
330

In this chapter and the next, we finally turn to the more interesting
techniques for customizing R graphics. In this chapter, we’ll work with
all of the various things that you can do with text. And in Chapter 15,

we’ll turn to the variety of shape elements that can be added to a plot. Our
work in this chapter has to begin with an unfortunate detour into fonts. But
then, we will be able to work on using and enhancing the several formal
text elements, such as legends, axes, and titles, as well as the more informal
placement of text anywhere in a figure. We have seen a lot of text already
in the figures of this book, but here is where we will really learn to exercise
full control over these important graphics elements.

 Adding TexT

There are three main ways to add text to a plot. The first, and most
straightforward, is to add or modify text in the preordained positions:
legends, axes, and titles. The second is to utilize text in the same manner
as points, that is, to place it systematically on the plot based on x and y
data values. The third is the ad hoc placement of text at particular places.
These second two are actually the same process, the real distinction being
whether you are utilizing data to automate text placement or are adding

ChApTer 14

r grAphics iii
The Fun sTuFF—TexT

©SAGE Publications

chApTer 14 Plotting text 331

particular text to a particular spot on the plot. To get us started, Figure 14.1
shows the placement of a variety of regular and ad hoc text.

Figure 14.1 Adding Text to the Plot

myV1 = c(1, 2, 3, 4, 5) # Set up some temporary data

myV2 = c(5, 7, 3, 9, 8)

plot(myV1, myV2, # Plot the data

 ylim = c(0, 10), # Set range for y axis

 type = "b", # Set line type connecting dots

 main = "A bold title on top", # Add a title at the top

 font.main = 2, # Bold for main title

 cex.main = 2, # Set font size for the main title

 sub = "Subtitle at the bottom", # Put a subtitle on the bottom

 cex.sub = .75, # Set font size for the subtitle

 col.sub = "darkgray", # Set color for subtitle

 xlab = "This is the x axis", # Add text for the x axis

 ylab = "This is the y axis", # Add text for the y axis

 font.lab = 3, # Set axis label font to italic

 col.lab = "black") # Set color for axis labels

©SAGE Publications

332 A Survivor’S guide to r

A legend

legend("bottomright", # Location of legend

 inset = .025, # Distance from edge of plot region

 legend = c("my x1 variable", # Legend Text

 "my x2 variable"),

 col = c("black", "darkgray"), # Legend Element Colors

 pch = c(1, 22), # Legend Element Styles

 title = "A Legend") # Legend title

Some ad hoc text

text(x = 2.5, y = 5, # Add some ad hoc text at x=2 y=5

 labels = "Some ad hoc text", # The text to add

 srt = 45, # Rotate 90 degrees

 family = "mono", # Use mono-spaced font

 col = "darkgray") # Set color to dark green

Ad hoc text in margin

par(usr = c(0, 1, 0, 1)) # Set usr parameters to 0,1 space

text(x = 1.05, y = .5, # Place text just outside right border

 labels = "Ad hoc text in margin", # Text to use

 xpd = TRUE, # Allow text outside of border

 font = 3, # Italic font

 cex = 1.25, # Font size to 1.25

 srt = 270, # Rotate string 270 degrees

 col = gray(.75)) # Set color to gray .75

I know all this does look fun, but before we get too far along with the
text commands, we’ve got to spend a little time thinking about fonts.

 seTTing up A FonT

Fonts. Let me just say that if you really aren’t all that into fonts this would
be a good section to skip. You will go through the rest of your life in
blissful ignorance and be a happier person for it. The unpleasant reality is
that R doesn’t deal with fonts very well.1 It isn’t entirely R’s fault, as fonts

1. The extrafont and Cairo packages can help with this. See Appendix C.

©SAGE Publications

chApTer 14 Plotting text 333

are complicated by the idiosyncrasies of different output devices. Since
you’ve come with me this far, we’ll look at a few ways to make it a little
less painful.

The Built-In Fonts

The first and easiest approach is to simply work with the basic built-
in fonts and leave it at that. There are three built-in font mappings: a
sans-serif font (the default), a serif font, and a mono-spaced font. Each
of these, in turn, can be set as plain (the default), bold, italic, or bold
italic.

To choose among the different font faces, use the family= parame-
ter, where the choices are "mono", "serif", or "sans". Then, select
normal, bold, and so on, with the font= parameter, using 1 for plain, 2
for bold, 3 for italic, or 4 for bold italic. Figure 14.2 shows these options
at work. At the risk of getting a little ahead of ourselves here, you can
select different font= values for the title (font.main=), for the axes
(font.axis=), for the axis labels (font.lab=), and for the subtitles
(font.sub=).

Figure 14.2 Font Families and Styles

©SAGE Publications

334 A Survivor’S guide to r

The final plot of Figure 14.2 shows the use of different font styles and
sizes in a single plot. You cannot select different font families for these dif-
ferent elements within a single plot()command. If you want to go there,
the easiest approach is to overlay these other elements in their own
title() commands. You can see an example of this approach in Figure
14.5. In just a moment, we’ll also look at getting into editing the Rdevga file
to achieve that result.

Another quick approach to nab a few more font varieties is to use the
PDF device as discussed in Chapter 13. While this adds a few nice fonts to
the repertoire, you do have to be careful about using the same code to
output to other devices with different font mappings. Usually in that case,
R will just pretend to have no clue what you are talking about and will
output everything in the default sans-serif font.

par(mfcol = c(2, 2)) # Set 2x2 grid of plots

plot(myV1, myV2, type = "b", # A simple plot

 main = "Family = 'sans'", # A title

 sub = "The default sans-serif font", # A subtitle

 family = "sans") # Set font family to sans

plot(myV1, myV2, type = "o", # A simple plot

 main = "Family = 'serif'", # A title

 sub = "The serif font", # A sub-title

 family = "serif") # Set font family to serif

plot(myV1, myV2, type = "l", # A simple plot

 main = "Family = 'mono'", # A title

 sub = "The mono-spaced font", # A sub-title

 family = "mono") # Set font family to mono

plot(myV1, myV2, type = "p", # A simple plot

 main = "Variation in font styles", # A title

 sub = "Same font family, different styles and sizes",

 family = "serif", # Set font family to serif

 font.main = 4, cex.main = 1.75, # Title in larger bold italic

 font.axis = 2, cex.axis = .75, # Axis fonts small but bold

 font.sub = 3, cex.sub = .6, # Subtitle fonts in italic & larger

 font.lab = 1, cex.lab = 1) # Axis labels plain & default size

©SAGE Publications

chApTer 14 Plotting text 335

Device dependency, alas, is the reality of the current R font world. If
you move beyond the default serif, mono, and sans fonts, you will have to
deal with device dependency. That is, your plot will look different if you
run it on different devices. This can even be a problem with the basic fonts
inasmuch as the Mac, Linux, and Windows environments use slightly dif-
ferent fonts for their defaults.

The Font-Mapping Approach

Once you accept that your code is likely to be device dependent, you’ll
have a lot more options. In the Apple Mac world, using the Cairo device
output can get you access to a plethora of installed fonts. The Windows
world, as so often, isn’t quite as straightforward.2 But one reasonably easy
way to get to the other available fonts is to temporarily map the built-in
fonts to other fonts. You can see the current windows mappings with the
windowsFonts() command. Here it is in action:

The trick is that you can also use this command to remap any of
these fonts. In Figure 14.3, we’ll switch the sans-serif font to the much
maligned Comic Sans font and the serif font to the preposterous
Blackadder ITC font.

2. The Cairo package can add this functionality to Windows computers. See Appendix C.

> windowsFonts() # Show windows font mappings

$serif

[1] "TT Times New Roman"

$sans

[1] "TT Arial"

$mono

[1] "TT Courier New"

par(mfcol = c(2, 1)) # Set up 2 plots vertically

windowsFonts(# Reassign the sans font

©SAGE Publications

336 A Survivor’S guide to r

 sans = "TT Comic Sans MS") # to Comic Sans

plot(myV1, myV2, type = "b", # A simple plot

 main = "Some Comic Sans Action!", # A Title

 family = "sans") # Font family for plot

windowsFonts(# Reassign the serif font

 serif = "TT Blackadder ITC") # to Blackadder

plot(myV1, myV2, type = "b", # A simple plot

 main =

 "Please don’t use this font!", # A title for the plot

 family = "serif") # Font family for plot

windowsFonts(sans = "TT Arial") # Reset these fonts back to defaults

windowsFonts(serif = "TT Times New Roman")

Figure 14.3 Changing Fonts With windowsFonts()

©SAGE Publications

chApTer 14 Plotting text 337

The Rdevga Approach to Font Mapping

Finally, a somewhat ugly work-around for Windows is that you can
add font families into R’s DNA by editing the Rdevga file.3 Find the Rdevga
file in R’s “etc” directory, and then following the simple pattern you’ll see
there, add your desired font family to the end of the list. Restart R. You
access these fonts (here’s, the ugly part) by using one of the font=
options and referencing the line number (not counting the blank lines and
comments). So not only is this not reproducible code for other people’s
computers; it cannot even be understood without heavy commenting or
reference to the specific custom Rdevga file. The one bit of compensation
for this approach is that you can mix fonts in a single plot() statement,
as in Figure 14.4.4

3. Remember to make a backup copy first, and also note my mention of the extra-
font package and the Cairo package as other approaches to this issue.

4. If you have a set of signature fonts that you use all the time, you could set
up variables to map those font line numbers, for example, Century.Gothic.
Bold = 15. Then, your code could read something sensible like font.main =
Century.Gothic.Bold. That won’t solve the reproducibility issue, but at least it
makes the code more interpretable.

Figure 14.4 The Rdevga Method Under Windows

Note: Directly addressing the Rdevga font table allows you to add additional fonts
and to mix fonts in a single plot() statement.

©SAGE Publications

338 A Survivor’S guide to r

For this example, I have added a line to the Rdevga file setting up Century
Gothic bold as a font. That line is the 15th line in the Rdevga file (not
including blank lines and comments), so we reference it as number 15.
Courier italic and Times bold were already in the Rdevga file on lines 12 and
7, respectively.

Font Size and Rotation

Once you have the font families and styles you are looking for, you
can adjust the size, color, and rotation of fonts. The font size is set with
the cex= option. When the cex setting is used in a plot() statement,
it includes an indicator for the element that it applies to, as in the code
for Figure 14.1. The size of the font for the main title will be set with
cex.main=, the subtitle with cex.sub=, and so on.

The cex= setting sets the size of fonts (and some other objects) relative
to the default size for the device or the size you set when you set up the
device. If, for example, you are outputting a PNG file and set the font size
to 14pt, then the cex= setting will be relative to that 14pt font size: 0.5 will
be 7pt, 1.5 will be 21pt, 2 will be 28pt, and so on.

Text color is set with the col= option. We’ll look at that in much
more detail in Chapter 15. For now, it will suffice to work with a few
color names that are enclosed in quotation marks. (There are actually
657 of these, the complete list of which can be displayed with the
colors() command.)

Text can be rotated in two different ways. Text strings are normally
rotated with the string rotation option, srt=. The argument for this is a
number between 0 and 360, representing the degrees of counterclockwise
rotation. Rotation of the axis-label text works with the las= option. las
takes on a value between 0 and 3. las = 0 puts the labels parallel to the
axis (the default), las = 1 forces the labels to be horizontal, las = 2

plot(myV1, myV2, type = "b", # A simple plot

 main = "The Rdevga method", # A Title

 font.main = 15, # This should be Century Gothic bold

 font.lab = 12, # This should be Courier italic

 font.axis = 7) # This should be Times bold

©SAGE Publications

chApTer 14 Plotting text 339

puts the labels perpendicular to the axis, and las = 3 makes the labels
vertical.

Individual letters can sometimes be rotated with the crt= option. As
with string rotation (srt=), this is measured in degrees of rotation. This
setting is a little more context specific. It works with some devices but not
others, and the R help warns that it may not work in increments of other
than 90 degrees.

You can see variations in font size, color, and rotation at work in
Figure 14.1, as well as in many of the other plots in this chapter.

Now that we have a handle on some of the intricacies of fonts, we can
really turn to putting words down on the page. We’ll start with the more
formal text categories—titles, legends, and axes—and then will look at
placing ad hoc text elements.

TiTles And subTiTles

Titles and subtitles can be either added from within the plot() command
or called separately with the title() function. It’s pretty simple. Use
main = "my Title" for the title at the top of the plot and sub = "my
Subtitle" for the subtitle at the bottom of the plot. You can also use a
character variable instead of putting the text in quotation marks.

myTitle = "My Nice Title" # Create a txt variable with title

plot(myX, myY, main = myTitle) # Plot using txt variable title

As discussed in the section on fonts, choose between normal, bold,
italic, and bold italic font styles with font.main= and font.sub=. The
values 1, 2, 3, and 4 select among those options, respectively. The font sizes
are controlled with cex.main= and cex.sub=. The cex= option is
relative to the default size. So 1 is the default size, 0.5 is half the default
size, and 2 is twice the default size, and so on. adj= places the title at the
left (0), center (.5), or right (1) of the plot. adj= cannot distinguish
between titles, subtitles, and labels. If you want to have different values for
those different elements, you’ll need to use separate title() commands,
as shown in Figure 14.5.

©SAGE Publications

340 A Survivor’S guide to r

Figure 14.5 Titles and Subtitles

plot(myV1, myV2, type = "l", # A simple plot

 main = "Here is the title", # The main title

 family = "serif", # Use serif family font

 font.main = 2, # Set title font to bold

 cex.main = 3, # Set title font size to double

 col.main = "darkgray", # Set title to dark gray

 xlab = NA, ylab = NA) # Supress axis labels

title(# Put subtitle on plot

 sub = "This is the subtitle", # A subtitle

 adj = 1, # Put it on right side

 family = "mono", # Use mono-spaced font

 font.sub = 2, # Use bold for subtitle

 cex.sub = 1.5, # Subtitle font size = 1.5

 col.sub = "black") # Subtitle color

title(# Put X-axis label on plot

 xlab = "This is the x-axis label", # X-axis label text

 family = "sans", # Use sans-serif font

 font.lab = 3, # Use italic for x axis label

 cex.lab = 1.25, # X-axis label font size

 col.lab = "darkgray") # X-axis label color

©SAGE Publications

chApTer 14 Plotting text 341

While main= and sub= are pretty straightforward, you do not have to
live with the constraints of the title and subtitle processes. As we discussed
at the beginning of the chapter, you can also just use the text() com-
mand to place your title or subtitle text with even more flexibility.

There is also an mtext() command, which can also be used for plac-
ing text in the margins. mtext() places text by identifying the side of the
plot and the number of lines into the margin. I’m not a big fan of mtext(),
since it doesn’t allow for rotation and the same thing can be accomplished
with the regular text() command by using relative coordinates and allow-
ing text to be written outside the plot area. Set par(usr = c(0, 1, 0, 1))
and then use the xpd = TRUE option in the text() command. See
Figure 14.1 for an example of this (the text in the right-side margin).

creATing A legend

Many plots will require a legend to be clear. You could do this entirely with
shape and text elements, but that would be exceedingly tedious. Fortunately,
R is set up to do this relatively painlessly while giving you reasonable
control over the details.

The legend() command is issued after the plot is created. It has
three essential arguments. The first locates your legend with the short-
hand "top", "bottom", "topleft", "topright", "bottomleft",
"bottomright", and "center" options. The second is the fill colors,
line types, or symbol styles to match the plot elements (e.g., fill =
c("red", "blue"), lty = c(1, 2), or pch = c(16, 22)). If
you use fill=, R creates little boxes filled with the appropriate colors.
If you use lty=, you’ll get short samples of the specified types of lines.
If you use pch=, you will get copies of the specified symbols (the
pt.cex= option changes the size of the point symbols). The third argu-
ment is the text you want for each element (legend = c("myVar1",
"myVar2")). As you can see in the following examples, the fill and text

title(# Put Y-axis label on plot

 ylab = "y is here", # Y-axis label text

 family = "serif", # Use serif font

 font.lab = 2, # Use bold for y axis label

 cex.lab = 1.25, # Y-axis font size = 1.25

 col.lab = "darkgray", # Y-axis label color

 las = 2)

©SAGE Publications

342 A Survivor’S guide to r

or line-type arguments are vectors with one value for each element you
wish to identify in your plot.

As you will have no doubt already come to expect, there are many
additional parameters of control for a legend. help(legend) will get you
the full list. Here are a few of the most useful.

If you place your legend with one of the keywords ("top", "bottom",
"topleft", "topright", "bottomleft", "bottomright", or
"center"), you can specify some distance from the edge of the plot
region with the inset= option. The inset distance is based on a percent-
age of the plot region, so inset =.05 will place the legend with 5% of
the plot region as a margin between the legend box and the edge of the
plot (see Legend 1 in Figure 14.6).

While the legend box can be automatically created with just one point,
you can also provide two points to define the upper-left and lower-right
corners of the legend box using x= and y=. If, for example, your x-axis
values are years from 1900 to 2000, and your y-axis goes from 0 to 100,
then x = c(1900, 1950), y = c(20, 0) would put a legend box
starting in the lower-left-hand corner and covering half the width of the
plot. You can use locator() to help figure out the right coordinates for
positioning your legend.

Sometimes it is easier to think about the coordinates relative to the plot
area. This can be a helpful approach when you are mass-producing plots
with different coordinate systems. I also find this approach a little easier for
placing a legend box at consistent distances from the top and side borders.
You place a legend relative to the plot area by changing the usr= param-
eter, as discussed in Chapter 13, to the default c(0, 1, 0, 1) coordinate
system: par(usr = c(0, 1, 0, 1)).

xjust= and yjust= determine where the legend box is placed rela-
tive to a set of single x=, y= coordinates. For xjust=, 0 is left justified,
1 is right justified, and 0.5 is centered. For yjust=, 0 is bottom justified, 1
is top justified, and 0.5 is centered.

box.lty= allows you to change the style for the box around the leg-
end. box.lwd= and box.col= allow changing the width and color of the
box border (see Legend 3 in Figure 14.6). bg= changes the color of the
background in the legend box. bty="n" will suppress the box altogether.

title= adds a title to your legend box. As usual, you can use cex= to
change the size of the text. On the other hand, you cannot change the title
font style or size independently of the other text in the legend box. This can
be an irritation. A work-around is to do the same legend twice: once with
the title set the way you want it and once with the other elements set their
way. You’ll need to do the title first and set the undesired elements to the
background color in order to leave them out. You can see an example of

©SAGE Publications

chApTer 14 Plotting text 343

this approach in Legend 3 in Figure 14.6. Getting too adventuresome in this
regard can lead to troubles with R’s fitting the legend box correctly. You can
either leave the legend box off or turn it off and replace it with a custom-
fitted box using the rect()command.

If you are working with a lot of elements in the legend, you might want
to use the ncol= argument to set the legend up with multiple columns.
The horiz = T option can be used to set the elements up horizontally
rather than vertically (see Legend 2 in Figure 14.6).

When you use combinations of lines and symbols for your plot ele-
ments, use the merge = TRUE option to tell R to combine points and line
types in the legend (see Legend 4 in Figure 14.6).

Figure 14.6 Some Legend Options

Set up some data

year = 1990:1996 # Create a series of years

myV1 = c(10, 11, 12, 9, 14, 10, 11) # Create some values for myV1

myV2 = c(8, 14, 9, 12, 10, 13, 12) # Create some values for myV2

Create a simple plot

plot(year, myV1, # Plot myV1 against year

 ylim = c(0, 20), # Set y axis scale

 ylab = NA, # Turn off y axis label

©SAGE Publications

344 A Survivor’S guide to r

 type = "o", # Set as line plot with points

 lty = 1, # Solid line

 pch = 16) # Point style

points(year, myV2, # Add myV2 to plot

 type = "o", # Set type as line with points

 col = "darkgray", # Set color to red

 lty = 2, # Dashed line

 pch = 22) # Use square box for point style

Legend 1

legend("topleft", # Location of legend

 inset = .025, # Distance from edge of plot region

 legend = c("Variable myV1", # Legend Text

 "Variable myV2"),

 col = c("black", "darkgray"), # Legend Element Colors

 pch = c(16, 22), # Legend Element Styles

 title = "Legend 1") # Legend title

Legend 2

legend(x = 1992.25, y = 20, # Location of legend on x & y scale

 legend = c("Variable myV1", # Legend Text

 "Variable myV2"),

 cex = .8, # Text size set to .8

 fill = c("black", "darkgray"), # Legend Element Colors

 title = "Legend 2", # Legend Title

 horiz = T, # Set legend horizontally

 bg = "light gray") # Set color for legend background

Set up percentage coordinates system for legend

my.usr = par("usr") # Save current coordinate units

par(usr = c(0, 1, 0, 1)) # Set coordinate space to 0,1 scales

Legend 3 Bold Title

par(font = 2, family = "serif") # Set bold serif font

legend(x = .05, y = .3, # Legend location in percent units

 yjust = 1, # Put legend below y value

©SAGE Publications

chApTer 14 Plotting text 345

 legend = c("Variable myV1", # Legend Text

 "Variable myV2"),

 lty = c(1, 2), # line types for legend elements

 col = c("black", "darkgray"), # Legend Element Colors

 title = "Legend 3", # Legend title

 title.col = gray(.2), # Legend title color

 text.col = "white", # Set text color to be invisible

 bty = "n") # No box around legend

par(font = 1, family = "sans") # Return default font to normal sans

Legend 3

legend(x = .05, y = .3, # Legend location in percent units

 yjust = 1, # Put legend below y value

 legend = c("Variable myV1", # Legend Text

 "Variable myV2"),

 lty = c(1, 2), # line types for legend elements

 col = c("black", "darkgray"), # Legend Element Colors

 title = NA, # Legend title turned off

 bty = "n") # No box around legend

Legend 4

legend(x = .95, y = .05, # Legend location in percent units

 xjust = 1, # Left justify legend box

 yjust = 0, # Bottom justify legend box

 legend = c("Variable myV1", # Legend Text

 "Variable myV2"),

 lty = c(1, 2), # Line type for legend elements

 col = c("black", "darkgray"), # Legend Element Colors

 pch = c(16, 22), # Symbol styles for legend elements

 merge = TRUE, # Merge line/symbol legend elements

 title = "Legend 4", # Legend Title

 title.col = gray(.4), # Legend title color

 box.lty = 9, # Legend box line type

 box.lwd = 2, # Legend box line width

 box.col = "darkgray") # Legend box color

©SAGE Publications

346 A Survivor’S guide to r

If you want to place your legend outside the plot area, you’ll need to
use the xpd = TRUE option. This can be set either in a par() statement
or just within the legend() function. In either case, it tells R that it is okay
to draw things outside the plot area. Be sure that you set the margins large
enough to hold the legend. Place the legend outside the plot area by simply
extrapolating the desired coordinates from the plot scale. Figure 14.7 pro-
vides a couple of examples.

Figure 14.7 Legends Outside the Box

year = 1990:1996 # Create a series of years

myV1 = c(10, 11, 12, 9, 14, 10, 11) # Create some values for myV1

myV2 = c(8, 14, 9, 12, 10, 13, 12) # Create some values for myV2

Create a simple plot

par(mai = c(1.5, 1, .25, 2)) # Right margin space for legend

plot(year, myV1, # Plot myV1 against year

 ylim = c(0, 20), # Set y axis scale

 ylab = NA, # Turn off y axis label

©SAGE Publications

chApTer 14 Plotting text 347

 type = "o", # Set as line plot with points

 lty = 1, # Solid line

 pch = 16) # Point style

points(year, myV2, # Add myV2 to plot

 type = "o", # Set type as line with points

 col = gray(.2), # Set color

 lty = 2, # Dashed line

 pch = 22) # Use square box for point style

Legend outside the plot on right

legend(x = 1996.5, y = 15, # Location of legend

 xpd = TRUE, # Allow drawing outside plot area

 xjust = 0, # Left justify legend box on x

 yjust = .5, # Center legend box on y

 legend = c("Variable myV1", # Legend Text

 "Variable myV2"),

 col = c("black", gray(.2)), # Legend Element Colors

 pch = c(16, 22), # Legend Element Styles

 title = "Legend 5", # Legend Title

 title.col = gray(.2), # Legend title color

 box.lty = 1, # Legend box line type

 box.lwd = 2) # Legend box line width

Legend outside the plot on bottom

legend(x = 1993, y = -6.5, # Location of legend

 xpd = TRUE, # Allow drawing outside plot area

 xjust = .5, # Center legend box on x

 yjust = 1, # Top justify legend box on y

 horiz = TRUE, # Set legend horizontally

 legend = c("Variable myV1", # Legend Text

 "Variable myV2"),

 lty = c(1, 2), # Line type for legend elements

 col = c("black", gray(.2)), # Legend Element Colors

 pch = c(16, 22), # Symbol styles for legend elements

 merge = TRUE, # Merge line & symbol for legend

©SAGE Publications

348 A Survivor’S guide to r

 simple Axes And Axis lAbels

As with titles and subtitles, simple axis labels can be set up from within
the main plot() command. The xlab = "my X axis label" and
ylab = "my Y axis label" options set up the axis labels. The
default, if these are not included, is to just use the variable names. cex.
lab=, font.lab=, and col.lab= work just as with the titles to set font
size, style, and color for the axis labels.

xlim= and ylim= are used to set the range for the x- and y-axes. If
you don’t specify these values, R will make its own choices, which usually
looks something like a range from the smallest to the largest value you have
provided. xlim= and ylim= both need a vector of two values: the mini-
mum and the maximum. If, for example, you want the x-axis to run from
0 to 100, then use xlim = c(0, 100).

You can also set up log scale axes from within the plot() command.
log = "x" makes the x-axis logarithmic; log = "y", the y-axis; and
log = "xy", both. If you need help with this, you’ll find it under
help(plot.default).

Working on the axes from within the plot() command constrains
you to keep the formatting of the x and y labels the same. If you want
to make them different or break out in other creative ways, you’ll have
to set them up outside the plot()command. You can turn off the
default axis labels with xlab = NA or ylab = NA. If the axis labels
are the only issue, those can be handled with the title()command, as
shown in Figure 14.5.

If your aspirations for axis aesthetics are more adventuresome, you’ll
need to move to the real axis process, which builds the axes independently
as an add-on outside the plot() command.

 title = "Legend 6", # Legend Title

 title.col = gray(.4), # Legend title color

 box.lty = 1, # Legend box line type

 box.lwd = 2, # Legend box line width

 box.col = gray(.4)) # Legend box color

©SAGE Publications

chApTer 14 Plotting text 349

building more complex Axes

If more fine-grained control of the axes is required, they will need to be
built after the plot is set up. The first step for this is to turn off the
default axes with the xaxt = "n" and/or yaxt = "n" options in the
plot() function. You can turn both axes off with the axes = FALSE
option, although for some reason this also turns off the box around the
plot area.

The main axis-building command is axis(). The three critical
options are side=, at=, and labels=. The side= option tells R on
which side of the plot to put the axis: 1 is for the x-axis, 2 is for the y
axis, 3 goes on top, and 4 goes on the right. at= is a vector of values
where the tick marks should go, and labels= is the vector of text used
to label the tick marks.

Usually, you’ll have a matched set of vectors, one holding the values
for positioning tick marks and the other an equal number of character
variables to label those tick marks. If your tick mark labels are the same
as the values, then you don’t need to do anything beyond the at=
option. R will automatically add the values corresponding with the tick
marks.

Figure 14.8 is an example with several modifications, including adding
a custom numeric axis at the bottom and using the built-in LETTERS vector
to put an alphabetical axis on top. The bottom x-axis includes minor tick
marks, which we’ll cover in just a moment.

myV1 = c(1, 3, 4, 7, 9) # Set up some x values

myV2 = c(4, 6, 5, 3, 7) # Set up some y values

plot(myV1, myV2, # Plot myV1 and myV2

 xaxt = "n", yaxt = "n", # Supress axes

 xlim = c(0, 10)) # Set x range

axis(side = 1, # X axis

 at = c(seq(0, 10, by = 2))) # tick marks every 2

axis(side = 1, # X axis minor tick marks

 at = c(seq(1, 9, by = 2)), # Set on odd numbers

©SAGE Publications

350 A Survivor’S guide to r

The location of the axis, itself, can be adjusted in two ways: (1) by
the number of lines set into the plot or the plot margin or (2) by using
the scale values from the plot itself for the positioning. The line= option
sets the number of lines into the margin (positive values) or into the plot
area (negative values) for drawing the axis. The pos= option does the

Figure 14.8 Custom Axes

 labels = NA, # No labels for minor tick marks

 tcl = -.25) # Shorten minor tick marks

axis(side = 3, # Put another axis on top

 at = c(0:10), # Ticks at 0-10

 labels = LETTERS[1:11]) # Use alphabet labels

axis(side = 2, # Add Y axis

 at = c(3:7), # Tick marks from 3-7 by 1

 las = 1, # Rotate labels to perpendicular

 lwd = 0, # Turn off axis line

 lwd.ticks = 2, # Set tick width to 2

 col.ticks = gray(.3)) # Set tick color

©SAGE Publications

chApTer 14 Plotting text 351

same thing but uses the value scale from the plot. With pos=, the effect
of negative and positive values depend on the plot scale. If the plot starts
at the origin (0,0), then negative values will move into the margin. But
if, for example, the plot starts at 50 (e.g., xlim = c(50, 100)), then
pos = 45 will put the y-axis into the left margin by five units.

More complicated scales can be built up by overlaying multiple-axes
commands. Figure 14.9 shows this for the y-axis (adding minor tick marks)
and also shows some of the other positioning and text effects.

Figure 14.9 More Axis Effects

plot(myV1, myV2, # Plot myV1 and myV2

 xaxt = "n", yaxt="n", # Suppress axes

 xlim = c(0, 10), # Set x range

 xlab = NA) # Turn off X label

axis(side = 1, # Set up new X axis

 at = c(seq(0, 10, by = 2)), # Tick marks trom 0-10 by 2

 labels = c("Zero", "Two", "Four", # Labels for tick marks

 "Six", "Eight", "Ten"),

©SAGE Publications

352 A Survivor’S guide to r

You may notice that by default the axes don’t meet at the (0,0) origin.
This is R’s way of trying to pretty things up with about 4% overage at each
end of the axis. If you need the axes to start exactly at 0 (or the limits you
specify with the xlim= and ylim= options), use the xaxs="i" and/or
yaxs="i" options.

Tick Marks

Tick marks are a central element of any axis scheme. R provides com-
plete control over tick marks, but it takes a little bit of preplanning. The
default tick marks are drawn at the same places as the placement of the
axis labels, indicated with the at= option. The width, length, and color of
those tick marks can be controlled with tcl= for the tick length, lwd= for
the tick mark width, and col.tick= for the tick color.

 family = "serif", # Set font

 cex.axis = 1.5, # Increase font size by 50%

 las = 2, # Make labels perpendicular to axis

 line = 1) # Put axis 1 line into the margin

axis(side = 2, # Set up new Y axis

 at = c(3:7), # Set tick marks from 3-7 by 1

 font = 4, # Set font to bold italic

 lwd.ticks = 2, # Set major tick line width at 2

 pos = -.5) # Set axis at -.5 on X scale

axis(side = 2, # Overlay minor tick marks on Y axis

 at = c(3.5:6.5), # Put them on the .5 marks

 labels = NA, # No labels

 tcl = -.25, # Set length of tick marks

 pos = -.5) # Set position of axis

axis(side = 3, # Add another axis on top of plot

 at = c(seq(0, 10, by = 1.35)), # Set another scale

 labels = c(seq(100, 170, by = 10)), # Add labels

 padj = 1, # Adjust labels downward

 tcl = 1) # Put long tick marks into plot area

©SAGE Publications

chApTer 14 Plotting text 353

tcl= sets the tick length. Positive tcl= values put tick marks into the
plot area, while negative values put them outside the plot area. Use lwd.
ticks= to adjust the line width of the tick marks and just lwd= to adjust
the width of the axis line itself. If you set lwd = 0 or lwd.tick = 0, R
will suppress the printing of the axis line or the tick marks, respectively.
col.tick= uses all the standard color options, which we’ll consider in
greater length in Chapter 15.

As we’ve seen in these examples, minor tick marks take a little more
work.5 Minor tick marks use all the same control options and are added
by overlaying a second axis() command and suppressing its labels
(labels = NA). Figure 14.10 shows all these approaches in action.

5. Along with many other nice things, the Hmisc package has a function for adding
minor tick marks (minor.tick()).

Figure 14.10 Major and Minor Tick Marks

par(mai = c(3.5, .25, .25, .25)) # Set margin sizes in inches

plot(myV1, myV2, type = "n", # Setup w/no points & default x axis

 xlab = NA, # Turn off x axis label

 ylab = NA, # Turn off y axis label

©SAGE Publications

354 A Survivor’S guide to r

 yaxt = "n", # Turn off y axis

 xlim = c(0, 10)) # Set x axis range

axis(side = 1, # New x axis

 at = c(0:10), # Ticks at 0-10

 line = 3) # Move axis down to 3rd line

axis(side = 1, # New x axis

 at = c(seq(0, 10, by = 2)), # Major ticks at 0-10 by 2

 labels = LETTERS[1:6], # A-F as labels

 line = 6) # Put axis on 6th line

axis(side = 1, # New x axis

 at = c(seq(1, 10, by = 2)), # Minor ticks at 1-10 by 2

 labels = NA, # Turn off labels for minor ticks

 line = 6) # Overlay axis on 6th line

axis(side = 1, # New x axis

 at = c(0:10), # Major ticks at 0-10

 labels = c(1990:2000), # Use years for labels

 las = 2, # Rotate labels to be perpendicular

 col = gray(.5), # Set main axis line to med gray

 tcl = -.75, # Major tick length .75 below line

 col.tick = "black", # Make major ticks black

 lwd = 2, # Make major ticks longer

 line = 9) # Put axis on 9th line below plot

axis(side = 1, # Add overlay axis for minor ticks

 at = c(seq(.5, 10, by = 1)), # Minor ticks at every .5

 labels = NA, # No labels for minor ticks

 tcl = -.3, # Minor ticks length .3 below line

 lwd = 0, # No main axis line for overlay

 lwd.ticks = 1.25, # Set minor tick width to 1.25

 col.tick = "darkgray", # Color for minor tick marks

 line = 9) # Overlay axis on 9th line

©SAGE Publications

chApTer 14 Plotting text 355

Axis labels cannot be rotated with the string rotate option (srt=), so
the bottom axis in Figure 14.10 combines an axis()command to set up
the tick marks and then a text()command to place the year labels. In this
case, the years are just string variables that increment by 1. When we need
to have an axis that is keyed to a date or time variable (see Chapter 9), we
need to be a little more careful.

Axes With Dates or Times

Dates, as you may have anticipated, make things a bit trickier. The
thing about dates in axes is that they have to be spaced according to the
time dimension rather than a simple order dimension. And we need to
worry about all those formatting options for how dates are displayed.
Fortunately, the discussion of dates in Chapter 9 gets us most of what we
need to manage this.

The key here is telling R that you are working with dates and passing
the necessary information about the date formats. Once R knows that
dates are in the mix, it will make some pretty good guesses about setting
things up. Figure 14.11 is a serviceable example of R’s proficiency in this
area.

axis(side = 1, # New x axis

 at = c(0:10), # Major ticks at 0 - 10

 labels = NA, # Turn off labels

 tcl = -.5, # Major tick length .5 below line

 lwd = 1.25, # Make major ticks thicker

 line = 13) # Put axis on 13th line

text(x = seq(0.3, 10.3, 1), # x values for axis labels

 y = -46, # y value for axis labels

 xpd = TRUE, # Allow writing outside plot area

 labels = as.character(c(1990:2000)), # Years as text labels

 pos = 2, # Left align labels

 srt = 45) # Rotate strings 45 degrees

©SAGE Publications

356 A Survivor’S guide to r

If, as is often the case, “pretty good” isn’t good enough, you’ll need to
set up a custom axis. In Figure 14.12, we turn off the default axis, then
provide a new axis based on a sequence of dates. The relevant function is
now either axis.Date()or axis.POSIXct(), depending on which date
format you are using (see Chapter 9). In Figure 14.12, I have used standard
American dates (month/day/year) so have to provide the format informa-
tion. If you are using the default (year/month/day), you can just provide
the dates alone. Just for the practice, we’ll also add some minor tick marks,
a vertical line, and some text that is placed using the time scale of the
x-axis. Here, the labels are simply years. To generate other sequences,
return to the discussion at the beginning of Chapter 9.

Figure 14.11 A Simple Date Variable Plot

dFormat = "%m/%d/%Y" # Set up a date format

myDate = as.Date(c("10/12/1947", # Set up a date variable

 "5/14/1969", "7/2/1998", "1/3/2004", # with several dates

 "11/24/2012"), dFormat) # using the format above

myV2 = c(14, 32, 7, 19, 11) # Another simple variable

plot(myDate, myV2) # Basic plot with defaults

©SAGE Publications

chApTer 14 Plotting text 357

Figure 14.12 A Customized Time Axis

plot(myDate, myV2, # Customized plot

 xlim = # Set X axis range

 c(as.Date("1/1/1940", dFormat), # Starting date

 as.Date("12/31/2020", dFormat)), # Ending date

 xaxt = "n", # Turn off X axis

 xlab = "Year") # Set X axis label

axis.Date(side = 1, # Set up new X axis w/ major tick marks

 at = seq.Date(# Create a sequence of dates

 as.Date("1/1/1940", dFormat), # Starting point for sequence

 as.Date("12/31/2020", dFormat), # Ending point for sequence

 by = "5 years"), # Increment value for sequence

 labels = seq(1940, 2020, by = 5), # Labels for major tick marks

 las = 2) # Rotate labels perpendicular

axis.Date(side = 1, # Overlay X axis w/ minor tick marks

 at = seq.Date(# Create a sequence of dates

 as.Date("1/1/1940", dFormat), # Starting point for sequence

 as.Date("12/31/2020", dFormat), # Ending point for sequence

©SAGE Publications

358 A Survivor’S guide to r

Really, not so bad, was it?
Before leaving this topic, here is a quick review of some of the

most useful axis options that can work within the par(), plot(), or
axis() commands. In each case, I have included the default value for
the option in parentheses at the end.

cex.axis= Font size for axis notations: This is set relative to the
default font size. Note that you can use the normal font control
parameters, such as crt= for font rotation. (1)

cex.lab= Font size for the axis labels: Again, this is set relative to the
default font size. (1)

col.axis= Axis color: See the discussion on setting colors in Chapter
15. (black)

col.lab= Axis labels color (black)

las= The orientation of the labels relative to the axis: 0—parallel
to axis, 1—horizontal, 2—perpendicular to axis, and 3—vertical
(0)

 by = "year"), # Increment value for sequence

 labels = NA, # Turn off labels

 tcl = -.25) # Set length at .25 below axis

abline(# Add a line

 v = as.Date("10/23/1957", dFormat), # Vertical placement on 10/23/1957

 col = "darkgray", # Set color

 lwd = 2) # Line width at 2

text(x = as.Date("1/1/1959", dFormat), # Label for the line - X coordinate

 y = 25, # Y coordinate

 pos = 4, # Put text to right of coordinates

 label = "October 23, 1957", # Text for label

 cex = 1.5, # Set font size 50% bigger

 family = "mono", # Set font style

 font = 2) # Bold font

©SAGE Publications

chApTer 14 Plotting text 359

Ad hoc TexT

Finally, we set all constraint aside and move to the techniques for placing
text just anywhere we want. The mostly straightforward key to this process
is the text() command. This approach is so useful that I’ve already snuck
it in several places, including Figures 5.4, 13.1, 13.3, 13.4, and 14.1. If you
want to look ahead for additional examples, you can skip to Figure 15.2,
15.8, 15.9, 15.13, or 15.14.

The primary key for the text()command is simply providing R with
the coordinates where you want the text placed. As demonstrated in
Figure 5.4, these coordinates can come directly from your data. The actual
text to place on the plot is provided by the labels= argument. Size
(cex=), color (col=), rotation (srt=), and font style (family= and
font=) are controlled in the same manner as in the discussion of fonts at
the beginning of this chapter. These options can also be set to vectors so
that each label in a set is controlled independently.

Two additional text() options that can be helpful in placing text are
adj= and pos=. adj= indicates where the text should be placed relative
to the given x, y coordinates. It uses a vector of two values, the first for
the horizontal (x) dimension and the second for the vertical (y) dimension.
The values for adj= should be between 0 and 1, where 0 puts the text to
the right of or above the coordinates, 1 puts it to the left or below (which,
I’ll admit, seems backward to me), and 0.5 centers the text.

pos= is a simplified version of adj=. As shown in Figure 14.13, it can
only take values of 1, 2, 3, or 4, indicating that the text should be below,
to the left of, above, or to the right of the given x, y coordinates, respec-
tively. The use of pos= overrides any values of adj=.

The labels= argument provides the text to actually place on the plot.
It can be either a character variable (or a vector of character variables) or
an expression for incorporating equations and mathematical symbols. To
do an expression, you have to encase it in the expression() function
and then use the plotmath facility to access the necessary symbol and lay-
out elements. You can see how to access these symbols, which allow the
building of quite extensive equations, from help(plotmath).6 Combining
plotmath and variable values requires the use of the bquote() function.

6. If you use demo(plotmath), R will generate a series of plots showing the
different equation elements in use. Use the enter key to page through the successive
plots.

©SAGE Publications

360 A Survivor’S guide to r

The simple instruction for doing this is to build your expression using plot-
math and then encase any variables that you want evaluated within paren-
theses with a preceding period: .(myVariable).7 The use of plotmath
and bquote() is also demonstrated in Figure 15.9.

If you need your text to extend beyond the internal plot boundaries,
just set the xpd= option to TRUE.

7. The more complex and more accurate explanation is that bquote() manipulates
the environment in which an expression is evaluated.

Figure 14.13 The Ad Hoc Placement of Text

plot(x = 1.25, y = 1.5, # Start plot with first point

 xlim = c(0, 3), # Set x range of plot

 ylim = c(0, 2), # Set y range of plot

 pch = 18, # Diamond shaped plotting symbol

©SAGE Publications

chApTer 14 Plotting text 361

 xlab = NA, # Turn off x axis label

 ylab = NA) # Turn off y axis label

points(1.5, 1, pch = 18) # Add diamond-shaped point

text(1.5, 1, # Add text at same position

 labels = "Defaults: No pos= or adj=")

Using the adj= option

points(.5, .25, pch = 18) Add diamond-shaped point

text(.5, .25, # Add text at same point

 labels = "adj = c(1, 1)", # Text to add

 adj = c(1, 1)) # Adjust position to lower left

text(.5, .25, # Add more text at same point

 labels = "adj = c(0, 0)", # Text to add

 adj = c(0, 0)) # Adjust position to upper right

points(.5, .75, pch = 18) # Add diamond-shaped point

text(.5, .75, # Add text at same point

 labels = "adj = c(1, 0)", # Text to add

 adj = c(1, 0)) # Adjust position to lower right

text(.5, .75, # Add text at same point

 labels = "adj = c(0, 1)", # Text to add

 adj = c(0, 1)) # Adjust position to upper left

points(.5, 1.75, pch = 18) # Add diamond-shaped point

text(.5, 1.75, # Add text at same point

 labels = "adj = c(.5, .5) \n srt = 90",

 srt = 90, # Rotate text 90 degrees

 adj = c(.5, .5)) # Adjust position to center text

 # (note this is also the default)

Using the pos= option

points(1.25, 1.5, pch = 18) # Add diamond-shaped point

text(1.25, 1.5, # Add text at same point

 labels = "pos = 1", # Text to add

 pos = 1) # Set to bottom centered (1)

©SAGE Publications

362 A Survivor’S guide to r

text(1.25, 1.5, # Add text at same point

 labels = "pos = 2", # Text to add

 pos = 2) # Set position to left (2)

text(1.25, 1.5, # Add text at same point

 labels = "pos = 3", # Text to add

 pos = 3) # Set position to top centered (3)

text(1.25, 1.5, # Add text at same point

 labels = "pos = 4", # Text to add

 pos = 4) # Set position to right (4)

Using xpd= to go outside the plot area

text(.55, 0, # Add text at bottom of plot

 labels = "This uses xpd=TRUE to allow it to go outside the plot area",

 pos = 4, # Place text to right of point

 xpd = TRUE, # Set xpd=TRUE to allow

 font = 3) # Set font to italic

plotmath expression

text(2.5, .75, # Add an expression w/plotmath

 labels = expression(Phi(italic(x)) # Build the expression

 = over(1, sigma * sqrt(2 * pi)) *

 italic(e)^ -over((x - mu)^2, 2 * sigma^2)),

 srt = 45, # Set at 45 degree angle

 cex = 1.25) # Increase size to 1.25

text(2.5, 1.75, # Add text for expression detail

 labels = "plotmath equation with \n srt = 45")

arrows(x0 = 2.5, x1 = 2.5, # Add an arrow

 y0 = 1.5, y1 = 1.1, # y coordinates for arrow

 lwd = 3.5, # Set linewidth to 3.5

 col = "darkgray") # Set color to dark gray

©SAGE Publications

chApTer 14 Plotting text 363

And that should allow you to do almost anything with text that your
heart might desire. In combination with the coordinates systems we learned
in Chapter 13, text is easily placed anywhere in a figure. Building the more
specific structures, such as legends and axes, is a little more tricky. But the
same core principles are at work in all the text operations.

Moving beyond text, we are now ready for the final approach to cus-
tomization, which is the use of customized shape elements: the lines,
shapes, and images that give us full control over R’s graphic output.

©SAGE Publications

