
40

Chapter 3

Object types in r

Having seen the kinds of things R can do, I’m sure everyone is
anxious to get right on to revolutionary statistical discoveries and
the production of eye-popping, full-color graphics. Before going

there, we’ve got to stop for a moment and talk objects. This, I’m afraid, may
be unpleasant. But objects are at the center of the R worldview, and mis-
understanding them is the central cause of frustration for new, and even
not so new, R users.

For better or worse, R is an object-oriented language. Being object
oriented means that R procedures recognize the kind of object they are
being called to process and behave differently depending on the object
type. This is a great thing in that one command can adapt to many dif-
ferent situations. The summary() command, for example, recognizes
whether you are trying to summarize a data set or the results of a regres-
sion analysis and adjusts to the differences between these two kinds of
output. This can also be the source of some frustration in that the same
command will do different things depending on the nature of your
object. While R always has very strong views about what your object is,
you will sometimes be confused on this point. This can lead to some
unpleasantness in as much as R isn’t really interested in your opinions
on the subject.

When something isn’t working the way you expect, object type is one
of the first things you should check. In this chapter, we’ll go over a tax-
onomy of object types and their basic care and feeding. I have to warn you
up front that I am going to propose an approach to thinking about R

©SAGE Publications

chapter 3 Object types in R 41

objects that is mostly straightforward and coherent and, therefore, is not
precisely consistent with R’s own internal logic and terminology.1

There is a lot of technical detail surrounding objects, much of which
I hope we will be able to avoid here. Part of the confusion about R objects
comes from the fact that the term objects is really used for several different
things that have different dimensions, characteristics, and purposes. Some
of these concepts are technical legacies from the historical development of
R. Others stem from the internal needs of the R program but are relatively
remote from the experiences of everyday users. I’ll point out a few
instances where you may observe some inconsistency between my
approach and R’s more official notions; but I believe that the object
schema I am going to propose will help you work through most of the
object issues you are likely to encounter up through a relatively advanced
level.

We’ll start with a little housekeeping on naming and managing objects
generally, and then I’ll set out my approach to understanding R objects.

r Objects and their names

Objects in R can be thought of as simply the things that the program is
keeping track of for you. These can be individual values, data sets, statisti-
cal outputs, or specialized functions. If it is something to which you can
assign a name, it is an object.

Naming objects in R is subject to just a few rules. R names can be any
combination of letters and numbers. No special characters (&, ^, %, $, #, @,
etc.) are allowed except for periods and underscores. R names cannot start
with a number; that will just confuse R. (This may give you some brief
satisfaction in the sense that turnabout is fair play, but ultimately, confusing
R always hurts you more than it.)

No spaces are allowed in R names. If you want to string words together
for your variable name, the two most common practices are to demarcate
the words with either periods or “camel capitalization.” If different variables
are for different years, for example, you could use a series of names like
result.2005, result.2006, result.2007. Another common con-
vention is to use an extension after a period to help keep track of the kind
of object: result.df for a data frame, result.f for a function, and so

1. If you want the official view, use help(mode), help(type), help(class),
and help(method). Good luck!

©SAGE Publications

42 A suRvivOR’s Guide tO R

on. You can use as many periods as you want for clarity, but more than
two is probably going to start looking silly. If the variable names in an
imported data set have spaces, R will helpfully replace them with periods
(see Chapter 4 on importing data).

Camel capitalization is the practice of capitalizing the first letter of dif-
ferent strung-together words: NormalizedValue, FirstCut, AnnualRate. Just
remember R’s sensitivities around the issues of case. MyVariable has to be
always MyVariable. R will feign ignorance if you ask it to do something with
myVariable, Myvariable, or myvariable.

That’s the deal on naming. Now we need to think about the things that
you can give names to. Let’s start with the simple dichotomy of data
objects and nondata objects. The nondata objects shouldn’t cause you too
much grief. There are just two kinds that you are likely to encounter on a
regular basis: functions and the output from statistical procedures. I’ll go
over customized functions in Chapter 7. The output from a statistical pro-
cedure is really just a list, one of the data types we’ll look at in a moment.
Everything we are going to learn about working with lists can be applied
to working with statistical output. The most interesting things to do with
statistical output involve treating it as a data source in itself, so there isn’t
too much else that needs to be said about that at this point. I do demon-
strate a number of statistical procedures and discuss working with their
output in Appendix B, if you are anxious for that.

The real place where object-type problems are going to arise is in
working with data objects. R’s approach to classifying data objects is, in
my view, hopelessly confusing for new users. I am going to propose an
alternative schema that largely parallels the official R approach but slightly
shifts some of the concepts and terminology. There are, of course, some
dangers in doing this. I’ll try to point out some of the places where you
may observe differences between official R and my approach. In practice,
though, I don’t believe that you will encounter operational problems with
the approach I lay out here until you reach a very high level of R program-
ming. By then, you will be more than ready to deal with the technical
details on their own terms.

 hOw tO think abOut data Objects in r

I propose that we think about R data objects as containers that hold data.
There are, in this schema, just four types of containers we need to focus
on. Each of these types of containers has three critical characteristics. The

©SAGE Publications

chapter 3 Object types in R 43

first characteristic is which of the four types of container it is. We’ll label
this the “object type,” recognizing that officially R uses the term object type
a little more broadly. The four object types we’ll use are vectors, matrices,
data frames, and lists.

The second characteristic of each object type is a description of the
kinds of things that the container is holding. We’ll call this characteristic the
object “storage mode.” This is a term that R uses as well, but we’ll apply it
slightly differently. For us, the storage mode is a description of the kinds of
things that can be held in one of our data containers. There are three main
storage modes in this approach: logical, numeric, and character. The
numeric category can be further divided into the integer and the double
mode. I am also going to identify two of what I call “pseudo storage
modes”: dates and factors.

Here is where the R overlords are beginning to squirm. They know
that in official R, a list is really a storage mode. But I find it more sen-
sible to think of lists as data containers. As we’ll see, lists hold all kinds
of data (and other things) and, thus, are more like containers than like
data elements. Until you get into pretty high-level programming, this
alternative conceptualization won’t cause any problems. Meanwhile,
while you will find much about dates and factors in the R literature, you
won’t find anything about pseudo storage modes. I just made that up. If
you will indulge me for the time being, I will make the case for that
characterization after we have covered the more conventional parts of
my typology.

The third descriptor for our R objects is the object class. The object
class is a label that provides more specialized information on how R
should work with an object. While the number of object types and stor-
age modes is quite limited, there are a wide variety of classes. The good
news is that they rarely cause problems, so we can deal with them more
generically.

Every R data object type, our data containers, can be described by what
kind of container it is, what kind of data elements it contains, and the class
descriptor that provides more specific information about how it should be
treated. This approach to understanding R objects is illustrated in Figure 3.1
and summarized in Table 3.1.

All this would be pretty straightforward, except for the two pseudo
storage modes that you can see lurking under the gray shading on
Figure 3.1 and Table 3.1. We would prefer not to talk about these in
polite company, but they are so critical and so widely used that we can-
not exclude them from our discussion. Still, let’s hold off on that for a
bit. As is customary, let’s start by talking about the well-behaved kids.

©SAGE Publications

44 A suRvivOR’s Guide tO R

Storage Mode

Logical
Numeric

Character

Date/Time
Factor

R Data
Object

Class

Data Object Type

Vector
Matrix

Data Frame
List

Figure 3.1 Understanding R Data Objects

 r Object stOrage mOdes

I propose thinking of object modes as the way R has the computer store
the individual pieces of data that make up an object. For our purposes
there will be three of these: logical, numeric, and character. The numeric
storage mode can be further divided into integer and double values. I give
a short description of each of the storage modes in Table 3.2.

The commands typeof() and mode() will usually tell you the stor-
age mode, again with the caveat that R officially considers “list” a storage
mode as well. The mode() command lumps together integer and double
under the “numeric” label, while typeof() makes those distinct.

> # Data objects

> myInteger = as.integer(4) # An integer (whole number)

> myWholeNumber = 5 # A whole number stored as double

> myDouble = 3.7 # A numeric-double number

> myOtherInteger = as.integer(3.7) # Non-whole num convert to integer

©SAGE Publications

chapter 3 Object types in R 45

> myLogical1 = TRUE # A logical value set to TRUE

> myLogical2 = FALSE # A logical value set to FALSE

> myCharacter = "Hello World!" # A character string

Table 3.1 A Typology of R Objects

Description

Nondata
objects

Functions Sets of commands bundled
together in a custom function

Output The results of a statistical
procedure

Data
objects

Storage
mode

Logical TRUE/FALSE values

Numeric
(integer or
double)

The integer mode holds whole
numbers. The double mode can
hold any number.

Character Textual data

Date/POSIX Numbers that can be interpreted
as dates or times

Factor Categorical variables

Data object
type

Vector A set of data elements all of the
same storage mode

Matrix A two-dimensional array of data
elements all of the same storage
mode

Data frame A set of vectors in which the
vectors (columns) do not all have
to be of the same storage mode

List A collection of other objects

Data object
class

An indicator that tells R what
specialized methods to use on an
object

©SAGE Publications

46 A suRvivOR’s Guide tO R

Storage Mode Subcategory Description

Logical TRUE/FALSE values

Numeric Integer Numbers without fractional parts

Double Numbers that may have fractional parts

Character Text values
e.g., “Horse”, “Alligator”, “Four score and
seven”

Date Date Calendar dates

POSIX Dates and times

Factor Unordered Categorical values without a clear ordering
e.g., “Dog”, “Cat”, “Wombat”

Ordered Categorical values with an order
e.g., “short”, “tall”, “grand”, “venti”

Table 3.2 R Storage Modes

> typeof(myInteger) # Test "typeof" for integer

[1] "integer"

> mode(myInteger) # "mode" for integer

[1] "numeric"

> typeof(myWholeNumber) # "typeof" for whole number

[1] "double"

> typeof(myDouble) # "typeof" for double

[1] "double"

> mode(myDouble) # "mode" for double

[1] "numeric"

©SAGE Publications

chapter 3 Object types in R 47

Again, I’ve left the two pseudo storage modes in the gray shading for
later. Officially, there are also a few other R object storage modes that you
don’t want to encounter down some dark programming alley the night
before a statistics assignment is due: Complex, NULL, Raw, Closure, Special,
Builtin, and Environment, for example, are either for special cases or for R’s
own internal purposes. For now, let’s look more closely at the character,
numeric, and logical storage modes.

The Character Storage Mode

The character storage mode is used for strings of text. You will see
these referred to by all of those terms: “character,” “text,” or “string.” You
can usually tell that a value is in character mode when it is surrounded by
quotation marks. You can check for character mode with mode() or
typeof(), or with is.character(). There are two things of note to be
careful about here. First, the backslash is R’s escape character, so you can’t
include it in a text string without some extra steps.2 You’ll have problems,
then, if you are trying to import data that include backslashes. This, happily,

2. I will go over this and much more about working with text data in Chapter 8.

> myOtherInteger # Show 3.7 converted to integer

[1] 3

> typeof(myOtherInteger) # "typeof" for convert to integer

[1] "integer"

> mode(myOtherInteger) # "mode" for convert to integer

[1] "numeric"

> typeof(myLogical1) # "typeof" for logical

[1] "logical"

> typeof(myCharacter) # "typeof" for character

[1] "character"

©SAGE Publications

48 A suRvivOR’s Guide tO R

is a relatively rare situation. The second, and more common, issue is that R
can store numbers in character mode. This is highly vexing in that it often
happens without your knowing it and you cannot perform numeric opera-
tions on character data. You can tell when a number has been stored as a
character because it will be displayed within quotation marks. As we’ll see
in a moment, this happens because all the objects in a vector or a matrix
have to be of the same storage mode. If you try to create a vector or a
matrix with a set of values that has character data in it, it will convert the
whole set to the character storage mode. We’ll come back to the problem
of number/character confusion and what to do about it after we’ve con-
fronted factors, which complicate the story even further.

The Numeric Storage Modes

The numeric storage modes are pretty straightforward. On occasion,
you’ll have to be a little careful about the distinction between integer and
double mode. An integer, of course, is a whole number, a number that
doesn’t have a fractional part (1, −3, 7, 2,568,482, as opposed to 1.65, 2.9,
−4.002). In R, integers can be stored either in integer or in double mode.3
This can be a little confusing since, for example, the command
as.integer() truncates the fractional component of a number to turn it
into and store it in the integer mode. But is.integer() is a test of mode
that returns FALSE unless the number is, in fact, stored in R’s integer mode.
If you need to test for whether something is an integer, in the sense of not
having a fractional part, use is.wholenumber(). The good news is that
since both double and integer are numeric modes, this difference shouldn’t
cause problems.

The Logical Storage Mode

The logical storage mode registers whether something is true or false.
Logical values look a little like character values but act a little like numeric
values. They look like character values in that R displays logical values as
either TRUE or FALSE. In accord with their existential importance, TRUE
and FALSE are always capitalized in R. Likewise, note that they do not use

3. The “double” label comes about because most programming languages use a
distinction between “single” and “double” precision for how much space is dedi-
cated to storing a number.

©SAGE Publications

chapter 3 Object types in R 49

quotation marks (which is how you can tell that they are not really in
character mode). You can shorten logical values to T or F (again with no
quotation marks). Just be careful that you don’t ever name any variables
T or F, in which case, things will get seriously confused.

The logical storage mode acts like numeric values in that for some
operations R will treat them as zeros and ones. You can, for example, add
or multiply logical values. You can use them in sum() or mean(), or in
a regression model. In all these cases, they act just like numbers, with
TRUE = 1 and FALSE = 0.

Once you have a group of character, numeric, or logical values, you
will want to keep them in one of our data containers: the R data object
types.

r data Object types

In my approach, the basic object types are containers that can hold some
collection of data. For this purpose, I propose focusing on four basic object
types: vectors, matrices, data frames, and lists. These object types hold par-
ticular data structures, as shown in Table 3.3.

Table 3.3 Basic Data Object Types in R

Object Type Description

Vector A one-dimensional set of values
All values have to be of the same storage mode

Matrix A two-dimensional array
A matrix will be indexed by rows and columns. All elements
have to be of the same storage mode

Data frame A data set organized with variables in the columns and
observations in the rows
May hold objects with different storage modes, although
each variable (column) has to be of the same storage mode

List A collection of other objects
Can mix all other types and storage modes

©SAGE Publications

50 A suRvivOR’s Guide tO R

Again, my approach is a little different from that of official R. For offi-
cial R, a list is a storage mode. If you enter mode(myList), the answer
you will get is “list.” A data frame is stored as a list. If you enter
mode(myDataFrame), the answer will also be “list.” For our purposes, a
list is more like a data container than a storage mode. It is something in
which you keep data. Meanwhile, the data frame is such a special form of
list that it is worth treating it independently as one of our object types.

There is no regular R function that quickly tells you the object type in
the sense that I use here. There are, however, individual tests you can use
to figure each of these things out: is.vector(), is.matrix(),
is.data.frame(), and is.list(). Jumping ahead a bit, we’ll look at a
custom function in Chapter 7 that is a simple procedure to join these indi-
vidual tests together to indicate the object type. I think it is sufficiently
straightforward to reproduce here, even though we are still some distance
from doing custom functions.

DOType = function(x){ # DOType function ------------------+

This is a function to identify data object types. I think |

of object type as a characterization of objects that hold collections |

of things. These object types are vectors, matrices, data frames, |

and lists. |

If none of those types fit, then the function returns a statement |

that it is not a recognized data type. |

|

 DOT = "" # Set default value for DOT |

 if(is.vector(x)){DOT = "vector"} # Check if is a vector |

 if(is.matrix(x)){DOT = "matrix"} # Check if is a matrix |

 if(is.data.frame(x)){ # Check if is a data frame |

 DOT = "data frame"} # |

 if(is.list(x) & !is.data.frame(x)){ # Check if is a list (and not a |

 DOT = "list"} # dataframe) |

 # |

 if(DOT == ""){DOT = paste("Not a", # Print a message if it is none |

 "recognized data object type")} # of the above |

 return(DOT) # Return the appropriate value |

} # End of function ------------------+

©SAGE Publications

chapter 3 Object types in R 51

Once set up, the DOType() function can be used to indicate data
object types. Now, let’s look a little bit more into the care and feeding of
each of these data object types.

the basic data Objects: VectOrs

When we are thinking about data structures in R, it is particularly important
to understand the basic concepts of vectors and matrices. R is a vector-
based language. This is the source of much of its power, but it also con-
tributes to making R confusing for new users.

A vector is simply a grouped set of values. It is like a list, except that I
won’t call it a “list” because, as we’ve seen, that is another specific object
type in R. When you import data from an external source, R usually brings
it in as a set of vectors: one for each variable. The power of vector-based
operations in R comes from the fact that when you specify an action to take
with a vector, R applies that action to every element in the vector. A single
command operates on the whole group of elements.

For our purposes, vectors can be made up of elements from any of the
four object storage modes: logical values, numbers (integers or double
precision), or characters. As I have emphasized, all of the elements in any
one vector have to be of the same storage mode. In R’s view, the vector
itself has a mode that it inherits from the data it contains.

The concatenation function, c(), is used to package a set of things up
into a vector. myVector = c(1, 2, 7, 9) tells R to create a vector with
the numbers 1, 2, 7, and 9 and to assign it to an object named myVector.

> myLogicalVector = c(T, F, T, T) # Set up a logical vector

> myNumericVector = c(1, 2, 4, 7) # Set up an integer vector

> myTextVector = c("a", "b", "7", "x") # Set up a text vector

> typeof(myLogicalVector) # Show type for logical vector

[1] "logical"

> typeof(myNumericVector) # Show type for numeric vector

[1] "double"

> mode(myTextVector) # Show type for text vector

[1] "character"

©SAGE Publications

52 A suRvivOR’s Guide tO R

The special case of a vector with only one element is called a scalar.
You can think of scalars as constants. Since scalars have only a single ele-
ment, they don’t need to be concatenated and can be created without using
the c() function.

Because vectors must contain data with the same storage mode, if you
create a vector my.vector = c(1, 2, 7, "Smith"), R will have to
do something to make those elements consistent. R’s approach to this is to
assume that 1, 2, and 7 are characters rather than numbers, because “Smith”
is clearly a character element. If you create such a vector and then try to add
the first two elements, you will get an error that this is nonnumeric data.

There is a little more fluidity between logical and numerical data. If you
try to use logical data in a numerical context, they will be treated as 1s and 0s.
Likewise, if you try to use numerical data in a logical setting, they will be inter-
preted as TRUE wherever the numerical value is not zero and as FALSE wher-
ever it is zero. While you’ll get an error trying to mix operations with character
and numeric vectors, logical vectors can be used in operations with numeric
vectors. The former may be more frustrating, but the latter can be more danger-
ous, since you can think that something is working properly when it is not.

> myScalar = 1 # Create a scalar with value 1

> yourScalar = 2 # Create a scalar with value 2

> myScalar + yourScalar # Add the two scalars

[1] 3

> myVector1 = c(0, 5, 18) # Set up a numeric vector

> typeof(myVector1) # Check vector type

[1] "double"

> myVector2 = c(TRUE, TRUE, FALSE) # Set up a logical vector

> typeof(myVector2) # Check vector type

[1] "logical"

> myVector3 = c("Fred", "Joe", "Simon") # Set up a character vector

> typeof(myVector3) # Check vector type

[1] "character"

©SAGE Publications

chapter 3 Object types in R 53

> myVector1 + myVector3 # Add num & char vectors (error)

Error in myVector1 + myVector3: non-numeric argument to binary operator

> myVector1 + myVector2 # Add numeric & logical vectors

[1] 1 6 18

> as.logical(myVector1) # Treat numeric as logical

[1] FALSE TRUE TRUE

In this example, we see the different data types and how logical values are treated
as 0 or 1.

Vector Indices

The particular elements within a vector are identified with an index
number enclosed in brackets at the end of the vector name. If myVector =
c(3, 9, 5), then myVector[2] is the second element, 9, and
myVector[3] is the third element, 5.

> myVector = c(3, 9, 5) # Set up vector of numeric values

> myVector[2] # Get the vector's 2nd element

[1] 9

> myVector[3] # Get the vector's 3rd element

[1] 5

You can also use another object to identify the element in the vector,
as in the following example:

> myVector = c(3, 9, 5) # Set up vector of numeric values

> myIndex = 1 # Set up a selection index

> myVector[myIndex] # Use index for selection

[1] 3

©SAGE Publications

54 A suRvivOR’s Guide tO R

Here is another example with a vector of text elements and a selection
vector:

> myVector = c("Bob", "Mary", "Fred") # Set vector of character values

> myVector[2] # Show 2nd element

[1] "Mary"

> myIndex = c(1, 3) # Set up an index variable

> myVector[myIndex] # Select vector elements w/index

[1] "Bob" "Fred"

> myVector1 = c(1, 2, 3) # Create vector with 3 elements

> myVector2 = log(myVector1) # Create new vector with log

> myVector2 # Print new vector

[1] 0.0000000 0.6931472 1.0986123

Nonvectorized functions can only work on the individual elements of
the vector. In this case, you have to be explicit about which element in the
vector you want R to use. For example, if() requires a single element,
while ifelse() is vectorized.

This method of element selection is very powerful because it allows us
to choose vector elements conditionally. We’ll get to that in much more
depth in Chapter 6.

Vector Operations

When vectors are used in operations, there are four main ways in
which the operation can work. Most of the time, these modalities are rea-
sonably intuitive. Every once in a while, they’ll jump up and bite you when
you aren’t being careful.

Vectorized functions work on each element of the vector and produce
a new vector with the same number of elements. For example, log() cre-
ates a new vector with the log of each element from the input vector.

©SAGE Publications

chapter 3 Object types in R 55

The difference between vectorized and nonvectorized functions is
critical. Failure to understand which way a function works will lead to
much grief. In Chapter 7, we’ll look at the apply() family of functions,
which can help nonvectorized functions operate on vectors.

A third kind of operation works on the whole vector: min()and
max(), for example, return a single value that is the minimum or maxi-
mum element from the vector; sum() gives the sum of all the elements
of the vector.

> myVector = c(1, 2, 3) # Create a vector

> min(myVector) # Get the vector minimum

[1] 1

> max(myVector) # Get the vector maximum

[1] 3

> myVector = c(1, 2, 3) # Numeric vector with 3 elements

> if(myVector == 1) print(“Answer is 1”) # This produces a likely error

[1] "Answer is 1"

Warning message:

In if (myVector == 1) print("Answer is 1") :

 the condition has length > 1 and only the first element will be used

> if(myVector[1] == 1) # This time specify 1st element

+ print("Answer is 1")

[1] "Answer is 1"

> myAnswer = ifelse(myVector == 1, # Here is the vectorized ifelse()

+ "Answer is 1", # it operates on each vector

+ "Answer is not 1") # element individually

> myAnswer # Show results

[1] "Answer is 1" "Answer is not 1" "Answer is not 1"

©SAGE Publications

56 A suRvivOR’s Guide tO R

Finally, there are operations that work on multiple vectors. Addition, for
example, adds the elements of one vector to the elements of another with
pairwise matching: The first element of the first vector is added to the first
element of the second vector, and so on. Reasonably enough, there need
to be the same number of elements in each vector.4 Multiplication and divi-
sion work the same way: element by element.

4. To be perfectly honest, it requires that either the same number of elements or the
number of elements in the longer vector is a multiple of the number of elements in
the shorter vector, in which case, addition keeps reusing the shorter vector. (Did
you get that?)

> sum(myVector) # Sum the vector elements

[1] 6

> myVector1 = c(1, 2, 3) # A vector with 3 elements

> myVector2 = c(10, 20, 30) # Another 3-element vector

> myVector1 + myVector2 # Vector addition

[1] 11 22 33

> myVector1 * myVector2 # Vector multiplication

[1] 10 40 90

> myVector2/myVector1 # Vector division

[1] 10 10 10

> myVector5 = c(10, 20, 30, 40, 50) # A vector with 5 elements

> myVector1 + myVector5 # Add different-length vectors

Error in myVector1 + myVector3 : non-numeric argument to binary operator

> myVector6 = c(10, 20, 30, 40, 50, 60) # A vector with 6 elements

©SAGE Publications

chapter 3 Object types in R 57

Add different-length vectors where one length is a multiple of the other

> myVector1 + myVector6

[1] 11 22 33 41 52 63

In this example, we see element-by-element mathematical operations. Note the
error when the two vectors are of different lengths. But different lengths are okay
if one is a multiple of the other.

Vectors are unidimensional. They contain one set of data elements, all
of the same type. Matrices add a second dimension. Unlike vectors, you
actually won’t use matrices all that much; as we’ll see, a data frame is a
much more useful container for two-dimensional data. Nonetheless, matri-
ces are conceptually important, and there are some operations that only
work with matrices.

the basic data Objects: matrices and their indices

A matrix has two dimensions, a row dimension and a column dimension.
You can think of it as a single object that contains a set of row vectors or
a set of column vectors. In fact, it contains both, overlapping. You will
recall from our discussion in Chapter 1 that a data set is usually a two-
dimensional structure with observations and variables. A data set, then, is
essentially a matrix in which each variable is a column vector and each
observation is a row vector (see Table 3.4).

Table 3.4 A Data Matrix

Variable 1 Variable 2 Variable 3

Observation 1 15 3.5 2

Observation 2 10 2.1 5.8

Observation 3 8 5 7

©SAGE Publications

58 A suRvivOR’s Guide tO R

Anyone who has played the game Battleship understands the
indexing for the elements of a matrix. A matrix is indexed by two val-
ues: a row index and a column index: myMatrix[row,column]. By
convention, the row index always comes first. This is important.
You’ve got to commit this to memory right now: row first, then col-
umn. myMatrix[3,19] is the element in the 19th column of the 3rd
row of the matrix myMatrix.

We can isolate a specific row or column vector by leaving one of the
two indices blank:

myMatrix[,4] references the 4th column of myMatrix.

myMatrix[12,] references the 12th row of myMatrix.

Thinking in terms of a data set, we could say that myMatrix[,4] is
a list of the values for the fourth variable for every observation in the data
set. myMatrix[12,] is a list of all of the variable values for the 12th
observation in the data set.

As with vectors, basic mathematical operations work on the corre-
sponding individual matrix elements. myMatrix + 7 adds 7 to every ele-
ment in myMatrix. myMatrix1/myMatrix2 divides each element in
myMatrix1 by the corresponding (i.e., same row and column) element in
myMatrix2. R’s normal matrix operations are all by corresponding ele-
ment, which means, as with vectors, that the two objects have to be either
of the same dimensions or a multiple thereof. Those of you looking for
authentic matrix algebra, as is likely in a more advanced statistics class,
need to enclose the operator in percent signs (see Chapter 7 for more dis-
cussion on mathematical operators).

> myMatrix = rbind(c(3, 8), c(23, 33)) # Create matrix by binding 2 rows

> myMatrix # Display myMatrix

 [,1] [,2]

[1,] 3 8

[2,] 23 33

> myMatrix1 = myMatrix + 7 # Add 7 to each myMatrix element

> myMatrix1 # Display myMatrix1

©SAGE Publications

chapter 3 Object types in R 59

 [,1] [,2]

[1,] 10 15

[2,] 30 40

> myMatrix2 = rbind(c(2, 5), c(3, 2)) # Create another matrix

> myMatrix2 # Display myMatrix2

 [,1] [,2]

[1,] 2 5

[2,] 3 2

> myMatrix3 = myMatrix1/myMatrix2 # Divide myMatrix1 by myMatrix2

> myMatrix3 # Display myMatrix3

 [,1] [,2]

[1,] 5 3

[2,] 10 20

> myMatrix4 = myMatrix2 %*% myMatrix3 # Matrix algebra multiplication

> myMatrix2 # Display myMatrix2

 [,1] [,2]

[1,] 2 5

[2,] 3 2

> myMatrix3 # Display myMatrix3

 [,1] [,2]

[1,] 5 3

[2,] 10 20

> myMatrix4 # Display myMatrix4

 [,1] [,2]

[1,] 60 106

[2,] 35 49

Mathematical operations with matrices work on a corresponding ele-
ment-by-element basis. This is different from real matrix algebra. Be
careful!

R matrices, like R vectors, can only be made up of the same kind of
data, for example, character, logical, or numeric data. So R matrices don’t
work for data sets that include mixed data. For that, we need to turn to data

©SAGE Publications

60 A suRvivOR’s Guide tO R

myData = read.table("mydata", header = TRUE)

myDataframe = data.frame(myData)

myDataframe$variablename

myDataframe["variablename"]

myDataframe[,"variablename"]

myDataframe[,column number]

myDataframe[column number]

frames, which are a more flexible matrix-like structure that can hold vari-
ables with different storage modes.

 the basic data Objects: data Frames

Data frames are the central structures for holding and organizing data in R.
Data frames look like matrices. They use the same [row,column] index-
ing but are more useful both because they can hold variables with different
storage modes and because they allow referencing of variables by name.
Note that while the data frame can hold variables of different storage
modes, all of the elements of a given variable (column) still have to be of
the same mode.

The ability to hold data with different storage modes is important, but
it is the referencing by name that is the real key to the power and utility of
data frames. In the following example, we create a data frame with the
data.frame() command. We can then access the variables with several
kinds of notation.

All five of these approaches do the same thing. The first is the clearest and the most
commonly used.

The second and last approaches show how the columns (variables) are
privileged in a data frame: If there is only one index, it is assumed to refer
to the columns rather than the rows. If you try all these ways, you’ll see
that the printing behavior changes. When you use the variable names, R
prints the data in a table with the row names as well as the column names.
When you use the numeric identifiers, it just prints the vector of values.

©SAGE Publications

chapter 3 Object types in R 61

R assigns both variable names and observation names to the data frame.
The variable names can be drawn from headers if you are reading in a table
of data from an external source.

Unless you change them, the row names will just be observation num-
bers. You can give the observations names to help identify them, for exam-
ple, the names of states, experiment numbers, or names of students. To set
the row names, you can use the rownames(myDataframe) command.
The same approach also works for column names: colnames
(myDataframe). In this example, I show how to set column names inde-
pendently and to set them to be the same as the values in the first row of
the data frame.

rownames(mydata) = # Add row names by hand

 c("Mary", "Michael", "Mia", "Michelle", "Mark")

rownames(mydata) = mydata[,3] # Row names = third col. in data frame

colnames(mydata) = c("sex", "age") # Add column names by hand

colnames(mydata) = mydata[1,] # Set col names to values in 1st row

 # Note that this keeps 1st row as

 # 1st obs in the data frame

Referencing Data Frame Elements

The use of the myDataframe$myVariable convention can get cum-
bersome. It puts a real premium on short data frame and variable names.
The most common alternative is to “attach” the data frame using the
attach() command. This tells R to look for objects in the attached data
frame, so the data frame name is no longer required.

> myData.df = read.csv("mydatafile.csv", header = TRUE)

> attach(myData.df)

Note that no quotation marks are required for mydata.df because it is an
R object, while mydatafile.csv is an external object and so is referenced as a
text name within quotation marks.

©SAGE Publications

62 A suRvivOR’s Guide tO R

If you have used the attach()method and are having regrets, or are
simply ready to move on to another data frame, you can detach the data
frame with the detach()method.

attach() is a popular and convenient approach, and is therefore
frowned upon by some of the R cognoscenti. To be fair, there are two
problems with the attach() method. In the first place, attach() cop-
ies the variables from the data frame into the R workspace. Any changes
you then make to the variables only affect the copies in the workspace,
not the originals in the data frame. Second, if you are using multiple data
sets with any overlapping object names, it is easy to get confused about
where the objects are coming from and make mistakes. You should
appreciate these concerns since, if I may be snide, it is not always the
case that the R cognoscenti are observably concerned about the confu-
sion of new users.

My recommendation would be to go ahead and use attach() if you
are certain that you will only be using one data frame that hasn’t simply
been built from other objects that are already in memory. Otherwise, there
are two other ways beyond the dataframe$vName approach to let R
know which data frame a variable is associated with, which are a little less
cumbersome than the dataframe$vName construction but are only appli-
cable in certain circumstances.

You can sometimes specify the appropriate source for a variable within
the command itself using the data= option. The command to construct a
linear model, lm(), for example, allows the data= option to indicate the
data frame. The plot() command, on the other hand, does not.

For a larger section of work, for example, the complex instructions
for a plot, you can use the with(dataframe, {commands}) function.
This allows you to group a set of commands that utilize the same data
frame. As with the attach method, however, you have to be careful in that
any transformations to the data are only applicable within the with({})
statement.

The with({}) approach is useful for reasonably contained opera-
tions where you can keep track of the fact that a larger set of commands

> detach(myData.df)

©SAGE Publications

chapter 3 Object types in R 63

is contained within the with({}) command. I wouldn’t recommend it
for more extensive processes where you might lose track of the data
source and the need for a closing brace and parenthesis. The with({})
approach is also constrained by allowing only one object to be the
output.

Note also the somewhat unusual use of the parentheses and braces in
the with({}) process. The commands have to be one per line and are
grouped both within the braces and the larger set of parentheses.

Here are a few demonstrations of all four methods of referencing vari-
ables within a data frame:

> myDF = data.frame(# Create a data frame

+ myVar1 = c(seq(0, 100, by = 5)), # Set up variable 1

+ myVar2 = c(0:20)) # Set up variable 2

> # 1. the $ construction ---

> mean(myDF$myVar1) # $ Always works, minimizes errors

[1] 50

> # 2. The attach() method --

> attach(myDF) # Attach the data frame

> mean(myVar2) # Do something with the data frame

[1] 10

> myVar2 = myVar2 * 2 # Here is a transformation

> mean(myVar2) # Mean of transformed variable

[1] 20

> detach(myDF) # Detach the data frame

> mean(myDF$myVar2) # Transform lost outside of attach

[1] 10

> # 3. The data = method ---

> lm(myVar1 ~ myVar2, data = myDF) # Run a linear model w/data frame

Call: lm(formula = myVar1 ~ myVar2, data = myDF)

Coefficients:

(Intercept) myVar2

 1.551e-15 5.000e+00

©SAGE Publications

64 A suRvivOR’s Guide tO R

> # 4. The with() method ---

> with(myDF, { # with() to indicate data frame

+ myVar1 = myVar1/2 # Transform myVar1

+ sd(myVar1) # Std dev. of transformed myVar1

+ }) # Note close brace & paren finish

[1] 15.51209

> sd(myDF$myVar1) # Transform lost outside with()

[1] 31.02418

This example shows the four different methods for referencing data
frame elements. The $ construction is the safest and most reliable, but it
can get unwieldy. The data= method only works in some commands
and functions. Variable tranformations made within the attach()
and with() methods are only local, they don’t persist outside that
immediate environment.

All of these methods work. My own view is that your default method
should be the dataframe$variable construction. It is a little more
cumbersome, but it always makes it clear what variable you are using and
where it has come from. The other approaches should only be used
where the gains in efficiency don’t come at too high a price in terms of
this clarity.

Displaying the Contents of a Data Frame

You can display the names of the variables in your data frame with the
names() command. The whole data frame is displayed simply by typing
its name. This isn’t so helpful for big data sets. If you are using RStudio, just
click on the name of the data frame in the workspace window (top-right
quadrant) to see the data frame in a spreadsheet format. You can accom-
plish the same thing with the View(myDataframe) command (note the
capitalization of View()). Summary statistics are available through the
summary() command. In Chapter 5, we’ll go over some other ways of
viewing and reviewing larger data sets.

©SAGE Publications

chapter 3 Object types in R 65

The summary()command gives the basic descriptive statistics for the
numeric variable, but it cannot do much with the character variable.

the basic data Objects: Lists

Lists are perhaps both the most and the least important object types in R.
They are the most important because lots and lots of things are packaged
as lists. They are the least important because you don’t often need to work
with them directly. Still, for the former reasons, we have to spend a little
time on them. Moreover, understanding a bit about lists will help you avoid
some other potentially painful object lessons.

Lists are groups of objects. The important thing about lists is that they
are pretty free form. A list can package together objects of different types

> myVar1 = c("a", "b", "c") # Create char variable

> myVar2 = c(10, 11, 12) # Create numeric variable

> myDF = data.frame(myVar1, myVar2) # Combine into data frame

> myDF # Print data frame

 myVar1 myVar2

1 a 10

2 b 11

3 c 12

> names(myDF) # Show names of variables in myDF

[1] "myVar1" "myVar2"

> summary(myDF) # Summarize vars in data frame

 myVar1 myVar2

 Length:3 Min. :10.0

 Class :character 1st Qu.:10.5

 Mode :character Median :11.0

 Mean :11.0

 3rd Qu.:11.5

 Max. :12.0

©SAGE Publications

66 A suRvivOR’s Guide tO R

(vectors, data frames, other lists, etc.) and of different storage modes (char-
acter, numeric, etc.). And all of those things can be of different lengths. For
example, when R runs a linear model using the lm() command, it creates
a list with the output. That list will include short elements with character
data, such as the model used in the function call, and long elements with
numeric data, such as a vector of residuals.

You can’t find out what is in a list just by entering its name. R, in its
infinite wisdom, decides what kind of list you’ve got (based on the class
attribute, if it is included in the list) and then prints it out accordingly. If
it is a data frame, it just prints the data. If it is a model, it prints the most
relevant model output. To see what really lurks within a list, you need to
use the attributes() command, which we’ll look at in more detail
shortly. attributes(myList) will display all the elements within the
list, which you can then access by either using the myList$element
construction or indicating the slot number of the item in the list:
myList[3]. A linear model, for example, generates a set of residuals that
are included in the second slot of a list that holds the output from the
model. That element can be accessed with either myModel$residuals
or myModel[2].

> myVar1 = c(1:8) # Set up a y variable

> myVar2 = c(3, 5, 4, 6, 7, 9, 2, 9) # Set up an x variable

> myModel = lm(myVar2 ~ myVar1) # Create a linear model

> myModel # Print the model output

Call:

lm(formula = myVar2 ~ myVar1)

Coefficients:

(Intercept) myVar1

 3.3214 0.5119

> attributes(myModel) # Show elements in model output

$names

[1] "coefficients" "residuals" "effects" "rank" "fitted.values"

[6] "assign" "qr" "df.residual" "xlevels" "call" "terms" "model"

©SAGE Publications

chapter 3 Object types in R 67

$class

[1] "lm"

> myModel$residuals # Show model residuals

 1 2 3 4 5 6 7 8

-0.8333 0.6547 -0.8571 0.6309 1.1190 2.6071 -4.9047 1.5833

There is also a double-bracket approach to accessing the elements
of the list, for example, myModel[[2]]. This is an important distinction
because the double-bracket notation (along with the $ demarcation)
gives you access to the individual components within the list element,
while the single-bracket approach only gives you access to everything in
the list slot all at once. You can think of the single brackets showing you
the box, while the double brackets give you access to the things inside
the box.

The fact that data frames are lists usually shouldn’t cause any problems,
but if you are trying to automate something using the bracket method to
get inside a data frame, you may need to recall the distinction between
single- and double-bracket indexing.

> myModel[2] # Single-bracket index result

$residuals

 1 2 3 4 5 6 7 8

-0.8333 0.6547 -0.8571 0.6309 1.1190 2.6071 -4.9047 1.5833

> myModel[[2]] # Double-bracket index result

 1 2 3 4 5 6 7 8

-0.8333 0.6547 -0.8571 0.6309 1.1190 2.6071 -4.9047 1.5833

> myModel[2][1] # Single bracket won’t open list item

$residuals

 1 2 3 4 5 6 7 8

-0.8333 0.6547 -0.8571 0.6309 1.1190 2.6071 -4.9047 1.5833

©SAGE Publications

68 A suRvivOR’s Guide tO R

> myModel[[2]][1] # Dble [[]] allow list item access

 1

-0.8333

> myModel$residuals[1] # $ referencing works the same way

 1

-0.8333

You can package things up in a list yourself using the list() com-
mand. Even lists can be included in other lists. The names of the slots in
the list can be attached with the names() command. Then you can even
build stacked descriptions to retrieve elements from specific slots. The fol-
lowing example puts the model output, itself a list, into another list with
some additional information about the model:

> myList = list(1, # List starting with model num (1)

+ myModel, # Then the myModel list

+ "This is a discussion of myModel") # Then some discussion of myModel

> names(myList) = c("ModelNumber", # Create the list names

+ "ModelOutput", "ModelDiscussion")

> myList # Show myList

$ModelNumber

[1] 1

$ModelOutput

Call: lm(formula = myVar2 ~ myVar1)

Coefficients:

(Intercept) myVar1

 3.3214 0.5119

©SAGE Publications

chapter 3 Object types in R 69

$ModelDiscussion

[1] "This is a discussion of myModel"

> myList$ModelOutput$residuals # Residuals from myModel in myList

 1 2 3 4 5 6 7 8

-0.8333 0.6547 -0.8571 0.6309 1.1190 2.6071 -4.9047 1.5833

This example shows how to bind together a new list that includes a preexist-
ing list as one of its elements. We address an element in the list within a list
in the final line with the two(!)-$ construction.

You can remove objects from a list with the unlist() function. But
be forewarned that this will create a character vector with one entry for
each of the things that were in the list. Except for the simplest of lists,
you’ll likely have to do some careful transformations to make anything
useful out of it.

> myList = list(c(1, 2, 3), c("a", "b", "c"), "It's numbers and letters!")

> typeof(myList) # Show object type for myList

[1] "list"

> myList # Print myList

[[1]]

[1] 1 2 3

[[2]]

[1] "a" "b" "c"

[[3]]

[1] "It's numbers and letters!"

> myNotList = unlist(myList) # New object = unlisted myList

> typeof(myNotList) # Show type of new unlisted object

[1] "character"

©SAGE Publications

70 A suRvivOR’s Guide tO R

In this example, we create and then disassemble a list.

 a Few things abOut wOrking with Objects

You can get a list of all of the objects in your current R session with either
the objects() or the ls() command. Neither of these commands
requires an argument, so you just leave the parentheses empty.5

One of the benefits of RStudio is that it shows a list of your current
objects in the upper-right quadrant (see Figure 1.2). You can see what is in
an object by clicking on it.

You can remove an object with the rm(myObject) function. You can
remove all of your objects with rm(list = ls()). We’ll learn about lists
a little later. In the meantime, be a little careful with that one!

5. Keeping track of your objects is another useful feature of the RStudio interface.
Its object window lets you see the objects and display them in a spreadsheet-like
format.

> myNotList # Show my new object

[1] "1" "2" "3"

[4] "a" "b" "c"

[7] "It's numbers and letters!"

> objects() # Show all active objects

[1] "myNumber" "myRandNum" "myVar"

> myVector = 1:10 # Create some objects

> myNewVector = myVector + 3

> myAnimal = "aardvark"

> objects() # List the objects

[1] "myAnimal" "myNewVector" "myVector"

©SAGE Publications

chapter 3 Object types in R 71

In this example, we tell R to remove myVector and then list the objects again. Note
that “character(0)” is R’s clumsy way of telling us that there are no objects left
in the workspace.

If you are using RStudio, you can also remove all objects with the Clear
Workspace option under the Session menu or with the little broom button
above the workspace window on the top right. In the plain R Console,
there is a “remove all objects” option under the Misc menu.

It is important to remember that objects can be overwritten by new
objects with the same name. This is a nice feature when you use it to keep
redundant objects from piling up in your project. It isn’t so nice if you lose
track of your object values because you weren’t aware that R was overwrit-
ing them. Here is a demonstration.

> rm(myVector) # Remove an object

> objects() # List the objects

[1] "myAnimal" "myNewVector"

> rm(list = ls()) # Remove ALL objects

> objects() # List the objects

character(0)

> myNumber = 5 # Assign value 5 to myNumber

> myNumber = 7 # Assign value 7 to myNumber

> myNumber # Show that 7 replaced 5

[1] 7

> myNumber = 5 # Assign value 5 to myNumber

> myNumber = myNumber + 4 # Add 4 to myNumber

> myNumber # Show new value for myNumber

[1] 9

Object attributes

R data objects are defined by a set of attributes. One of the most critical
strategies when you get in trouble is to be sure you understand your

©SAGE Publications

72 A suRvivOR’s Guide tO R

objects. There are, inexplicably, two distinct commands for looking at the
attributes of your objects: attributes() and attr(). They are very
similar but work in slightly different ways. The attributes() function
takes just one argument: the name of the object you want to look at.
The attr() function takes two arguments: (1) the name of the object and
(2) the name of the specific attribute. With the attributes() function,
the specific attributes are appended with the $name approach, for exam-
ple, attributes(myObject)$class.

The attributes(myObject) function is the most straightforward
way to get a complete list of object attributes, while the attr(object,
"attribute") approach might be a little quicker for setting individual
attributes.

> myData = data.frame(cbind(# Create data frame w/2 vectors

+ c(1, 0, 1, 1, 0), # Vector 1

+ c(24, 38, 22, 51, 17))) # Vector 2

> # The attr approach

> attr(myData, "names") = # Set col names to identify vars

+ c("sex", "age")

> attr(myData, "row.names") = # Set row names to identify obs

+ c("Mary", "Mike", "Mia", "Mish", "Mark")

> myData # Display the data frame

 sex age

Mary 1 24

Mike 0 38

Mia 1 22

Mish 1 51

Mark 0 17

> # The rownames/colnames approach

> rownames(myData) = # Add row names

+ c("Mary", "Mike", "Mia", "Mish", "Mark")

> colnames(myData) = c("sex", "age") # Add column names

©SAGE Publications

chapter 3 Object types in R 73

This example shows two ways to set column and row names. Note the use
of quotation marks for the attribute names in the attr() approach.
These approaches can also be used to set the row or column names to be
equal to one of the existing rows or columns. For example,
colnames(myData) = myData[1,] will set the column names to the
values in row 1.

You can erase an object’s attributes individually by using attr(object,
"attribute") = NULL. Alternatively, you can strip out all of the attrib-
utes with attributes(object) = NULL.

Another quick way to see the basic elements of an object is with the
structure function: str(). It will give you a fast overview of what is in an
object and the storage mode of the objects that make it up.

> str(myData) # Show data frame structure

'data.frame': 5 obs. of 2 variables:

$ sex: num 1 0 1 1 0

$ age: num 24 38 22 51 17

Objects and enVirOnments

Before ending the discussion of R data object types, a word needs to be
said about environments. An environment can be thought of as the space
in which objects are defined. This usually won’t be an issue for you, but
it is important to be aware that R objects are stored within a specific envi-
ronment. Most of your work will be in the “global environment,” which is
the overarching environment that is opened when you start R. Functions
usually have their own environment, and thus, objects that are defined or
manipulated within a function aren’t necessarily available in the global
environment.

This finishes our discussion of the basic R data object types: vectors,
matrices, data frames, and lists. Our model, so far, is object types as

©SAGE Publications

74 A suRvivOR’s Guide tO R

containers that hold a group of objects that are characterized by their stor-
age mode. The third element of this approach is object classes, which pass
on more specific information about how an object should be treated.

 r Object cLasses

In addition to the storage mode and data type, most R objects have a class,
which gives R more detailed information about how the object should be
treated. Unlike our short lists of storage modes and basic object types,
there are a very large number of possible classes. Indeed, you can even
create your own classes. (But please don’t!) A variety of R procedures use
the class information to set up different behaviors. If you run a linear
model with the lm()function, the output of that model will be a list. One
of the elements of that list is the class, “lm,” which tells R to deal with that
object as the output of a linear model. The class of any object will be listed
in the attributes()function and can also be accessed directly with the
class()command.

> x = 5 # Create an object

> class(x) # Show object class

[1] "numeric"

> class(mean) # Show class of existing R command

[1] "function"

> class(x) = "my made up class" # Set new custom class for x

> attributes(x) # Show attributes of x

$class

[1] "my made up class"

> str(x) # Show structure of x

Class 'my made up class' num 5

For the more generic commands like summary() or print(), which
are almost always dependent on class information, you can use the
methods() function to tell you which classes it will recognize. Here is a

©SAGE Publications

chapter 3 Object types in R 75

truncated list of the classes for which summary() has a distinct routine
(there are 60 in all).

You can also give methods the class information to see which generic
functions are set up to work with them. For example, here is the list of func-
tions that have a specialized approach to the results of a linear model
(class = lm).

> methods(summary)

 [1] summary.aareg* summary.agnes*

 [3] summary.aov summary.aovlist

 [5] summary.areg.boot summary.aspell*

 [7] summary.cch* summary.clara*

 [9] summary.connection summary.coxph*

[11] summary.coxph.penal* summary.data.frame

> methods(class = lm)

 [1] add1.lm* alias.lm* anova.lm

 [4] attrassign.lm* case.names.lm* confint.lm*

 [7] cooks.distance.lm* deviance.lm* dfbeta.lm*

[10] dfbetas.lm* drop1.lm* dummy.coef.lm*

[13] effects.lm* extractAIC.lm* family.lm*

[16] formula.lm* hatvalues.lm HTML.lm*

[19] influence.lm* kappa.lm labels.lm*

[22] logLik.lm* model.frame.lm model.matrix.lm

[25] nobs.lm* plot.lm predict.lm

[28] print.lm proj.lm* qr.lm*

[31] residuals.lm rstandard.lm rstudent.lm

[34] simulate.lm* summary.lm variable.names.lm*

[37] vcov.lm*

Nonvisible functions are indicated with an asterisk

We don’t need to say much more about classes. They mostly work
quietly in the background and don’t cause too many problems. Most of
what you have to know about objects and most of the more serious

©SAGE Publications

76 A suRvivOR’s Guide tO R

object problems will have to do with the basic object types and with
confusion about the storage modes. This brings us back to our much
delayed discussion of what I have called the two “pseudo storage
modes.”

 the pseudO stOrage mOdes

As indicated above, we need to deal with the complexities of fitting two
other important kinds of objects into our schema: (1) date/time data and
(2) factor data. Date and time values are obviously critical to many kinds
of data projects. So too, “factor” is just the name R uses for categorical data,
which is as common as it is critical.

The conceptually sensible home for both factors and date/time val-
ues is as storage modes. It makes sense to think of both as a character-
istic of a data element, like the logical, numeric, and character storage
modes. We would frequently expect to use dates or factors to fill one of
our data containers. Indeed, we can use the c() function to create what
look and behave like vectors of date/time or factor data, although R’s
is.vector() function won’t officially recognize them as such. They
can be packaged up and worked with as variables in a data frame. You
can put them in a list.

The one container they don’t fit into so well is matrices. If you put
date/time or factor values into a matrix, they will be converted to a
numeric storage mode, losing the critical information that makes date/
time and categorical data distinctive. Mostly, we can work with date/
time and factor values as if they were storage modes. But as we shall
see, and as intimated by the way matrices refuse to acknowledge their
character, dates and factors can cause significant problems if you aren’t
careful.

 date and time as stOrage mOdes

I will spend just a little time on date/time data at this point. I’ve dedicated
all of Chapter 9 to the issues you may confront when working with dates
and times. Date and time values are obviously critically important for many
data projects. Conceptually, the logical place for date and time values in our
objects typology is as a storage mode. Date and time data can be thought
of as individual elements that you would want to keep in a data container;

©SAGE Publications

chapter 3 Object types in R 77

some of your variables are numeric, some are character, and some are dates
or times. It makes the most sense to think of date and time as a distinct
storage mode, like logical, numeric, or character data.

Officially, R does not see dates or times this way. It stores dates as
simple numeric values and then uses the class information to associate
those values with instructions for how they should be interpreted to act and
look like dates or times.

I’ll go into much more detail on this process in Chapter 9. The one
other thing to note now is that there are two kinds of date/time modes:
(1) the Date mode and (2) the POSIX mode. The main difference is that
POSIX values allow measurement down to even fractions of a second,
while the Date mode only measures down to days. And POSIX values are
more amenable to being broken up into component parts (e.g., days, min-
utes, or seconds).

Again, the important thing to keep in the back of your mind is that both
POSIX and Date objects are technically stored as numeric data, with class
and formatting information that translates them from raw numbers into
recognizable date and time information.

Because date and time values are reasonably distinctive, these com-
plexities are less likely to get you into trouble. You usually know when you
are working with dates or times. Once you learn how R deals with them,
as I’ll cover in much more detail in Chapter 9, you should be able to man-
age them pretty well. Factors, I regret to say, can be a little trickier.

FactOrs

Factors are conceptually straightforward. They are just categorical variables.
That means they are variables that can take on a discrete number of values
or levels. They are very important in R because of their role in labeling,
grouping, and sorting data and because of their ability to screw things up
if you don’t realize you are working with them.

As with dates, I think it makes the most conceptual sense to think
of factors as a storage mode. A categorical variable is similar to the
characterization of data as either numeric or character: A “factor”
describes a unit of data that is stored as a categorical variable. This is
not precisely how R sees it, which is why I have labeled this a pseudo
storage mode.

Here is the critical thing: R really sees factors as two (or three) con-
nected vectors (Figure 3.2). The first vector is a set of levels, which is all of

©SAGE Publications

78 A suRvivOR’s Guide tO R

the possible values the factor can take. The second is a set of pointers that
tells R which of the levels to connect to each data point. Suppose we were
categorizing things as made of metal, plastic, or wood. As a factor variable,
this would have a vector of three levels (“metal”, “plastic”, and “wood”) and
a vector of pointers indicating which level to apply to each observation.
The levels vector will be the length of the number of unique levels (three
in this case). The pointer vector will be the length of the number of obser-
vations. Since in our current example there are three different levels, the
pointer vector will have a 1, 2, or 3 for each observation. Problems arise
when you get confused about when R is working with the levels and when
it is working with the pointers. If you use typeof() on a factor, it will
look at the vector of pointers and return “integer.” attributes(), str(),
and is.factor() are, therefore, more reliable tests for figuring out that
you have a factor.

There is a third, optional, vector that is a set of labels to match up to
the levels. The levels attribute is a vector of all the possible values that a
factor variable can take. The labels attribute is a vector of labels corre-
sponding to those levels. When you don’t provide the labels vector, R just

Note: This factor is created with the code: myFactor = factor(c("S", "S",
"L", "L", "L", "S", "S")). The labels are optional. Because the "ordered =
TRUE" option isn’t specified, the levels are simply sorted alphabetically.

Figure 3.2 The Structure of Factor Variables

The vector
you see:

The vectors R sees:

The
Levels
Vector

The
Pointers
Vector

The Labels
Vector

(Optional)

“Small”
“Small”
“Large”
“Large”
“Large”
“Small”
“Small”

L1: “L”
L2: “S”

2
2
1
1
1
2
2

“Large”
“Small”

©SAGE Publications

chapter 3 Object types in R 79

uses the levels as labels. If the names of your levels are self-explanatory,
you don’t need to add the labels vector. If, as in the following example, you
would like to provide more explicit labels, you can include them as an
option in the factor() command, and R will switch to using them instead
of the original levels.

> c2ltr = c("FR", "UK", "SW", # Create a variable with 2 letter

+ "NK", "SO") # country abbreviations

> cname = c("France", "U.K.", "Sweden", # Create a variable with

+ "North Korea", "Somalia") # country names

> country = c("UK", "SW", "FR", # Create a variable w/country codes

+ "SO", "NK")

> regime = c(rep("dem", 3), # and democratic status

+ rep("nondem", 2))

> nations.df = # Join into a data frame

+ data.frame(regime, country)

> nations.df # Print the new data frame

 regime country

1 dem UK

2 dem SW

3 dem FR

4 nondem SO

5 nondem NK

> #now add labels

> nations.df$country = # Create a country factor

+ factor(nations.df$country,

+ levels = c2ltr, # Connecting 2-letter codes

+ labels = cname) # with country names

> nations.df # Print data frame

 regime country

1 dem U.K.

2 dem Sweden

3 dem France

4 nondem Somalia

5 nondem North Korea

©SAGE Publications

80 A suRvivOR’s Guide tO R

This example shows the application of factor labels to a data frame.

As shown in Figure 3.2, R’s default behavior is to sort factors alpha-
betically. In that case, we would probably rather list “Small” before “Large.”
We can exercise more control over how a factor gets set up by using the
levels= and labels= options with the factor() command. The fol-
lowing example shows these procedures. Note in the second of these
examples how the labels= option is dependent on the preexisting order
of the levels and how it changes the levels themselves.

> # Set up the factor from figure 3.2

> myFactor = factor(c("S", "S", "L", "L", "L", "S", "S"))

> str(myFactor) # Show factor structure

Factor w/2 levels "L","S": 2 2 1 1 1 2 2

> # Change the ordering of the levels

> myFactor = factor(myFactor, # Use values from current factor

+ levels = c("S", "L")) # Specify the levels

> str(myFactor) # Show factor structure

Factor w/2 levels "S","L": 1 1 2 2 2 1 1

> myFactor = factor(myFactor, # Use values from current factor

+ labels = c("Small", "Large")) # Specify labels

> str(myFactor) # Show factor structure

Factor w/2 levels "Small","Large": 1 1 2 2 2 1 1

We can use the same factor() approach to add new levels to the
factor. Or we can use the levels() function to do it more directly. Note
in the second case how the levels() function can be used both to dis-
play and to modify the levels of the factor.

©SAGE Publications

chapter 3 Object types in R 81

> # Add additional level

> myFactor = factor(myFactor, # Use values from current factor

+ levels = # Specify the levels w/addition

+ c("Small", "Medium", "Large"))

> str(myFactor) # Show factor structure

Factor w/3 levels "Small","Medium",..: 1 1 3 3 3 1 1

> levels(myFactor) = # Use levels() to add new level

+ c(levels(myFactor), "X-Large") # Combine old levels with new

> summary(myFactor) # Summarize myFactor w/new levels

 Small Medium Large X-Large

 4 0 3 0

Unfortunately, adding new observations to a factor is not as straightfor-
ward. With concatenation, R just tries to add to the pointers vector, and in
so doing, it changes the storage mode from factor to the storage mode of
whatever you are trying to add.

> myFactor2 = c(myFactor, "Medium") # Can’t concatenate w/new values

> myFactor2 # Show result

[1] "1" "1" "3" "3" "3" "1" "1" "Medium"

> myFactor2 = c(myFactor, 2) # Can add to pointer vector

> myFactor2 # But, dumps us out of factor mode

[1] 1 1 3 3 3 1 1 2

> is.factor(myFactor2)

[1] FALSE

©SAGE Publications

82 A suRvivOR’s Guide tO R

The odd trick here is that the data frame object type is smart enough
to know how to add things to a factor when you use the row bind
(rbind()) tool (we’ll talk more about that in Chapters 4 and 10). This is
an example of the class attribute working quietly and efficiently in the
background. This data frame ability is a very good thing, since it means that
factor data can be correctly handled when you are joining together more
complex data sets. Here, it is in action.

> myDF = data.frame(myFactor) # Put the factor into a data frame

> myDF = rbind(myDF, "Medium", "Small") # Add 2 new observations

> myDF # Show result

 myFactor

1 Small

2 Small

3 Large

4 Large

5 Large

6 Small

7 Small

8 Medium

9 Small

> myFactor2 = myDF$myFactor # Return to vector status

> myFactor2 # Confirm result

[1] Small Small Large Large Large Small Small Medium Small

Levels: Small Medium Large

The levels() command can also be used to combine levels. Just
duplicate the level names where you want to merge previously distinct
levels, as in the following example:

> myFactor2 # Display the factor

[1] Small Small Large Large Large Small Small Medium Small

Levels: Small Medium Large

> levels(myFactor2) # Show the current levels

©SAGE Publications

chapter 3 Object types in R 83

Finally, we should note that as intimated in Table 3.2, there are two
kinds of factors: ordered and unordered. An ordered factor provides R with
an explicit ordering for the different factor levels. To tell R to interpret your
factor as ordered, you just include the ordered = TRUE option when
setting up the factor, as shown in the following example:

This regular sort is simply alphabetical.

[1] "Small" "Medium" "Large"

> levels(myFactor2) = # Modify the levels to combine

+ c("Small", "Large", "Large") # Medium with Large.

> myFactor2 # Show the new version

[1] Small Small Large Large Large Small Small Large Small

Levels: Small Large

> mySize = c("Small", "Medium", # Create variable of all sizes

+ "Large", "X-Large")

> sort(mySize) # Sort (alphabetical default)

[1] "Large" "Medium" "Small" "X-Large"

> mySize = factor(mySize, # Set as factor

+ levels = mySize, # Set factor levels from variable

+ ordered = T) # Make it an ordered factor

> sort(mySize) # Sort (now ordered)

[1] Small Medium Large X-Large

Levels: Small < Medium < Large < X-Large

When we set it up as a factor and use the levels= option, then R can sort in the
desired order.

> myData = c("Small", "Large", # Here is some data w/sizes

+ "Small", "X-Large", "Medium")

©SAGE Publications

84 A suRvivOR’s Guide tO R

In this last example, we use our first factor as an ordered set of levels for sorting
other variables.

You can already specify the order in which things are displayed by set-
ting up the levels= option. There is a more important substantive distinc-
tion between ordered and unordered factors in that some basic statistical
procedures, for example, lm() and anova(), make use of the ordering
information and treat the factor quite differently (this gets into the statistics
of contrasts).6 We’ll get into ordering and sorting of objects in much more
detail in Chapter 6.

I’m sure, you are now thinking that these factors seem pretty useful and
are wondering what the big deal is. And indeed, they are very useful. But
here is why factors so often cause troubles: The default behavior in R is to
turn character variables into factors whenever you import them into R or
incorporate them into a data frame.7 This makes it much more likely that
you’ll be caught unawares that what you think are characters R thinks are
factors. There is a significant danger of getting confused between the factor,
numeric, and character storage modes.

> sort(myData) # Sort (alphabetical default)

[1] "Large" "Medium" "Small" "Small" "X-Large"

> myData = factor(myData, # Make it a factor

+ levels = mySize) # Use levels from mySize

> sort(myData) # Sort-now based on factor levels

[1] Small Small Medium Large X-Large

Levels: Small Medium Large X-Large

6. You may also encounter situations where you need to specify the first element
in a factor to serve as the reference level. You can control this with the relevel()
command setting the ref= option to the number of the level you want to serve as
the reference level.

7. R does this because it is often much more efficient to store string variables as
factors. In Appendix A, I show how to change this default behavior by using the
stringsAsFactors option. This approach, however, comes at some cost both
in efficiency and in reproducibility.

©SAGE Publications

chapter 3 Object types in R 85

cOercing stOrage mOdes

Before going further into the nature of the confusion that can arise between
the factor, character, and numeric storage modes, it may be reassuring to
say a little bit about our ability to coerce storage modes. Sometimes, you
will want to force an object to retain its storage mode when incorporating
it into a data frame. For example, you may want a set of character variables
to retain their character mode rather than be forced into factors. To pre-
serve a variable’s mode, use the I() function. You can also use the as.
modifier to force a type of object. In the following example, I create a vec-
tor that is turned into a vector of character elements because of the one
clear bit of character data. You can see that prevents us from doing math-
ematical operations. I then force the vector to be numeric, which requires
the character data to be left out as a missing value (NA).

> myVector = c(1, 15, 7, "Smith") # Set up a vector

> typeof(myVector) # Show type for vector

[1] "character"

> myVector[2] + 1 # Try math w/2nd element in vector

Error in myVector[2] + 1 : non-numeric argument to binary operator>

> typeof(myVector[2]) # Type for 2nd element in vector

[1] "character"

> myVector = as.numeric(myVector) # Vector forced to numeric

> myVector # Print vector

[1] 1 15 7 NA

> typeof(myVector) # Type for forced numeric vector

[1] "double"

In this example, we see that if any element in the vector is nonnumeric, R converts
the whole vector to nonnumeric. If we force the vector to be numeric, the one non-
numeric element is turned to a missing value (NA). R will give us a warning that
it was forced to create an NA value.

I should also mention here the asis() modifier. This modifies an
object type so that it isn’t transformed by certain operations. Most important,

©SAGE Publications

86 A suRvivOR’s Guide tO R

as we’ll discuss in the next chapter, it can be used to prevent data frames
from converting character or numeric data to factor data. This is part of a
larger source of confusion that we need to address presently.

 the curse OF number/character/FactOr cOnFusiOn

One of the most confusing (and often frustrating) experiences is when you
have character data that look like numbers. The character “7” is different
from the number 7. If for some reason R has interpreted a variable as a set
of characters, rather than as numbers, you need to be careful to transform
it back to its numeric values before performing operations. Suppose you
import the following data from a CSV (comma separated) file: 7, 8, missing,
8. R will put this into a vector. But recall that vectors can only hold things
that are all of the same storage mode. Because of the word missing, R will
force all of the data to be character data rather than letting the 7s and 8s
be numbers.

> myData = c(7, 8, "missing", 8) # Here we simulate the csv input

> sum(myData) # If we sum myData we get an error

Error in sum(myData) : invalid ‘type’ (character) of argument

> myData[1] # We see the value is a character

[1] "7"

> myData[1] + 2 # Errors w/numeric operations

Error in myData[1] + 2 : non-numeric argument to binary operator

> as.numeric(myData[1]) # Fix with transform to numeric

[1] 7

> as.numeric(myData[1]) + 2 # Now we can do numeric operation

[1] 9

Watch for the quotation marks, which are a dead giveaway that R thinks some-
thing is a character rather than a number.

©SAGE Publications

chapter 3 Object types in R 87

As shown in this example, you have to convert the character variable
to numeric to use it as a number.

This problem becomes even more acute when working with factors.
When R imports character data or incorporates them into a data frame,
its default behavior is to convert it to a factor. R keeps track of factors as
a set of values (the levels) and a set of pointers to those values. If you
have a data set of kangaroos and koalas, the kangaroo/koala factor will
have just two levels, “kangaroo” (1) and “koala” (2). The values in the
factor itself will just be 1s or 2s to point to either “kangaroo” or “koala.”
Here is an example:

> animal = (c(rep("kangas", 4), # Create a character variable

+ rep("koalas", 5)))

> myData = data.frame(animal) # Putting the data in a data frame

> levels(myData$animal) # converts character to factor

[1] "kangas" "koalas"

> aninum = as.numeric(myData$animal) # Create a numeric version

> myData = cbind(myData, aninum) # Add that to the data frame

> myData # Show results

 animal aninum

1 kangas 1

2 kangas 1

3 kangas 1

4 kangas 1

5 koalas 2

6 koalas 2

7 koalas 2

8 koalas 2

9 koalas 2

The levels() function shows us that the animal variable has been converted to
a factor with two levels.

©SAGE Publications

88 A suRvivOR’s Guide tO R

This makes reasonable sense. The two levels of the factor are given the
numbers 1 and 2. These are the pointers to the two levels of the factor. The
problem comes if you have what you think are numbers but what R thinks
are factor levels, as in the following example:

> myVar = (c(rep(7, 4), # Create variable w/"missing"

+ "missing", rep(8, 5))) # value which forces to character

> myData = data.frame(myVar) # & becomes factor in data frame

> levels(myData$myVar) # Show levels of unwanted factor

[1] "7" "8" "missing"

> myVar2 = as.numeric(myData$myVar) # Convert to numeric

> myData = cbind(myData, myVar2) # Add to data frame

> myData # Show data

 myVar myVar2

1 7 1

2 7 1

3 7 1

4 7 1

5 missing 3

6 8 2

7 8 2

8 8 2

9 8 2

10 8 2

You might think these are numbers, but R treats them as factors because of the
character value in observation 5.

As you can see, because of the one value with character data, R coerced
all the data to character data. The data became a factor when placed into a
data frame.8 The factor has three levels: 7, 8, and “missing”. When converted
to numeric data, it is the pointers to those values (1, 2, and 3), rather than
the interpreted values, that are used. If you try to do numeric operations on
the as.numeric(myVar) values, you will be sorely disappointed.

8. If you are aware of the potential problem, you can prevent this transformation
with the I() function for individual variables or the stringsAsFactors = F
option for data files. See Appendix A for instructions on the use of this option.

©SAGE Publications

chapter 3 Object types in R 89

To convert factors to numeric, you cannot use as.numeric(myFactor).
That will just give you the values of the pointers. R Help (look up
?as.factor to find this) recommends the following, somewhat cumber-
some, approach:

as.numeric(levels(myFactor))[myFactor]

It is a little less efficient, but I think it a bit more intuitive to convert
the factor to a character object and then to numeric. You can do this in two
steps to keep everything very clear:

myTemp = as.character(myFactor)

myNum = as.numeric(myTemp)

Or you can put it all in one step:

myNum = as.numeric(as.character(myFactor))

Now that we have squared away the number/factor confusion, it’s time
to face up to the factor/character confusion. Here is where we really enter
the twilight zone: You have to be careful about the distinction between
factor and character variables.

Let’s go back to our koalas and kangas data.

animal = (c(rep("kangas", 4), rep("koalas", 5)))

myData = data.frame(animal)

Let’s find out what kinds of animals are in observation 4 and then
change them to the other type.

> myData$animal[4] # Let’s take a look at obs 4

[1] kangas

Levels: kangas koalas

©SAGE Publications

90 A suRvivOR’s Guide tO R

Okay, no problem. Now let’s try a different change.

Yikes! No hippopotami allowed! It isn’t that R has some kind of marsu-
pial filter. It’s just that it kindly converted our character variable into a factor
when we created the data frame. Once a factor is created, it can only deal
with its existing levels. We can get around this in at least three ways (actually,
since this is R, there are probably 47 ways around, but we’ll stick to these 3).

First, we could have forced R to keep the animal variable as a character
variable when setting up the data frame by using the I() function.

> myData$animal[4] = "koalas" # Now we’ll change it to "koalas"

> myData$animal[4] # Another look at num 4

[1] koalas

Levels: kangas koalas

> myData$animal[4] = "hippopotami"

Warning message:

In `[<-.factor`(`*tmp*`, 4, value = "hippopotami") :

 invalid factor level, NAs generated

> myData = data.frame(I(animal))

> typeof(my.data$animal) # confirm that animal is a character
variable

[1] "character"

> myData$animal[4]

[1] "kangas"

> myData$animal[4] = "hippopotami"

> myData$animal[4]

[1] "hippopotami"

Second, we could allow R to make the conversion to a factor, and then
we could add another level to the factor.

©SAGE Publications

chapter 3 Object types in R 91

Note: This is a bit misleading. This is a factor! So here R is just telling us about the
vector of pointers.

> animal = (c(rep("kangas", 4), rep("koalas", 5)))

> myData = data.frame(animal) # Put the data in a data frame

> typeof(myData$animal) # which converts it to a factor

[1] "integer"

> myData$animal = factor(myData$animal, # We’ll add a new level to the mix

+ levels = # with the levels option

+ c(levels(myData$animal), # Combining old levels

+ "hippopotami")) # with our new entry

> myData$animal[4] # Let’s look at animal[4]

[1] kangas

Levels: kangas koalas hippopotami

> myData$animal[4] = "hippopotami" # We can add "hippopotami" because

> myData$animal[4] # that is included in the factor

[1] hippopotami

Levels: kangas koalas hippopotami

Finally, we could just make the conversions ourselves.

> animal = (c(rep("kangas", 4), rep("koalas", 5)))

> myData = data.frame(animal) # Putting the data in a data frame

> typeof(myData$animal) # Check on the data type

[1] "integer"

> myData$animal = # Force variable back to character

+ as.character(myData$animal)

> typeof(myData$animal) # Recheck the type -- that works!

[1] "character"

©SAGE Publications

92 A suRvivOR’s Guide tO R

Which of these approaches you choose will depend on your patience and
on whether you want the variable to end up as a factor or a character vector.

 cOncLusiOn

I am sorry that we have had to spend so long disentangling R objects. Objects
are at the core of how R works; building this foundation has been critical for
everything that will follow. At the end of the day, the schema I have offered
here, built on a mostly straightforward distinction between data object types,
storage modes, and object classes, will carry you a very long way in the R
world. This approach isn’t quite regulation, but until you are ready to inte-
grate your work in R with other high-level computer languages or need to
worry about microsecond differences in efficiency, it will get you by.8

Every R data object, then, can be characterized by its type, its storage
mode, and any class information that might be attached to it. You need only
worry about the four data object types: vectors, matrices, data frames, and
lists. The data stored within these containers will be characterized by one of
five storage modes: logical, numeric, character, date/time, or factor. The last
two of these are what I have called “pseudo storage modes.” You have to be
a little more careful when you encounter date/time or factor values. In Chap-
ter 9, we’ll get into the idiosyncrasies of date and time data. In the meantime,
be particularly aware of where R has taken its own initiative to convert
between characters, numbers, and factors without your explicit permission.
Object classes shouldn’t cause you much grief. When things aren’t being
displayed or processed as you would expect, you might use class() to
check to be sure there isn’t something amiss in the class information.

Data object types, storage modes, and classes. You’ve got this. And now
we are ready to move on to the process of getting real data into R. Someday
shortly beyond that, we’ll get to the fun stuff.

> myData$animal[4] # Show observation 4 value

[1] "kangas"

> myData$animal[4] = "hippopotami" # Now make the change to obs 4

> myData$animal[4]

[1] "hippopotami"

8. It is interesting to note that official R ends up in this same place for reading in
data. The read family of commands includes a colClasses= option, which lumps
together date and factor variables with the more traditional logical, numeric, and
character storage modes.

©SAGE Publications

