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5
Multivariate  
Analysis of Covariance

William Gemmell Cochran (July 15, 1909, to 
March 29, 1980) was born in Scotland and spent 
much of his career in the United States. He 
attended Glasgow University, receiving an MA 
degree in 1931, and attended Cambridge next, 
but never received a doctorate, choosing instead 
to follow Frank Yates to the Rothamsted Experi-
mental Station. Later, during the end of his 
career, he did receive honorary doctoral degrees 
from the University of Glasgow in 1970 and 
Johns Hopkins University in 1975. He was influ-
enced by John Wishart (Wishart distribution), as 

well as R. A. Fisher (experimental design) and Frank Yates (Yates correction 
factor in chi-square), with whom he worked at the Rothamsted Experimental 
Station, the United Kingdom. W. G. Cochran also worked with George Snedecor 

Source: http://www.york.ac.uk/depts/maths/
histstat/people/cochran.gif 
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and Gertrude Cox at the University of Iowa, and taught courses in experimental 
design and sample survey. His books Experimental Design (1950), Sampling 
Techniques (1953), and Statistical Methods (1967) with these colleagues were 
the prominent textbooks of the time period. He eventually ended up in the 
Department of Statistics at Harvard University, in 1957 and retired as professor 
emeritus in 1976. He received many awards during his career, including two 
from the American Statistical Association. He was editor of the Journal of the 
American Statistical Association from 1945 to 1950. His many contributions to 
the field of statistics also included the use of data transformations, analysis of 
variance with percents (dependent variable), analyses of matched sample data, 
goodness of fit tests, and issues related to the chi-square test developed by Karl 
Pearson (Anderson, 1980; Dempster & Mosteller, 1981; Watson, 1982).

William Gemmell Cochran (1934) was recognized for his distribution of 
quadratic forms in a random normal system with applications to analysis of 
covariance (ANCOVA). His Cochran theorem was expanded to show that ANOVA 
can be extended to situations requiring adjustment for covariate variables. He 
therefore postulated analyzing adjusted means in ANCOVA. His applied work in 
this area was from his agriculture experimental design work at Rothamsted, 
where he addressed the practical concerns of farmers and breeders. He further 
addressed problems in biomedical research with the development and use of 
clinical trials and development of research protocols.

  Assumptions

The ANOVA assumptions are listed below, and when not met, alternative 
approaches have been suggested (Lomax & Hahs-Vaughn, 2012, pp. 309–331).

(Continued)

T he ANCOVA technique adjusts group means for the influence by 
other variables not controlled in the study, which are called extra-
neous variables. The extraneous variables are assumed to influ-

ence variation in the dependent variable and therefore controlled by 
statistical adjustment, since not controlled by random assignment. Random 
assignment in experimental research designs control for bias in subject 
selection and other threats to the internal validity of the research design, 
which is not present in quasiexperimental and other types of nonexperi-
mental research designs (Campbell & Stanley, 1966). The ANCOVA 
assumptions are more stringent than the ANOVA assumptions.
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 1. Observations are independent of each other

 2. Homogeneity of variance (population variances of groups are 
equal)

 3. Normal distribution of dependent variable(s)

ANCOVA requires the following additional assumptions:

 4. Dependent variable continuous measure and fixed factor indepen-
dent group variable

 5. Relation between dependent and independent variables are linear

 6. Covariate variables and independent variables are not related

 7. The regression line for the groups are parallel

 8. Homoscedasticity of regression slopes

The continuous dependent variable is required to calculate means. 
The fixed factor indicates exclusive group membership categories. The 
linearity assumption can be assessed by visual inspection of scatter 
plots and the Pearson correlation of X and Y. There are nonlinear 
ANCOVA methods, but these are not covered in this book (Huitema, 
1980). The covariate variables should be related to the dependent vari-
able and not to the independent variable (group). If the regression 
lines are not parallel for each group, then separate regression lines 
should be used for each group for prediction. Generally, this assump-
tion is not checked, and a common regression line is fit for all the data 
with the common slope (beta weight) used for computing the adjusted 
means. To check whether lines are parallel for each group, introduce 
an interaction term in the model statement: Posttest = Group + Pretest 
+ Group * Pretest. The Group term would test if groups had different 
intercepts, Pretest would yield a common slope value, and the interac-
tion term (Group * Pretest) would test if the group regression lines 
were parallel. To check whether the variance around the regression 
line is the same for groups (homoscedasticity), we would compare the 
mean square error (MSE) from the separate group regression analyses. 
The basic ANCOVA procedures for computing separate regression 
equations and a common regression equation when assumptions are 
met have been presented in numerous multiple regression textbooks, 
for example, Pedhazur (1997).

                                                                    Copyright ©2016 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



84

▼

USING R WITH MULTIVARIATE STATISTICS

  Multivariate Analysis of Covariance

The use of covariate variables to adjust means is linked to two basic 
research design objectives: (1) eliminate systematic bias and (2) reduce the 
within-group error SS. The best way to address systematic bias is to use 
random sampling techniques; however, intact designs by definition are not 
formed using random sampling. For example, students who qualify for the 
Head Start program would be considered an intact group. When random 
assignment is not possible, then covariate adjustment of the means helps 
reduce systematic bias (intact groups that differ systematically on several 
variables). The within-group SS is due to individual differences among the 
subjects in a group. This can be addressed by selecting more homogene-
ous groups of subjects, using a factorial design with blocking on key 
variables, using repeated measures ANOVA, or using covariate variables to 
adjust group means. The purpose of MANCOVA is to adjust post means for 
initial differences in groups (generally based on pretest measures of intact 
groups, where random selection and random assignment to groups was 
not possible).

ANCOVA techniques combine ANOVA and multiple regression.
ANOVA would test for mean differences (intercepts), while the multiple 
regression technique would provide a common slope to compute adjusted 
group means. MANCOVA is an extension of ANCOVA, where extraneous 
variables that affect the dependent variables are statistically controlled, 
that is, the dependent variable means are adjusted. The adjustment of 
dependent variable means in different groups, given a single covariate, is 
computed as follows:

Y Y b X Xj j w j( ) ( ),adj = − −

where Yj ( )adj = adjusted dependent variable mean in group j, Yj = depend-
ent variable mean before adjustment, bw = common regression coefficient 
in entire sample, X j = mean of covariate variable for group j, and X = 
grand mean of covariate variable (covariate variable mean for entire  
sample). Obviously, if the covariate means of each group are the same, 
then no adjustment to the dependent variable would occur, that is, groups 
are initially equal prior to any treatment or intervention in the research 
design.
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MANCOVA Example

MANCOVA extends the univariate ANCOVA to include more than one 
dependent variable and one or more covariate variables. The null hypoth-
esis in MANCOVA is that the adjusted population means of the dependent 
variables are equal. This is tested with Wilks’s L. A basic example with two 
dependent variables, two groups, and one covariate variable is presented 
using data from Stevens (2009, p. 302). The two dependent variables are 
posttest scores (Postcomp and Posthior), groups (male = 1, female = 2), and 
covariate variable (Precomp).

We would first install and load the necessary packages to conduct 
the various analyses. Next, we input the data for the two groups into 
matrices, which are then combined into a data frame with variable 
labels. The data set, mancova, is attached so that the variable names 
can be used in the manova() function. The R commands are specified 
as follows:

# MANCOVA example (Stevens, 2009, p. 302)
# Install Packages

> install.packages(“MASS”)    # MANOVA
> install.packages(“car”)     # Type III SS
> install.packages(“psych”)   # Descriptive statistics

# Load packages

> library(MASS); library(car); library(psych)

# Input data

> group1 = 
+ matrix(c(1,15,17,3,1,10,6,3,1,13,13,1,1,14,14,8,1,12,12,3,1,10,9,9,1, 
+ 12,12,3,1,8,9,12,1,12,15,3,1,8,10,8,1,12,13,1,1,7,11,10,1,12,16,1,1,9, 
+ 12,2,1,12,14,8),nrow=15,ncol=4,byrow=TRUE)

> group2 = 
+ matrix(c(2,9,9,3,2,13,19,5,2,13,16,11,2,6,7,18,2,10,11,15,2,6,9,9,2,16,20, 
+ 8,2,9,15,6,2,10,8,9,2,8,10,3,2,13,16,12,2,12,17,20,2,11,18,12,2,14,18,16), 
+ nrow=14,ncol=4,byrow=TRUE)
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The MANCOVA with the ANOVA summary table for Wilks’s L and 
Type III SS is run on the data set. The R commands are as follows:

# MANCOVA

> options(scipen=999)   # print p-values in decimal rather than scientific 
          notation

> mancova = data.frame(rbind(group1,group2))
> names(mancova) = c(“GPID”,”Precomp”,”Postcomp”,”Posthior”)
> attach(mancova)
> mancova     # data set for MANCOVA

     GPID  Precomp  Postcomp  Posthior
1       1      15        17         3
2       1      10         6         3
3       1      13        13         1
4       1      14        14         8
5       1      12        12         3
6       1      10         9         9
7       1      12        12         3
8       1       8         9        12
9       1      12        15         3
10      1       8        10         8
11      1      12        13         1
12      1       7        11        10
13      1      12        16         1
14      1       9        12         2
15      1      12        14         8
16      2       9         9         3
17      2      13        19         5
18      2      13        16        11
19      2       6         7        18
20      2      10        11        15
21      2       6         9         9
22      2      16        20         8
23      2       9        15         6
24      2      10         8         9
25      2       8        10         3
26      2      13        16        12
27      2      12        17        20
28      2      11        18        12
29      2      14        18        16

                                                                    Copyright ©2016 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Multivariate Analysis of Covariance – ▼ –87

> outcome = cbind(mancova$Postcomp,mancova$Posthior)
> model = manova(outcome ~ GPID + Precomp + GPID * Precomp, data = mancova)
> summary(model,test = “Wilks”,type =”III”)

> summary(model,test = “Wilks”,type =”III”)

              Df    Wilks  approx F num  Df  den Df       Pr(>F) 
GPID           1   0.63952        6.7639  2      24  0.00468 ** 
Precomp       1   0.34489        22.7938  2      24  0.000002832 ***
GPID:Precomp    1   0.86301        1.9048  2      24  0.17068 
Residuals      25         
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note: Stevens (2009) ran separate models, thus degrees of freedom dif-
fered. I ran a single model with the results.

You can run the other summary commands to obtain the Pillai, 
Hotelling–Lawley, and Roy values. These statistics will have the same val-
ues as Wilks’s L because of specifying Type III SS. Also, the order of entry 
for the variables will not affect the partitioning of the SS. Recall that Type 
I SS would yield different results due to variable entry order.

> summary(model,test = “Pillai”,type = “III”)
> summary(model,test = “Hotelling”,type = “III”)
> summary(model,test = “Roy”,type = “III”)

The findings indicated that the interaction effect was nonsignificant. 
Therefore, the assumption of parallel slopes holds, that is, the two groups 
have the same linear relation between the dependent variables and the pre-
test variable. The group means on the joint dependent variables were statis-
tically significantly different (F = 6.76, df = 2, 24, p = .005). However, the 
covariate variable was also statistically significant. This indicated that the two 
groups had significantly different pretest means on Precomp, thus the two 
groups did not start out the same. The fact that the two groups were initially 
different forms the basis for us wanting to adjust the posttest means of the 
dependent variables by including the pretest variable in the model.

Dependent Variable: Adjusted Means

The manova() function with the pretest variable tests the adjusted means 
of the dependent variable. We can run the lm() function to obtain the 
regression slope values for an equation to compute the adjusted means, 

# MANCOVA

> options(scipen=999)   # print p-values in decimal rather than scientific 
          notation
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but it is easier to use the aov() function. To see the original dependent 
variable means, use the describeBy() function in the psych package. The 
R command for the original dependent variable means is given as follows:

# Original Dependent variable means

> library(psych)

> describeBy(mancova, mancova$GPID)

group: 1

      vars  n  mean  sd  median  trimmed  mad  min  max  range  skew  kurtosis    se

GPID    1 15  1.00 0.00      1     1.00 0.00    1    1     0   NaN      NaN    0.00

Precomp  2 15 11.07 2.31     12    11.08 2.97    7   15     8 -0.20     -1.13    0.60

Postcomp 3 15 12.20 2.91     12    12.31 2.97    6   17    11 -0.31     -0.64    0.75

Posthior 4 15  5.00 3.72      3     4.77 2.97    1   12    11 0.46     -1.45    0.96

---------------------------------------------------------------- 

group: 2

      vars  n  mean  sd  median  trimmed  mad  min  max  range  skew  kurtosis     se

GPID    1 14  2.00 0.00    2.0     2.00 0.00    2    2     0   NaN      NaN    0.00

Precomp  2 14 10.71 2.97    10.5    10.67 3.71    6   16    10 -0.05     -1.13    0.79

Postcomp 3 14 13.79 4.56    15.5    13.83 5.93    7   20    13 -0.16     -1.75    1.22

Posthior 4 14 10.50 5.37    10.0    10.33 6.67    3   20    17 0.19     -1.26    1.44

The ANCOVA summary table, aov() function, for the two dependent 
variables using just the pretest variable and group membership variable 
are listed. The effect() function for adjusted means of each dependent 
variable is run after each ANCOVA. The R commands for each are listed 
below with their corresponding output.

# Postcomp ANOVA

> factor(GPID)
> modelA = aov(Postcomp ~ Precomp + GPID, data = mancova)
> summary(modelA,type=”III”)

           Df  Sum Sq  Mean Sq  F value      Pr(>F) 
Precomp      1   237.7   237.69   43.899   0.0000005 ***
GPID        1    28.5    28.50    5.263   0.0301 * 
Residuals   26   140.8     5.41    
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> library(effects)
> adjmeanA = effect(“GPID”,modelA,se=TRUE,xlevels=2)
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> summary(adjmeanA)
> adjmeanA$se

> summary(adjmeanA)

 GPID effect
GPID
  1  2 
12.00555 13.99406    # Adjusted Postcomp Means

 Lower 95 Percent Confidence Limits
GPID
  1  2 
10.76916 12.71417 

 Upper 95 Percent Confidence Limits
GPID
  1  2 
13.24193 15.27394 
> adjmeanA$se
[1] 0.6014924 0.6226546

# Posthior ANOVA and adjusted dependent variable means

> modelB = aov(Posthior ~ Precomp + GPID, data = mancova)
> summary(modelB, type = “III”)

         Df   Sum Sq   Mean Sq   F value     Pr(>F) 
Precomp    1    17.7     17.66     0.821    0.37319 
GPID      1   211.6     211.59     9.836    0.00422 **
Residuals 26   559.3     21.51    
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> adjmeanB = effect(“GPID”,modelB,se=TRUE,xlevels=2)
> summary(adjmeanB)
> adjmeanB$se

> summary(adjmeanB)

 GPID effect
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GPID
  1  2 
 5.039439 10.457744  # Adjusted Posthior means

 Lower 95 Percent Confidence Limits
GPID
  1  2 
2.575048 7.906650 

 Upper 95 Percent Confidence Limits
GPID
  1  2 
 7.50383 13.00884 
> adjmeanB$se
[1] 1.198908 1.241089

The two separate ANOVA tables indicate that both dependent variables 
are contributing to the overall multivariate significance. It also helps our 
understanding of how the two dependent variables interact with the pretest 
variable. Postcomp group mean differences were statistically significant with 
a statistically significant pretest, Precomp. Posthior group mean differences 
were statistically significant, but there was no significant pretest difference. 
In MANCOVA, these two different ANOVA findings are taken together to 
yield significant group posttest adjusted mean differences.

MANCOVA tests the differences in the adjusted posttest means. It helps 
compute the original dependent variable means and compare them with 
the adjusted dependent variable means.

The R commands to compute the posttest means, standard deviations, 
and pretest means for each group and the entire sample are shown below.

# Postcomp Descriptive Statistics Males (n = 15) Females (n = 14)

> mean(Postcomp[1:15]); sd(Postcomp[1:15]);mean(Precomp[1:15]) #GPID1
> mean(Postcomp[16:29]); sd(Postcomp[16:29]);mean(Precomp[16:29]) #GPID2
> mean(Postcomp); sd(Postcomp); mean (Precomp) # Grand Mean

> mean(Postcomp[1:15]); sd(Postcomp[1:15]); mean(Precomp[1:15]) #GPID1
[1] 12.2  # Postcomp mean - group 1 males
[1] 2.908117
[1] 11.06667
> 
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> mean(Postcomp[16:29]); sd(Postcomp[16:29]); mean(Precomp[16:29]) #GPID2
[1] 13.78571  # Postcomp mean - group 2 females
[1] 4.56034
[1] 10.71429
> 
> mean(Postcomp); sd(Postcomp); mean (Precomp)
[1] 12.96552  # Postcomp grand mean - total sample
[1] 3.812412
[1] 10.89655

# Posthior Descriptive Statistics 

> mean(Posthior[1:15]); sd(Posthior[1:15]); mean(Precomp[1:15]) #GPID1
> mean(Posthior[16:29]); sd(Posthior[16:29]); mean(Precomp[16:29]) #GPID2
> mean(Posthior); sd(Posthior); mean (Precomp)

> mean(Posthior[1:15]); sd(Posthior[1:15]); mean(Precomp[1:15]) #GPID1
[1] 5   # Posthior mean - group 1 males
[1] 3.722518
[1] 11.06667

> mean(Posthior[16:29]); sd(Posthior[16:29]); mean(Precomp[16:29]) #GPID2
[1] 10.5  # Posthior mean - group 2 females
[1] 5.374441
[1] 10.71429

> mean(Posthior); sd(Posthior); mean (Precomp)
[1] 7.655172 # Posthior grand mean - total sample
[1] 5.306841
[1] 10.89655

The descriptive statistics for the two dependent variables for each 
group can now be summarized together. Table 5.1 presents the original 
dependent variable means and the adjusted dependent variable means.

The separate ANCOVA results indicated that the pretest related dif-
ferently with each of the dependent variables. The correlation between 
Postcomp and Precomp was r = .764, which was statistically significant. 
The correlation between Posthior and Precomp was r = -.1496, which 
was not statistically significant. To obtain the different correlations 
between the covariate variable and each dependent variable use the 
following R commands.
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> cor.test(Precomp,Postcomp)
> cor.test(Precomp,Posthior)

> cor.test(Precomp,Postcomp)

  Pearson’s product-moment correlation

data: Precomp and Postcomp

t = 6.1573, df = 27, p-value = 0.000001399
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.5524739 0.8833240
sample estimates:
 cor 
0.7642338 

> cor.test(Precomp,Posthior)

  Pearson’s product-moment correlation

data: Precomp and Posthior

t = -0.7865, df = 27, p-value = 0.4384
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.4893260 0.2294296
sample estimates:
  cor 
-0.1496606

A graph of the relation between the covariate and each dependent 
variable can be viewed using the following R commands.

Table 5.1  Original and Adjusted Dependent Variable Means

Dependent Variables Original Mean Adjusted Mean

Postcomp

Group 1: Males 12.20 12.00

Group 2: Females 13.79 13.99

Posthior

Group 1: Males  5.00  5.04

Group 2: Females 10.50 10.45
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> par(mfrow=c(2,2),usr=c(0,20,0,20))   # Dimension 2 by 2 graph and axis from 
                                                                 0 to 20 

> plot(Precomp,Postcomp)

> abline(modelA)

> plot(Precomp,Posthior)

> abline(modelB)

The covariate (Precomp) is significantly correlated with the Postcomp 
variable (r = .76, p < .001), but not the Posthior variable (r = - .15, p = .44). 
The graphs visually display the pretest scores relation with the Postcomp 
and Posthior scores. From a design perspective, this could be a mismatched 
situation. Each dependent variable would normally have its own pretest 
measure, so Precomp would not be used to adjust means for Posthior.

  Reporting and Interpreting

The MANCOVA technique should meet all the assumptions of the MANOVA 
technique and report that the additional assumptions for the MANCOVA 
technique were met. A basic write-up for reporting MANCOVA results 
would be as follows:

The dependent variables were continuous, linear, and normally distributed variables with 
equal variance–covariance matrices between the groups; thus, met the MANOVA assump-
tions. In addition, the dependent and covariate variables were linear, and the two groups 
had parallel lines with homoscedasticity, thus had equal slopes and variances, which met 
the additional assumptions for MANCOVA. This was indicated by a nonsignificant group 
by pretest interaction (F = 1.90, df = 2, 24, p = .17). The covariate variable was statistically 
significant (F = 22.79, df = 2, 24, p < .001), which indicates that the groups were initially 
different on the pretest, thus requiring adjustment to the posttest means. The groups were 
statistically different on the adjusted posttest means (F = 6.76, df = 2, 24, p = .004). 
Females had higher dependent variable posttest means than males.
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The Stevens (2009) data set was chosen because it points out the difficulty 
in meeting the MANCOVA assumptions, which are in addition to the MANOVA 
assumptions (not shown). The example showed the importance of conducting 
univariate F tests for each dependent variable and covariate variable. The 
results indicated that Precomp was correlated with Postcomp, but not with 
Posthior; groups were different on Postcomp scores and Precomp was a 
significant pretest; and groups were different on Posthior scores, but no 
significant pretest was indicated, thus the two univariate analyses had different 
results. The multivariate analysis combines the individual variable effects; thus, 
sometimes it can mask the different univariate results.

It is difficult to meet the ANCOVA assumptions, yet researchers continue 
to use the technique despite violating the assumptions. On the surface, the 
statistical control for pretest differences falls short. Researchers have sought 
other methods when unable to conduct an experimental design with random 
assignment to control for threats to internal validity (Campbell & Stanley, 
1966). Matching or blocking on key variables has been recommended, which 
aids in the selection of similar subjects for a comparison group.

Critics of ANCOVA point out drawbacks to making statistical adjustments 
to means over random assignment of subjects to groups. Two issues cited 
were that the inclusion of covariate variables changes the criterion variable 
(dependent variable) such that the adjusted means change the construct 
(Tracz, Nelson, Newman, & Beltran, 2005), and the adjusted means technique 
does not match the research question of interest, but propensity score analysis 
with unadjusted posttest scores will (Fraas, Newman, & Pool, 2007). I therefore 
turn my attention to the propensity score method.

  Propensity Score Matching

In experimental research designs, random assignment would control for 
bias in subject selection and other threats to internal validity; however, in 
nonexperimental research designs, matching subjects on the covariate 
variable(s) is generally recommended rather than statistical adjustment to 
the means. Propensity score methods have been advocated in place of 
previous matching or blocking methods (D’Agostino, 1918). Propensity 
score matching (PSM) uses covariate variables to obtain a matched sample 
of subjects (Ho, Imai, King, & Stuart, 2007). There are different PSM meth-
ods, so a researcher should exercise care in using PSM (Schumacker, 
2009). The R software has propensity score packages available (McCaffrey, 
Ridgeway, & Morral, 2004—R twang package with mnps() function; Ho, 
Imai, King, & Stuart, 2007—R MatchIt package with matchit() function to 
run various types of propensity score methods).
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An SPSS data set with freshman students at a southern university was 
used to select a matching sample (International Baccalaureate Organization 
[IBO], 2014). The data consisted of entering freshman students in 2007 and 
included gender, race, ethnicity, graduation status, and grade point averages 
for the 2007 to 2010 academic years. The researcher wanted to test GPA 
(grade point average) mean difference between AP (Advanced Placement) 
and IB (International Baccalaureate) students across the 2007 to 2010 
academic years, however, the number of AP students outnumbered the IB 
students at the university. Specifically in 2007, there were n = 279 IB freshman 
students compared with n = 6,109 AP freshman students at the university.

Propensity score analysis was conducted to select a matching group 
of 279 AP freshman students at the university (Austin, 2011; Guo & Fraser, 
2014; Holmes, 2014). In the study, gender, race, and graduation status were 
used as covariates when selecting a matching group of AP freshman 
students. R software was used with the MatchIt package using the “nearest 
neighbor” selection criteria with the covariates (http://www.r-project.org/). 
The R script to read in the SPSS data file, select a matching group of 
students, then write out the IDs to a file is given below. The file of IDs 
were then used in SPSS to select the matching AP students. The total 
number of freshman students was N = 558 (IB = 279 students; AP = 279 
students). The R script file commands were as follows:

# Propensity score matching - nearest neighbor matching

> install.packages(“MatchIt”)

> install.packages(“Hmisc”)

> library(MatchIt)

> library(Hmisc)

# Data is from SPSS file with selected covariate variables 

# status, gender, race, graduation

# Save SPSS dataset in transport format

# Use SAVE AS command in SPSS

# OR export outfile=’c:\propensity.por’.

# Read in SPSS data set in R with value labels - last option converts value labels to R factors 

> mydata = spss.get(“C:/propensity.por”, use.value.labels=FALSE)

> mydata

# Missing values corrected in SPSS file or finaldata = as.data.frame(na.omit(mydata)) 

# Matching is performed using propensity scores with covariate variables 

# Data set must not have missing values and Y variable must be 0 or 1 coded
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In PSM, it is important to check that the two samples are equivalent on 
the covariate variables used in the matching process: Did PSM achieve similar 
numbers of AP students across gender, race, and graduation completion? A 
chi-square analysis of status by gender, race, and graduation are presented in 
Tables 5.2, 5.3, and 5.4, respectively. Table 5.2 indicates the cross-tabulation 
of AP and IB students with gender (c2 = 1.54, p = .21). Table 5.3 indicates the 
cross-tabulation of AP and IB students with race (c2 = 5.27, p = .15). Table 5.4 
indicates the cross-tabulation of AP and IB students with graduation (c2 = .23, 
p = .62). The chi-square statistics for all the propensity score analyses were 
nonsignificant, which indicated that the PSM did provide a matching number 
of AP to IB freshman students across the covariate variables.

The ability to obtain a matched sample of subjects permits statistical 
analysis of mean differences on dependent variables without having to 
meet the assumptions in ANCOVA. It also doesn’t change the construct or 
test the wrong hypothesis by using adjusted means. Overall, the matching 
of subjects provides a sound research design option that does not involve 
statistical adjustments to means.

Table 5.2  Status by Gender

Group Male Female Total

AP  91 188 279

IB 105 174 279

Note: c2 = 1.54, p = .21.

> m.out = matchit(STATUS~GENDER+RACE+GRADUATE, method=”nearest”, data=mydata, + ratio = 1)

> m.out 

# Final matched data saved as final.data

> final.data = match.data(m.out)

# Set directory to save file

> setwd(“C:/”)

# Write out the data file

> write.table(final_data,file=”match1”,sep=” “, row.names=TRUE, col.names = TRUE, 

+ quote=FALSE)
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SUMMARY

MANCOVA combines the approach of testing mean differences with the multiple regres-
sion approach of estimating slope, or rate of change. Basically, the dependent variable 
means are adjusted based on the correlation relation of one or more covariate variables. 
The intent is to statistically adjust for group pretest differences, thus equating groups at 
the beginning of a research design. This statistical adjustment of the dependent variable 
means has been scrutinized because it changes the meaning of the dependent variable. 
In different disciplines, the research design doesn’t permit the random selection and 
assignment to groups due to intact groups; thus, alternative methods have been advo-
cated. Recently, the PSM approach has been advocated to select a matching set of sub-
jects based on the set of similar values on covariate variables. In practice, the random 
selection and random assignment of subjects to experimental and control groups is the 
gold standard to control for threats to internal validity.

WEB RESOURCES

Introduction to Propensity Score Matching—UseR! 2013 Conference
http://jason.bryer.org/talks/psaworkshop.html

Software for Propensity Score Matching
http://www.biostat.jhsph.edu/~estuart/propensityscoresoftware.html

Video on Propensity Score Matching Using R
http://www.youtube.com/watch?v=Z8GtYGESsXg

Table 5.3  Status by Race

Group White Black Asian Other Total

AP 163 19 41 56 279

IB 149 29 54 47 279

Note: c2 = 5.27, p = .15.

Table 5.4  Status by Graduation

Group No Yes Total

AP 19 260 279

IB 22 257 279

Note: c2 = .23, p = .62.
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