
(1999, chap. 4) discuss various issues dealing with weighted and

unweighted estimates of population parameters and offer a measure of the

inefficiency of using weighted estimates. They recommend using the

weighted analysis if the inefficiency is not unacceptably large, to avoid

the bias in the unweighted analysis. If the inefficiency is unacceptably

large, they recommend using the unweighted analysis, augmenting the

model with survey design variables, including the weight, to reduce the

bias. Incorporation of design variables into the model is often problematic,

however, because the inclusion of the design variables as additional covari-

ates in the model may contradict the scientific purpose of the analysis. For

example, when the objective of the analysis is to examine associations

between health measures and risk factors, conditioning on the design vari-

ables may interfere with the relational pathway.

In complex large-scale surveys, it is often not possible to include in the

model all the design information, especially when the sample weights are

modified for nonresponse and poststratification adjustments (Alexander,

1987). Another practical problem in incorporating the design variables into

the model is the lack of relevant information in the data set. Not all design-

related variables are available to the analysts. Most public-use survey data

provide only PSU (the primary sampling unit), leaving out secondary clus-

ter units (census enumeration districts or telephone exchanges). Often, pro-

vision of secondary units may not be possible because of confidentiality

issues.

In a model-based analysis, one must guard against possible misspecifica-

tion of the model and possible omission of covariates. The use of sample

weights (design-based analysis) can provide protection against model mis-

specification (DuMouchel & Duncan, 1983; Pfeffermann & Homes, 1985).

Kott (1991) points out that the sampling weights need to be used in linear

regression because the choice of covariates in survey data is limited in most

secondary analyses. The merits and demerits of using sample weights will

be further discussed in the last section of Chapter 6.

4. STRATEGIES FOR VARIANCE ESTIMATION

The estimation of the variance of a survey statistic is complicated not only

by the complexity of the sample design, as seen in the previous chapters, but

also by the form of the statistic. Even with an SRS design, the variance esti-

mation of some statistics requires nonstandard estimating techniques. For

example, the variance of the median is conspicuously absent in the standard

texts, and the sampling error of a ratio estimator (refer again to Note 1) is com-

plicated because both the numerator and denominator are random variables.
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Certain variance estimating techniques not found in standard textbooks are

sufficiently flexible to accommodate both the complexities of the sample

design and the various forms of statistics. These general techniques for var-

iance estimation, to be reviewed in this chapter, include replicated sampling,

balanced repeated replication (BRR), jackknife-repeated replication (JRR),

the bootstrap method, and the Taylor series method.

Replicated Sampling: A General Approach

The essence of this strategy is to facilitate the variance calculation by

selecting a set of replicated subsamples instead of a single sample. It requires

that each subsample be drawn independently and use of an identical sample

selection design. Then an estimate is made in each subsample by the identical

process, and the sampling variance of the overall estimate (based on all

subsamples) can be estimated from the variability of these independent sub-

sample estimates. This is the same idea as the repeated systematic sampling

mentioned in Chapter 2.

The sampling variance of the mean (�u) of t replicate estimates u1,

u2, . . . , ut of the parameter U can be estimated by the following simple

variance estimator (Kalton, 1983, p. 51):

v(�u)=
∑

(ui− �u)2/t(t− 1) (4:1)

This estimator can be applied to any sample statistic obtained from

independent replicates of any sample design.

In applying this variance estimator, 10 replicates are recommended by

Deming (1960), and a minimum of 4 by others (Sudman, 1976) for descrip-

tive statistics. An approximate estimate of standard error can be calculated

by dividing the range in the replicate estimates by the number of replicates

when the number of replicates is between 3 and 13 (Kish, 1965, p. 620).

However, because this variance estimator with t replicates is based on

(t− 1) degrees of freedom for statistical inference, a larger number of

replicates may be needed for analytic studies, perhaps 20 to 30 (Kalton,

1983, p. 52).

To understand the replicated design strategy, let us consider a simple

example. Suppose we want to estimate the proportion of boys among 200

newly born babies. We will simulate this survey using the random digits

from Cochran’s book (1977, p. 19), assuming the odd numbers represent

boys. The sample is selected in 10 replicate samples of n = 20 from the

first 10 columns of the table. The numbers of boys in the replicates are as

follows:
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The overall percentage of boys is 49.5%, and its standard error is 3.54%

(¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49:5∗50:5/200
p

). The standard error estimated from the 10 replicate

estimates using Equation 4.1 is 3.58%. It is easy to get an approximate

estimate of 3.50% by taking one tenth of the range (70%–35%). The chief

advantage of replication is ease in estimation of the standard errors.

In practice, the fundamental principle of selecting independent replicates

is somewhat relaxed. For one thing, replicates are selected using sampling

without replacement instead of with replacement. For unequal probability

designs, the calculation of basic weights and the adjustment for nonresponse

and poststratification usually are performed only once for the full sample,

rather than separately within each replicate. In cluster sampling, the replicates

often are formed by systematically assigning the clusters to the t replicates in

the same order that the clusters were first selected, to take advantage of strati-

fication effects. In applying Equation 4.1, the sample mean from the full

sample generally is used for the mean of the replicate means. These deviations

from fundamental principles can affect the variance estimation, but the bias is

thought to be insignificant in large-scale surveys (Wolter, 1985, pp. 83–85).

The community mental health survey conducted in New Haven, Connec-

ticut, in 1984 as part of the ECA Survey of the National Institute of Mental

Health (E. S. Lee, Forthofer, Holzer, & Taube, 1986) provides an example

of replicated sampling. The sampling frame for this survey was a geogra-

phically ordered list of residential electric hookups. A systematic sample

was drawn by taking two housing units as a cluster, with an interval of 61

houses, using a starting point chosen at random. A string of clusters in the

sample was then sequentially allocated to 12 subsamples. These subsam-

ples were created to facilitate the scheduling and interim analysis of data

during a long period of screening and interviewing. Ten of the subsamples

were used for the community survey, with the remaining two reserved for

another study. The 10 replicates are used to illustrate the variance estimation

procedure.

These subsamples did not strictly adhere to a fundamental principle of

independent replicated sampling because the starting points were systema-

tically selected, except for the first random starting point. However, the sys-

tematic allocation of clusters to subsamples in this case introduced an

approximate stratification leading to more stable variance estimation and,

Replicate: 9 8 13 12 14 8 10 7 10 8 Total = 99

Proportion

of Boys: .45 .40 .65 .60 .70 .40 .50 .35 .50 .40 Proportion = .495
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therefore, may be preferable to a random selection of a starting point for this

relatively small number of replicates. Therefore, we considered these sub-

samples as replicates and applied the variance estimator with replicated

sampling, Equation 4.1.

Because one adult was randomly selected from each sampled household

using the Kish selection table (Kish, 1949), the number of adults in each

household became the sample case weight for each observation. This

weight was then adjusted for nonresponse and poststratification. Sample

weights were developed for the full sample, not separately within each

subsample, and these were the weights used in the analysis.

Table 4.1 shows three types of statistics calculated for the full sample as

well as for each of the replicates. The estimated variance of the prevalence

TABLE 4.1

Estimation of Standard Errors From Replicates:

ECA Survey in New Haven, 1984 (n = 3,058)

Regression Coefficientsa

Replicate Prevalence Rateb Odds Ratioc Intercept Gender Color Age

Full Sample 17.17 0.990 0.2237 −0.0081 0.0185 −0.0020

1 12.81 0.826 0.2114 0.0228 0.0155 −0.0020

2 17.37 0.844 0.2581 0.0220 0.0113 −0.0027

3 17.87 1.057 0.2426 −0.0005 0.0393 −0.0015

4 17.64 0.638 0.1894 0.0600 0.2842 −0.0029

5 16.65 0.728 0.1499 0.0448 −0.0242 −0.0012

6 18.17 1.027 0.2078 −0.0024 −0.0030 −0.0005

7 14.69 1.598 0.3528 −0.0487 −0.0860 −0.0028

8 17.93 1.300 0.3736 −0.0333 −0.0629 −0.0032

9 17.86 0.923 0.2328 −0.0038 0.0751 −0.0015

10 18.91 1.111 0.3008 −0.0007 0.0660 −0.0043

Range 6.10 0.960 0.2237 0.1087 0.3702 0.0038

Standard error based on:

Replicates 0.59 0.090 0.0234 0.0104 0.0324 0.0004

SRS 0.68 0.097 0.0228 0.0141 0.0263 0.0004

SOURCE: Adapted from ‘‘Complex Survey Data Analysis: Estimation of Standard Errors Using Pseudo-

Strata,’’ E. S. Lee, Forthofer, Holzer, and Taube, Journal of Economic and Social Measurement,

� copyright 1986 by the Journal of Economic and Social Measurement. Adapted with permission.

a. The dependent variable (coded as 1 = condition present and 0 = condition absent) is regressed on sex

(1 = male, 0 = female), color (1 = black, 0 = nonblack), and age (continuous variable). This analysis is

used for demonstration only.

b. Percentage with any mental disorders during the last 6 months.

c. Sex difference in the 6-month prevalence rate.
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rate, in percent (p), can be calculated from the replicate estimates (pi)

using Equation 4.1:

v(p)=
∑

(pi− 17:17)2

10(10− 1)
= 0:3474,

and the standard error is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3474
p = 0:59. The overall prevalence rate of

17.17% is slightly different from the mean of the 10 replicate estimates

because of the differences in response rates. Note that one tenth of the

range in the replicate estimates (0.61) approximates the standard error

obtained by Equation 4.1. Similarly, standard errors can be estimated for

the odds ratio and regression coefficients. The estimated standard errors

have approximately the same values as those calculated by assuming sim-

ple random sampling (using appropriate formulas from textbooks). This

indicates that design effects are fairly small for these statistics from this

survey.

Although the replicated sampling design provides a variance estimator that

is simple to calculate, it requires a sufficient number of replicates to obtain

acceptable precision for statistical inference. But if there is a large number of

replicates and each replicate is relatively small, it severely limits using strati-

fication in each replicate. Most important, it is impractical to implement

replicated sampling in complex sample designs. For these reasons, a repli-

cated design is seldom used in large-scale, analytic surveys. Instead, the

replicated sampling idea has been applied to estimate variance in the data

analysis stage. This attempt gave rise to pseudo-replication methods for

variance estimation. The next two techniques are based on this idea of

pseudo-replication.

Balanced Repeated Replication

The balanced repeated replication (BRR) method is based on the

application of the replicated sampling idea to a paired selection design in

which two PSUs are sampled from each stratum. The paired selection design

represents the maximum use of stratification, yet allows the calculation of

variance. In this case, the variance between two units is one half of the

squared difference between them. To apply the replicated sampling idea, we

first divide the sample into random groups to form pseudo-replicates. If it is a

stratified design, it requires all the strata to be represented in each pseudo-

replicate. In a stratified, paired selection design, we can form only two

pseudo-replicates: one containing one of the two units from each stratum and

the other containing the remaining unit from each stratum (complement repli-

cate). Each pseudo-replicate then includes approximately half of the total
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sample. Applying Equation 4.1 with t = 2, we can estimate the sampling

variance of the mean of the two replicate estimates, u′, u′′, by

v(�u)= [(u′− �u)2 + (u′′− �u)2]/2: (4:2)

As seen above, the mean of replicate estimates is often replaced by an

overall estimate obtained from the full sample. However, this estimator is

too unstable to have any practical value because it is based on only two

pseudo-replicates. The BRR method solves this problem by repeating the

process of forming half-sample replicates, selecting different units from dif-

ferent strata. The pseudo-replicated half samples then contain some common

units, and this introduces dependence between replicates, which complicates

the estimation. One solution, which leads to unbiased estimates of variance

for linear statistics, is to balance the formation of pseudo-replicates by using

an orthogonal matrix (Plackett & Burman, 1946). The full balancing requires

that the size of the matrix be a multiple of four and the number of replicates

be greater than or equal to the number of strata. Then the sampling variance

of a sample statistic can be estimated by taking the average of variance esti-

mates by Equation 4.2 over t pseudo-replicates:

v(�u)=
∑

[(u′i− �u)2 + (u′′i − �u)2]/2t=
∑

(u′′i − u′′i )2/4t: (4:3)

It is possible to reduce computation by dropping the complement

half-sample replicates:

v′(�u)=
∑

(u′i− �u)2/t: (4:4)

This is the estimator originally proposed by McCarthy (1966). This

balancing was shown by McCarthy to yield unbiased estimates of var-

iance for linear estimators. For nonlinear estimators, there is a bias in the

estimates of variance, but numerical studies suggest that it is small. For a

large number of strata, the computation can be further simplified by using

a smaller set of partially balanced replicates (K. H. Lee, 1972; Wolter,

1985, pp. 125–130).

As in replicated sampling, BRR assumes that the PSUs are sampled with

replacement within strata, although in practice sampling without replacement

generally is used. Theoretically, this leads to an overestimation of variance

when applied to a sample selected without replacement, but the overestima-

tion is negligible in practice because the chance of selecting the same unit

more than once under sampling without replacement is low when the sam-

pling fraction is small. The sampling fraction in a paired selection design

(assumed in the BRR method) usually is small because only two PSUs are

selected from each stratum.
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When used with a multistage selection design, BRR usually is applied

only to PSUs and disregards the subsampling within the PSUs. Such a prac-

tice is predicated on the fact that the sampling variance can be approximated

adequately from the variation between PSU totals when the first-stage sam-

pling fraction is small. This is known as the ultimate cluster approximation.

As shown in Kalton (1983, chap. 5), the unbiased variance estimator for a

simple two-stage selection design consists of a component from each of

the two stages, but the term for the second-stage component is multiplied by

the first-stage sampling fraction. Therefore, the second-stage contribution

becomes negligible as the first-stage sampling fraction decreases. This short-

cut procedure based only on PSUs is especially convenient in the preparation

of complex data files for public use as well as in the analysis of such data,

because detailed information on complex design features is not required

except for the first-stage sampling.

If the BRR technique is to be applied to other than the paired selection

designs, it is necessary to modify the data structure to conform to the techni-

que. In many multistage surveys, stratification is carried out to a maximum and

only one PSU is selected from each stratum. In such case, PSUs can be paired

to form collapsed strata to apply the BRR method. This procedure generally

leads to some overestimation of the variance because some of the between-

strata variability is now included in the within-stratum calculation. The pro-

blem is not serious for the case of linear statistics if the collapsing is carried out

judiciously; however, the collapsing generally is not recommended for

estimating the variance of nonlinear statistics (see Wolter, 1985, p. 48). The

Taylor series approximation method discussed later may be used for the non-

linear statistics. Although it is not used widely, there is a method of construct-

ing orthogonal balancing for three PSUs per stratum (Gurney & Jewett, 1975).

Now let us apply the BRR technique to the 1984 GSS. As introduced in

the previous chapter, it used a multistage selection design. The first-stage

sampling consisted of selecting one PSU from each of 84 strata of counties

or county groups. The first 16 strata were large metropolitan areas and

designated as self-representing (or automatically included in the sample).

To use the BRR technique, the 84 strata are collapsed into 42 pairs of

pseudo-strata. Because the numbering of non–self-representing PSUs in the

data file followed approximately the geographic ordering of strata, pairing

was done sequentially, based on the PSU code. Thus, the 16 self-represent-

ing strata were collapsed into 8 pseudo-strata, and the remaining 68

non–self-representing strata into 34 pseudo-strata. This pairing of the self-

representing strata, however, improperly includes variability among them.

To exclude this and include only the variability within each of the self-

representing strata, the combined observations within each self-representing

pseudo-stratum were randomly grouped into two pseudo-PSUs.
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To balance the half-sample replicates to be generated from the 42

pseudo-strata, an orthogonal matrix of order 44 (see Table 4.2) was used.

This matrix is filled with zeros and ones. To match with the 42 strata, the

first two columns were dropped (i.e., 44 rows for replicates and 42 columns

for pseudo-strata). A zero indicates the inclusion of the first PSU from the

strata, and a one denotes the inclusion of the second PSU. The rows are the

replicates, and the columns represent the strata. For example, the first repli-

cate contains the second PSU from each of the 42 pseudo-strata (because all

the elements in the first row are ones). Using the rows of the orthogonal

matrix, 44 replicates and 44 complement replicates were created.

To estimate the variance of a statistic from the full sample, we needed

first to calculate the statistic of interest from each of the 44 replicates and

complement replicates. In calculating the replicate estimates, the adjusted

sample weights were used. Table 4.3 shows the estimates of the propor-

tion of adults approving the ‘‘hitting’’ for the 44 replicates and their

complement replicates. The overall proportion was 60.0%. The samp-

ling variance of the overall proportion, estimated by Equation 4.3, is

0.000231. Comparing this with the sampling variance of the proportion

under the SRS design [pq/(n− 1)= 0.000163, ignoring FPC], we get the

design effect of 1.42 (= 0.000231/0.000163). The design effect indicates

that the variance of the estimated proportion from the GSS is 42% larger

than the variance calculated from an SRS of the same size. The variance

by Equation 4.4 also gives similar estimates.

In summary, the BRR technique uses a pseudo-replication procedure to

estimate the sampling variance and is primarily designed for a paired selec-

tion design. It also can be applied to a complex survey, which selects one

PSU per stratum by pairing strata, but the pairing must be performed judi-

ciously, taking into account the actual sample selection procedure. In most

applications of BRR in the available software packages, the sample weights

of the observations in the selected PSUs for a replicate are doubled to make

up for the half of PSUs not selected. There is also a variant of BRR, sug-

gested by Fay (Judkins, 1990), in creating replicate weights, which uses

2− k or k times the original weight, depending on whether the PSU is

selected or not selected based on the orthogonal matrix (0≤ k< 1). This

will be illustrated further in the next chapter.

Jackknife Repeated Replication

The idea of jackknifing was introduced by Quenouille (1949) as a

nonparametric procedure to estimate the bias, and later Tukey (1958) sug-

gested how that same procedure could be used to estimate variance. Durbin

(1959) first used this method in his pioneering work on ratio estimation. Later,
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TABLE 4.2

Orthogonal Matrix of Order 44

Rows Columns (44)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0

3 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1

4 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1

5 1 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0

6 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1

7 1 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0

8 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1

9 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1

10 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0

11 1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0

12 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0

13 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1

14 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0

15 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0

16 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0

17 1 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0

18 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0

19 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1

20 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1

21 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1

22 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0

23 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1

24 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0

25 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0

26 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0

27 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1

28 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1

29 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1

30 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1

31 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1

32 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0

33 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1

34 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1

35 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1

36 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0

37 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0

38 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1

39 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0

40 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1

41 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0

42 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0

43 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1

44 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0

SOURCE: Adapted from Wolter (1985, p. 328) with permission of the publisher.
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it was applied to computation of variance in complex surveys by Frankel

(1971) in the same manner as the BRR method and named the jackknife

repeated replication (JRR). As is BRR, the JRR technique generally is applied

to PSUs within strata.

The basic principle of jackknifing can be illustrated by estimating

sampling variance of the sample mean from a simple random sample.

Suppose n = 5 and sample values of y are 3, 5, 2, 1, and 4. The sample

mean then is �y= 3, and its sampling variance, ignoring the FPC, is

v(�y)=
∑

(yi− �y)2

n(n− 1)
= 0:5: (4:5)

TABLE 4.3

Estimated Proportions Approving One Adult Hitting Another in the

BRR Replicates: General Social Survey, 1984 (n = 1,473)

Estimate (percentage) Estimate (percent)

Replicate Number Replicate Complement Replicate Number Replicate Complement

1 60.9 59.2 23 61.4 58.6

2 60.1 59.9 24 57.7 62.4

3 62.1 57.9 25 60.4 59.6

4 58.5 61.7 26 61.7 58.2

5 59.0 61.0 27 59.3 60.6

6 59.8 60.2 28 62.4 57.6

7 58.5 61.5 29 61.0 58.9

8 59.0 61.0 30 61.2 58.7

9 61.3 58.8 31 60.9 59.1

10 59.2 60.8 32 61.6 58.5

11 61.7 58.3 33 61.8 58.2

12 60.2 59.8 34 60.6 59.4

13 62.1 58.7 35 58.6 61.5

14 59.7 60.4 36 59.4 60.7

15 58.1 62.0 37 59.8 60.3

16 56.0 64.2 38 62.0 58.1

17 59.8 60.3 39 58.1 61.9

18 58.6 61.3 40 59.6 60.5

19 58.9 61.1 41 58.8 61.2

20 60.8 59.3 42 59.2 60.8

21 63.4 56.5 43 58.7 61.4

22 58.3 61.7 44 60.5 59.5

Overall estimate = 60.0

Variance estimates Variance Standard Error Design Effect

By Equation 4.3 0.000231 0.0152 1.42

By Equation 4.4 0.000227 0.0151 1.40
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The jackknife variance of the mean is obtained as follows.

1. Compute a pseudo sample mean deleting the first sample value, which

results in �y(1)= (5+ 2+ 1+ 4)/4= 12/4: Now, by deleting the

second sample value instead, we obtain the second pseudo mean

�y(2)= 10/4; likewise �y(3)= 13/4, �y(4)= 14/4, and �y(5)= 11/4:
2. Compute the mean of the five pseudo-values; ��y = P

�y(i)/n=
(60/4)/5= 3, which is the same as the sample mean.

3. The variance can then be estimated from the variability among the

five pseudo-means, each of which contains four observations,

v(��y)= (n− 1)
∑

(�y(i)− ��y)2

n
= 0:5, (4:5)

which gives the same result as Equation 4.5.

The replication-based procedures have a distinct advantage: They can be

applied to estimators that are not expressible in terms of formulas, such as

the sample median, as well as to formula-based estimators. No formula is

available for the sampling variance of the median, but the jackknife proce-

dure can offer an estimate. Using the same example as above, the sample

median is 3 and the five pseudo-medians are 3, 2.5, 3.5, 3.5, and 2.5

(the mean of these pseudo-medians is 3). The variance of the median is

estimated as 0.8, using Equation 4.6.

In the same manner, the jackknife procedure also can be applied to the

replicated sampling. We can remove replicates one at a time and compute

pseudo-values to estimate the jackknife variance, although this does not

offer any computational advantage in this case. But it also can be applied to

any random groups that are formed from any probability sample. For

instance, a systematic sample can be divided into random or systematic sub-

groups for the jackknife procedure. For other sample designs, random

groups can be formed following the practical rules suggested by Wolter

(1985, pp. 31–33). The basic idea is to form random groups in such a way

that each random group has the same sample design as the parent sample.

This requires detailed information on the actual sample design, but unfortu-

nately such information usually is not available in most public-use survey

data files. The jackknife procedure is, therefore, usually applied to PSUs

rather than to random groups.

For a paired selection design, the replicate is formed removing one PSU

from a stratum and weighting the remaining PSU to retain the stratum’s pro-

portion in the total sample. The complement replicate is formed in the same

manner by exchanging the removed and retained PSU in the stratum.
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A pseudo-value is estimated from each replicate. For a weighted sample, the

sample weights in the retained PSU need to be inflated to account for the obser-

vations in the removed PSU. The inflated weight is obtained by dividing the

sum of the weights in the retained PSU by a factor (1−wd/wt), where wd is

the sum of weights in the deleted PSU and wt is the sum of weights in all the

PSUs in that stratum. The factor represents the complement of the deleted

PSU’s proportion of the total stratum weight. Then the variance of a sample

statistic in a paired selection design calculated from the full sample can be

estimated from pseudo-values u′h and complement pseudo-values u′′h in

stratum h by

v(�u)=
∑

[(u′h− �u)2 + (u′′h− �u)2]/2=
∑

(u′h− u′′h)2/4: (4:7)

This estimator has the same form as Equation 4.3 and can be modified to

include one replicate, without averaging with the complement, from each

stratum, as in Equation 4.4 for the BRR method, which gives

v′(�u)=
∑

(u′h− �u)2: (4:8)

The JRR is not restricted to a paired selection design but is applicable to

any number of PSUs per stratum. If we let uhi be the estimate of U from the

h-th stratum and i-th replicate, nh be the number of sampled PSUs in the

h-th stratum, and rh be the number of replicates formed in stratum h, then

the variance is estimated by

v ūð Þ=
∑L

h

nh− 1

rh

( )∑rh

i

(uhi− ū)2: (4:9)

If each of the PSUs in stratum h is removed to form a replicate, rh= nh in

each stratum, but the formation of nh replicates in h-th stratum is not required.

When the number of strata is large and nh is two or more, the computation

can be reduced by using only one replicate in each stratum. However, a suffi-

cient number of replicates must be used in analytic studies to ensure adequate

degrees of freedom.

Table 4.4 shows the results of applying the JRR technique to the collapsed

paired design of the 1984 GSS used in the BRR computation. Estimated pro-

portions of adults approving ‘‘the hitting of other adults’’ are shown for the

42 jackknife replicates and their complements. Applying Equation 4.7, we

obtain a variance estimate of 0.000238 with a design effect of 1.46, and these

are about the same as those obtained by the BRR technique. Using only the

42 replicates and excluding the complements (Equation 4.8), we obtain a

variance estimate of 0.000275 with a design effect of 1.68.
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From a closer examination of data in Table 4.4, one may get an impression

that there is less variation among the JRR replicate estimates than among the

BRR replicate estimates in Table 4.3. We should note, however, that the JRR

represents a different strategy that uses a different method to estimate the var-

iance. Note that Equation 4.3 for the BRR includes the number of replicates

(t) in the denominator, whereas Equation 4.7 for the JRR is not dependent on

the number of replicates. The reason is that in the JRR, the replicate estimates

themselves are dependent on the number of replicates formed. Because the

replicate is formed deleting one unit, the replicate estimate would be closer to

the overall estimate when a large number of units is available to form the

replicates, compared to the situation where a small number of units is used.

TABLE 4.4

Estimated Proportions Approving One Adult Hitting Another

in the JRR Replicates: General Social Survey, 1984

Estimate (percentage) Estimate (percent)

Replicate Number Replicate Complement Replicate Number Replicate Complement

1 60.2 59.8 22 60.3 60.0

2 60.2 59.8 23 60.0 60.0

3 60.0 60.0 24 60.4 59.6

4 60.3 59.8 25 60.1 59.8

5 60.0 60.1 26 59.8 60.3

6 59.9 60.1 27 59.9 60.1

7 60.0 60.0 28 60.1 60.0

8 60.0 60.0 29 59.5 60.3

9 59.9 60.2 30 59.9 60.1

10 60.1 60.0 31 59.6 60.2

11 59.8 60.2 32 60.5 59.6

12 59.9 60.1 33 60.1 59.9

13 59.8 60.2 34 60.3 59.8

14 60.0 60.1 35 60.1 59.8

15 59.6 60.5 36 60.2 59.8

16 60.4 59.6 37 60.0 60.0

17 59.9 60.0 38 59.6 60.4

18 59.8 60.2 39 59.9 60.1

19 59.8 60.2 40 60.5 59.6

20 59.9 60.1 41 60.4 59.8

21 60.0 60.0 42 60.7 59.4

Overall estimate = 60.0

Variance estimates Variance Standard Error Design Effect

By Equation 4.7 0.000238 0.0152 1.46

By Equation 4.8 0.000275 0.0166 1.68
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Therefore, there is no reason to include the number of replicates in

Equations 4.7 and 4.8. However, the number of replicates needs to be

taken into account when the number of replicates used is smaller than the

total number of PSUs, as in Equation 4.9.

In summary, the JRR technique is based on a pseudo-replication method

and can estimate sampling variances from complex sample surveys. No

restrictions on the sample selection design are needed, but forming replicates

requires considerable care and must take into account the sampling design of

the original sample design. As noted, this detailed design information is

seldom available to secondary data analysts. For instance, if more information

on ultimate clusters had been available in the GSS data file, we could have

formed more convincing random groups adhering more closely to actual

sample design rather than applying the JRR technique to a collapsed

paired design.

The Bootstrap Method

Closely related to BRR and JRR is the bootstrap method popularized by

Efron (1979). The basic idea is to create replicates of the same size and struc-

ture as in the design by repeatedly resampling the PSUs in the observed data.

Applying the bootstrap method to 84 PSUs in 42 pseudo-strata in the GSS

data, one would sample 84 PSUs (using a with replacement sampling proce-

dure), two from each stratum. In some strata, the same PSU may be selected

twice. The sampling is repeated a large number of times, a minimum of 200

(referred to as B) times (Efron & Tibshirani, 1993, sec. 6.4). However, a

much larger number of replications usually is required to get a less variable

estimate (Korn & Graubard, 1999, p. 33). For each replicate created (u′i), the

parameter estimate is calculated. Then the bootstrap estimate of the variance

of the mean of all replicate estimates is given by

v �uð Þ= 1

B

∑B

i=1

(u′i− �u)2: (4:10)

This estimator needs to be corrected for bias by multiplying it by

(n− 1)/n: When n is small, the bias can be substantial. In our example,

there are two PSUS in each stratum, and the estimated variance needs to be

halved. An alternative approach to correct the bias is to resample (nh− 1)

PSUs in stratum h and multiply the sample weights of the observations in

the resampled PSUs by nh/(nh− 1) (Efron, 1982, pp. 62–63). In our exam-

ple, this would produce half-sample replicates as in BRR. The bootstrap

estimate based on at least 200 replicates would then be about the same as

the BBR estimate based on 44 half-sample replicates. Because of the large
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number of replications required in the bootstrap method, this method has

not yet been used extensively for variance estimation in complex survey

analysis.

Various procedures of applying the bootstrap method for variance

estimation and other purposes have been suggested (Kovar, Rao, & Wu, 1988;

Rao & Wu, 1988; Sitter, 1992). Although the basic methodology is widely

known, many different competing procedures have emerged in selecting boot-

strap samples. For example, Chao and Lo (1985) suggested duplicating each

observation in the host sample N/n times to create the bootstrap population

for simple random sampling without replacement. For sampling plans with

unequal probability of selection, the replication of the observations needs to

be proportionate to the sample weight; that is, the bootstrap sample should be

selected using the PPS procedure. These options and the possible effects of

deviating from the fundamental assumption of independent and identically

distributed samples have not been thoroughly investigated.

Although it is promising for handling many statistical problems, the

bootstrap method appears less practical than BRR and JRR for estimating

the variance in complex surveys, because it requires such a large number of

replicates. Although BRR and JRR would produce the same results when

applied by different users, the bootstrap results may vary for different users

and at different tries by the same user, because the replication procedure is

likely to yield different results each time. As Tukey (1986, p. 72) put it,

‘‘For the moment, jackknifing seems the most nearly realistic approach to

assessing many of the sources of uncertainty’’ when compared with boot-

strapping and other simulation methods. The bootstrap method is not imple-

mented in the available software packages for complex survey analysis

at this time, although it is widely used in other areas of statistical computing.

The Taylor Series Method (Linearization)

The Taylor series expansion has been used in a variety of situations in

mathematics and statistics. One early application of the series expansion was

to obtain an approximation to the value of functions that are hard to calculate,

for example, the exponential ex or logarithmic [log(x)] function. This appli-

cation was in the days before calculators had special function keys and when

we did not have access to the appropriate tables. The Taylor series expansion

for ex involves taking the first- and higher-order derivatives of ex with

respect to x; evaluating the derivatives at some value, usually zero; and build-

ing up a series of terms based on the derivatives. The expansion for ex is

1+ x+ x2

2 !
+ x3

3 !
+ x4

4 !
+ . . .
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This is a specific application of the following general formula expanded

at a:

f(x)= f(a)+ f ′(a)(x− a)+ f ′′(a)(x− a)2

2 !
+ f ′′′(a)(x− a)

3 !

3

+ . . .

In statistics, the Taylor series is used to obtain an approximation to some

nonlinear function, and then the variance of the function is based on the

Taylor series approximation to the function. Often, the approximation

provides a reasonable estimate to the function, and sometimes the

approximation is even a linear function. This idea of variance estimation has

several names in the literature, including the linearization method, the delta

method (Kalton, 1983, p. 44), and the propagation of variance (Kish, 1965,

p. 583).

In statistical applications, the expansion is evaluated at the mean or expec-

ted value of x, written as E(x). If we use E(x) for a in the above general

expansion formula, we have

f(x)= f [E(x)]+ f ′[E(x)][x−E(x)]+ f ′′[E(x)][x−E(x)]2/2 !+ . . .

The variance of f(x) is V [f(x)]=E[f2(x)]−E2[f(x)] by definition,

and using the Taylor series expansion, we have

V [f(x)]={f ′[E(x)]}2V(x)+ . . . (4:11)

The same ideas carry over to functions of more than one random variable.

In the case of a function of two variances, the Taylor series expansion

yields

V [f(x1, x2)] ffi
∂f

∂x1

( )
∂f

∂x2

( )

Cov(x1, x2) (4:12)

Applying Equation 4.12 to a ratio of two variables x and y—that is,

r= y/x—we obtain the variance formula for a ratio estimator

V(r)= V(y)+ r2V(x)− 2r Cov(x, y)

x2
+ . . .

= r2 V yð Þ
y2

+ V xð Þ
x2

− 2 Cov x, yð Þ
xy

( )

+ . . .

Extending Equation 4.12 to the case of c random variables, the approxi-

mate variance of θ= f(x1, x2, . . . , xc) is

V(θ) ffi
∑∑ ∂f

∂xi

( )
∂f

∂xj

( )

Cov(xi, xj) (4:13)
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Applying Equation 4.13 to a weighted estimator

f(Y)= Ŷi=
∑

wiyij, j= 1, 2, . . . , c

involving c variables in a sample of n observations, Woodruff (1971)

showed that

V(θ) ffi V
∑

wi

∑ ∂f

∂yj

( )

yij

[ ]

: (4:14)

This alternative form of the linearized variance of a nonlinear estimator

offers computational advantages because it bypasses the computation of

the c× c covariance matrix in Equation 4.13. This convenience of convert-

ing a multistage estimation problem into a univariate problem is realized by

a simple interchange of summations. This general computational procedure

can be applied to a variety of nonlinear estimators, including regression

coefficients (Fuller, 1975; Tepping, 1968).

For a complex survey, this method of approximation is applied to PSU

totals within the stratum. That is, the variance estimate is a weighted combi-

nation of the variation in Equation 4.14 across PSUs within the same stratum.

These formulas are complex but can require much less computing time than

the replication methods discussed above. This method can be applied to any

statistic that is expressed mathematically—for example, the mean or the

regression coefficient—but not to such nonfunctional statistics as the median

and other percentiles.

We now return to the GSS example of estimating the variance of sample

proportions. Table 4.5 shows the results of applying the Taylor series method

TABLE 4.5

Standard Errors Estimated by Taylor Series Method for

Percentage Approving One Adult Hitting Another:

General Social Survey, 1984 (n = 1,473)

Subgroup

Estimate

(percent)

Standard Error

(percent)

Design

Effect

Overall 60.0 1.52 1.41

Gender Male 63.5 2.29 1.58

Female 56.8 1.96 1.21

Race White 63.3 1.61 1.43

Non white 39.1 3.93 1.30

Education Some college 68.7 2.80 1.06

High school graduate 63.3 2.14 1.55

All others 46.8 2.85 1.27
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to the proportion of adults approving the hitting of other adults, analyzed by

gender, race, and level of education. The proportion is computed as a ratio of

weighted sums of all positive responses to the sum of all the weights. Its stan-

dard error is computed applying Equation 4.14 modified to include the PSUs

and strata. The design effect for the overall proportion is 1.41, which is about

the same as those estimated by using the other two methods, whose results

are shown in Tables 4.3 (BBR) and 4.4 (JRR). The estimated proportion var-

ies by gender, race, and the level of education. Because the subgroup sizes

are small, the standard errors for the subgroups are larger than that for the

overall estimate. In addition, the design effects for subgroup proportions are

different from that for the overall estimate.

In this chapter, we presented several methods of estimating variance for

statistics from complex surveys (for further discussion, see Rust and Rao,

[1996]). Examples from GSS and other surveys tend to show that the design

effect is greater than 1 in most complex surveys. Additional examples can be

found in E. S. Lee, Forthofer, and Lorimor (1986) and Eltinge, Parsons, and

Jang (1997). Examples in Chapter 6 will demonstrate the importance of using

one of the methods reviewed above in the analysis of complex survey data.

5. PREPARING FOR SURVEY DATA ANALYSIS

The preceding chapters have concentrated on the complexity of survey

designs and techniques for variance estimation for these designs. Before

applying the sample weights and the methods for assessing the design effect,

one must understand the survey design and the data requirements for the esti-

mation of the statistics and the software intended to be used. These require-

ments are somewhat more stringent for complex survey data than for data

from an SRS because of the weights and design features used in surveys.

Data Requirements for Survey Analysis

As discussed in Chapter 3, the weight and the design effect are basic

ingredients needed for a proper analysis of survey data. In preparing for an

analysis of survey data from a secondary source, it is necessary to include

the weights and the identification of sampling units and strata in the work-

ing data file, in addition to the variables of interest. Because these design-

related data items are labeled differently in various survey data sources, it is

important to read the documentation or consult with the source agency or

person to understand the survey design and the data preparation procedures.

The weights usually are available in major survey data sources. As noted

earlier, the weights reflect the selection probabilities and the adjustments
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