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Figure 8.1 Hypothetical Example of Continuous Longitudinal Data which can be Well
Described by a Linear Mixed Model with Random Intercepts and Random Slopes. The thin lines
represent the observed subject-specific evolutions. The bold line represents the population-
averaged evolution

persons to be different with respect to their
ability to pass the tests. As before, the ui will
be called random effects, and will be assumed
to be normally distributed with mean zero. A
graphical representation of this model is given
in Figure 8.2. As for the linear model, person-
specific slopes could have been included as
well.

A general formulation is as follows. Con-
ditionally on random effects ui , it is assumed
that the elements yi j of yi are independent,
with density function of an exponential
family form

fi (yi j |ui ) = exp [(yi jηi j − a(ηi j ))/φ

+c(yi j , φ)], (8.5)

with a and c functions andφ an overdispersion
parameter, and further with mean E(yi j |ui ) =

a′(ηi j ) = µi j (ui ) and variance Var(yi j |ui ) =

φa′′(ηi j ), and where, apart from a link func-
tion h, a linear regression model with param-
eters β and ui is used for the mean, i.e.,

h(µi (ui )) = X iβ + Zi ui . (8.6)

Note that the linear mixed model is a special
case, with identity link function. As in the lin-
ear model, the random effects ui are assumed
to follow a multivariate normal distribution
with mean 0 and covariance D. Usually, the
canonical link function is used, i.e., h = a′−1,
such that ηi = X iβ + Zi ui . For example, for
binomial data, the logit link is canonical. For
Poisson data, the log link is canonical. The
advantage of this choice is a simplified form
for the score equations for which, in many
cases, fast and stable fitting algorithms can be
constructed. Note also that when a link func-
tion other than the identity link is used, the
fixed effects need to be interpreted in a way
which is consistent with the link. For exam-
ple, if a logit link is used, as in (8.4), the slope
β2 is the change in the log odds of success
associated with a one-unit change in the pre-
dictor, holding all other effects in the model
fixed; if a log link is used, exp(β) is the mul-
tiplicative change in the mean of the outcome
associated with a one-unit change in the pre-
dictor, holding all other effects in the model
fixed.



“Handbook_Sample.tex” — 2013/7/25 — 12:46 — page 131

8.3 ESTIMATION AND INFERENCE 131

time

Figure 8.2 Graphical Representation of a Random-Intercepts Logistic Model. The thin lines
represent the subject-specific logistic regression models. The bold line represents the
population-averaged evolution

8.3 ESTIMATION AND INFERENCE

In general, unless a fully Bayesian approach is
followed (see, e.g., Gelman et al., 1995), infer-
ence is based on the marginalized model for
yi which is obtained from integrating out the
random effects over their distribution G(ψ).
Let fi ( yi |ui ) and g(ui ) denote the density
functions corresponding to the distributions
Fi and G, respectively. As indicated before,
g(ui )will often be the density of the N (0, D)
distribution. The marginal density function of
yi is

fi ( yi ) =

∫
fi ( yi |ui )g(ui )dui , (8.7)

which depends on the unknown parameters ζ
(in Fi ) andψ (in G). Assuming independence
of the units, estimates ζ̂ and ψ̂ can be obtained
from maximizing the likelihood function built
from (8.7).

Depending on Fi and G, the integration in
(8.7) may or may not be possible analytically.
For example, it can be easily shown that the
marginal distribution for yi under the linear
mixed model defined by (8.2) and (8.3) equals

yi ∼ N (X iβ, Vi = Zi DZ ′i +6i ).

The mean vector equals X iβ, and is para-
meterized as in classical (multivariate) regres-
sion models. The covariance matrix Vi has a
very specific parameterization, and illustrates
that the variability observed in the outcomes
yi can be partially ascribed to variability
between subjects (the random-effects covari-
ance D) and variability within subjects (the
error covariance 6i ).

In most other mixed models, the marginal
distribution (8.7) can no longer be derived
analytically, and approximations are required.
Proposed solutions are based on Taylor series
expansions of fi ( yi |ui ), on approximations
of the data, on numerical approximations
of the integrals, or on applications of the
EM algorithm (Dempster, Laird, and Rubin,
1977). Some of these techniques were or
will be discussed in Chapters 3, 4, and 15.
Other references include Lavergne and Trot-
tier (2000), Pinheiro and Bates (1995), Ver-
beke and Molenberghs (2000), and Molen-
berghs and Verbeke (2005).

While interest is often primarily in estima-
tion and inference for the parameters in the
marginal distribution (8.7), one is sometimes
also interested in obtaining predictions for
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Figure 8.3 Toenail Data: Treatment-Specific Evolutions. (a) Evolutions for an ‘average’ person,
i.e., with ui = 0. (b) Average evolution as obtained from marginalizing the GLMM.
(c) Average evolution estimated directly from fitting a marginal model using GEE with
unstructured working correlation

(b). Note that the fitted population-average
probabilities are close to the observed pro-
portions of severe infections summarized in
Table 8.1. Note also that, in linear mixed mod-
els, the evolutions of ‘average’subjects would
be equal to the population-average evolutions,
implying identical panels (a) and (b) in the
corresponding graphs.

(a) (b)

(c)

Note that, although the sampling-based
approximation to the population-average
trends yields a graphical representation of the
evolution over time of the average probabil-
ity for a severe infection, estimates of the
parameters in the marginal logistic counter-
part of the model can only be obtained from
directly fitting a marginal model, for example,
using generalized estimating equations (GEE,
Liang and Zeger, 1986). As an illustration,
we performed a GEE analysis with unstruc-
tured working correlation assumption, and
with the same logistic model as before but, of

course, with the random effects omitted. The
parameter estimates and associated standard
errors (corrected for possible misspecification
of the association structure) are also included
inTable 8.2.The ratio between each parameter
estimate and its logistic mixed-model coun-
terpart is also presented in the last column
of the table. All ratios are between 2.22 and
2.87, somewhat in the neighborhood of the
predicted approximate ratio 2.56. The fitted
marginal model equals

P(yi j = 1) =


exp(−0.72−0.14ti j )

1+exp(−0.72−0.14ti j )
exp(−0.65−0.25ti j )

1+exp(−0.65−0.25ti j )
,

forTreatmentsA and B, respectively.A graph-
ical representation of these average evolu-
tions is presented in panel (c) of Figure 8.3,
which shows evolutions very similar to those
obtained from marginalizing the fitted logistic
mixed model.
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Figure 8.5 Epilepsy Study: Treatment-Arm Specific Evolutions. (a) Evolutions for an ‘average’
person, i.e., with ui = 0. (b) Average evolution as obtained from marginalizing the GLMM

unbalanced longitudinal data in which out-
comes are measured a different number of
times for the various study participants and/or
in which measurements are taken at subject-
specific time-points. We have provided a gen-
eral overview on GLMMs, including model
formulation, parameter interpretation, and
some general issues about model fitting. Start-
ing from the special case of the linear mixed
model (LMM) for Gaussian outcomes, we
have illustrated how latent random effects
imply particular association structures in
the data. Afterwards, the GLMM was intro-
duced in full generality, with a brief dis-
cussion of issues about parameter estimation
and inference. More details can be found in
Chapters 3 and 15. Since the GLMMs are
formulated conditionally on subject-specific
parameters, parameters have, in general, a
subject-specific interpretation rather than a
population average interpretation. This has
been discussed in full detail in the context of
the logistic random-intercepts model. Finally,
two case studies have been presented, in which
a logistic and a Poisson mixed model were
used for the analysis of binary data and
counts, respectively. All statistical analyses
performed in this chapter were performed
using the SAS software, which includes
three procedures (MIXED, GLIMMIX, and
NLMIXED) for the fitting of mixed mod-
els. The GEE results presented in this chapter

(the toenail example in Section 8.5) were per-
formed using the SAS procedure GENMOD.
Programs and outputs can be found in Ver-
beke and Molenberghs (2000) and Molen-
berghs and Verbeke (2005), while datasets
are available through the authors’ web pages:
www.ibiostat.be/software.

(a) (b)
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