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INTRODUCTION

In this chapter we first present the basic idea of linear regression and give a non-technical
introduction. Next we cover the statistical basis of this method and discuss estimation, testing
and interpretation of regression results. The third section is devoted to the presentation of an
example analysis. In closing, we first discuss issues related to the causal interpretation of OLS
regression coefficients and then mention some general problems encountered in linear regression
and recommend further reading.

In science we often are interested in studying hypotheses of the form ‘the more X, the more/less
Y’, for example ‘the higher the education of a person is, the more willing s/he is to accept
immigrants’. Thus, we assume that acceptance of immigrants is partly determined by education,
or more technically that the acceptance of immigrants is a function of education. We can express
this idea mathematically as

Acceptance of Immigrants = f( Education) or y =f(x).

If we choose a linear function f(-) to link y with x; the result is a linear regression model.
Alternative link functions result in other regression models; some of which are discussed in
Chapters 8 and 9 of this volume. Expressed as linear model, we get

y =B+ pix+e, @.1)

where y is referred to as the dependent (endogenous) variable and the x as an independent
(exogenous) variable or predictor. This equation can be seen as a specification of our hypothesis
‘the higher the education of a person is, the more willing s/he is to accept immigrants’. The
specification consists of the assumption that we have a linear effect of education on accepting
immigrants of size 8. This means we assume that if education increases by one unit the accep-
tance of immigrants changes by 8; units. It is also important to note that if we specify a linear
effect as in equation (4.1) we assume that the effect of education is the same for any given level
of education, that is, the effect is constant throughout the range of x.

Equation (4.1) contains an element that has not yet been introduced. The term ¢ is referred to
as an error term or residual. It is equal to the difference between the observed values of y and the
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Figure 4.1 Scatter plot with linear fit line

values predicted by the independent variable(s). Subtracting & from both sides of equation (4.1)
yields
y—e=y=p+pBix, (4.2)

where  denotes the predicted values of y.

Figure 4.1 illustrates the relationship between education and acceptance of immigrants for 25
people, where education is measured in years of full-time education and acceptance is measured
on an 11-point scale ranging from 1 (no acceptance) to 11 (full acceptance). Each dot in this
scatter plot represents one person in this property space. The line drawn in Figure 4.1 represents
the linear relationship between education and acceptance; it follows the equation y = 1.5+ 0.3x.
Here, 81 =0.3 implies that a person with one more year of education on average scores 0.3 points
higher on the acceptance of immigration scale. Figure 4.1 also illustrates why g is referred to as
the slope: it determines how shallow or steep the regression line is. By, in this example equal to
0.5, is called the intercept, since it equals the value of y at which the regression line ‘intercepts’
or crosses the y-axis. In our little example the intercept of 0.5 can be interpreted as the predicted
value for a person with zero years of education. The problem with this interpretation is that we
have no data for this range of values of the independent variable and thus we should abstain
from making any predictions. Of course, this is also true for the other end of the distribution. For
example, we would predict a value of  (x=50) = 16.5 for someone with 50 years of education,
which is an impossible value given the current measurement of acceptance with a maximum
value of 11. In general, we should restrict our analysis and interpretation of results to those
areas of the property space for which we have empirical data. This range is implied by the solid
regression line.

In a real application we would usually assume that the phenomenon of interest is affected by
more than one factor. In the case of opinions towards immigrants such additional factors could
be age, sex, employment status, income, etc. The idea that acceptance of immigrants is affected
by all these factors again can be expressed in a linear model as

y=PBo+ Bixi+ Boxa + -+ Brxi + &. (4.3)

In this equation we have refined our hypothesis that ‘the higher the education of a person
is, the more willing s/he is to accept immigrants’ in an important way. Let us assume that
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education is represented by x| and consequently the effect of education is B;. As in the earlier
example, we assume that if education increases by one unit the acceptance of immigrants changes
by B; units. But equation (4.3) extends our hypothesis by stating that the effect of education
on acceptance of immigrants is estimated while ‘holding all other variables constant’. This
means that equation (4.3) allows us to observe the effect of education controlling for third
variables such as age and sex. The same in turn is true for the effects of all other independent
variables x; in equation (4.3). Their effects are estimated under the assumption that all other
independent variables are held constant. Thus, linear regression allows us to estimate the effect
of an independent variable on a dependent one as if the units of analysis did not differ with
respect to other characteristics contained in the model. For social science applications this is an
enormous advantage because, unlike other sciences, we often cannot experimentally manipulate
the variables we want to study.’

Now assume that instead of analyzing the effect of education we are interested in analyzing
the effect of church membership on the sentiment towards immigrants. A variable like this with
only two levels, member and non-member, is referred to as binary variable. In linear regression
analysis the effects of such binary variables can be modeled straightforwardly. All we have to
do is to decide how to code this variable. The standard approach is dummy coding, that is,
assigning one of the two categories the value 0 (this category serves as the so-called ‘reference
category’), and the other the value 1. For example, we could create a variable having the value
0 for non-members and the value 1 for members of churches. Let us denote this variable by D,
and insert it in the regression equation. This gives

V= Bo+ BiD. (4.4)

To understand what this means we look at this model for non-members only, D, = 0. Then
equation (4.4) reduces to

P(De = 0)= po.
For members, D. = 1, equation (4.4) yields

YDe =1)=po+ B

Thus, in equation (4.4) the intercept ( o) is identical to the expectation of J for non-members,
while the slope (1) equals the expectation of the difference between members and non-members
with respect to p. Figure 4.2 illustrates a regression result for a dummy variable. In this exam-
ple non-members average 4.6 points and members 7.0 on the immigration acceptance scale
(indicated by the vertical bars). From these figures we obtain the regression results

9y =4.6 + (7 — 4.6) Member = 4.6 + 2.4 Member .

The inclusion of binary predictors in regression models can easily be extended to categorical
variables with several categories, for example marital status or nationality. In this case we
need more than one dummy variable to represent these effects. More precisely, we need one
variable fewer than we have groups. Assume we want to distinguish between single, married,
divorced/separated and widowed persons. Then we would need three dummy variables.” One
of the categories will be the reference category, that is, the category relative to which all the
differences are expressed. If we take ‘single’ as the reference category, the regression of y on
marital status will give us

V= B0+ B1Dn + B2Da + B3D,,.
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Figure 4.2 Scatter plot for binary predictor

Here B, is the expectation of y for single persons, the reference category, while 8, 8, and B3
are the differences in expectation of married, divorced and widowed people, respectively.

Using dummies to represent a variable does not have to be restricted to non-metric variables. It
can also be a means to test whether the relationship of an independent variable to the dependent
variable is non-linear. Take again the example of the effect of education on sentiments towards
immigrants. We may have doubts as to whether years of education are linearly related to our
variable of interest. In this case we might group years of education into 3-year bands, for example
under 8 years, 8 to 10 years, 11 to 12 years, 13 to 15 years, 16 to 18 years, 19 to 21 years, 22 to
24 years, 25 years and over. Inspecting the regression slopes of the respective dummy variables
gives us an indication whether or not the assumption of a linear relationship between education
and attitudes towards immigrants is warranted.

MATHEMATICAL FOUNDATIONS

The model

In the previous section we have already introduced the general model of multiple linear regression
analysis as
y=PBo+ Bix1 + Boxa + - + Brxx + €.

Using the summation sign, this expression can be written more compactly as

k
y=1) Bxi+e,
=0

with xo = 1. If we use matrix notation this can be written as

y=XB+e, (4.5)
which is identical to
VI I xn - xue || Bo 3
» I xa - xu || B )
=1 . . I o
Vn 1 Xnl T Xnk ﬁk En

The predicted values y can be written as X 8.
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Identifying the regression coefficients

Once we have specified a regression model of the kind presented in equation (4.5), the next step
is to identify the regression coefficients, that is, the §;. Think back to the bivariate case for a
moment and look again at Figure 4.1. We can easily imagine different lines representing the cloud
of points in the scatter plot; the question is which one of these is the best. Obviously the line we
want (i.e. the regression coefficients sought) should minimize the difference between observed
and predicted values of the dependent variable. However, there are different ways to ‘minimize’
this difference. The most common approach is to minimize the sum of the squared differences
between observed and predicted values (i.e. errors). That is, the regression coefficients are found
by minimizing

min Y el =min Y (3 —F)P =min ) (n—(Bo+ Bixi 4o+ Bxi) )P (4.6)

i=1 i=1 i=1

Because this method minimizes the sum of squared errors it is usually referred to as ordinary
least squares (OLS) regression. We can now find values of 8; that minimize equation (4.6) by
partially differentiating (4.6) for each B;, setting the resulting equation equal to zero and solving
for B;. To illustrate how this works, let us explain this procedure for 8; in more detail. Because
equation (4.6) is a composition of two functions we have to obey the chain rule, that is, we have
to differentiate the outer and inner part and multiply the result. The derivative of > ( -)* equals
2 >"(-); the derivative of (y — X ) for B; equals —x;;. Multiplying both results and setting the
equation to 0 yields

2 Z —xi1(yi — Bo — Bixit — Baxip — -+ — Brxi) =0

i=1

or

-2 an(yi — Bo — Bixit — Poxip — -+ — Brxir) = 0. 4.7

i=1

We can simplify this expression by dividing both sides of the equation by —2, giving

inl(Yi — Bo — Bixit — Poxip — -+ — Brxir) = 0. (4.8)
i=1

To complete the exercise, we have to repeat the differentiation for the other regression coeffi-
cients. The resulting system of equations is (cf. Wooldridge, 2009, p. 800)

D (i = Bo— Bixin — Boxip — -+ — Brxi) =0

i=1
> xa(yi — Bo— Bixin — oxip — -+ — Pixu) = 0
P (4.9)
D xi(yi — Bo — Bixin — Poxi — -+ — Brxir) =0,

i=1
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where the first equation results from differentiation for Sy, the second for §;, etc. In matrix
notation this can be written as

X' (y—XB)=0. (4.10)
Multiplying and rearranging terms gives
(X'X"HB=Xy. (4.11)

Assuming (X'X) has full rank, that is, none of the independent variables is a perfect linear
combination of other independent variables, we can left-multiply both sides by the inverse
matrix (X'X)~!, resulting in

B =(X'X)"'Xy. (4.12)
This equation gives regression coefficients that minimize the sum of squared errors. Thus, unlike
maximum likelihood estimation used in logistic or probit regression, there exists a closed-form
solution for finding regression coefficients in OLS regression (for more on OLS and maximum
likelihood estimation see Chapter 2 of this volume).

Assessing model fit

As we have seen in the previous subsection, it is always possible to solve a linear regression
problem using the OLS principle. And each model estimated with this principle minimizes the
squared difference between observed and estimated values of the dependent variable. However,
this does not imply that every regression model fits the data equally well. On the contrary, some
models will have very poor fit while others will fit the data better. The degree of fit obviously
depends on the degree to which the predicted values for the dependent variable y are similar to
the observed values of y. Or, to put it slightly differently, the more differences in the observed
variables a model can account for, the better its fit.

To operationalize this idea of lesser or better fit we make use of a basic concept from the
analysis of variance, namely that the total variation of the dependent variable can be partitioned
into a part explained by the regression model and a part not explained by the model. Put more

formally,
D=I=Y -+ ) (-9’

TSS = ESS 4+ RSS,

where TSS, ESS and RSS stand for total sum of squares, explained sum of squares and residual
sum of squares, respectively. We can now look at the ratio of explained variation relative to the
total variation,

or

R explained variation  ESS Y () — j)?
~ total variation ~ TSS Y .(y —p)?

The ratio R?, also called the coefficient of determination, can vary between 0 and 1 and reflects
the proportion of variance explained by the regression model.

One problem with this measure of fit is that if we add more variables to a given model R? can
only increase, even though the variables we add may be irrelevant with respect to the dependent
variable of interest. This happens because R? and consequently also changes in R? can only be
positive. Therefore, independent variables unrelated to the dependent variable can by chance
produce an increase in R%. To correct for this tendency an adjusted version of R? has been
proposed which is given by

(4.13)

—1 5
a =1 ———(1-R),
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with 7 denoting the number of cases and & the number of independent variables. In contrast to
R?, Ridj can decrease when adding new variables to an equation that are irrelevant with respect
to the dependent variable.

If using a regression approach to model data we would often start with a basic model to
which we would add more variables step by step each time making it slightly more complex.
For example, if we were interested in the effect political orientation has on attitudes towards
immigrants we could first estimate a model containing only socio-demographic variables. This
first model will give a fit of R?. In a second model we then add political orientation to the
independent variables and estimate a model which gives us R3. The difference between the
two measures of fit, R% - R%, then indicates the effect of political orientation on attitudes
towards immigrants net of the socio-demographic variables controlled for in the model. This
strategy is particularly useful if we want to estimate the effect of several variables, an approach we
can also use to determine the impact of a set of dummy variables on the explained
variance.

If the models we are interested in are not nested, R? should not be used for comparisons. If we
want to compare the same model in different populations (e.g. men and women or Switzerland
and Germany), then we can apply the Chow test presented below on page 66.

Before closing this section, we would like to add a final word on the size of R?. A question
often asked is how large R? should be. The answer to this question depends on the purpose of our
research. If we are aiming to explain a certain variable, such as attitudes towards immigrants,
then we would like to maximize the R? of our model. If, on the other hand, we are interested
in the effect of political orientation and class position on the attitudes of immigrants then we
would not care about the overall fit of our model so much but focus on the effect sizes for the
variables we are interested in.

Statistical inferences of regression results

Usually a regression model is estimated on the basis of data from a (random) sample of the
target population of interest. For example, the short empirical analysis we present in the next
section of this chapter is run on data from a Swiss and German sample of the European Social
Survey. When we estimate the regression models we are not so much interested in studying the
sample as such, but instead aim to learn something about the population from which the sample
was drawn. So, in our illustrative analysis presented below, we aim to gain better knowledge
of certain attitudes of the adult populations of Switzerland and Germany. As in other areas
of statistics, we can apply technics of statistical inference to draw these conclusions for the
populations based on data from random samples. For simplicity of the presentation the tests we
discuss in this section assume that the data come from a simple random sample. In most cases
this will be an oversimplification because our data typically stem from multistage (stratified)
samples. If this is the case we should use the appropriate adaptations of the tests we present here.
Some of these tests will be presented in Chapter 11 of this volume which discusses regression
analysis for data from ‘complex’ samples. However, the logic of statistical inference remains
unchanged.

To indicate that a regression model is estimated with sample data the standard notation is
slightly modified by adding a circumflex (" or ‘hat’) to the regression coefficients estimated by
the model. The regression model then becomes

k
y=Ro+ P+ prat o+ P te=d B+ (4.14)
j=0
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or, in matrix notation, .

y=XB+e. (4.14)
The ,3} are estimates of the §; computed from data from a sample. Related to such a model we can
make two different types of inferences: first, inferences about the model itself or a comparison
between different models; and second, inferences about one or two regression coefficients. We
begin by discussing this second type of inference about regression coefficients.

Inferences about one regression coefficient

A first question we may want to ask is whether it can be assumed with some reasonable level of
certainty that a regression coefficient in the population (f;) is equal to or different from some
value a. The decision between the statistical hypotheses?

H()Z ﬂj =a,
H]Z /3]' ?é a
is made based on the following test statistic:

A

= hi—a (4.15)
J K
B

with s 4 s standard error of the regression coefficient. The standard error is given by

53 = S =)=k = 1)
’ Y (= %) (1 - R

with R12 denoting the amount of variance explained in x; by the other independent variables (cf.
Wooldridge, 2009, p. 89). If the assumptions behind OLS analysis are met, the #-statistic follows
a t-distribution with n — k — 1 degrees of freedom. Based on this test statistic, we can test 3_,—
against any value a. Standard software usually gives results for the two-sided test for a = 0, that
is, the hypotheses

(4.16)

Hy: B =0,

Hy: ﬂj 5& 0.
The test tells us if we can assume with a given degree of certainty that the null hypothesis (Hy)
can be rejected, meaning that we can assume that x; has an influence on y in the target population.
The degree of certainty we adopt is a convention which is often set to 95% or 99% in social

science applications. However, depending on the research question, different levels of certainty
will make sense.

Inferences about the relative size of two regression coefficients from the
same population

Sometimes we may be interested in testing whether the effect of one variable is stronger than that
of another variable from the same model. For example, we could ask if the effect of education
(B1) onacceptance of immigrants is stronger than the effect of age (8,). The statistical hypotheses
are

Hy: g1 < Bo,
Hy: B > B
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and the test statistic is o
t— Bi— B2
2 2 -
\/S/§1 +S/§z — 2555,
with s; 5 being the covariance between the estimates B1 and B; ¢ has df =n—k — 1 degrees
of freedom.

, (4.17)

Inferences about the relative size of a regression coefficient in two
different populations

In other situations we may be interested in learning whether a predictor has the same effect
in different populations. We could be interested, for example, in testing whether the effect of
education on acceptance of immigrants is the same in Switzerland and Germany. The statistical
hypotheses would be

Hy: By|Switzerland = B;|Germany,

H,: B)|Switzerland # B;|Germany.
One way to answer this question is to combine the samples of interest into one data set and
add an indicator variable to the data set taking the value 0 for data from the first sample and 1
for data from the second sample. Finally, we would have to create an interaction term between

the data set indicator and the independent variable we want to test. The resulting model can be
expressed by the equation

k

y=Po+Bixi + BaD + PraxiD+ > B+ e. (4.18)
=

Based on this equation, the statistical hypotheses are modified to

Hy: B1|Switzerland — B;|Germany = B4 = 0,

H,: B1|Germany — B;|Germany = 84 # 0.
As can be seen, from this expression for the statistical hypotheses, the original question has been
transformed into one asking if a regression coefficient is different from zero. This question can
easily be answered by the test introduced above (see equation (4.15)) which allows us to test

whether 8, is significantly different from zero. If so, we would have to conclude with a given
level of confidence that the effect of x; is different in the two populations.

Inferences about an entire model

Having covered some tests concerning regression coefficients, we now turn to testing entire
models. The question we ask is whether the regression model we estimate can be expected with
reasonable certainty to explain at least some of the variation of the dependent variable we study
in the population. The statistical hypotheses can be formulated as

Hy:pr=pr=---=p =0,
H;: at least one B; # 0.
This pair of hypotheses can be tested by the statistic

_ (P—yP/k  ESS/k _ EMS
T Y (=3P /(n—k—1) RSS/(n—k—1) RMS’

(4.19)
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which follows an F-distribution with df| = k and df; = n — k — 1. This statistic is well known
from the analysis of variance framework, in which the numerator is also known as explained
mean squares (EMS) and the denominator as residual mean squares (RMS). If the F statistic is
significant then we can conclude with the given level of certainty that at least one independent
variable included in the model is (linearly) related to the dependent variable in the population
of interest.

Inferences about two nested models

Often we take a stepwise approach to modeling a dependent variable with regression analysis. As
mentioned before, we may, for example, first want to see how much attitudes towards immigrants
depend on socio-demographic variables and then add political orientation in a second step. But
we could also take the reverse route and first explore the effect of political orientation on
attitudes towards immigrants and only then control for socio-demographics. In either analysis
we may want to know if the additional variables added in the second step improve the model fit
significantly. If we want to test the difference of such ‘nested’ models, that is, models where the
parameters of the first model are a true subset of the parameters of the second model, we can
use the following F-distributed test (Fox, 2008, p. 201):

_ (RSS; —RSSy) /(kr — Fa)
B RSS,/(n — k) ’

(4.20)

with RSS; and RSS; referring to the residual sum of squares for model 1 and model 2, respec-
tively, where model 1 is nested in model 2, so that k; < k. If the F'-statistic is not significant
then model 2, the model with more variables, does not predict the dependent variable better than
model 1, the simpler model. If the F-statistic is significant we can be reasonably certain that
model 2 fits the data better than model 1.

Inferences about two models for different populations

There may be cases in which we are interested in knowing whether the same model holds for
different populations. Thus, we may want to know whether a given model intended to explain
attitudes towards immigrants leads to identical conclusions for Switzerland and Germany. In
this situation, instead of comparing two slopes we will have to compare the overall fit of the
two models. The relevant test statistic, also known as the Chow statistic (see Wooldridge, 2009,
p. 245), again follows an F-distribution and is defined by

_ (RSS,—(RSS; +RSS))/(k +1) _ _
" @SS v RSS2k p ) VTR AR mAERD G20

where RSS is the residual sum of squares of a pooled (RSS,) analysis and the separate analyses
(RSS; and RSS,). A significant test result implies that the regression models in the two groups
are not identical, that at least one slope or the intercept differs between the two populations.*
In closing this subsection on significance tests, we would like to remind readers that these tests
only indicate whether a certain hypothesis holds or does not hold with a specified, predefined
level of certainty. Even more importantly, statistical significance does not tell us anything about
the substantive significance of an effect. If our samples are large, even very small effects will
become statistically significant but often they would be not very meaningful from a substantive
viewpoint. Take, for example, a literacy test with mean 250 and standard deviation 50 points.
Assume that males score 3 points higher than females, and that this difference is statistically
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significant. Should we conclude that the gender difference is important and should we advise
policy-makers to act on this? Most likely this would not be very sound advice. Given that the
difference between males and females amounts to less than a tenth of a standard deviation of
the literacy measure we should probably focus our attention on other factors, perhaps education.
The bottom line of this is that substantive importance of regression results has to be judged
based on substantive criteria.

Assumptions in ordinary least squares regression

Ideally OLS regression estimators are best linear unbiased estimates (BLUE). This is the case
if the data meet the assumptions on which this method is based. Analysts should be aware of
these assumptions and test whether they apply. We will briefly describe the most important
assumptions underlying OLS regression; for a fuller discussion of this issue, see Berry (1993)
or the next chapter of this volume:

* The dependent variable has to be metric; the independent variables may be metric or coded
as dummy variables or other contrasts.

* If we want to draw inferences from our data it must come from a random sample of the
population of interest.

* The independent variables have to be measured without measurement error.

* None of the independent variables must be a constant or a linear combination of the other
independent variables; that is, there should be no perfect multicollinearity. Technically this
means the matrix X must have full rank.

* The error terms (residuals) must follow a normal distribution.

* For each value of the independent variables the variance of the error term has to be identical,
var( &]x) = const.; this is also referred to as a situation of homoscedasticity.

* For each combination of independent variables the expectation of the error term has to be
zero, E( e|x) = 0. This assumption implies that no independent variable is correlated with the
error term — a situation described in econometrics as strict exogeneity.

* The aforementioned assumption implies that the model is correctly specified, that is, all rele-
vant variables are included in the model and the model does not contain irrelevant variables. In
addition, the parametrization of the model has to be correct, that is, in the given operational-
ization and parametrization the independent variables have to be linearly associated with the
dependent variable.

The OLS estimates of the regression coefficients and their standard errors are BLUE if these
assumptions are met. However, in real-world applications of OLS the assumptions listed above
will only be met to a certain degree, with the effect that the OLS estimates will deviate from the
ideal of being unbiased and efficient (have minimum variance). To assess the quality of a regres-
sion model it is important to be aware of the consequences of deviations from the assumptions.
Multicollinearity, heteroscedasticity and non-normal residuals lead to biased standard errors
of regression estimates which lead to incorrect significance tests and confidence intervals. The
estimates of the regression coefficients (intercept and slopes), however, remain unbiased. Devi-
ations from the other assumptions have an even stronger effect on results. In this case not only
the standard errors but also the regression coefficients are biased.

We would like to briefly show why this happens in the case of misspecification. Let us assume
the true model is

y=Bo+ Bix1 + Boxa + -+ + Bixi + BuXm + .
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Now let us assume we were not aware of the factor x,, and we specify the model as
y=PBo+ Bixi + foxa + -+ + Brx + €7,

without x,,,. The error term of this model will be identical with the error term of the true model
plus the variable x,,, that is, ex = B,x,, + €. If x,, is correlated with at least one of the other
independent variables — and this will be the case in almost all real situations — the error term
of the misspecified model is correlated with independent variables. Thus, the assumption of
strict exogeneity is violated and the estimates for the regression coefficients will be biased. If
we inspect equation (4.12) we see why this is the case: the estimation of regression coefficients
takes the correlations between the independent variables into account. If important independent
variables which are both related to the dependent and the independent variables are left out of the
model the estimates are biased — a bias also referred to as omitted variable bias. The only way
to avoid misspecification of regression models is to root them in a sound theoretical foundation
and use adequate operationalizations of the concepts of interest.

Another often encountered problem is unreliable measurement of independent variables. Mea-
surement error of independent variables, be it systematic or random measurement error, leads
to biased estimates of the regression coefficients and their standard errors (Cohen et al., 2003,
p- 119). The larger the measurement error of a variable x;, the more the regression coefficient
B underestimates the true effect of x; on y, an effect also known as attenuation. Therefore, we
should strive to improve our measurement instruments and scaling techniques. If we have sev-
eral indicators for the concept of interest we could consider using structural equation modeling
instead of OLS regression (see Kline, 2010). If we only have a single indicator for a concept, we
might be able to obtain a reliability estimate through the web-based Survey Quality Prediction
program maintained by the Research and Expertise Centre for Survey Methodology at Uni-
versitat Pompeu Fabra under the guidance of Willem Saris (see http://sqgp.upf.edu/).
The estimated reliability could be used to estimate the amount of attenuation of regression
coefficients.

The next chapter of this volume presents a much more comprehensive discussion of the
assumptions underlying OLS regression as well as ways to test to what extent they are met.

Interpretation of regression results

Once we have established that a regression model does ‘explain’ the dependent variable at least
partly (i.e. is statistically significant), we still are faced with interpreting the regression results
from a substantive point of view. Let us first focus on interpreting the regression coefficients or
slopes B; (these coefficients are often referred to as unstandardized regression coefficients, in
contrast to standardized coefficients which we will discuss in the next section). Frequently one
reads that these coefficients indicate the unit change in the dependent variable if the independent
variable is increased by one unit. So if §; = 0.5 a one unit increase in x; would result in an
increase of half a unit of y. In most practical instances this interpretation will be incorrect. In
particular, if we use cross-sectional data to estimate a regression model we should abstain from
interpreting the results in a dynamic way. A correct interpretation would be that the expectation
for y is 0.5 units higher for those with x; = a + 1 compared to those with x; = a. Additionally,
if B; is estimated in a regression model with more than one independent variable then this
coefficient is conditional on the other predictors. In other words, the estimate is an attempt to
model a situation in which the other independent variables are held constant. If we can assume
that all relevant variables are included in the model and parametrized correctly, x; is conditionally
uncorrelated with ¢ and §; can be interpreted as causal effect (for a more thorough discussion
see below).

“Handbook_Sample.tex” — 2014/9/15 — 12:53 — page 68



LINEAR REGRESSION 69

Let us have a closer look at the following model (numbers in parentheses are standard errors
of estimates):

Control Immigration = 4+ 0.05Age — 0.5 Female —0.0001 Income+¢, R* = 0.04. (4.22)
(0.01) (0.5) (0.00004)

Both age and income have significant effects on the attitudes towards immigration (the coef-
ficients are more than twice their standard errors). In contrast, being female rather than male
has no significant effect. For each age group the expected value on the attitude scale is 0.05
points higher than for the group one year younger, irrespective of sex and income. Similarly,
each additional dollar decreases the opposition towards uncontrolled immigration by a small
amount (0.0001 points) controlling for age and sex. This interpretation draws attention to three
crucial characteristics of multiple regression. First, the regression coefficients reflect the esti-
mated effect of one variable, controlling for all other variables in the model. In our case this
means that the effect of age is estimated by taking sex and income into account. Second, only
linear effects are modeled and correctly reflected in regression estimates. In our example this
means we assume that there is the same difference in attitudes towards immigration between a
21- and a 20-year-old person as between an 81- and an 80-year-old person, namely 0.05 units.
If we had reason to believe that the relationship between a predictor and a dependent variable is
non-linear we could still model this in the framework of linear regression. However, we would
have to transform the variable in question in such a way that the regression model is linear with
respect to the transformed variable. For example, if we assume that the increase in opposition to
immigration gets smaller with increasing age we could use the logarithm of age instead of age in
our model. Third, our model implies that the predictors’ effects are additive and do not depend
on each other. Again, if we had reason to believe that the effect of one independent variable
depends on levels of another independent variable we could model this in the framework of
linear regression by incorporating interaction effects. Because Chapter 6 exclusively discusses
non-linear and non-additive effects in linear regression we do not discuss these issues here any
further.

The interpretation of the effects of 0—1 coded binary variables is similar to the interpretation
of effects of continuous variables. The coefficient reported above for being female implies that
the conditional expected value of y is 0.8 units higher for females than for males, controlling
for age and income. But as we have seen, this difference is not statistically significant.

The interpretation of regression results can often be facilitated by changing the scale of the
independent variable. Assume we had measured income not in dollars but in tens of thousands of
dollars. Then the regression coefficient would change from 0.0001 to 1, implying that an income
difference of $10,000 is associated with an expected difference of one unit on the dependent
variable, controlling for age and sex. Another example would be age. If we divide age in years
by 10, thus measuring age in decades, the above age effect would change from 0.05 to 0.5,
indicating that people who are 10 years apart are expected to be half a scale point apart on the
immigration scale.

How can we interpret the intercept 8y? This is the expectation for the dependent variable if
all of the independent variables x; are zero. For the above model we could say that for men
(female = 0) who are zero years old and who have zero income we expect a value of 4 on the
attitude scale. Here and in most other cases this information is of no interest. It could even be
misleading because x; - - - x; = 0 most often lies outside of the window we observe. Here, for
example, we would assume that the observations were restricted to the adult population. Also,
it is safe to assume that newborns do not have attitude towards immigrants. One way to avoid
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misleading interpretations of the intercept is to center all (metric) variables on their mean (or
alternatively on some other meaningful value). Then the intercept reflects the expectation for
the ‘average’ person, a figure which might be of substantive interest.

Standardized regression coefficients

The size of the regression coefficients we have reported and interpreted so far depends on
the units used to measure the independent and dependent variable. As long as variables have
‘natural’ or intuitive measurement units (e.g. age in years or income in dollars) the interpretation
of coefficients is straightforward. However, many measures in the social sciences are based on
arbitrary units derived from answers to rating scales of various types and lengths. Because of the
arbitrariness of the units of such measures, their regression coefficients are not very informative.
A related problem arises if we are interested in the relative effect of variables measured on
different scales. Reconsider the example given above where we found that the effect of age was
0.05 and the effect of income was 0.0001 (see equation (4.22)). Do these coefficients imply
that attitudes towards immigrants are more affected by age than by income? Obviously not,
because — as we have seen — the size of the unstandardized regression coefficient depends on
the units used to measure the variables. As mentioned above, the slope for income would have
been 1 if we had measured income in tens of thousands of dollars.

Arbitrary units of measurement and the assessment of relative importance of predictors are
typically addressed by interpreting standardized regression coefficients. These coefficients are
computed by multiplying the unstandardized coefficient by the ratio of the standard deviations
of the independent and dependent variable,’ that is,

oy,

B = ﬂ,g—y- (4.23)

Expressed in standard deviations of y, these standardized coefficients tell us how much two
groups are expected to differ with respect to y if they differ by one standard deviation on x;. In
this parametrization all effects are expressed in standard deviations of y and x;. An increase of
one standard deviation of x; results in a change of y by B standard deviations.

In the social sciences it has long been common practice to report and interpret only stan-
dardized regression coefficients. However, their use has been criticized for several reasons
(cf. Bring, 1994). One problem is that standardized regression coefficients reflect not only effect
sizes but also variation of the variables. Therefore, standardized coefficients may vary between
samples or populations just because the variables of interest have different variances, even
though the effects of x; on y are identical. Assume we want to compare the effect of income on
attitudes for men and women. If the variation of income differs between men and women this
will influence the standardized coefficients and so it will be impossible to know if the differ-
ence in standardized coefficients is due to differences in the effect of income or the variation of
income in the two groups. Consequently, we should use unstandardized measures in comparative
analysis.

But even the comparison of standardized coefficients within the same model has been criti-
cized. To see why, let us inspect the following example. Let us assume that

Control Immigration = By 4+ 1 Age + B, Income + ¢

is the model of interest. As we have seen above, 8 reflects the effect of age, holding income
constant. According to equation (4.23) the standardized effect of age is determined by multi-
plying B, by the standard deviation of age (o, ). This may be seen, as Bring (1994) has claimed,
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as inconsistent because §; is an estimate conditional on other variables (controlling for . ..) in
the model while o,, is the unconditional standard deviation referring to the entire population
unadjusted for other measures. In essence, the slope and standard deviation refer to different
populations. As a solution Bring (1994, p. 211) suggests using the partial standard deviation of
x; averaged over the groups formed by the independent variables.

A further critique of standardized coefficients is that they only reflect the relative contribution
of an independent variable to R?, the explained variance, if the independent variables are all
uncorrelated. In this very limited case R? is identical to the sum of squared correlation coefficients
between independent variables and dependent variable which are in this special case identical
to the standardized coefficients. Therefore, only if all independent variables are unrelated to
each other do the standardized regression coefficients reflect the relative contribution of each
variable to the explained variance. This special case, however, never occurs when working with
real data. And if it did occur we would not need to use multiple regression because there would
be no need to ‘control’ the effects of independent variables for other independent variables. With
correlated independent variables R? can be decomposed as

P p—1 p
RE=387+2) ) BiBiow (4.24)
j=1

j=1 k=j+1

with B and g} representing the standardized effect of x; and x;, respectively, and pj indicating
the correlation between x; and x; (cf. Gromping, 2007, p. 140). Bring (1994) has suggested mea-
suring the relative importance of independent variables by multiplying the correlation between
independent and dependent variable by the unstandardized regression coefficient. This measure
has the advantage of summing to R? over all independent variables. That is, R? can be partitioned
as

k
R =" Bipy. (4.25)
j=1

Though the products 8, p;, sum to the explained variance and thus can be considered as indicating
relative importance of the predictors, there is a problem with this interpretation when the signs of
the two factors differ. In this case the product has a negative sign implying that the independent
variable contributes not to the explained but rather to the unexplained variance.

In the meantime several measures to reflect relative importance of predictors have been
proposed in an attempt to overcome the shortcomings of standardized coefficients. Chao et al.
(2008) compare six of these proposals to capture the relative importance of predictors in multiple
linear regression. They base their comparison on three criteria: (a) (squared) coefficients of
relative importance should sum to R?; (b) coefficients of relative importance should never
be negative; (¢) coefficients of relative importance should not depend on the order in which
predictors are entered into a regression equation. Only two of the six measures examined by
Chao et al. (2008) meet all three criteria: a proposal by Budescu (1993) and one by Johnson
(2000). Because the coefficient proposed by the former is very cumbersome to compute and
because both approaches result in very similar estimates, Chao et al. (2008) recommend using
the method introduced by Johnson (2000). Therefore, we will only discuss this latter measure
briefly.

Suppose we have a regression model with & predictors. Using principal components analysis,
Johnson (2000) suggests extracting £ orthogonal factors z,, and rotating them so as to minimize
the sum of squared differences between the rotated factors and the variables x;. Then the depen-
dent variable of interest is regressed on the rotated factors z,,. Because the factors are orthogonal
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the squared standardized coefficients 8; sum to R?. In a final step we have to determine the
importance of the original variables x; by

k
Bl = 1B,
m=1

with A, denoting the correlation or loading between x; and z,,.

A more readily available alternative to determine relative importance of predictors is the
t-value of the typically reported two-sided test of the slopes (see equation (4.15)). This test
statistic can also be represented by

2 2
Rl,2,3,..., kT R2,3 ..... k

(1- R%’mmk)/(n —k—1y

(4.26)

implying that the #-value is a direct function of the increase in R?> produced by entering the
variable of interest into a model containing all other independent variables (for more details,
see Bring, 1994, p. 213). Hence, comparing ¢-values of the same model allows us to order the
independent variables with respect to their importance relative to the dependent variables.

As we have seen, users of multiple regression have several choices to determine the relative
importance of independent variables in a regression model. Standardized coefficients 8° are
readily available in most statistical software packages but may be problematic. Alternatives
like the one developed by Johnson (2000) and presented above seem to better capture relative
importance as contributions to R? but are not easy to obtain. We also do not know how stable
these coefficients are between samples. We do know, however, that comparing standardized
coefficients between samples or populations can lead to incorrect conclusions because they do
not only depend on the effect of independent variable on the outcome. Rather, they are also
affected by the variance of both variables in the two groups. Our recommendation therefore is to
always report unstandardized coefficients, the -value which indicates if a predictor is statistically
significant and also reflects relative importance. Additionally, standardized coefficients may be
useful but should be interpreted with caution. In the end the ‘importance’ of a predictor has to
be determined from a substantive point of view.

MODELING ATTITUDES TOWARDS IMMIGRATION:
AN EXAMPLE ANALYSIS

In this section we present a sample analysis. In contrast to many textbooks we will use real data
and we will partly replicate a research paper by Green (2009). In her paper Green studies the
determinants of support for different criteria to restrict immigration. Drawing on data from the
first round of the European Social Survey, she studies endorsement of ascribed and acquired
characteristics as criteria for granting immigration. The central individual level predictors Green
studies are perceived threat and social status of host country members. In brief, she hypothesizes
that those perceiving negative consequences of immigration for their own life chances (i.e. feel
threatened) will oppose immigration more and be more in favor of restricting immigration.
Similarly, those in lower social strata will experience more competition for jobs or affordable
housing by immigrants than people in high social positions. Therefore, social status should
be negatively related to accepting unconditional immigration. To test her hypotheses Green
focuses on nationals who do not claim to belong to a minority group within their country
(Green, 2009, p. 47).
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Our replication of Green’s analysis is limited in a number of ways. First, we only study
attitudes with respect to immigration criteria which can be acquired (e.g. education). Second,
our analysis focuses on only two countries, Switzerland and Germany, and thus, we do not study
country-level predictors. Third, we only use a subset of the individual level predictors employed
by Green. Our analysis is based on version 6.1 of the data from the first round of the European
Social Survey.

In the following analysis we study the importance given to education, proficiency in national
language, having work skills and being committed to the way of life in the host country for
deciding about immigration. The answers to these four items are combined into an additive index
serving as our dependent variable (see the appendix to this chapter for a detailed description of
items). Higher values reflect greater importance of these criteria and can be interpreted as being
in favor of higher restrictions on immigration. Perceived threat was measured by seven items
which we again combine into an additive index with higher values reflecting higher levels of
threat (see appendix for items). Social status was measured by education in years. To capture
political orientation we follow Green and use the answers to the 11-point left—right scale. Because
this measure contains a substantial number of missing values, Green categorizes this variable
into left orientation (values 0 to 3), middle orientation (values 4 to 6), right orientation (values
7 to 10) and missing information on political orientation. In the following analysis we use the
middle category as reference. Additionally, we control for sex and age.

Our analysis is focused on a comparison between Switzerland and Germany, two countries
differing substantially with respect to immigration. In 2002, the year round 1 of the Euro-
pean Social Survey was carried out, 20% of the population in Switzerland did not hold Swiss
citizenship, while in Germany only 9% of the population were foreigners. In the same year
Switzerland welcomed over 125,000 new long-term immigrants (1.7% of its population), and
Germany welcomed almost 850,000 new immigrants (amounting to 1% of the population). With
these figures Germany is slightly above the European average whereas Switzerland (together
with Luxembourg) is the country having the largest non-national and foreign-born population.

Table 4.1 gives an overview of the variables we will use in our analysis and their distribution
in Switzerland and Germany. According to this table, Swiss people place less importance on
acquired characteristics for immigration and perceive slightly less threat than Germans. Also
Swiss people are on average a little older, a little less educated and a little more oriented towards
the political right than Germans. To model the attitudes towards immigration in Switzerland and
Germany we proceed in two steps. First, we estimate a model including only sex, age, education
and political orientation. In a second step we add perceived threat to the model.

From the left panel of Table 4.2 we see that, in accordance with the social status hypoth-
esis, higher educated people in Switzerland and Germany place less importance on acquired
immigration criteria than their less educated compatriots. Although both effects are statistically
significant, the effect is much larger in Germany than in Switzerland. In Germany 10 more years
of schooling are associated with almost one point less on the importance scale (—0.91), while
in Switzerland the same educational difference is only associated with a quarter point change
(—0.26). As one might expect, older persons and persons who identify themselves as politically
right-wing have more reservations towards unconditional immigration in both countries. In nei-
ther country do we observe strong sex differences, so we may conclude that attitudes of men
and women with regard to immigration do not differ.

Before we inspect the results of our second model, we would like to draw readers’ attention to
two issues related to political orientation. As pointed out above, we followed Green in treating
this variable as categorical and in using a separate category for the missing values. Because this
leads to three variables and three regression coefficients in the model they do not allow us to
say anything about the size of the effect political orientation has. An alternative approach would
be to estimate a model without the dummies for political orientation and compare it with the
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Table 4.1 Descriptive statistics

Switzerland (n = 1516) Germany (n =2349)
min max mean sd min max mean sd
Restrict immigration 0 10 6.43 1.96 0 10 7.38 1.91
Female 0 1 0.51 0.50 0 1 0.50 0.50
Age 15 103 48.90 16.95 15 93 47.39 17.37
Education 0 31 10.85 3.36 0 30 13.09 3.27
Left 0 1 0.20 0.40 0 1 0.26 0.44
Middle 0 1 0.56 0.50 0 1 0.56 0.50
Right 0 1 0.19 0.39 0 1 0.13 0.34
LR missing 0 1 0.05 0.21 0 1 0.05 0.21
Perceived threat 0.06 0.97 0.47 0.14 0.07 1 0.52 0.16

Data: European Social Survey round 1, version 6.1. Only nationals not belonging to a minority; listwise deletion of missing
cases, unweighted.

Table 4.2 Model 1 to explain attitude towards immigration

Switzerland Germany

/2 S[; t B° /é Sf} t B
Constant 6.419 0.083 77.2 - 7.522 0.061 123.0 -
Female -0.019 0.100 -0.2 -0.005 -0.110 0.074 -1.5 -0.029
Age? 0.015 0.003 5.2 0.132 0.019 0.002 8.6 0171
Education? -0.026 0.016 1.7 —0.044 -0.091 0.011 -8.0 —0.156
Leftb -0.619 0.130 -4.8 -0.127 -0.759 0.091 -84 -0.174
Right® 0.596 0.132 45 0.119 0.486 0.109 45 0.087
LR missing® 0.169 0.239 07 0.018 0.015 0.178 0.1 0.002
R? .065 125
R 062 123
F(dfy;dfy) 17.61 (6; 1509) 55.63 (6; 2342)

@ Centered on the country-specific mean.
b Reference category political orientation ‘middle’.

Data: European Social Survey round 1, version 6.1. Only nationals not belonging to a minority; listwise deletion of missing
cases, weighted by design weight.

model displayed in Table 4.2 in terms of the increase in R?. If we compare two such models for
Germany we see that adding political orientation to the model increases the explained variance
by 4.2 percentage points. By applying the F' test given in equation (4.20) to the two models just
estimated, we can test whether political orientation is statistically significant — which it is.

A final remark on the variable political orientation: As the reported results show, there is
no statistically significant difference between those without a valid response to the left-right
question and those placing themselves in the middle of the political spectrum. Thus, at least with
respect to the dependent variable studied here, we find no difference between these two groups
and we might come to the conclusion that substituting the missing cases on this variable by its
mean and then treating this variable as continuous would make our model more parsimonious
without distorting the results for left-right placement.

This brings us to our second model, in which we add perceived threat as a predictor. Again, we
report separate analyses for Switzerland and Germany in Table 4.3. In both countries perceived
threat has a strong effect. In fact, based on the #-value and the standardized coefficient, perceived
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Table 4.3 Model 2 to explain attitude towards immigration
Switzerland Germany
B S; t B B Sj t B

Constant 6.378 0.081 78.5 7.504 0.058 128.3
Female -0.012 0.097 -0.1 -0.003 -0.044 0.071 -0.6 -0.012
Age? 0.014 0.003 49 0.122 0.016 0.002 7.6 0.145
Education? 0.007 0.016 0.5 0.012 -0.033 0.012 -2.9 -0.057
Leftb —-0.466 0.128 -3.6 -0.096 —-0.555 0.088 -6.3 -0.127
Rightb 0.558 0.129 4.3 0.112 0.323 0.105 3.1 0.058
LR missingb 0.017 0.234 0.1 0.002 -0.193 0.171 -1.1 -0.021
Perceived threat? 3.186 0.365 8.7 0.226 3.745 0.252 14.9 0.310
R? 110 202
R2: 106 198
F(dfy;df) 26.70 (7; 1508) 83.83 (7; 2341)

@ Centered on the country-specific mean.
b Reference category political orientation ‘middle’.

Data: European Social Survey round 1, version 6.1. Only nationals not belonging to a minority; listwise deletion of missing
cases, weighted by design weight.

threat is the most important predictor in our model in both countries. The difference between
those perceiving no threat and those perceiving the maximum level of threat is 3.2 (Switzerland)
and 3.7 (Germany) points on the importance scale used to measure attitudes towards immigra-
tion. Consequently, adding this perceived threat to the model substantially increases the amount
of explained variance in both countries; in Switzerland by 4.5, in Germany by 7.7 points, leading
to R2,; = 0.11 and R34 = 0.20, respectively. Thus, it seems that the model fits the German
data much better than the Swiss. Whether or not this difference is statistically significant can be
tested with the Chow test given in equation (4.21). The result of this test clearly indicates that
the model indeed does not fit the Swiss and German data equally well.

When comparing the effects of the other predictors in the model to their effects in model 1, we
see that some of them are strongly affected when perceived threat is entered into the model. In
particular, the regression coefficients for education and political orientation show a quite strong
reduction in absolute size. This implies that some of the explained variance attributed to these
variables in model 1 actually has to be attributed to perceived threat. Indeed, model 2 implies that
education in Switzerland does not seem to be directly related to attitudes towards immigrants
once we control for perceived threat. This implies that the social status hypothesis does not
hold for Switzerland. One possible explanation for this result may be that many foreigners
in Switzerland are highly qualified and so competition between the indigenous and migrant
population for jobs, dwellings and so on may not be concentrated in lower status groups in
Switzerland.

Finally, we may be interested in testing whether the predictors we examined differ in their
effects between the two countries. To do so we applied the model given in equation (4.18).
That is, we estimated a model based on a combined sample, including in the equation a dummy
variable indicating the country and interaction terms for this variable with all predictors. This
analysis shows that the only independent variable with significantly different effects in both
countries is education. All the other variables seem to have identical effects in Switzerland and
Germany.

Here we end our example analysis. If we wanted to publish the results of our analysis we
should go further and test whether the assumptions of OLS regression are reasonably well
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met by our data. We do not have the space to do this here, but refer readers to the next two
chapters in which these assumptions, diagnostic tools and possible remedies are extensively
discussed.

PROBLEMS AND REMEDIES FOR CAUSAL INFERENCE BASED ON OLS
REGRESSION

In recent years, causal analysis in the social sciences has increasingly developed consensus on
applying the potential outcome model, also called the counterfactual model of causality (e.g.
Rosenbaum and Rubin, 1985). This framework explicates an intra-individual concept of causal
analysis. The simplest setup assumes a binary causal state with treatment and control (untreated)
conditions. The causal effect of the treatment D on an outcome y then can be defined as

A=yl =), 4.27)

with i as a person index and 0/1 denoting control and treatment state. Identification of the
treatment effect is complicated by the fact that a person never will be in both states at the
same time, and A; hence cannot be observed. In presence of panel data, identification of
the average treatment effect oftentimes is attempted using fixed-effects panel regression or
related methods (see Chapter 15 of this volume). With only cross-sections being available,
groups of persons which are observed under different causal states have to be compared. This,
of course, imposes massive problems on the researcher if a controlled and fully randomized
experiment cannot be conducted. Notably, unbiased identification of the treatment effect is pos-
sible only if the potential outcome is unconditionally or at least conditionally independent of
treatment assignment:

(') 1L D (4.28)

or
%y AL Dz. (4.29)

The former is a very strong assumption, and valid only in absence of selection into
treatment groups, i. e. in randomized trials. The conditional independence assumption (equation
4.29) is somewhat weaker as independence only needs to hold after controlling a number of
covariates z.

OLS regression has developed a bad reputation in causal inference (see e.g. Morgan and
Winship, 2007, section 1.1.2). This is mostly due to the misuse of explorative regression models
for causal conclusions and, more generally, the focus on “fully” explaining the variance of a
dependent variable rather than identifying treatment effects of a specific manipulation (e. g.
Blalock, 1964).° However, as proponents of the potential outcome model have pointed out, OLS
regression can play a role in estimating causal effects if applied sensibly. To show why and in
how far this is the case we will briefly review the main obstacles of drawing causal inference
from observational data and how these are addressed by OLS regression for cross-sectional data
(but see Chapter 15 of this volume for causal inference based on longitudinal data).

In our opinion, the most severe problem in using OLS regression for causal inference with
non-experimental data stems from self-selection or policy endogeneity, both of which result in
violating the unconditional independence assumption. For example, if we study the effect of job
interview training on earnings, a self-selection bias may occur due to higher-skilled persons par-
ticipating in the training classes with a higher probability. Policy endogeneity occurs when the
organizer of a program targets a specific sub-group that is expected to show the strongest effects
(e. g. persons with an academic education). As mentioned before, selection bias is avoided in
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experimental research by randomly assigning individuals to control and treatment groups thereby
ensuring that the state of treatment is the only systematic difference between the two groups; the
two groups are unconditionally independent. However, if we know all relevant factors in which
the “treated” and “non-treated” differ, we can adjust statistically for these factors to achieve con-
ditional independence. In an OLS regression we can assume conditional independence provided
that all selection variables are included in the regression and the parameterization of the model
is correct.” Under these circumstances the regression coefficient of interest can be interpreted
as a causal effect (cf. Angrist and Pischke, 2009, pp. 51-59; Gelman and Hill, 2007, p. 169). We
must also check if there is sufficient overlap of covariates across treatment groups. This means
that confounders should not be highly correlated with the treatment variable (for a more in-depth
discussion see Gelman and Hill, 2007, Chapter 10.1). Furthermore, we must assume treatment
homogeneity or monotonicity for a meaningful interpretation of the regression coefficient as
average treatment effect (see Humphreys, 2009).

In a way, the reservations against regression may be seen as stemming from a different episte-
mological background of those having these reservations and a more stringent focus on research
design in the potential outcomes framework — rather than from inherent statistical shortcomings
of the regression approach. Applied in a careful and well-conceived way, regression can be used
as a statistical tool for the estimation of treatment effects (see also Angrist and Pischke, 2009,
Chapter 3; Morgan and Winship, 2007, pp. 123ff). The fundamental difference to the more
direct matching approach is that the conditional independence problem is tackled by adjusting
for covariates rather than by balancing, and that a different set of assumptions — such as correct
parameterization — has to be met for the identification of causal effects.

That said, there will be situations in which cross-sectional OLS models are simply not suited
for causal inference. In a situation with weak overlap between treatment- and control group
or when the functional form of effects is unknown, propensity score matching may be the
method of choice. Matching estimators have been suggested as the most direct approach to
solving the problem of balancing treatment and control groups and meeting the assumption
of conditional independence. As a semi-parametric model, matching rests on less assumptions
than the regression approach. Additionally it allows to at least estimating a local treatment effect
when overlap is weak, provided that the dataset is large enough to identify a sufficient number
of matches (for a more detailed exposition of propensity score matching and its identifying
assumptions see Chapter 12 of this volume). However, there may be a total lack of overlap
of covariates that originates from a variable that was the basis for assigning cases to control
and treatment group. Imagine we are interested in studying the long-term career effects of
scholarships. Imagine further that scholarships are awarded to all students scoring in the top
80 % of an aptitude test. In this case aptitude and being granted a scholarship are perfectly related
and neither OLS nor matching are suitable methods for creating conditional independence.
Alternatively, we could concentrate on only those students just below and above the critical
threshold for obtaining a scholarship. Taking into account measurement uncertainty we can
assume that these students have equal aptitude and only differ with respect to the scholarship.
This is the basic idea behind the regression discontinuity approach presented together with a
more elaborate description of the example in Chapter 14 of this volume. In many cases we will
also be unable to observe all relevant covariates. As we have seen in above omitting a relevant
variable from the regression equation leads to biased estimates, the so-called omitted variable
bias. In this case an approach known as instrumental variable regression (IV regression) may help
if we have a good proxy or instrument for the omitted variable (see Chapter 13 of this volume).
In the presence of panel data, we could use fixed effects regression to control for unobserved
time-constant covariates and obtain unbiased estimates (see Chapter 15 of this volume).
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CAVEATS AND FREQUENT ERRORS

We can only apply statistical methods and interpret their results correctly if we have at least
some basic understanding of their general purpose and the assumptions on which they are built.
Linear regression is no exception. One of the major questions we should ask is whether we
have specified our model correctly. Were we able to include all relevant predictors? Are the
predictors linearly related to the outcome variable? Are the effects of the independent variables
additive or does the effect of one variable depend on the level of another variable? To answer
these questions satisfactorily we first have to rely on sound theory about the substantive matter
we are investigating. Second, as Chapters 5, 6 and 10 of this volume show, we can and should
test the assumptions of linearity and additivity. Applying sound theory and rigorous testing of
assumptions are important because — as we have seen — misspecification of a model leads to
the violation of strict exogeneity, that is, violates the assumption that residuals and predictors
should not be correlated. This in turn leads to biased estimates of regression coefficients and
their standard errors.

Another practical issue we must look at in every analysis is the sample size. Often we would
run a regression analysis with many independent variables using listwise deletion of missing
values — in many statistical programs this is the default and we might not even make a deliberate
decision about this choice. When our model contains many predictors or at least one predictor
with many missing values, we can end up estimating our model on a relatively small, selective
subsample. Therefore, we should monitor sample size on which our results are based at all stages
of the analysis.

Further, we should be aware of the difference between statistical significance and substantive
importance. The assertion that a given coefficient is statistically significant does not tell us
anything about its substantive importance. As we have seen, it might even be problematic to rely
on standardized regression coefficients for this matter. Instead, we have to make well-founded
judgments based, for example, on a comparison with other effects or on the benefits/cost of
(changing) the effect.

In the examples we presented in this chapter we relied on cross-sectional data. As we have
pointed out, the usual interpretation of regression slopes as reflecting the changes in the depen-
dent variable if the independent variable is increased by one unit is not valid in this situation.
Instead, we should say that for someone having a value of x; = a + 1 the conditional expectation
for the dependent variable is §; units higher than for someone with x; = a. If, for example,
the effect of one additional year of education on monthly earnings is $50, then those having 15
years of education are expected to earn $150 more than those with 12 years of education, all
else being equal — that is, controlling for the other independent variables in the model.

We also should remind ourselves that results from cross-sectional analysis should not be used
for making predictions. Suppose we decided to increase the earning potential of a person by
giving him or her one more year of education. Can we hope that this person’s earnings will
increase by $50? Probably not, because many factors which we might not have controlled in our
model may lead to higher earnings and may also be responsible for staying in education longer,
for example, cognitive abilities and endurance. In contrast to cross-sectional data analysis, these
unobserved, time-constant factors can be controlled for in the framework of panel regression, a
method discussed in Chapter 15 of this volume (see also Gelman and Hill, 2007, Chapter 9).

Another danger when interpreting regression results from cross-sectional surveys is what
may be called the individualistic fallacy. Suppose again that we have found earnings to rise
with increased education. Suppose further that we publicize this result widely and encourage
people to obtain more education so as to be able to earn more. However, if everyone increases
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their level of education, gains in earnings will most likely diminish strongly because the overall
situation has completely changed (see Boudon, 1974, for a theoretical and empirical analysis of
this phenomenon).

FURTHER READING

Linear regression is covered by almost every introductory textbook in statistics. In addition, there
are countless monographs dealing with regression techniques. Therefore, it is neither easy nor
particularly important to give advice on further reading. That said, we want to recommend some
of the books we like and have profited from. Gelman and Hill (2007) give an excellent introduc-
tion to regression analysis. An easy-to-understand introduction to the assumptions underlying
linear regression is presented by Berry (1993). Fox (2008) offers a comprehensive overview
of linear regression and more general regression models, and Fox and Weisberg (2011) show
how these models can be estimated with the R package. A mathematically precise and in-depth
coverage of regression models can be found in Wooldridge (2009).

APPENDIX

This appendix lists the items we used to construct the indices reflecting support for restrictive
immigration and perceived threat.

Criteria for immigration

Please tell me how important you think each of these things should be in deciding whether
someone born, brought up and living outside [country] should be able to come and live here.
Please use this card. Firstly, how important should it be for them to:

... have good educational qualifications? (D10)

... be able to speak [country’s official language(s)]? (D12)

... have work skills that [country] needs? (D16)

... be committed to the way of life in [country]? (D17)

extremely unimportant (0) . . . extremely important (10)
Perceived threat

* Average wages and salaries are generally brought down by people coming to live and work
here. (D18)

agree strongly (1) ... disagree strongly (5)

* People who come to live and work here generally harm the economic prospects of the poor
more than the rich. (D19)
agree strongly (1) ... disagree strongly (5)

* Using this card, would you say that people who come to live here generally take jobs away
from workers in [country], or generally help to create new jobs? (D25)

take away jobs (0) . .. create new jobs (10)

“Handbook_Sample.tex” — 2014/9/15 — 12:53 — page 79



80 REGRESSION ANALYSIS AND CAUSAL INFERENCE

* Would you say it is generally bad or good for [country]’s economy that people come to live
here from other countries? Please use this card. (D27)

bad for the economy (0) . .. good for the economy (10)

* And, using this card, would you say that [country]’s cultural life is generally undermined or
enriched by people coming to live here from other countries? (D28)

cultural life undermined (0) . .. cultural life enriched (10)

+ It is better for a country if almost everyone shares the same customs and traditions. (D40)

agree strongly (1) ... disagree strongly (5)

+ It is better for a country if there are a variety of different religions. (D41)

agree strongly (1) ... disagree strongly (5) (reversed)

NOTES

1 In the recent discourse on causal analysis many methods for the identification of a causal effect of x on
y have been proposed (see Chapters 12—15 of this volume). Nonetheless, linear regression models may as
well be used for causal inference under certain circumstances (Angrist and Pischke, 2009). Some important
assumptions that need to be met are described in below and in the next below and in the next chapter.

2 Alternative coding schemes are discussed at http://statsmodels.sourceforge.net/devel/cont
rasts.html.

3 The given test statistic can also be used to test one-sided hypotheses.

4 If we wanted to test for slope differences only we could include an indicator variable for the samples in the
pooled analysis (see equation (4.18)).

5 We would obtain the same result when performing a regression analysis on z-standardized variables, that is,
in this case the regression coefficients g; are standardized coefficients. Because the regression always passes
through the centroid of the data (y, X3, ...Xx) and because the centroid of z-standardized measures is zero
the ‘standardized’ intercept is also zero.

6 In particular, controlling for irrelevant variables and those that can be considered themselves outcomes of
the outcome variable of interest (i.e. endogenous variables) do not belong into a regression equation (cf.
Angrist and Pischke, 2009, pp. 64-68). This is why strong theories and carefully constructed models are of
paramount importance.

7 We have to assume that we specify the functional form of the relation between covariates and outcome
correctly. We can, however, fulfill this assumption by including covariates and their interactions as indicator
variables; an approach also dubbed the saturated regression model.
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