic statistic created by squaring data points of interest and is in 
that sense artificial. In addition, as noted in Chapter 5, the percent vari-
ance statistic is highly susceptible to misinterpretation, because small 
percent variance figures are often wrongly dismissed as unimportant when 
the effect sizes underlying them are fairly large and of practical signifi-
cance. So we recommend that in meta-analysis, the final percent variance 
accounted for figures be converted to correlations.

The Hedges and associates meta-analysis methods as presented in 
Borenstein et al. (2009) include an index of percent variance called I2, 
which is attributed to Higgins et al. (2003). This index represents the 
proportion of variance not explained by sampling error (the only artifact 
addressed by that method). In a Hunter-Schmidt bare-bones meta-analy-
sis, 1 minus the proportion of variance accounted for equals I2. Both 
indices are affected by the Ns of the studies in the meta-analysis, because 
sampling error causes most artifactual variance. Other things constant, if 
study Ns are small, percent variance explained tends to be large, I2 tends 
to be small, and the correlation between observed values and perturba-
tions due to artifacts tends to be large. The opposite tends to be the case 
when the Ns of the studies in the meta-analysis are large. This depen-
dence on study Ns should be borne in mind in interpreting both these 
indices.

It is also important to remember that the proportion of variance 
explained is less informative when the observed variance of the meta- 
analytic correlations or d values is small. A percent-based estimate can be 
misleading when it is interpreted blindly without considering the size of its 
denominator. For example, a proportion of variance figure of 50% could 
be .1000 / .2000 or .00010 / .00020. The latter case would not suggest the 
existence of moderator(s), given the tiny amount of observed variation to 
begin with and the even smaller amount of nonartifactual variance. For 
purposes of detecting the likely presence of moderators, the absolute 
amount of true variance (nonartifactual variance) in the study effects sizes 
(or even better, its square root, the SD) can be more important than the 
relative percent of variance attributable to artifacts. We suggest that 
meta-analysts consider both estimates.
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The Odds Ratio (OR) in Behavioral Meta-Analyses

In medical research, both the independent and dependent variables are often 
true dichotomies—for example, vaccinated versus not vaccinated (indepen-
dent variable) and contracted the disease versus did not contract the disease 
(dependent variable), creating a 2 × 2 table. The favored and most widely 
used ratio measure in medical research is the odds ratio (Haddock et al., 
1998). The odds ratio (OR) is the ratio of two probabilities:

OR = P(I/E)/ P(I'E),

where P(I/E) (in our example) is the probability of getting the disease in 
the group that did not get the vaccine, and P(I'E) is the probability of 
getting the disease in the group that got the vaccine. These probabilities 
are estimated via ratios between cells in the 2 × 2 table. Primary studies 
and meta-analyses using the OR statistic analyze the natural logs of the 
ORs (ln(OR)), with the final results then being converted back to the OR 
metric. The OR is seldom used in psychological or behavioral research 
because it is rare that both variables are true dichotomies. In fact, in many 
studies, both variables are continuous; this is especially frequent in cor-
relational studies. Of course, in experiments, the independent variable is 
often dichotomous: the treatment group versus the control group. How-
ever, the dependent variable is almost always continuous or at least not 
dichotomous. Some examples are amount learned in the training pro-
gram, degree of change in racial attitudes, and amount of reduction in 
anxiety. It is rare in behavioral research to have a truly dichotomous 
dependent variable. Of course, dependent variables that are actually con-
tinuous can be artificially dichotomized to allow application of the OR, 
but it is well known that doing this is not good practice because it causes 
a major loss of information (Cohen, 1983; Hunter & Schmidt, 1990a; 
MacCallum et al., 2002). In their explication of the OR, Haddock et al. 
(1998) present an example in which the independent variable is a psycho-
social treatment for drug addiction (experimental vs. control group) and 
the dependent variable is “successful” or “not successful” in reducing 
drug use. This is an example of what MacCallum et al. (2002) warned 
against: an artificial dichotomization of a continuous variable. There are 
degrees of success in reducing drug usage. We believe that this sort of 
consideration is the reason why the use of the OR is still rare in behavioral 
research 15 years after Haddock et al. (1998) advocated its use for behav-
ioral research in the journal Psychological Methods.

There is another important reason to avoid using the OR: Most people 
find it difficult to understand the meaning of an OR—not only laypeople 
but also medical practitioners (to whom the medical research is directed) 
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and even medical researchers themselves. The OR is not an intuitive sta-
tistic (Borenstein et al., 2009). In fact, as demonstrated by Gigerenzer and 
his associates (Gigerenzer, 2007; Gigerenzer et al. 2007), the vast majority 
of practicing medical doctors routinely seriously misinterpret the meaning 
of outcome statistics used in medical research. Patients would be quite 
concerned if they were aware of this fact.

Suppose some of the studies relevant to one’s meta-analysis present 
results in the form of ORs. Must these studies be omitted? Actually, it is 
quite easy to covert OR to either d or r values. These conversion formulas 
are given by Bonett (2007), Borenstein et al. (2009), and Chinn (2000). 
Both OR values and their sampling error variances can be converted. So 
such studies can be included in a meta-analysis conducted in the r or  
d metrics. If all relevant primary studies use the OR statistic, all can be 
converted to the r or d metric prior to meta-analysis. This is the procedure 
we recommend in both cases.
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Exercise 9.1: Second-Order Meta-Analysis Across Different 
Independent Variables With the Same Dependent Variable

This exercise is based on the data used in the exercise at the end of Chapter 4. That exer-
cise required you to conduct separate bare-bones meta-analyses for each of six tests. This 
results in an estimate of the percentage of variance accounted for by sampling error for 
each test. These are the first set of figures needed for this exercise. We hope you have 
retained them.

These data meet the requirements for a second-order meta-analysis, as described in this 
chapter. That is, the six meta-analyses are very similar substantively, and there is no reason 
to believe that there are different nonartifactual sources of variance (i.e., moderators) for 
the different tests.

Conduct a second-order meta-analysis across these six tests using the methods 
described in this chapter for second-order meta-analysis across different in dependent 
variables.

What is the average percentage of variance accounted for by sampling error across 
these six tests? What is your interpretation of this finding?

In the exercise at the end of Chapter 4, you also computed the percentage of variance 
accounted for by all artifacts—sampling error plus the other artifacts. This was computed 
not as part of the bare-bones meta-analysis but as part of the full meta-analyses, which 
corrected for measurement error and range restriction, as well as for sampling error. There 
were two such meta-analyses—one correcting for direct and one correcting for indirect 
range restriction. Conduct a separate second-order meta-analysis for each of these sets of 
percentage of variance figures.

Are these values different from those computed earlier based only on sampling error 
variance? Why is this difference in this particular set of data not larger than it is? What is 
your interpretation of these values?
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Exercise 9.2: Second-Order Meta-Analysis With Constant 
Independent and Dependent Variables

Chanchal Tamrakar (2012) conducted separate, independent meta-analyses on the rela-
tionship between customer satisfaction and customer loyalty for (1) the retail industry, 
(2) the tourism industry, and (3) the telecom industry. He also conducted separate, inde-
pendent meta-analysis by geographical area: (1) Asia, (2) Europe, and (3) North America. 
He used the artifact distribution method of meta-analysis in all six of his meta-analyses. 
His first-order meta-analysis results that you need for this exercise are shown in the first 
four columns in the following table. Conduct two second-order meta-analyses on his 
results—one for the industry categories and one for the geographical areas. To conduct 
these analyses, you need to use the following equations: (9.3) and (9.3a) through (9.3f) 
(a total of seven equations). Columns 5 through 12 are for your answers. The headings 
on these columns are as defined in the discussion in the text of equations listed here. 
They are also defined in the notes to the table.

Explain your results.

1. How much different are the mean corrected correlations after adjustment for  
second-order sampling error (column 12) in comparison with the values originally 
reported by Tamrakar (column 4)? Make this comparison separately for the two sets 
of meta-analyses.

2. Compare the percent of variance in his mean corrected correlations explained by 
second-order sampling error (column 10) for the industry category versus the geo-
graphical region category. What might be the explanation for this difference?
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Exercise 9.3: Second-Order Meta-Analysis With Constant 
Independent and Dependent Variables

Van Iddekinge, Roth, Putka, and Lanivich (2011) meta-analyzed relationships between 
job-related interests and job turnover. They examined this relationship for three different 
types of interest measures: (1) job and vocation focused scales, (2) construct-focused interest 
scales, and (3) basic interest scales. They also meta-analyzed the relationship between job 
interests and three different types of turnover: (1) voluntary, (2) involuntary, and (3) “other 
turnover.” In all six of these first-order meta-analyses, they used the artifact distribution 
meta-analysis method. Their first-order meta-analysis results that you need for this exercise 
are shown in the first four columns in the following table. Conduct two second-order 
meta-analyses on their results—one for the type of interest scale meta-analyses and one for 
type of turnover meta-analysis. To conduct these analyses, you need to use the following 
equations: (9.3) and (9.3a) through (9.3f) (a total of seven equations). Columns 5 through 12 
are for your answers. The headings on these columns are as defined in the discussion in the 
text of equations listed here. They are also defined in notes to the table.

Explain your results.

1. How much different are the mean corrected correlations after adjustment for 
second-order sampling error (column 12) in comparison with the values origi-
nally reported by Iddekinge et al. (2011) (column 4)? Compare separately for the 
two sets of first-order meta-analyses.

2. Compare the percent of variance in the Iddekinge et al. mean corrected correlations 
explained by second-order sampling error (column 10) for the type of interest scale 
category versus the type of turnover category. Why do you think these values are so 
different?
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