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CHAPTER 1: THINKING TIME-SERIALLY

 This chapter defines time series analysis and distinguishes time series data 
from other forms of data. It provides an introduction to some notation and 
terminology that will set the framework for the discussion of time series 
fundamentals in Chapter 2 and to two of the examples that will be used 
throughout the text. It will end with a discussion of some of the opportuni-
ties and challenges of time series analysis, which will be expanded on in 
subsequent chapters. 

 1.1 Time Series Analysis and Time Series Data 

 Time series analysis in the social sciences is the application of statistical 
models to time series data to examine the movement of social science vari-
ables over time (e.g., public opinion, government policy, judicial decisions, 
educational outcomes, socioeconomic measures), allowing analysts to esti-
mate relationships within (over time) and between variables in order to test 
causal hypotheses, make forecasts about the future, and assess the impact 
of policy changes. 

 To clarify exactly what time series data are and are not, it is useful to 
compare such data to other types of data. For many, the most familiar type 
of data is cross-sectional data. Typically, cross-sectional data are from a 
random sample of cases. For example, a variable Y is a collection of obser-
vations on randomly selected cases: 

 Y = { y1, y2, y3, … , yN}, N = number of cases.  (1.1.1) 

 Each observation yi is from a different case, all from the same point in time. 
If the cases are selected by simple random sampling, each value of yi is 
roughly independent of the others. Cases can be a random selection of 
individuals, countries, firms, and so on. 

 As an example of cross-sectional data, consider the following cross-
sectional data on individual preferences for total government spending in 
1976 in Britain (Table 1.1). 

 Cross-sectional data have one observation for each case. Time series data 
have a separate observation for each time point, and each observation is for 
the same case—for example, GDP (gross domestic product) of a country. 
The time between observations can be years, months, days, hours, and so 
on. However, as we shall see, the measurements are assumed to be 
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Table 1.1   Individual Preferences for Total Government Spending in 
1976 Britain

Individual Spending Preference

1 2

2 2

3 1

4 5

5 4

6 5

7 4

8 3

9 5

10 5

11 3

12 4

13 2

14 5
… …

NOTE: Individual preferences for total government spending: scored strongly in favor (1), in 

favor (2), neither in favor nor against (3), against (4), or strongly against (5) government 
spending cuts.

(roughly) evenly spaced. A time series variable Yt is a nonrandom sequence 
of observations for an individual case ordered over time: 

 Yt = { y1, y2, y3, … , yT}, T = number of time points.       (1.1.2) 

 Again as an example, consider the following time series data on  net  prefer-
ences for total government spending in Great Britain each year from 1975 
onward (Table 1.2). 

 Another type of data, which is neither cross-sectional nor purely time 
series, is panel data. Continuing our previous example, consider the follow-
ing data on net preferences for total government spending in a selection of 
countries at three time points: 1986, 1996, and 2006. Panel data can be 
presented in either stacked or nonstacked format (Table 1.3). 
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Table 1.2   Net Preferences for Total Government Spending in Great 
Britain

Year Spending Preference

1975 −6.1

1976 −7.9

1977 −9.4

1978 −10.1

1979 −10.7

1980 −11.5

1981 −12.4

1982 −12.6

1983 −12.2

1984 −13.5

1985 −14.8

1986 −14.4

1987 −14.4

1988 −14.3

… …

NOTE: Net preferences for total government spending: the average of survey responses, 
scored strongly in favor (−100), in favor (−50), neither in favor nor against (0), against (+50), 
or strongly against (+100) government spending cuts. The measure ranges in theory from 
−100, meaning that all respondents strongly favor spending cuts, to +100, meaning 
that all respondents oppose spending cuts.

 In panel data, we have more than one case. The same set of cases is 
observed at multiple time points. Typically in the social sciences, we 
observe more cases than we do time points. 

 A final type of data is pooled cross-sections. This is not quite panel 
data as the cases measured at each time point are not the same. For 
example, our data may be the responses of individuals from Britain to a 
monthly survey, with a different random sample of individuals each 
month. This type of data is often collapsed into a time series for the 
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Table 1.3   Net Preferences for Total Government Spending

Nonstacked Country 1986 1996 2006

Australia −45.3 −37.3 −12.8

Germany −51.8 −67.5 −54.9

Great Britain −14.4 −12.8 −4.5

Hungary −63.3 −67.2 −63.4

Israel −73 −70.3 −51.5

Italy −42.2 −43.5  

Norway −40.8 −36.4 −30.2

… … … …

United States −53.6 −58.5 −36.1

Stacked Country, Year Spending Preference

Australia, 1986 −45.3

Australia, 1996 −37.3

Australia, 2006 −12.8

Germany, 1986 −51.8

Germany, 1996 −67.5

Germany, 2006 −54.9

Great Britain, 1986 −7.9

Great Britain, 1996 −12.8

Great Britain, 2006 −4.5

Hungary, 1986 −63.3

Hungary, 2006 −67.2

Hungary, 2006 −63.4

… …

United States, 2006 −36.1
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purposes of analysis. For example, we could take individual-level total 
government spending preference data and calculate the net preference for 
total government spending for the individuals surveyed each month. This 
gives us a monthly time series of net preference for total government 
spending in Britain. 

 Time series, panel, and pooled cross-sectional data are all forms of lon-
gitudinal data. Before looking at the analysis of time series data, we need 
to specify some notation and terminology. 

 1.2 Time Series Notation and Terminology 

 One of the major stumbling blocks for students trying to understand time 
series analysis is the notation used. This is understandable, as reading any 
quantitative methods literature without knowing the notation is a bit like 
trying to read a text in a foreign language. Unfortunately, there is no single 
agreed-on notation, so the notation used in this text may differ from what 
you read elsewhere, but the notation is consistent throughout this text and 
the supplementary material. We begin with some basic notation: 

X, Y, Z, W Variables

x, y, z, w Some single value (element) of the variable (i.e., the value 
of the variable at some unspecified single time point)

i, j, k, l, s, t Indices ( t  is usually reserved to index time)

x
t
, y

t
, z

t
, w

t
A specific value (element) of the variable (i.e., the value of 
the variable at some specified single time point)

T Total number of observed time points: t = 1, 2, 3, … , T

 Some notation is specific to time series data. If Y is a time series variable, 
we often give it the subscript  t: Yt  . The subscript  t  does not indicate that we 
are referring to a specific value of Yt. It only indicates that Y is a time series 
variable. We will use yt to denote the specific value of Yt at some time point 
t.  For example, y1 or yt=1 is the specific value of Yt at the first time point; this 
is our first observation in the time series. 

  The Data-Generating Process Versus the Data Model  

 In the following chapters, we will often describe what we assume to be 
the data-generating process for the time series data that we are analyzing. 
This language may be new to many and needs some explanation. 
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 When learning about simple linear regression, the distinction is often 
made between the  population model  or  true model  and the model estimated 
from the sample. In this language, the population model describes the 
process that generates the data from which we sample. For example, for 
variables X and Y, we may assert the population regression model as 
follows: 

Y = β0 + β1 X + ε,

X E XNID 0, , NID , , 0.
X X

2 2ε σ μ σ ε( ) ( ) ( )∼ ∼ | =ε    (1.2.1)

 Variable Y is a function of X and ε, which are themselves normally 
distributed random variables that are unrelated to each other (indepen-
dent), denoted as NID. In this assertion, we assume that this is the process 
that generates the set of data that is our sample. Our sample represents 
N draws from this stochastic (containing a random component) process—
specifically N random draws from X and ε, which then determine Y. 1  
From the sample, we can specify the sample regression function as 
follows: 

Y = β0 + β1 X + ε,

  Y = { y1, y2, … , yN}, X = {x1, x2, … , xN}.      (1.2.2)

 This model, which we will estimate using our sample data (e.g., using ordi-
nary least squares [OLS] estimation), is called the  data model  (sometimes 
called the  empirical model ). We indicate the model from a particular esti-
mation using the “hat” notation: 

   Y = β̂0 + β̂1 X + ε̂ .        (1.2.3)

 The data-generating process often is described as a stochastic function 
that could produce an infinite number of possible outcomes. Our data 
are N possible draws from this function. In many cross-sectional con-
texts, it is easy enough to think of the sample data as a random draw of 
N cases from the  very large  population of cases available for observa-
tion. The randomly selected cases provides us with our sample values of 
Y, X, and ε. In thinking about our data this way, it isn’t really necessary 

1 Note that X may also contain nonstochastic elements.
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to use the language of a data-generating process—although it may still 
be useful. 

 In the context of time series data and often in the context of cross-
sectional data, our sample data are not a random draw from a population of 
cases available for observation. 2  Consequently, the language of a data-
generating process becomes not just useful but necessary. In the time series 
context, the data-generating process is again described as a stochastic 
function that could produce an infinite number of possible outcomes. For 
example, 

yt = β0 + β1xt + εt, for t = 1, 2, … , T

x E xNID 0, , NID , , 0.
t t X X t t

2 2ε σ μ σ ε( ) ( ) ( )∼ ∼ | =ε    (1.2.4)

 However, our data are a single draw from this data-generating process, in 
that we only ever draw one value of xt and one value of εt for each time 
point t = 1, 2, … , T. These then determine the values of  y t   observed. The 
single draw of xt and εt for each time point t = 1, 2, … , T is commonly 
called a single  realization  of the data-generating process. In time series 
analysis, we are not in a position to go back and resample different values 
of  xt and εt for a particular time point. Talking about the population of cases 
we could have observed at a single time point is meaningless, and so we 
instead talk about the stochastic process that generates the single value at 
that time point. 

 When describing fundamental time series concepts, we will often define 
the data-generating process that corresponds with each of the concepts. 
When describing the application of time series analysis, we will discuss the 
consequences of different data-generating processes for the model we esti-
mate from our data (the data model). It will become evident that it is not 
always necessary for the estimated data model to contain all of the elements 
of the assumed function defining the data-generating process. We may 
assume that the data-generating process is as follows: 

yt = β0 + β1xt + β2 zt + εt, for t = 1, 2, … , T

x z E x zNID 0, , NID , , NID , , , 0.
t t X X t z z t t t

2 2 2ε σ μ σ μ σ ε( ) ( ) ( ) ( )∼ ∼ ∼ | =ε

(1.2.5)

2 For example, when the cases in the cross-sectional data are European countries, we never 
really have a random draw of these countries.
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 At the same time, we might explore the consequences of this data-
generating process for an OLS estimation of a data model of the fol-
lowing form: 

   y
t = β0 + β1xt + εt, for t = 1, 2, … , T      (1.2.6)

 It is usually the case that we believe the data-generating process is more 
complicated than the data model estimated. It is not uncommon to be aware 
that yt is, in part, determined by zt without having any direct measure of zt. 
The data-generating process can be interpreted as the unobserved reality 
that we are trying to reveal with our analysis. However, much analysis is 
focused on trying to reveal only a part of the data-generating process, while 
guarding against the possibility that the larger reality might lead us to reach 
false conclusions. 

 In time series analysis, as in other forms of statistical analysis, there is 
often an iterative process between the data-generating process assumed and 
the data model estimated (Hendry, 2003, chap. 1). Typically, we begin by 
stating the assumed data-generating process. This informs the data model 
that we then estimate. The results from the estimated data model may pro-
vide confirmation that our data-generating assumptions are correct or may 
contradict those assumptions. Accordingly, we may adjust our assumptions 
regarding the data-generating process and estimate a new data model. This 
process continues until we feel that there has been a convergence between 
our assumptions regarding the data-generating process and the data model 
estimated from our sample data. 

  The Lag of a Time Series Variable  

 Continuing on with time series notation, we use the notation yt−1 to indi-
cate the specific value of Y at the time point just previous to t .  We call this 
the  lag  of yt. Say our observations are weekly; then, yt−1 at t = 5 (Week 5) 
is equal to y5−1 = y4. This is the value of Yt in Week 4. For clarity, this is 
sometimes called the  first  lag. Similarly, yt−2 is called the  second  lag. This 
can, of course, be applied to any variable (e.g., Xt or Zt ). 

 To “lag” a variable is to create a new variable where the value of the 
variable at a given time point  t  is replaced by the value of the 
variable from the previous time point,  t  − 1. Consider the following data 
(Table 1.4) containing the variable “social program spending preference” 
(measured on the same scale as the “total government spending net pref-
erence” variable in the previous example) in the third column. The lagged 
value of social program spending preference would look as it does in the 
fourth column. If we are modelling social program spending preference 
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Table 1.4   Social Program Spending Preference—Lags, Leads, and 
First Differences

Year Unemployment

Social 

Program 

Spending 

Preference

Social 

Program 

Spending 

Preference

—First 

Lag

Social 

Program 

Spending 

Preference

—First 

Difference

Social 

Program 

Spending 

Preference

—First 

Lead

1988 7.71 27.45 — — 32.32

1989 7.59 32.32 27.45 4.87 25.18

1990 8.84 25.18 32.32 −7.15 22.39

1991 10.46 22.39 25.18 −2.79 20.26

1992 11.35 20.26 22.39 −2.13 15.53

1993 11.38 15.53 20.26 −4.74 20.63

1994 10.08 20.63 15.53 5.10 23.80

1995 9.51 23.80 20.63 3.17 33.41

1996 9.71 33.41 23.80 9.62 40.13

1997 8.95 40.13 33.41 6.72 45.08

1998 8.15 45.08 40.13 4.95 46.69

1999 7.30 46.69 45.08 1.61 44.89

2000 6.90 44.89 46.69 −1.80 —

Note that in practice you lose a time point when lagging a variable. In discussions of the theory 
of time series analysis, this is sometimes overlooked, but it will be important to 
keep in mind when we discuss the practical application of time series analysis.

and we include a lag of this variable as an explanatory variable, this vari-
able is often called a “lagged dependent variable,” as it is just that—the 
lagged value of the dependent variable. More will be discussed on this in 
Chapters 2 through 4. 

  The Lead of a Time Series Variable  

 To “lead” a variable is to create a new variable where the value of that 
variable at a given time point  t  is replaced by the value of the variable from 
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the  next  time point,  t  + 1. The lead value of “social program spending pref-
erence” would appear as it does in the last column of Table 1.4. The nota-
tion for the lead of y

t is yt+1. It is rare that such a variable would be included 
as an explanatory variable in a model. It is unlikely that we would expect 
the future value of the dependent variable to be an explanatory variable, but 
in Chapter 6 we will see an example of its use. 

  The Difference of a Time Series Variable  

 To first difference a time series variable is to create a new variable where 
the value of that variable at a given time point  t  is equal to the value of the 
original variable minus the value of the first lag of the variable. The second-
last column of Table 1.4 contains such a first difference of social 
program spending preference. The 1989 value of 4.87 is the result of sub-
tracting the lag of social program spending preference (27.45) from the 
original 1989 value of social program spending preference (32.32). The 
notation for the first difference of yt is Δyt –—the Greek letter  delta  is often 
used to indicate change or difference. The first difference of a variable can 
be interpreted as the change in this variable since the previous time point. 
The change in social spending preference from 1988 to 1989 is 4.87 (an 
increase). 

 Getting a grasp on notation and terminology is one of the greatest hurdles 
to understanding time series analysis. This text will build on the notation 
and terminology outlined in this chapter as needed, but what has been pre-
sented so far provides the framework necessary for the discussion of time 
series fundamentals in Chapter 2. Before we move on to those fundamen-
tals, let us discuss some of the key opportunities and challenges presented 
by time series analysis. 

 1.3 Opportunities and Challenges With Time Series Data 

 To explore the problems created by time series data for the methods of 
analysis generally used with cross-sectional data, let us consider the follow-
ing example. For this example, we will analyze data collected for the pur-
pose of testing the thermostatic model of public responsiveness and policy 
representation as developed by Soroka and Wlezien (2010). 

 The thermostatic model is actually two models that describe how (1) 
public demands for increases or decreases in policy spending respond to 
current levels of government spending and (2) government changes in 
policy spending respond to public demands for increases/decreases. The 
following examines the first of these, called a public responsiveness 
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model. The unit of time for this model is the fiscal year—there is one 
observation per fiscal year. The public responsiveness model is as 
follows: 

     Rt = β0 + β1Pt + β2Wt + εt,       (1.3.1)

 where Rt is the public’s relative preference for policy spending in a given 
year—that is, the difference between the public’s preferred level of policy 
spending and the level that it actually gets.  3   Pt is the actual level of policy 
spending in a year. Wt represents other, exogenous effects on the public’s 
relative preferences—this could include more than one variable. For our 
current purposes, let us just regress the public’s relative preference for 
policy spending on the actual level of policy spending (in millions of 
Canadian dollars). We do this using yearly data on the Canadian public’s 
relative preference and government policy spending for social welfare pay-
ments from 1988 to 2003. Table 1.5 contains the results from an OLS 
estimation. 

 In addition to estimating the intercept and slope coefficients, β̂0 and β̂1, 
and calculating the corresponding  t  statistics, we usually estimate a good-
ness-of-fit statistic (e.g.,  R  2 ). 

 Recall that we typically use a  t  test to test the statistical significance of 
the regression coefficients. Looking at Table 1.5, if we were using a 0.05 
significance level, we would conclude that we could not reject the null 
hypothesis that the slope coefficient for program spending is 0. Therefore, 
we could not reject the null hypothesis of no effect for program spending 
on relative spending preference. If we were using a 0.10 significance 
level, we would conclude that there is a statistically significant and posi-
tive relationship between government social welfare spending and the 
public’s relative preference. For each additional billion dollars spent on 

Table 1.5   Canadian Public’s Response to Government Spending

Preference Coefficient

Standard 

Error t Statistic P Value

Program 
spending 0.32 0.16 1.98 0.067

Constant −25.37 30.03 −0.84 0.412

NOTE: R2 = 0.22, T = 16; T = number of time points.

3 This is operationalized using the measure described in Table 1.2.
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social welfare programs, the public’s relative preference increases by 
0.32 on the (−100, 100) scale. This suggests that greater spending leads 
to an increase in the demand for spending! Neither of these is what 
Soroka and Wlezien (2010) predicted, but this is also not the model they 
used—and for good reason. 

 The preceding analysis included a number of assumptions. One of the 
most important of these assumptions is that the observations are indepen-
dent. Usually, the cases in a cross-sectional data set are assumed to have 
been selected randomly, and therefore, the value of any case for a given 
variable will be independent from the value of any other case for the same 
variable. In time series data, we have measures of the same variable for the 
same single case at different time points. Therefore, time series data, such 
as those used here, are usually not independent, especially if the sampling 
time interval is small. Observations close together are often more alike 
than those far apart. For example, public opinion today is more closely 
related to public opinion yesterday than it is to public opinion last year. In 
our current example, this is public opinion regarding government spending 
levels. Addressing the potential for time series data to violate the assump-
tion of independence motivates many of the analytical approaches dis-
cussed in this text. For now, let us consider some of the consequences of 
this violation. 

 If not accounted for in our analysis, one of the problems the violation of 
independence can lead to is a problem called serial-correlated errors. This 
is the problem of correlation across the estimated errors in our data model. 
We discuss this further in Chapters 2, 3, and 5. For now, consider the pos-
sibility that the effects captured by the error term at one time point may be 
correlated with the effects captured by the error term at the next time point. 
Relating back to our example, this could happen if an event captured by 
the error term one month increases the public’s wish for spending and, at 
least, part of this effect remains and is captured by the error a month 
later. 

 A second potential problem is as follows. A source of the lack of inde-
pendence may be that public opinion today is partly explained by public 
opinion yesterday. If we are modelling public opinion on a daily basis and 
public opinion yesterday is a predictor of public opinion today, this predic-
tor should be included in the model. This predictor is the lag of the depen-
dent variable discussed earlier. The substantive interpretation of including 
such a variable in a model will be discussed in Chapters 2 and 3. For now, 
it is sufficient to note that not including it under these circumstances can 
lead to a violation of another important assumption of OLS regression. This 
is the zero conditional mean assumption. Let us state this assumption in 
terms of our current example: 
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     E(εt
 | P

t
) = 0.     (1.3.2)

 This implies that the (conditional) mean of the error term is independent 
from the explanatory variable(s). What if the past year’s relative policy 
spending preference is a predictor of the current year’s relative policy 
spending preference (Rt), as suggested above? If it is also a predictor of our 
explanatory variable—current policy spending (Pt)—Assumption (1.3.2) 
will be violated. This may be the case if government spending levels are a 
function of the public’s relative preference in the previous fiscal period. 
This is very similar to the omitted-variable bias problem familiar to those 
who have studied cross-sectional data analysis. It is called an endogeneity 
problem and is discussed further in Chapter 2. 

 Those who have studied cross-sectional data analysis will be familiar 
with the problem of omitted-variable bias. This is a particularly pernicious 
problem as there is no direct way of testing for omitted-variable bias except 
for including the variable(s) that is(are) suspected to be omitted. The dif-
ficulty that often arises is that a variable that is commonly suspected to be 
omitted is the past value of the dependent variable. In the figure below, we 
may be interested in the effect of xt on yt, but we are concerned about the 
effect of yt−1 on both xt and yt in the data-generating process. In other words, 
we are concerned that the omission of yt−1 from the data model might pro-
duce an omitted-variable bias. 

xt

yt

yt–1

 This concern is actually relatively common. Consider this problem in the 
context of the current example. We regress public attitudes toward govern-
ment spending levels in a given fiscal period on actual government spend-
ing in the same fiscal period: 

Government 
Spending this period

Public 
Attitudes this period
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Government 
Spending this period

Public 
Attitudes this period

Public 
Attitudes last period

 An omitted-variable bias will occur if public attitudes toward spending in 
this fiscal period are correlated with public attitudes in the previous fiscal 
period and if those attitudes in the previous fiscal period affect government 
spending this fiscal period. 

 This is one of the more common violations of the zero conditional mean 
assumption, known as the exogeneity assumption. This assumption is 
discussed further in Chapter 2. As we will see, time series analysis allows 
us to test and correct for the problem by including the past value of the 
dependent variable directly in the data model. This is one way in which 
time series data provide us with an opportunity we do not have with 
cross-sectional data. We will explore other opportunities throughout this 
text. 

 The analysis of time series data also introduces additional problems. For 
example, another potential violation of the zero conditional mean assumption 
is that both xt and yt are trending. A variable trends if, in addition to other 
dynamics and random variation, it increases or decreases by a constant 
magnitude each time period. This could occur for a number of reasons, such 
as if social welfare programs have steadily become more expensive to 
provide over time and the public’s expectations regarding the provision of 
those programs have also increased steadily. Let us visually examine the 
variables: the public’s relative preference for social welfare spending and 
actual social welfare spending (Figure 1.1). 

 Clearly, both variables are trending upward .  If two series are trending 
together, we will probably estimate a strong correlation between the two, 
but we can’t assume that the relation is causal. An alternate possibility is 
that it is a spurious result produced by the fact that both variables are a 
function of time. The difficulties with and approaches to trending are dis-
cussed further in Chapters 2, 3, and 6. 

 Generally, if we are interested in the effect of xt on yt, we need to be 
concerned if both xt and yt appear to have data-generating processes that are 
a function of time. If both xt and yt trend and this is not accounted for in the 
data model, our estimation of the effect of xt on yt will be subject to a spuri-
ous correlation, akin to omitted-variable bias. 
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 As another concrete example, it is quite common for a new government’s 
popularity to begin trending downward after an initial honeymoon period. 
This could be driven by any number of things: The new government’s 
popularity was artificially high due to the positive coverage from the elec-
tion win; once the government has to start making decisions it inevitably 
upsets some supporters; and so on. As a consequence, any other variable 
that trends downward or upward during the same period will correlate sig-
nificantly with government popularity even if it is not related to it in any 
way. This will hold for other functions of time as well, as we will discuss 
in Chapter 3. 

 Trending also violates an assumption that is unique to longitudinal (e.g., 
time series and panel) data. This is the assumption of stationarity. The 
nature of the data-generating process of time series data discussed earlier in 

xt
yt

t

Figure 1.1   Canadian Public’s Relative Preference and Actual 
Government Spending
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this chapter will require us to make this complex assumption. This is dis-
cussed further in Chapter 2. 

 A final challenge presented by time series data that we have not yet 
touched on can be illustrated by another example. We may be interested in 
how approval ratings for the German government translate into vote inten-
tion for the government over the period from 1982 to 1998 (Figure 1.2). 
Over this period, our data are for the government of West Germany prior to 
January 1987 and for the government of the unified Germany subsequently. 
If we plot our approval and vote intention time series, we will note some-
thing important. 

 After the reunification of Germany, vote intention becomes somewhat 
more volatile and approval even more so. This is likely due to the weaken-
ing of partisan identification in the latter period (Pickup, 2010). What we 
are seeing is a structural break in the variances of both time series. This 

Figure 1.2   German Government’s Approval and Vote Intention
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structural break will present a problem for any model that assumes that the 
variances in the time series are constant across the period of analysis. 
Structural breaks can also occur in the means of time series and the covari-
ances between time series. In fact, it is quite likely that the covariance 
between approval and vote intention also has a structural break in January 
1987. We will need to account for such breaks in our time series models. 
As we will see in Chapter 5, such structural breaks will sometimes be a 
nuisance to be dealt with but at other times they will be of interest in and 
of themselves. 

 Summary 

 In this chapter, you have been introduced to some of the basic notation and 
terminology of time series analysis. You have also been given a taste of the 
opportunities and challenges presented by the analysis of time series data. 
In the following chapters, we will explore these and other opportunities and 
challenges further. We will learn how to address the challenges and take 
advantage of the opportunities. In the next chapter, we continue our intro-
duction to time series analysis by surveying the fundamental concepts of 
time series data and analysis. 
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