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My high school science teacher, Larry Josbeno, was not only a  
brilliant teacher, but he also was fond of lousy physics jokes. One 
of his favorites related to Zeno’s paradoxes and was a variant  

of what is apparently a classic mathematical joke1:
A group of boys are lined up on one wall of a dance hall, and an equal 

number of girls are lined up on the opposite wall 10 meters apart. Both 
groups are then instructed to advance toward each other by one half the 
distance separating them every 10 seconds (i.e., if they are distance d apart 
at time 0, they are d/2 at time = 10, d/4 at time = 20, d/8 at time = 30, and 
so forth). A mathematician, a physicist, and an engineer are asked when 
they would meet at the center of the dance hall. The mathematician said 
they would never actually meet because the series is infinite. The physicist 
said they would meet when time equals infinity. The engineer said that 
within 1 minute they would be close enough for all “practical” purposes.

Enthusiastic adolescent laughter ensued, predictably. Thank you, Mr. 
Josbeno! But what does this have to do with curvilinear independent vari-
ables? Like many things in life, if we were to explore the relationship between 
time and distance between our girls and boys, the relationship is not linear, 
as Figure 7.1 shows. And curvilinearity is the topic of this chapter!

In previous chapters, we talked about the assumption that logistic 
regression is “linear on the logit,” meaning that the logits and independent 
variables are linearly related. I have also asserted that in many areas of 
science, this assumption may not be tenable. I believe that if we routinely 

1See Paul Field  and  Eric W. Weisstein, “Zeno’s Paradoxes,” from  MathWorld— 
A Wolfram Web Resource (http://mathworld.wolfram.com/ZenosParadoxes.html).
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looked for curvilinear relationships, we would find many. In fact, while 
writing this chapter, I had to explore surprisingly few examples to produce 
the curvilinear results shown below.

In this chapter, we will briefly review the concept of curvilinearity, 
how to test for curvilinearity more formally, how to account for curvi-
linearity in your logistic regression analyses, and how to graph curvilin-
ear effects.2

 A BRIEF REVIEW OF THE ASSUMPTION OF LINEARITY

Recall from previous chapters that we assume that the logistic transforma-
tion on our binary/categorical dependent variable produces a linear rela-
tionship between independent variable(s) and the logit of the dependent 
variable. If one were to use probit regression (or any other link function 

2I believe graphical representations of complex findings like curvilinear effects and 
interaction effects (where found) are critical to effectively communicating the results 
of research to the audience of interest. 

Figure 7.1  Zeno’s Paradox in the High School Dance
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[note we cover probit regression in Chapter 9]), one assumes the relation-
ship will be linear following that transform.

One example in this chapter will be the effect of age on the proba-
bility of certain disease states. We will begin by returning to our National 
Health Interview Survey (NHIS) 2010 (http://www.cdc.gov/nchs/nhis/
nhis_2010_data_release.htm) data on diabetes and look at the relation-
ship between age of the patient and the probability of diagnosis with 
diabetes.

ILLEGITIMATE CAUSES OF CURVILINEARITY 

In this chapter, I am most concerned with modeling legitimately curvilinear 
relationships. As I briefly mentioned in Chapter 4 on assumptions, there are 
several potential sources of curvilinearity that are not, in my mind, legiti-
mate: model misspecification (omission of important variables), converting 
interval or ratio variables to ordinal variables with unequal intervals, and 
uncleaned data (i.e., containing influential data points).

Model Misspecification:  
Omission of Important Variables

When discussing the assumption that we have correctly specified the 
model, we introduced the assumption that we have included all relevant 
and important variables in the model and have not included extraneous 
variables. It is possible that omission of important variables can lead to 
either of these situations. Thus, theory and prior research should help guide 
you in designing research that accounts for important variables (i.e., prior 
academic experiences in studying education, prior health events in studying 
current health status).

Violating Equal Intervals in  
Coding Continuous Variables

It is also possible that poor coding of variables can artificially lead to 
curvilinearity. Specifically, when researchers take what are conceptually 
continuous variables (i.e., income, age, or achievement) and create catego-
ries for convenience, they might convert ratio or interval measurement to 
ordinal measurement with unequal categories. I previously introduced the 
fact that in some government databases, family income is coded unevenly 
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(such as this example from the Early Childhood Longitudinal Study [ECLS] 
from the National Center for Educational Statistics [NCES])3:

You can see that a continuous variable that could conceptually be ratio 
measurement (with a true zero point and equal intervals)—family income in 
dollars—is in this case broken into uneven categories. At the lower end, 
income is classified into blocks of $5,000 each,4 while at the top end, the 
blocks are $25,000, $100,000 each or more. This process can serve to collapse 
sparse categories or groups into larger groups, convert a linear relationship 
to curvilinear, or could also be used to convert a curvilinear to linear rela-
tionship.5 To be sure, it seems to violate some of our basic assumptions about 
measurement and is thus undesirable. One must be careful converting con-
tinuous variables to categorical, as we discovered in Chapter 5.

In the case of our first example, age and diabetes, we have a continu-
ous variable (age) that has an interesting curvilinear relationship to the 
probability of being diagnosed with diabetes, as you can see in Figure 7.2.

3http://nces.ed.gov/pubs2002/2002135_2.pdf

4In other studies, I have seem more egregious examples of this same thing, where 
at the lower end income was broken into $1,000 or $2,500 increments, with 
$100,000 increments at the top end of the scale. 

5However, as we explored in previous chapters, it is usually better to leave a con-
tinuous variable as a continuous variable, transforming if necessary. 

Table 7.1   Total Household Income as Categorized in the ECLS-K Data 
Set From NCES

1 $5,000 or less

2 $5,001 to $10,000

3 $10,001 to $15,000

4 $15,001 to $20,000

5 $20,001 to $25,000

6 $25,001 to $30,000

7 $30,001 to $35,000

8 $35,001 to $40,000

9 $40,001 to $50,000

10 $50,001 to $75,000

11 $75,001 to $100,000

12 $100,000 to $200,000

13 $200,001 or more

Data Source: User’s Manual for the ECLS-K First-Grade Public-Use Data Files and Electronic 
Code Book (NCES 2002–135), National Center for Educational Statistics, U.S. Department of 
Education.
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To follow the previous point, if I group individuals into decades, the 
curve does change somewhat, although it retains much of general nature, 
as Figure 7.3 shows. In Figure 7.4, I moved all under 65 into one category 
and had much smaller age categories above 65. You can see that again 
changes the nature of the curve.

Poor Data Cleaning

As also mentioned previously, I have occasionally seen curvilinear 
effects arise (or masked) merely because of poor data cleaning—a prom-
inent outlier in one range of the data where there are few other cases can 
pull the regression line in that area out of linearity, leading to the appear-
ance of a curvilinear effect when in fact it is merely poor data cleaning. 

Figure 7.2  Age and Probability of Diabetes Diagnosis
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I suppose it is also possible for highly non-normal data to have the 
appearance of curvilinearity when in fact it is just another example of 
poor data cleaning.

Thus, I would argue that prior to examining data for curvilinear effects, 
one should be sure that the measurement of the variable is defensible (i.e., 
that you are not creating or masking curvilinearity), that appropriate vari-
ables are modeled in the equation, and that you have done due diligence 
in data cleaning. Once you have satisfied those basic steps (which should 
probably be part of any analysis regardless of whether curvilinearity is 
suspected), it is time to explore whether curvilinear effects exist in the data. 
There are examples of how data cleaning can reveal an existing curvilinear 
effect at the end of the chapter.

Figure 7.3  Diabetes and Age Grouped Into Decades

0.00

0.05

0.10

0.15

0.20

0.25

18–20 21–30 31–40 41–50 51–60 61–70 71–80

O
b

se
rv

ed
 p

er
ce

n
ta

g
es

 o
f 

d
ia

b
et

es

Age

Data Source: NHIS2010, Centers for Disease Control and Prevention.

©2015 SAGE Publications



Chapter 7  Curvilinear Effects in Logistic Regression––207

DETECTION OF NONLINEAR EFFECTS 

Theory

First and foremost, theory and common sense are always good 
guides. I tend to believe that many things in social science (and health 
sciences as well) are curvilinear in nature, and so I routinely check for 
these effects. If prior research has indicated curvilinear effects or if there 
is good cause to suspect that the effect might not be uniform across  
the entire range of a variable, it is probably worth taking a few minutes 
to test.

Figure 7.4  Age and Diabetes in Uneven Categories
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Ad Hoc Testing

They are easily tested by entering X, X 2, and X 3 terms into an equation. 
In my experience, if there is curvilinearity, adding squared and cubed terms 
tends to capture much of the curvilinearity if there is any.

Box-Tidwell Transformations

Those preferring a more strategic approach to this issue may enjoy 
exploring Box-Tidwell transformations (Box & Tidwell, 1962), introduced in 
Chapter 4 as a more methodical approach to testing and specifying curvi-
linear effects (and more importantly, linearizing relationships). Many prom-
inent regression authors and texts (i.e., Cohen, Cohen, West, & Aiken, 2002, 
pp. 239–240) suggest Box-Tidwell as a method of easily exploring whether 
any variables have nonlinear effects.

The essential process for Box-Tidwell, already described in Chapter 4, 
is to (a) perform an initial analysis with the independent variables of inter-
est in the regression equation, (b) transform all independent variables of 
interest via Box-Tidwell, below, (c) enter them into the regression equation 
simultaneously along with the original untransformed variables, and (d) see 
which of the transformed variables (if any) are significant. The Box-Tidwell 
transformation is:

 Vi = Xi(lnXi). Eq. 7.1.

If the variable V is a significant predictor when X is in the equation, 
there is a significant curvilinear component to that variable.

 logit(Ŷ ) = b0 + b1X1 + b2V1 Eq. 7.2.

One nice thing about this process is that you then get a good estimate 
of the nature of the curvilinear effect:

 λ = +
b

b
2

1
1  Eq. 7.3.

where b2 is taken from the second analysis and b1 is taken from the initial 
analysis without the Vi in the equation. You can do successive iterations of 
this process as well, entering X lambda-hat

 in place of the original Xi in both the 
original steps and the calculation of Vi, but in my opinion, that tends to 
overfit the model unnecessarily. Our data in the social sciences are not the 
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same character and nature as in the physical sciences and manufacturing, 
for example.

The final step in this process is to substitute X lamda-hat, where Xi had 
been in the final analysis. I will also suggest that anytime you incorporate 
curvilinearity or interactions, you should graph the results for the reader.

CURVILINEAR LOGISTIC REGRESSION  
 EXAMPLE: DIABETES AND AGE 

As a baseline, the unaltered age variable from Figure 7.1 was entered into 
the logistic regression equation, meaning that the logit and odds ratio reflect 
increments of 1.0 years, not 1.0 standard deviations as was previously sug-
gested because age in years is a meaningful metric. This model had a −2 log 
likelihood of 16196.924, which was significant at χ2

(1) = 1527.24, p < .0001.

Adding Quadratic and Cubic  
Terms to the Logistic Regression Analysis

To demonstrate the ad hoc method of exploring curvilinearity, I often 
add the squared (X 2) and cubed (X 3) terms to the regression equation. 
With X in the equation, if X 2 is significant that indicates that there is a 
quadratic (one-bend) curve present in the relationship. With both X and 
X2 in the equation, if X3 is significant, then the curve is cubic (two bends). 
This procedure, in my experience, captures a reasonable approximation 
of many curvilinear relationships. Given the generally imprecise nature of 

B SE Wald df Sig. Exp(B)

95% CI for  
Exp(B)

Lower Upper

Step 1a
AGE   .045 .001 1381.895 1 .000 1.046 1.044 1.048

Constant − 4.631 .074 3890.651 1 .000  .010

Table 7.2  Relationship of Age and Diabetes—Linear Model Only

a. Variable(s) entered on step 1: AGE_P.

Data Source: NHIS2010, Centers for Disease Control and Prevention.
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measurement in the social sciences (compared with physical or biomedi-
cal sciences, or manufacturing, for example), it is important to honor the 
quality of the data and be careful not to overfit the data beyond what 
could be expected to generalize.

In this example, both the squared and cubed terms were significant 
when entered into the equation, but when the cubic term was entered into 
the equation, it represented a very small (χ2 = 14.14, p < .0001) increment 
and so was not included in this example for simplicity. The first step was 
identical to what is reported above. When Age2 was entered into the equa-
tion, the −2 log likelihood was reduced by 298.45 to 15898.47, which was 
significant at χ2

(1) = 298.45, p < .0001.6

To graph this equation, you would create the logistic regression equa-
tion from Table 7.3:

 Logit(Ŷ ) = −8.56625 + .19402(Age) − .001301(Age2) Eq. 7.47.

Procedurally, creating predicted logits and conditional probabilities 
when looking at curvilinear effects is no different than any simple algebra 

6Recall that when examining nested models such as this, the difference in the −2 
log likelihood is evaluated as a chi-squared statistic with degrees of freedom equal 
to the number of variables entered on that step. In this case, only one variable was 
entered, so the chi-squared has one degree of freedom. Most statistical software 
packages will perform this test for you if you enter the terms on successive steps.

7Note that by default SPSS gives only a certain number of decimals—SAS tends to 
give more. For precision in this sort of application, I like to examine four or five 
decimals (because we are using logits, in which decimals make a difference!). 
Double-clicking on the table in the output will allow you to adjust the precision 
of the output.

B SE Wald df Sig. Exp(B)
95% CI for Exp(B)

Lower Upper

Step 1a

AGE  .19402 .010 405.285 1 .000 1.214 1.191 1.237

AGE2 −.001301 .000 253.400 1 .000  .999  .999  .999

Constant − 8.56625 .275 971.730 1 .000  .000

Table 7.3  Predicting Diabetes From Age and Age2

Data Source: NHIS2010, Centers for Disease Control and Prevention.
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example where you must substitute a value (or several values) of X and 
compute a predicted Y. In this case, we can substitute in a range of num-
bers from 20 to 80, getting predicted logits that can then be converted to 
predicted probabilities.

As you can see from Figure 7.5, the quadratic line (long dashes with 
triangles) is a better fit to the actual data (squares with dotted line), 
although not perfect.

As you can also see from Figure 7.5, graphing the logit (log of the odds 
of having diabetes in any five-year group) and the predicted logit from the 
linear and quadratic equations produce similar results in that the curvilinear 
analysis is much closer to the actual smoothed data than the linear analysis.

One reason why I like to graph predicted probabilities (as I have 
advocated for several times in the book already) is that the logit graphs 
often misrepresent the actual nature of the curve. For example, looking 
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at Figure 7.6, you can see that the observed probability of being diag-
nosed with diabetes is relatively flat, and then accelerates later in life. 
Graphing the logit, however, leads to the impression that diabetes rates 
accelerate early in life and then level out later in life—the opposite of the 
observed trend.

You can also observe one other interesting thing—remember that logis-
tic regression is “linear on the logit”—meaning that there is assumed to be 
a linear relationship between the log of the odds of being diagnosed with 
diabetes and the independent variable (age). In Figure 7.4, when the logit 
is being graphed, that linear relationship is evident. However, when logits 
are converted to probabilities, the “linear” relationship is slightly curvilinear. 
A logarithmic transformation is a nonlinear transform—in this case, taking 
a nonlinear relationship and making it linear. This highlights the important 
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reminder that we do not assume the relationship is linear between the 
conditional probabilities of being diagnosed and the independent variable. 
Only the logit is assumed to be linearly related.

AN EXAMPLE SUMMARY OF THIS ANALYSIS 

In order to explore the curvilinear relationship between diabetes and age, 
squared and cubed versions of the age variable were created and entered 
sequentially (on individual steps) into the analysis. The linear version of age 
accounted for significant improvement in the model (−2LL = 16196.92, χ2

(1) = 
1527.24, p < .0001). As expected, with only this variable in the analysis, 
increasing age is associated with increased probability of diabetes (b = 0.045, 
SEb = 0.001, p <.0001). When Age2 was entered into the equation, the −2 log 
likelihood was reduced by 298.45 to 15898.47, which was significant at χ2

(1) 
= 298.45, p < .0001. (I would summarize both analyses in a single table that 
combined Tables 7.2 and 7.3 for the convenience of the reader. I would also 
include a graph similar to Figure 7.6 that simply graphed the curvilinear effect 
rather than all three lines, which I have mostly included for pedagogical rea-
sons.) As you can see in Figure 7.6, the probability of being diagnosed with 
diabetes is relatively low and slow to accelerate in relatively young adults, but 
it begins to rise more rapidly from ages 40–75, at which point it seems to 
asymptote and then decline slightly.

ESTIMATING CURVILINEAR RELATIONSHIPS  
 USING BOX-TIDWELL TRANSFORMATIONS 

Imagining we were to go about curve estimation more methodically, we 
could have performed Box-Tidwell initially rather than my old-fashioned ad 
hoc (and very trustworthy) method. The first step is to estimate the logistic 
regression equation with the variable of interest in it, as we did earlier. The 
next step is to create a new version of the variable V that represents X ln(X) 
and add it to the equation containing X. The results of this new analysis 
are interestingly similar to that of the ad hoc analysis earlier when the 
squared term was entered into the equation as Figure 7.7 illustrates. After 
entering V, we get a −2 log likelihood of 15914.87, representing an 
improvement in model fit of χ2

(1) = 282.05, p < .0001. According to the  
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procedure outlined earlier in the chapter, this significant increment indi-
cates a curvilinear effect, which is not surprising given what we already 
know of this relationship. We then estimate λ as the ratio of the original 
regression weight for age divided by the coefficient for V plus 1 or:

 λ = +
b

b
2

1
1  Eq. 7.5.

I estimate λ  = (−0.135/.045) + 1 = −2. When age is transformed in this 
way and entered into the regression equation, we get −2 log likelihood of 
16041.62 (better than the simple linear model but slightly worse than the 
ad hoc quadratic model above), with a Wald of 819.99, which is slightly 
better than the combined Wald statistics of the previous analysis.

Figure 7.7  Box-Tidwell Transformation of Age
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Box and Tidwell (and other authors) suggest an iterative approach 
wherein you substitute the newly transformed variable throughout and per-
form the regression equation again to see if there is any tweaking that is 
needed to the lambda. In this case, V and V lnV were so highly collinear 
(correlation exceeding 0.99) that it was not possible to perform another 
iteration.

DATA CLEANING AND CURVILINEAR EFFECTS 

Curvilinearity can be caused by unreasonably influential scores, or it can 
easily be masked by them. Thus, it is important to establish whether a 
curvilinear effect is being caused by, or masked by, these data quality 
issues. Turning to our data on marijuana use, we will see an example of 
how removing 20 out of 540 cases can reveal a curvilinear relationship 
between marijuana use and student achievement test scores. In this data 
set (National Education Longitudinal Study of 1988 [NELS88]), all stu-
dents completed achievement tests, which were combined into single 
composites at 8th, 10th, and 12th grade. We are using the example of 
the 8th-grade achievement test score, which has been converted to 
z-scores.

Let us start off with the fact that there is no significant relationship 
between student achievement test scores at 8th grade and whether the 
student admitted to using marijuana, as you see in the abbreviated tables 
(Table 7.5).

Table 7.4  Variables in the Equation

B SE Wald df Sig. Exp(B)

95% CI for 
Exp(B)

Lower Upper

Step 1a

age_
BTtransform

−2569.175 89.720 819.991 1 .000 .000 .000 .000

Constant     −.995   .038 674.019 1 .000 .370

a. Variable(s) entered on step 1: age_BTtransform.

Data Source: NHIS2010, Centers for Disease Control and Prevention.
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As you can see in Table 7.5, the 95% CIs include 1.0. Although the 
effect is in the expected direction (students with increasingly high 
achievement are less likely to admit using marijuana than those with 
lower achievement test scores), the significance test and CIs do not allow 
us to conclude there is a significant relationship. Furthermore, adding the 
squared term for achievement does not improve the situation. In this 
analysis, neither the linear nor quadratic terms are significant at p < .05. 
Finally, when the cubed term enters the equation, we are left with non-
significant results.

After examining some of the typical diagnostic tools available in SPSS 
(e.g., standardized residuals and DfBetas), the standardized residuals are all 
within a reasonable range as you can see in Figure 7.8.

However, the DfBetas (shown in Figure 7.9) do seem to have some 
relatively large values, and so I selected cases with DfBetas for the inter-
cept that were greater than the 1st percentile and less than the 99th 
percentile. This eliminated 20 of 540 cases, as mentioned earlier but led 
to a different result. As you can see in Table 7.6, the linear effect is still 
non-significant (perhaps more so than before).

B SE Wald df Sig. Exp(B)
95% CI for Exp(B)

Lower Upper

Step 1
zBYACH  −.197 .107   3.351 1 .067  .821 .665 1.014

Constant − 1.164 .103 126.848 1 .000  .312

Step 2

zBYACH  −.177 .120   2.167 1 .141  .838 .662 1.060

zBYACH2  −.039 .102    .149 1 .699  .961 .787 1.174

Constant − 1.131 .134  71.266 1 .000  .323

Step 3

zBYACH  .055 .212    .067 1 .795 1.057 .697 1.602

zBYACH2  .078 .134    .340 1 .560 1.081 .831 1.407

zBYACH3  −.132 .101   1.723 1 .189  .876 .719 1.067

Constant  −1.199 .145  68.669 1 .000  .302

Table 7.5   Logistic Regression Equation as Linear, Squared, and Cubic Terms Are Entered 
Into the Equation

Data Source: NELS88, National Center for Educational Statistics. U.S. Department of Education.

©2015 SAGE Publications



Chapter 7  Curvilinear Effects in Logistic Regression––217

B SE Wald df Sig. Exp(B)
95% CI for Exp(B)

Lower Upper

Step 1
zBYACH  −.112 .113    .995 1 .318  .894 .717 1.115

Constant −1.350 .111 146.777 1 .000  .259

Step 2

zBYACH  −.135 .127   1.137 1 .286  .874 .682 1.120

zBYACH2   .039 .105    .142 1 .706 1.040 .847 1.277

Constant −1.384 .146  90.512 1 .000  .250

Step 3

zBYACH   .296 .227   1.695 1 .193 1.344 .861 2.097

zBYACH2   .285 .148   3.682 1 .055 1.329 .994 1.778

zBYACH3  −.247 .110   5.075 1 .024  .781 .630  .968

Constant −1.546 .166  87.138 1 .000  .213

Table 7.6  Variables in the Equation

Data Source: NELS88, National Center for Educational Statistics. U.S. Department of Education.

Figure 7.8  Standardized Residuals From Marijuana and Achievement Analysis
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Figure 7.9  DfBetas Graphed by Group
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And likewise the quadratic effect is also nonsignificant, but the cubic 
effect is significant, leaving us with a regression line equation of:

Logit(Ŷ ) = −1.546 + 0.296(zBYACH) + 0.285(zBYACH2)  
− 0.247(zBYACH3)

As you can see in Figures 7.10 and 7.11, the curvilinear nature of 
this relationship is both interesting and somewhat intuitive—and  
the curve is similar regardless of whether it is expressed in logits or 
probabilities. In this example, data cleaning revealed an intuitive and 
 interesting curvilinear relationship that was masked by a relatively small 
number of influential individuals.
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Figure 7.10   Curvilinear Relationship Between Marijuana Use and Achievement in Logits

−2

−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Logit(MJ)

z score of BYACH

L
o

g
it

 o
f 

m
ar

iju
an

a 
u

se

Data Source: NELS88, National Center for Educational Statistics. U.S. Department of Education.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Prob(MJ)

P
ro

b
ab

ili
ty

 o
f 

m
ar

iju
an

a 
u

se

z score of BYACH

Figure 7.11   Curvilinear Relationship Between Marijuana Use and Achievement in 
Conditional Probabilities

Data Source: NELS88, National Center for Educational Statistics. U.S. Department of Education.
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 SAS ANALYSES USING DIFCHISQ

Using the same example and data, we can see that using DIFCHISQ can be 
equally powerful. Performing the same analysis in SAS, we achieve the 
same results with noncleaned data:

Data Source: NELS88, National Center for Educational Statistics. U.S. Department of Education.

Table 7.7  SAS Results Prior to Cleaning the Data

Analysis of Maximum Likelihood Estimates

Parameter df Estimate Standard Error Wald Chi-Square Pr > ChiSq

Intercept 1 −1.1986 0.1446 68.6692 <.0001

zBYACH 1  0.0551 0.2122  0.0673 0.7953

zBYACH2 1  0.0783 0.1343  0.3399 0.5599

zBYACH3 1 −0.1321 0.1007  1.7229 0.1893

Odds Ratio Estimates

Effect Point Estimate 95% Wald Confidence Limits

zBYACH 1.057 0.697 1.602

zBYACH2 1.081 0.831 1.407

zBYACH3 0.876 0.719 1.067

However, looking at the DIFCHISQ results presented in Figure 7.12, we 
can see that there are a very few cases that seem to have a relatively large 
influence on the lack of fit for the model.

Removing six cases where DIFCHISQ was greater than 5.0 (remember 
that about 4 is significant for an χ2 with one degree of freedom) produced 
a significant model presented in Table 7.8.

Logit(Ŷ) = −1.1514 + 0.2683(zBYACH) − 0.0214(zBYACH2) − 
0.3168(zBYACH3)
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Figure 7.12  DIFCHISQ Results From EVER_MJ and zBYACH
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Analysis of Maximum Likelihood Estimates

Parameter df Estimate Standard Error Wald Chi-Square Pr > ChiSq

Intercept 1 −1.1514 0.1449 63.1217 < .0001

zBYACH 1  0.2683 0.2421  1.2283 0.2677

zBYACH2 1 −0.0214 0.1401  0.0234 0.8784

zBYACH3 1 −0.3168 0.1314  5.8118 0.0159

Table 7.8  SAS Results Using DIFCHISQ < 5 to Clean Data

Data Source: NELS88, National Center for Educational Statistics. U.S. Department of Education.
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The dashed line in Figure7.13 represents the effect when the data are 
cleaned by keeping all cases with DIFCHISQ < 5, and the solid line rep-
resents a more aggressive cleaning keeping only cases with DIFCHISQ < 4 
(removing 6 cases vs. 12 cases out of 540, respectively).

  ADVANCED TOPICS IN CURVILINEAR  
REGRESSION: ESTIMATING MINIMA AND MAXIMA  
AS WELL AS SLOPE AT ANY POINT ON THE CURVE

Although we will explicitly discuss logistic regression in this section 
because that is the focus of this book, these principles should work  
with any type of regression. In fact, Aiken and West (1991, see pp. 72–76) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

P
ro

b
ab

ili
ty

 o
f 

m
ar

iju
an

a 
u

se
-S

A
S

 e
xa

m
p

le

z score of BYACH

DIFCHISQ<5 DIFCHISQ<4

Figure 7.13   Curvilinear Relationship Between Student Achievement and Marijuana Use 
After SAS Cleaning With DIFCHISQ < 5 and < 4
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explicitly discuss this issue in their excellent treatise on interactions in 
OLS regression.

Any regression line equation can be manipulated with calculus accord-
ing to simple rules to allow post-hoc probing. In complex curvilinear equa-
tions this can be particularly fun, as you can estimate where the curve 
reaches a minimum or maximum, or you can estimate the slope at any 
particular point on the curve to estimate how fast the probabilities are 
changing.8

Those of you who have taken (and remember) basic calculus9 will 
remember that taking the first derivative of any equation allows you to 
estimate slope. So, for example, taking a simple linear equation from our 
AGE and DIABETES equation, discussed earlier, our original equation was:

 Logit(Ŷ) = −4.631 + 0.45X Eq. 7.6.

or expressed more fully:

 Logit(Ŷ) = −4.631X 0 + 0.45X1 Eq. 7.7.

Being more specific, the intercept has an X raised to the 0 power, 
which is 1 (anything raised to the 0 power is 1), and thus it is often elimi-
nated from the regression equation by convention. Further, the X is raised 
to the first power, and anything raised to the first power is itself. This might 
seem like more detail than is needed, but once we start adding quadratic 
and cubic terms, or taking derivatives, this starts to make some sense. For 
example, the quadratic equation for AGE and DIABETES is

 Logit(Ŷ) = −8.56625X 0 + 0.19402X 1 − 0.001301X 2 Eq. 7.8.

The simple rules for taking a derivative are that you multiply each term 
by the exponent of the X, then reduce that exponent by 1. The first term 
will drop out, as anything multiplied by 0 is 0. Thus, taking the derivative 
of the first equation, we get:

d

dx

( ( ))logit Y
 = (1)0.45X 0

8As many authors have pointed out (Aiken & West, 1991 pp. 73–75; DeMaris, 1993), 
technically what you are estimating is the slope of a line tangent to the point where 
we are estimating the value for the first derivative. For our purposes these concepts 
are identical.

9Unfortunately, we cannot include an entire course in calculus here. Please refer to 
good calculus references if you are not familiar with this concept.
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which simplifies to:

d

dx

( ( ))logit Y  = 0.45

In other words, because this is a linear equation, not a curvilinear 
equation, the slope is constant across the entire regression: 0.45. Per-
haps it’s not the most surprising or illuminating outcome, but it is a 
simple example of a derivative. Let’s move to the curvilinear example.  
The derivative for the quadratic formula is (dropping the constant and 
simplifying):

d

dx

( ( ))logit Y  = 0.19402 − 2(0.001301X ) or

 d

dx

( ( ))logit Y  = 0.19402 − 0.002602X

Once we have this first derivative, we can look for the point where the 

slope is 0 (the minimum or maximum) by setting d

dx

( ( ))logit Y  equal to 0 
and solving for X. We get:

0 = 0.19402 − 0.002602X; by adding 0.002602X to both sides we get:

0.002602X = 0.19402; solving for X we get:

X = 74.57 years

Looking at the curve from earlier in the chapter (Figure 7.14) this 
makes sense, as visually we can see that the curve levels off around that 
point and then curves downward.

Note that we are predicting the change in the logit(Ŷ ). When the 
logit = 0, that is where the probabilities are 50%, or the odds are 1.0: 
in other words, there is no difference between the groups, and the 
slope is 0.

We can also estimate slopes of the tangent lines (in logits) at particular 
values of X. For example, let us look again at the first derivative of the 
quadratic equation, and estimate the slope at two other time points (we 
already know the slope around Age = 75): Age = 25 and Age = 50. By 
substituting these into the equation, we get slopes of 0.12897 for Age = 25 
and 0.06392 for Age = 50. This suggests that the odds of having diabetes 
are increasing faster at age 25 than 50. Looking at the graph of logits, that 
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seems to hold. However, looking at the graph of the predicted conditional 
probabilities (Figure 7.15), it does not. The change in probabilities seems 
to be much slower at age 25 than age 50. Thus we must be careful to be 
clear when reporting post hoc probes of these types of analyses, but they 
can be useful at times.

In the other example, predicting marijuana use from student achieve-
ment, the logit and probability curves are similar. This is also a cubic curve, 
meaning it has two points where the slope is equal to 0. The original equa-
tion (after DIFCHISQ = 5 cleaning) was:

Logit(Ŷ) = −1.1514 + 0.2683(zBYACH) − 0.0214(zBYACH2) − 
0.3168(zBYACH3)

d

dx

( ( ))logit Y  = 0.2683 − 0.0428(zBYACH) − 0.9504(zBYACH2)

Figure 7.14  Calculating the Inflection Point of a Curve
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This produces two extrema: at −0.55 and at 0.51, both of which seem 
reasonable given the graph in Figure 7.16 (graphed in logits rather than 
predicted probabilities).

We could again predict slopes at particular points using the first deriv-
ative. With this example, let us examine the following three points: −1.75, 
0, and 1.75. Substituting into the equation, we get slopes of: −2.57, 0.27, 
and −2.72, respectively. This tells us that the logits are decreasing relatively 
steeply in the extremes of the distribution and are relatively flat in the cen-
ter of the distribution of achievement scores.10

10There are interesting examples of application of this technique throughout various 
literatures in science. For example, Boyce and Perrins (1987) used this type of tech-
nique of locating extrema to understand and estimate the optimal clutch size for 
Great Tits (parus major, the bird, although I could see how this particular phrasing 
could lead to confusion) in varying environmental conditions. Apparently there is a 
curvilinear relationship between clutch size (number of eggs laid) and number of 
chicks that survive to breed as adults, and this curve is also influenced by whether 
the year was “bad” or “good” for the birds. 
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Figure 7.15   The Same Inflection Point Is Apparent When Results Are 
Graphed as Probabilities

Data Source: NELS88, National Center for Educational Statistics. U.S. Department of Education.
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In general this procedure should allow reasonable estimation of extrema 
(minima and maxima) for curves expressed either as logit or probability. 
Note that while these calculations give us very exact estimates (our diabetes 
equation has an inflection point at AGE = 74.75 years), the precision of 
estimates through this method is only as good as the data. This is a warning 
all statisticians using regression or linear modeling need to keep in mind! 
One can model complex, beautiful curves with poor-quality, biased, or 
error-filled data and the results are only as good as the ingredients.

The question of expressing slopes in terms of probabilities and more 
advanced statistical and calculus prospects are beyond the scope of this 
chapter.

Further, there have been discussions of how to test whether individ-
ual point estimates for slope are significantly different from 0. For exam-
ple, Aiken and West (1991, pp. 77–78) discuss this in regards to OLS 
regression. I have some reservations about probing the data too much, as 
that (a) increases the risk of overinterpreting the data, unless it is a very 

Figure 7.16  Calculating Inflection Points in a Cubic Curve
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large and representative sample, and (b) this too is beyond the scope  
of this chapter. Perhaps if you encourage all your colleagues and friends 
to buy the book I will add more of these advanced topics in a second 
edition!

SUMMARY

This chapter explored how to model curvilinear effects in logistic regres-
sion. As I have shown, it is relatively simple to find curvilinear effects. There 
are several more examples in the Enrichment section. This chapter became 
more focused on data cleaning than I had originally planned due to the 
number of examples I came across that highlighted the efficacy of simple, 
very conservative data cleaning in revealing or strengthening curvilinear 
effects. In fact, I had intended to include an example of a curvilinear effect 
that was due to extreme scores (certainly a possibility!) but was unable to 
find one in the data sets I was working with. One of the reasons there are 
so many examples at the end of the chapter relative to other chapters is 
that as I kept searching for a counter example (removing inappropriately 
influential scores removed a curvilinear effect), I repeatedly came across 
relatively powerful and interesting examples of how data cleaning 
enhanced curvilinear effects. After trying many different modes of data 
cleaning (standardized residuals, different DfBetas, DIFCHISQ, etc.), I failed 
to find a reasonable example that used appropriate data cleaning to remove 
a curvilinear effect. Of course I could manufacture an artificial example, 
and perhaps I will in the future. At this point, there are two main messages 
from this chapter.

First, checking analyses for curvilinear effects is not terribly difficult nor 
is it particularly time-consuming. In a few minutes you can create quadratic 
and cubic terms for important variables, and in a few seconds an analysis 
can demonstrate whether there might be a nonlinear effect. Some few min-
utes more spent data cleaning may amplify or attenuate the effect, and you 
may end up with a very interesting result.

Second, the unintentional message of this chapter reinforces the mes-
sage from Chapter 4—that cleaning your data in very simple, conservative 
ways can lead to surprising and unexpected results. I encourage you to 
explore the data you have, particularly if you have not looked for curvilin-
ear effects before.

If you are familiar with simple calculus concepts, you can glean inter-
esting details from well-modeled curvilinear equations (such as where the 
curve flattens out and turns the opposite direction). If you enjoyed this 
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chapter, you will enjoy the next chapter, where we get into multiple pre-
dictors, interactions, and even curvilinear interactions!11

ENRICHMENT

 1. Download the data and reproduce the age and diabetes analyses in 
the chapter. Perform routine data cleaning and compare your results 
following data cleaning with those reported in the chapter.

 2. Using the same diabetes data as above, perform a curvilinear analy-
sis on body mass index (BMI). After performing this analysis, clean 
the data and perform the analysis on the cleaned data.

 3. Using the ELS2002 data predicting dropout/retention from 10th-
grade math achievement test scores, perform an analysis examining 
any curvilinear effects of math achievement on retention. Clean the 
data, and perform the analysis on cleaned data. Does the result hold?

 4. Using the ELS2002 data, perform a curvilinear logistic regression 
analysis of dropout/retention from family socioeconomic status 
(zBYSES). Does the curvilinear effect hold after data cleaning?

 5. The NELS88 data regarding marijuana use and achievement scores 
are on the web site for the book.

ANSWER KEY

1. Results of Age and Diabetes Analyses  
Following Routine Data Cleaning

As with the next example (BMI and DIABETES), the model becomes 
stronger with a bit of data cleaning. For example, examining the standard-
ized residuals from this analysis, we see standardized residuals up to 11.

Eliminating 178 cases with standardized residuals over 5 (to be very 
conservative) produces improved model fit. As you can see in the abbrevi-
ated results, below, the −2LL is reduced 1839.84 with the uncleaned data 

11You may think we were performing analyses that included multiple predictors in 
this chapter—and in a sense we did, as there were multiple terms being entered as 
predictors. However, technically, BMI, BMI2, and BMI3 are all different aspects of the 
same variable. So in my mind we were still performing univariate analyses. 

©2015 SAGE Publications



230––BEST PRACTICES IN LOGISTIC REGRESSION

and 2581.065 once a small fraction of the cases with extreme residuals are 
removed. While these numbers are not from nested models and thus not 
directly comparable, they are instructive.

Enrichment Figure 7.1  Standardized Residuals From AGE and DIABETES Analysis
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Data Source: NHIS2010, Centers for Disease Control and Prevention.

Enrichment Table 7.1  Original Model Without Data Cleaning

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1

Step   14.140 1 .000

Block   14.140 1 .000

Model 1839.838 3 .000

Data Source: NHIS2010, Centers for Disease Control and Prevention.
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Variables in the Equation

B SE Wald df Sig. Exp(B)
95% CI for 

Exp(B)

Lower Upper

Step 1a

age   .041 .040  1.040 1 .308 1.042  .963 1.128

age2   .002 .001  4.405 1 .036 1.002 1.000 1.003

age3   .000 .000 14.577 1 .000 1.000 1.000 1.000

Constant −6.063 .689 77.384 1 .000  .002

a. Variable(s) entered on step 1: age3

Data Source: NHIS2010, Centers for Disease Control and Prevention.

Enrichment Table 7.2  Cleaned Data

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1

Step   27.416 1 .000

Block   27.416 1 .000

Model 2581.065 3 .000

Data Source: NHIS2010, Centers for Disease Control and Prevention.

Variables in the Equation

B SE Wald df Sig. Exp(B)

95% CI for 
Exp(B)

Lower Upper

Step 1a

age    .740  .085  76.432 1 .000 2.096 1.776 2.475

age2   −.009  .001  43.089 1 .000  .991  .988  .993

age3    .000  .000  24.682 1 .000 1.000 1.000 1.000

Constant −20.590 1.634 158.700 1 .000  .000

a. Variable(s) entered on step 1: age3.

Data Source: NHIS2010, Centers for Disease Control and Prevention.
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As you can see in Enrichment Figure 7.2, I modeled the cubic terms for 
the original data despite it being a very small effect to maintain parallel 
analyses. This figure also highlights that a bit of data cleaning in these data 
produces a more pronounced effect of age—which matches what the 
model statistics indicate.

Despite the fact that I focused on standardized residuals of a certain 
extreme magnitude, other indicators (DfBetas, DIFCHISQ) should produce 
similar results.

2. Results for BMI and DIABETES

The original analyses with all cases is promising: there is a significant 
overall effect, a significant linear effect, and a significant quadratic (but not 
cubic effect).

Recall the simple linear analysis for these two variables, shown in 
Enrichment Table 7.3.

Enrichment Figure 7.2  Comparison of AGE and DIABETES Before and After Data Cleaning
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This indicates that there is a strong linear effect. However, if we suspect that 
there is a curvilinear effect, we can enter the squared a cubed terms to 
explore whether that is tenable. Without cleaning the data, the results are 
interesting—entering the squared term results in a significant improvement 
in model fit over simply the linear analysis:

Enrichment Table 7.3  Initial Results for BMI and Diabetes

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1

Step 986.981 1 .000

Block 986.981 1 .000

Model 986.981 1 .000

Data Source: NHIS2010, Centers for Disease Control and Prevention.

Variables in the Equation

B SE Wald df Sig. Exp(B)
95% CI for 

Exp(B)

Lower Upper

Step 1a
BMI   .092 .003 1013.633 1 .000 1.096 1.090 1.102

Constant −4.901 .090 2939.412 1 .000  .007

a. Variable(s) entered on step 1: BMI.

Data Source: NHIS2010, Centers for Disease Control and Prevention.

Enrichment Table 7.4  BMI and Diabetes Curvilinear Effect

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1

Step  114.907 1 .000

Block  114.907 1 .000

Model 1101.888 2 .000

Data Source: NHIS2010, Centers for Disease Control and Prevention.

(Continued)
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In this analysis, the cubic term does not significantly improve the 
model (χ2 = 1.197, p < .27).

Examining standardized residuals from this analysis revealed some 
cases with standardized residuals over 9.0, clearly extreme scores, as 
Enrichment Figure 7.3 shows:

Enrichment Table 7.4  (Continued)

Variables in the Equation

B SE Wald df Sig. Exp(B)
95% CI for 

Exp(B)

Lower Upper

Step 1a

BMI   .273947 .019 218.858 1 .000 1.315 1.268 1.364

BMI2 −0.002613 .000  98.678 1 .000  .997  .997  .998

Constant −7.904 .316 627.524 1 .000  .000

a.  Variable(s) entered on step 1: BMI2. Note that I have asked SPSS to provide more decimals than routine to 
get better precision. You can double-click on the output and get the same precision of results, which is 
important when graphing these types of outcomes.

Data Source: NHIS2010, Centers for Disease Control and Prevention.

Enrichment Figure 7.3  
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Removing cases with standardized residuals over 4.0 takes our sample 
from 26,779 to 26,407, removing 372 cases, just over 1%. However, the 
results are striking:

Enrichment Table 7.5  Curvilinear Effects of BMI on Diabetes Following Data Cleaning

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Model 
1

Step 1499.272 1 .000

Block 1499.272 1 .000

Model 1499.272 1 .000

Model 
2

Step  415.846 1 .000

Block  415.846 1 .000

Model 1915.118 2 .000

Model 
3

Step  108.072 1 .000

Block  108.072 1 .000

Model 2023.190 3 .000

Variables in the Equation

B SE Wald df Sig. Exp(B)
95% CI for Exp(B)

Lower Upper

Model 1 BMI       .119  .003 1462.817 1 .000 1.126 1.119 1.133

Constant    −5.922  .101 3453.559 1 .000  .003

Model 2 BMI       .554  .026  465.272 1 .000 1.741 1.655 1.830

BMI2     −.006  .000  285.639 1 .000  .994  .993  .995

Constant   −13.276  .444  893.151 1 .000  .000

Model 3 BMI     1.4446  .097  223.232 1 .000 4.240 3.508 5.125

BMI2   −0.0298  .002  146.228 1 .000  .971  .966  .975

BMI3      .000202  .000   99.033 1 .000 1.000 1.000 1.000

Constant  −23.937 1.218  385.905 1 .000  .000

Data Source: NHIS2010, Centers for Disease Control and Prevention.
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Again, the simple cleaning of data provides a clearer picture of the 
results.

Cleaning the Data Using DIFCHISQ

Performing the same analysis in SAS, requesting DIFCHISQ produces simi-
lar, predictable results. The DIFCHISQ results range up to over 98, which 
is very high for a single case. The 95th percentile is 7.01, and the 99th 
percentile is 17.75, so let us start with 14 as a reasonably conservative cut-
off point for cleaning the data. This removed 366 cases, again a relatively 
small number given the overall size of the sample.

For the sake of succinctness, I entered all three terms on the same step 
in SAS as we knew the results would be significant for all three terms:

Enrichment Figure 7.4  
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Enrichment Table 7.6  Same Analysis With DIFCHISQ Data Cleaning

Model Fit Statistics

Criterion Intercept Only Intercept and Covariates

AIC 14803.834 12595.777

SC 14812.012 12628.488

−2 Log L 14801.834 12587.777

Data Source: NHIS2010, Centers for Disease Control and Prevention.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square df Pr > ChiSq

Likelihood Ratio 2214.0575 3 <.0001

Score 2083.5613 3 <.0001

Wald 1410.3200 3 <.0001

Data Source: NHIS2010, Centers for Disease Control and Prevention.

Analysis of Maximum Likelihood Estimates

Parameter df Estimate Standard Error Wald Chi-Square Pr > ChiSq

Intercept 1 −27.1144 1.3341 413.0726 <.0001

BMI 1   1.6609 0.1051 249.9350 <.0001

BMI2 1  −0.0346 0.00267 168.1633 <.0001

BMI3 1   0.000235 0.000022 116.0424 <.0001

Data Source: NHIS2010, Centers for Disease Control and Prevention.
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This data cleaning produces a slightly different curve from the  
others:

Enrichment Figure 7.5  
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Data Source: NHIS2010, Centers for Disease Control and Prevention.

4. SES and Retention

In this example, I used two different indicators for data cleaning— 
standardized residuals and DIFCHISQ. Below is an example of what you 
might see. First, the original analysis (Enrichment Table 7.7).
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Enrichment Table 7.7  SES and Retention Curvilinear Analysis Without Data Cleaning

Model 1

Test Chi-Square df Pr > ChiSq

Likelihood Ratio 441.0694 1 <.0001

Score 411.9929 1 <.0001

Wald 389.9710 1 <.0001

Model 2

Test Chi-Square df Pr > ChiSq

Likelihood Ratio 449.9023 2 <.0001

Score 433.9340 2 <.0001

Wald 353.6993 2 <.0001

Model 3

Test Chi-Square df Pr > ChiSq

Likelihood Ratio 453.2357 3 <.0001

Score 437.9948 3 <.0001

Wald 365.9897 3 <.0001

Data Source: NHIS2010, Centers for Disease Control and Prevention.

Model 1

Parameter df Estimate Standard Error Wald Chi-Square Pr > ChiSq

Intercept 1 2.7841 0.0378 5413.6761 <.0001

zBYSES 1 0.7217 0.0365 389.9710 <.0001

Model 2

Intercept 1 2.7216 0.0433 3949.2397 <.0001

zBYSES 1 0.7909 0.0463 291.9829 <.0001

zBYSES2 1 0.0973 0.0338 8.2752 0.0040

Model 3

Parameter df Estimate Standard Error Wald Chi-Square Pr > ChiSq

Intercept 1  2.7582 0.0480 3303.3788 <.0001

zBYSES 1  0.8809 0.0677  169.4428 <.0001

zBYSES2 1  0.0615 0.0369    2.7786 0.0955

zBYSES3 1 −0.0471 0.0255    3.4259 0.0642

Data Source: NHIS2010, Centers for Disease Control and Prevention.
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Following modest cleaning, eliminating DIFCHISQ > 10, we have much 
stronger results (Enrichment Figure 7.6).

Enrichment Table 7.8    Retention and SES Following Data Cleaning Eliminating DIFCHISQ >10

Testing Global Null Hypothesis: BETA = 0

Test Chi-Square df Pr > ChiSq

Likelihood Ratio 1346.7934 3 <.0001

Score 1120.1784 3 <.0001

Wald  218.6174 3 <.0001

Data Source: NHIS2010, Centers for Disease Control and Prevention.

Analysis of Maximum Likelihood Estimates

Parameter df Estimate Standard Error Wald Chi-Square Pr > ChiSq

Intercept 1  8.5346 0.5146 275.0821 <.0001

zBYSES 1 13.8257 1.2869 115.4211 <.0001

zBYSES2 1  8.8874 0.9990  79.1443 <.0001

zBYSES3 1  1.8043 0.2397  56.6467 <.0001

Data Source: NHIS2010, Centers for Disease Control and Prevention.

Thus, we begin with an effect that was only significant in a linear 
sense and end with some rather strong curvilinear effects by modest data 
cleaning.
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SYNTAX EXAMPLES

Example SPSS Syntax to create squared and cubed terms for exploring 
curvilinearity:

compute zBYACH2=zBYACH**2.
compute zBYACH3=zBYACH**3.
execute.

Enrichment Figure 7.6  
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Example SPSS Syntax to perform logistic regression entering squared 
and cubed terms on separate steps:

LOGISTIC REGRESSION VARIABLES EVER_MJ
/METHOD=ENTER zBYACH
/METHOD=ENTER zBYACH2
/METHOD=ENTER zBYACH3
/SAVE=DFBETA ZRESID
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Example SAS syntax to enter variables one at a time on separate steps:

PROC LOGISTIC DATA=book.ELS2002 descending ;
MODEL GRADUATE = ZBYSES;
;
run;
PROC LOGISTIC DATA=book.ELS2002 descending ;
MODEL GRADUATE = ZBYSES ZBYSES2
;
run;
PROC LOGISTIC DATA=book.ELS2002 descending ;
MODEL GRADUATE = ZBYSES ZBYSES2 ZBYSES3
/selection=none sequential;
run;

The above syntax might not be the most elegant, but it allows for direct 
comparison of separate models by comparing change in −2LL and regres-
sion equation at each step. There are options if you use stepwise entry 
methods to accomplish this with one command (such as the “sequential” 
command), but stepwise entry methods have the potential to produce 
problematic outcomes under certain circumstances (like a regression model 
that includes zBYSES and zBYSES3 but not zBYSES2). Thus, I prefer the 
above method that provides absolute control to the analyst.
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