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You are probably reading this book because someone – a professor, a supervisor, a 
colleague, or even an anonymous reviewer – told you that you needed to use mul-
tilevel modeling. It sounds pretty impressive. It is perhaps even more impressive 
that multilevel modeling is known by several other names, including, but not 
limited to: hierarchical modeling, random coefficients models, mixed models, 
random effects models, nested models, variance component models, split-plot 
designs, hierarchical linear modeling, Bayesian hierarchical linear modeling, and 
random parameter models. It can seem confusing, but it doesn’t need to be.
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multilevel modeling in plain language2

This book is for a special type of user who is far more common than experts 
tend to recognize, or at least acknowledge. This book is for people who want 
to learn about this technique but are not all that interested in learning all the 
statistical equations and strange notations that are typically associated with 
teaching materials in this area. That is not to say we are flagrantly trying to 
promote bad research, because we are not. We are trying to demystify these 
types of approaches for people who are intimidated by technical language and 
mathematical symbols. 

Have you ever been in a lecture or course on a statistical topic and felt you 
understand everything quite well until the instructor starts putting equations 
on the slides, and talking through them as though everyone understands them?  
‘As this clearly shows … theta … gamma ….’. Have you ever been in a course 
where several slides of equations are used to justify and demonstrate a proce-
dure and you just didn’t understand? Perhaps you were thinking, ‘These equations 
must mean something in words. Why can’t they just use the words?’ You might 
also just want some practical examples that are fully explained in plain language 
that you may be able to apply to your own research questions. If this sounds like 
you, then this book is for you. If you are really fond of equations, then we’re afraid 
that our approach in this book won’t appeal to you.

Before we get started, we also want to emphasize that this book is not about 
‘dumbing down’ complicated subject matter; it’s about making it accessible. We 
are not endorsing using modeling techniques without understanding them. This 
leads to sloppy and unscientific analyses that are painful to read. What this book 
does is unpack these sophisticated techniques and explain them in non-technical 
language. We assume that you understand the principles of hypothesis testing, 
sampling, research design, and statistical analysis up to and including ordinary 
least squares regression (OLS) with interaction terms. The techniques discussed 
here are just extensions of regression. Really! We do try to keep the jargon to a 
minimum but, as with all things new, there are some new terms and phrases to 
get to grips with. 

So, why might you have been told that you need to use multilevel modeling? 
The chances are that it is because your data have a ‘nested’, ‘clustered’, or ‘grouped’ 
structure and you are being guided to a (regression) technique that accounts for 
this type of data structure.

The idea of nesting, or clustering, is central to multilevel modeling. It sim-
ply means that smaller levels of analysis are contained within larger grouping 
units (Figure 1.1). The classic example is that individual students are nested 
within schools, but nesting can take other forms, such as individuals (Level 1) within 
cities (Level 2), patients within hospitals, siblings within families, or employees 
within firms.
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what is multilevel modeling? 3

In these types of two-level models, the lower level consisting of the smaller 
units (often individuals) is called Level 1, and the next level is referred to as 
Level 2. You may also have a third (or higher) level within which Level 2 
units are nested (see Figure 1.2) such as students (Level 1) within classrooms 
(Level 2) within schools (Level 3), patients within hospitals within districts, sib-
lings within families within neighbourhoods, or employees within firms within 
nations.

Level 3

Level 2
Classroom

School

Level 1

Figure 1.2 Three-level nesting

Multilevel modeling can deal with three or more levels of nesting. However, in 
this book we will focus on two-level models. As you gain more expertise in mul-
tilevel modeling, you may want to explore more complex structures, but for the 
scope of this introductory book, analysis with two levels will serve as the founda-
tion upon which illustrative examples are created.

This book will also only consider cross-sectional nested data. There is another 
variation of nesting with longitudinal data. Longitudinal data are obtained when 
information is collected from respondents at more than one point in time. For 
example, people are interviewed annually in a longitudinal survey such as the 

Figure 1.1 Two-level nesting

Level 2

Level 1

Classroom

Student
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multilevel modeling in plain language4

British Household Panel Survey. The way nesting is conceptualized with longitu-
dinal data is a bit different than with cross-sectional data. Data collection events 
(Time 1, Time 2, Time 3, etc.) are nested within individual respondents. Therefore, 
the time is Level 1 and the respondent is Level 2 (Figure 1.3). If your data look like 
this then you may still start with this book as an introduction to cross-sectional 
multilevel models before branching out into longitudinal data. On the positive 
side, there are a number of other potential techniques for analysing this type of 
longitudinal or panel data. Halaby (2004), for example, offers a sociologically 
based primer for examining issues of causality in longitudinal data. Fitzmaurice 
et al. (2012) have written a more detailed textbook on the topic of applied longi-
tudinal data analysis that is targeted at a multidisciplinary audience.

Level 2

Level 1 Time 1 Time 2 Time 3

Figure 1.3 Longitudinal nesting

MIXING LEVELS OF ANALYSIS 

There are two errors in causal reasoning that have to do with mixing different  
levels of analyses, which are illustrated in Figure 1.4. The first is known as the 
ecological fallacy and has to do with generalizing group characteristics to individu-
als. If we analyse the effect that average neighbourhood income has on the crime 
rates of that neighbourhood, we are comparing group characteristics with group 
characteristics. To extend this argument to particular individuals in the neighbour-
hood can be misleading. It is not appropriate to apply group-level characteris-
tics to individual-level inferences. We may well find that as average income in a 
neighbourhood decreases, the crime rate increases – but we cannot say that if an 
individual’s income decreases, he or she is more likely to commit crime! 

The ecological fallacy can be demonstrated in a number of ways. Another com-
mon misinterpretation of group characteristics is to look at the average income 
in two very different communities that are about the same size. In Wealthyville, 
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Figure 1.4 Units of analysis and making generalizations

Ecological fallacy

Individualistic
or atomistic

fallacy

Multilevel
modeling

the average household income is $500,000 per year. In Poorville, the average 
household income is only $15,000 per year. If 10,000 households live in each 
community, we would say that the average household income across both commu-
nities is $257,500 per year. This would give a completely inaccurate representation 
of the communities, however, because it doesn’t represent the household income 
of anyone. It is far too little to represent Wealthyville (just about half the actual 
household income) and too high to represent Poorville (over 17 times the actual 
household income). By taking group characteristics and trying to generalize to 
individual households, we have committed the ecological fallacy.

Keeping your units of analysis comparable also applies to arguments made in 
the opposite direction – generalizing individual processes to group processes.
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This problem is known as the atomistic fallacy (or individualist fallacy). People make 
this mistake when they take results from individual-level data and apply them to 
groups, where the context may be very different. We may find, for example, that 
being an immigrant is associated with an increased risk of mental health problems. 
A policy solution, however, of creating mental health programmes for all immi-
grants may be misguided, if contextual variables (at the group level) are not taken 
into account. It may be that immigrants in large cities have better mental health than 
immigrants in small communities (where they may be isolated) (Courgeau, 2003). If 
we simply take individual-level characteristics and apply them to groups, failing to take 
contexts into consideration, we may come to conclusions based upon flawed logic.

Both the ecological and atomistic fallacies are errors that researchers make when 
they take data at one level and try to make generalizations to another level. As 
social scientists, we know that individual characteristics (e.g. age, gender, race) 
and contextual-level variables (e.g. school, neighbourhood, region) are important 
determinants for many different outcomes of interest. In multilevel modeling, we 
use both individual and group characteristics and our outcomes can be modeled 
in ways that illustrate how individual and group characteristics both affect out-
comes of interest, and how group characteristics may influence how individual 
characteristics affect the outcome of interest, given certain contexts.

THEORETICAL REASONS FOR MULTILEVEL MODELING

Your models should always be theory-driven, and the best model choice is one 
that corresponds to a sound theoretical rationale. One that is often overlooked 
is the general theoretical arguments around how the social world is portrayed. 
Education researchers, such as Bronfenbrenner (1977, 2001), have argued that the 
outcomes of individuals, particularly children, cannot be understood without tak-
ing different contexts into perspective. His ecological systems approach identifies 
a number of different contexts to be taken into consideration in terms of how they 
work independently and together to create the environments in which children 
live. By looking at data collected from individuals, we are focusing on the micro-
level (i.e. individual) effects of specific characteristics on outcomes of interest, but 
it is more likely the case that these micro-level effects vary significantly across 
larger units at the meso (school or community) and macro (municipal or national) 
levels. The micro and the macro (and the micro and meso) interact. This theo-
retical perspective is most readily tested with statistical techniques that recognize 
these important distinctions.

Although discussions in this vein invariably resort to examples from educa-
tion research, the applications and theoretical motivations apply across a range 
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of disciplines, including health, political science, criminology, sociology, and 
management research. Scholars from all these disciplines have noted the impor-
tance of linking the individual (the micro) and the contexts in which he or she 
lives (the macro). The popularity of theories that focus exclusively on the indi-
vidual or solely on higher levels (groups, firms, nations) is being overshadowed by 
approaches that try to mix the two and presumably give a more accurate depiction 
of the complexity of the social world.

WHAT ARE THE ADVANTAGES OF USING  
MULTILEVEL MODELS?

Well, as the name implies, multilevel models are equipped to analyse multiple lev-
els of data. The information about individual and group characteristics is retained 
and separate estimates are produced for both. Adjustments are made for corre-
lated error terms and for the different degrees of freedom (i.e. Level 1 degrees of 
freedom and Level 2 degrees of freedom). Perhaps most importantly, we are also 
able to do cross-level interactions so that we can explain how Level 1 predictors 
affect our dependent variable according to different contexts (Level 2 predictors). 
Additionally, we can look at how Level 1 predictors interact with each other and 
how Level 2 predictors interact with each other. And because multilevel modeling 
is just an extension of OLS, much of the knowledge you already have about OLS 
will come in handy for model-building and the interpretation of the results. 

We now show that using regular single-level regression techniques to address 
multilevel issues is fraught with problems. The main problem is that your results 
are likely to be filled with errors that originate from various violations of the 
regression assumptions. In many cases, we get poorly estimated results that will 
be statistically significant, leading us to reject our null hypotheses when we really 
shouldn’t be rejecting them. In other words, finding associations where none 
exist, erroneous conclusions, and possibly leading to ineffective policies.

STATISTICAL REASONS FOR MULTILEVEL MODELING

There are many statistical reasons to choose multilevel modeling techniques over 
standard linear OLS regression. You may have accepted that you just need to learn 
this and don’t really care about all the technical reasons why, but we would argue 
that you should at least grasp the basic reasons why OLS is deficient in estimating 
models with nested data. You may have already tried some of the ‘workarounds’, 
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which we discuss below, in OLS to model nested data. These ‘workarounds’ have 
been, and continue to be, used by many researchers and it is not difficult to find 
examples of them in the literature. They are still technically flawed, however, and 
we explain below why it is problematic to choose OLS, despite these ‘workarounds’, 
when trying to deal with nested data structures.

ASSUMPTIONS OF OLS

Multilevel modeling is an extension of OLS. The thing that makes multilevel mod-
eling special is that it addresses specific violations of the ‘assumptions’ of OLS. 
Remember the assumptions? These are the conditions under which OLS regression 
works properly. All statistics have a set of assumptions under which they perform 
as they were intended. 

One assumption is that the relationship between the independent and 
dependent variable is linear. Another is that the sample used in the analysis is 
representative of its population. Yet another is that the independent variables 
are measured without error. We more or less follow these assumptions in our 
day-to-day usage of OLS – and we should check that we are meeting some of 
these assumptions by doing regression diagnostics. 

Dependence among observations

There are assumptions that relate to ‘independence of observations’ that we might 
think about less often. But it is this particular violation of the assumptions that mul-
tilevel modeling techniques are best suited to address. The assumption of independ-
ence means that cases in our data should be independent of one another, but if we 
have people clustered into groups, their group membership will likely make them 
similar to each other. Once people (Level 1) start having similar characteristics based 
on a group membership (Level 2), then the assumption of independence is violated. 
If you violate it, you get incorrect estimations of the standard errors. This isn’t just a nig-
gly pedantic point. If you violate the assumptions, you are more likely to wrongly 
achieve statistical significance and make conclusions that are simply incorrect.

Perhaps an overlooked common-sense fact is that even if you don’t really care 
about group-level factors in your analysis (i.e. they aren’t part of your hypotheses), 
ignoring them does not make the problem go away. This is easy to demonstrate.

Suppose we are interested in how gender and parental occupational status influ-
ence academic achievement. Table 1.1 presents results from an OLS regression 
of reading scores on gender and parental occupational status. Reading scores are 
standardized within the sample to a mean of 0 and a standard deviation of 1. 
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Gender is a dummy variable with 1 denoting males. Parental occupational status 
is a 64-category ordinal scale (the lowest value presenting low occupational status) 
that is treated as an interval-level variable here. The data come from the Australian 
sample from the 2006 Programme for International Student Assessment (PISA) 
organized by the Organisation for Economic Co-operation and Development 
(OECD, 2009). Data were obtained when all children were 15 and 16 years of age 
from schools in all eight states and territories of Australia. 

Table 1.1 OLS regression of standardized reading scores on gender and parental  
occupational status (N = 13,646)

Variables b s.e.

Male –0.381*** (0.016)

Parental occupational status 0.020*** (0.001)

Constant –0.859*** (0.028)

R2 0.141

b – unstandardized regression coefficients; s.e. – standard errors

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 1.1 indicates that males (compared to females) have lower reading scores 
by 0.381 and that each unit increase in parental occupational status is associ-
ated with increases in reading scores of 0.020. These results are both statistically  
significant and have small standard errors. Our model has no group-level indica-
tors, such as class or school. Just because we haven’t included group-level indicators, 
it does not mean that our problems of dependence among observations and thus 
correlated errors do not exist.

First, we need to predict our residuals from the regression equation whose coef-
ficients we have just identified. Remember that the residuals are the difference 
between our predicted reading score based on these characteristics and the actual 
reading score we see in the data. Next, we can test if the assumption is violated if 
we run an analysis of variance (ANOVA) of these residuals by a grouping factor. 
Our grouping factor here is the region of Australia – the state or territory. If the 
residuals are independent of the regions, that is great – that means our errors are 
randomly distributed. This is not, however, the case in our data as the ANOVA 
returns a result of F = 55.8, df = 7, p < 0.001. 

It might be helpful to think of it this way: we have several thousand students 
within the eight different regions in Australia. The ANOVA tells us that our indi-
vidual-level results violate that assumption of uncorrelated errors because we find 
that the ANOVA gives statistically significant results. Table 1.2 shows the mean 
reading scores by region.
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Table 1.2 Means and standard deviations of standardized reading scores by region

Region Mean Std dev.

Australian Capital Territory 0.269 0.946

New South Wales 0.090 0.980

Victoria –0.610 1.280

Queensland –0.039 0.997

South Australia 0.070 0.915

Western Australia –0.148 1.005

Tasmania –0.075 0.937

Northern Territory 0.140 0.954

We could assume that a ‘fix’ to this would be to add dummy variables to the 
model that represent the different regions. We add dummy variables to a model 
so that we can include nominal-level variables in our estimation. As the regions 
are nominal, we can then add them as a set of dummies with an omitted refer-
ence category. Table 1.3 shows how many students are in each region in Australia, 
while Table 1.4 displays the regression results for the model including the region 
dummy variables.

Table 1.3 Australian students by region 

Region N %

Australian Capital Territory 954 7.0

New South Wales 3,270 24.0

Victoria 702 5.1

Queensland 2,322 17.0

South Australia 1,548 11.3

Western Australia 1,221 9.0

Tasmania 2,183 16.0

Northern Territory 1,446 10.6

Total 13,646 100

As you can see in Table 1.3, students from this sample are dispersed among 
the eight regions of Australia. From reviewing the literature, we may have rea-
son to believe that regional effects are determinants of academic achievement 
in Australia, as they are in many other countries around the world. For example, 
educational policies and resources are governed at the state level in Australia, and 
those regions containing the largest cities may offer the best resources for students 
(Australian Government, no date).
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In Table 1.4 the gender and parental occupational status variables are the same 
as in Table 1.1. The region variable is entered as seven dummy variables, with the 
Australian Capital Territory as the omitted category. 

Table 1.4 OLS regression of standardized reading scores on region, gender and parental 
occupational status (N = 13,646)

Variables b s.e.

Region a

 New South Wales –0.075* (0.034)

 Victoria –0.747*** (0.046)

 Queensland –0.168*** (0.035)

 South Australia –0.089* (0.038)

 Western Australia –0.222*** (0.040)

 Tasmania –0.189*** (0.036)

 Northern Territory –0.026 (0.038)

Male –0.377*** (0.016)

Parental occupational status 0.019*** (0.000)

Constant –0.687*** (0.042)

R2 0.165

a Reference category is Australian Capital Territory

b – unstandardized regression coefficients; s.e. – standard errors

* p < 0.05, ** p < 0.01, *** p < 0.001

Now is a good time to review the interpretation of coefficients as this will be 
important for understanding multilevel model outputs as well. The unstandard-
ized coefficients (all in their own units of measurement) in Table 1.4 would be 
interpreted as:

•• Compared to being in Australian Capital Territory, being in New South Wales is associated 

with a decrease in standardized reading scores by 0.075, controlling for the other vari-

ables in the model.

•• Compared to being in Australian Capital Territory, being in Victoria is associated with a 

decrease in reading scores by 0.747, controlling for the other variables in the model.

•• Compared to being in Australian Capital Territory, being in Queensland is associated with 

a 0.168 decrease in reading scores, controlling for the other variables in the model.

•• Compared to being in Australian Capital Territory, being in South Australia is associated 

with a 0.089 decrease in reading scores, controlling for the other variables in the model.

•• Compared to being in Australian Capital Territory, being in Western Australia is associated 

with a 0.222 decrease in reading scores, controlling for the other variables in the model.

•• Compared to being in Australian Capital Territory, being in Tasmania is associated with a 

0.189 decrease in reading scores, controlling for the other variables in the model.
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•• The coefficient for the Northern Territory is not statistically significant.

•• Compared to being a female, being a male is associated with a 0.377 decrease in reading 

scores, controlling for the other variables in the model.

•• Each unit increase in the parental occupational status scale is associated with a 0.019 

increase in reading scores, controlling for all the other variables in the model.

•• The constant is the reading score of –0.687, which is the value when all the independent 

variables have a value of zero. In this case it would be a female living in Australian Capital 

Territory whose parents have an occupational status score of zero – which isn’t possible 

with this particular occupational status measure.

Clearly there are ‘region’ effects here – the Australian Capital Territory (ACT) seems 
to be the best place for reading scores. The problem with this type of analysis is 
that children are nested within the regions. Furthermore, they are nested within 
schools, and even classrooms. While our analysis is at the individual level, the 
observations aren’t completely independent in the sense that there are eight 
regions into which pupils are divided.

An OLS regression assumes that the coefficients presented in the table are  
‘independent’ of the effects of the other variables in the model, but, in this type 
of model, this assumption is false. If we believe that regions – an overarching 
structure – affect students differentially, the effect that regions have on reading 
scores is not independent of the effects of the other variables in the model. The 
structures themselves share similarities that we cannot observe but, nevertheless, 
influence our results. It is probably the case that parents’ occupational status and 
the gender of the student are also differentially associated with reading scores, 
depending on the region in which the student attends school. The OLS assump-
tion of independent residuals is probably violated as well. It is likely that the 
reading scores within each region may not be independent, and this could lead 
to residuals that are not independent within regions. Thus, the residuals are cor-
related with our variables that define structure. We need statistical techniques that 
can handle this kind of data structure. OLS is not designed to do this.

Group estimates

Maybe at this point you are wondering, ‘If groups are so important, maybe I should 
just focus on group-level effects.’ You may think that a possible solution to these 
problems is just to conduct analyses at the group level. In other words, to avoid 
the problem of giving group characteristics to individuals, just aggregate the data 
set so that we focus on groups, rather than individuals. In addition to having far 
less detailed models and violating some theoretical arguments (i.e. supposing your 
hypotheses are actually about individual- and group-level processes), a common 
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problem with this approach is usually the sample size. If we have data on 13,000 
students in eight different regions, aggregating the data to the group level would 
leave us with just eight cases (i.e. one row of data representing one region). To 
conduct any sort of meaningful multivariate analysis, a much larger sample size 
is required. As we mentioned earlier in this chapter, focusing on group estimates 
may lead to an error in logic known as the ecological fallacy where group charac-
teristics are used to generalize to individuals. Thus, there are several reasons not to 
rely on group estimates.

Varying effects across contexts

In OLS, there is an assumption that the effects of independent variables are the 
same across contexts. For example, the effect of gender on school achievement 
is the same for everyone regardless of the region in which they go to school.  

Table 1.5 OLS regressions of standardized reading scores on gender and parental 
occupational status, by region

ACT NSW VIC QLD

Male –0.246*** –0.446*** –0.408*** –0.395***

(0.056) (0.031) (0.093) (0.039)

POS 0.024*** 0.019*** 0.020*** 0.019***

(0.002) (0.001) (0.003) (0.001)

Constant –1.047*** –0.720*** –1.436*** –0.840***

(0.122) (0.056) (0.179) (0.067)

N 954 3,270 702 2,322

SA WA TAS NT

Male –0.410*** –0.386*** –0.336*** –0.279***

(0.043) (0.052) (0.038) (0.047)

POS 0.017*** 0.024*** 0.017*** 0.018***

(0.001) (0.002) (0.001) (0.001)

Constant –0.653*** –1.132*** –0.801*** –0.666***

(0.076) (0.084) (0.065) (0.086)

N 1,548 1,221 2,183 1,446

Unstandardized regression coefficients. Standard errors in parentheses. POS – parental occupational status; ACT – Australian 
Capital Territory; NSW – New South Wales; VIC – Victoria; QLD – Queensland; SA – South Australia; WA – Western Australia; TAS – 
Tasmania; NT – Northern Territory.

* p < 0.05, ** p < 0.01, *** p < 0.001
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We have many reasons to suspect that the effects of individual characteristics vary 
across contexts – that their impacts are not the same for everyone, regardless of 
group membership. We may find that the effects of gender are more pronounced 
in particular regions, for example. The context may influence the impact of 
gender on school achievement – for example, some regions may have an official 
policy around raising the science achievement of girls or the reading achieve-
ment of boys (as they are typical problems in the school achievement literature). 
Multilevel models allow regression effects (coefficients) to vary across different 
contexts (in this case, region) while OLS does not.

We might now think that one possible solution would be to run separate  
individual-level OLS regressions for each group. Table 1.5 displays the results of 
such an exercise.

This may seem to solve the problem of examining how group differences affect 
the impact of independent variables on the outcome of interest. You can see, for 
example, that the effect of being male ranges from being –0.446 in New South 
Wales (NSW) to –0.246 in the Australian Capital Territory (ACT). Likewise with 
parental occupational status (POS), the coefficients range from 0.017 in South 
Australia (SA) to 0.024 in the ACT and Western Australia (WA). These results do 
not tell us if the values are statistically significantly different from each other, 
without further calculations, and they also do not tell us anything about group 
properties which may influence or interact with individual-level outcomes. In 
addition to being a poor specification, this technique can get unwieldy if you have 
a large number of groups. Here we have only eight and the presentation of results 
is already rather difficult.

Another possible solution in OLS to effects varying across contexts might be to 
run interaction terms. You probably learned in your statistics training about inter-
action effects or moderating effects. If we thought that an independent variable 
affects an outcome differentially based upon the value of another independent 
variable, we could test this by using interaction terms. Based on the criticism 
above of running separate regressions for each group, a reasonable solution may 
seem to be to create interaction terms between the region and the other independ-
ent variables. We were making a similar argument earlier when we suggested that 
gender might impact on student achievement depending on region. We create 
the interaction terms by multiplying gender by region and parental occupational 
status by region (gender * regions; parental occupational status * regions) and 
we add them to the OLS regression as a set of new independent variables. If the 
interaction terms are statistically significant, it means that there is evidence that 
the effect of gender on reading and/or parental occupational status is contingent 
on the regions in which students go to school. The results of this estimation are 
presented in Table 1.6. 
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Table 1.6 OLS regression of standardized reading scores on gender, region, parental 
occupational status and interactions (N = 13,646)

Variables b s.e.

Male –0.246*** (0.059)

Region a    

New South Wales 0.326* (0.139)

Victoria –0.389* (0.184)

Queensland 0.207 (0.143)

South Australia 0.394** (0.151)

Western Australia –0.085 (0.153)

Tasmania 0.246 (0.144)

Northern Territory 0.380* (0.154)

Male * New South Wales –0.200** (0.067)

Male * Victoria –0.162 (0.091)

Male * Queensland –0.149* (0.070)

Male * South Australia –0.164* (0.075)

Male * Western Australia –0.140 (0.079)

Male * Tasmania –0.090 (0.071)

Male * Northern Territory –0.033 (0.076)

Parental occupational status (POS) 0.024*** (0.002)

POS * New South Wales –0.005* (0.002)

POS * Victoria –0.005 (0.003)

POS * Queensland –0.005* (0.002)

POS * South Australia –0.007** (0.002)

POS * Western Australia 0.000 (0.003)

POS * Tasmania –0.007** (0.002)

POS * Northern Territory –0.007** (0.003)

Constant –1.047 (0.127)

R2 0.167

a Australian Capital Territory is the reference category

b – unstandardized regression coefficients; s.e. – standard errors 

* p < 0.05, ** p < 0.01, *** p < 0.001

The results in Table 1.6 suggest that region impacts on how individual char-
acteristics affect the dependent variable. There are many statistically significant 
interactions. To really unravel what they mean, we have to look at them along 
with the main effects of the variables in the model. We can graph the main effects 
with the interaction effects and demonstrate the overall effect. We’re not going to 
do that here, but we do address graphing interaction effects later. The main point 
from these results is that there are significant interactions. Perhaps we have just 
solved the problem of group effects?
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Unfortunately not. There are still problems with this model. While there is 
no shortage of examples of this type of analysis in published work, one major 
problem with this approach is the nature of the cross-level interaction term. 
Cross-level interaction terms refer to interaction terms which have variables 
at different levels of aggregation. In this case, we have interacted individual 
characteristics (Level 1) with group characteristics (Level 2). This approach is 
fraught with problems. Treating group-level variables as though they are proper-
ties of individuals may result in flawed parameter estimations and downwardly 
biased standard errors (Hox and Kreft, 1994), and so we are more likely to find 
significant results. This also results in problems in the calculation of degrees 
of freedom, which leads to flawed estimates of the standard errors and faulty 
results. The problems associated with degrees of freedom are explained in more 
detail below.

Degrees of freedom and statistical significance

Degrees of freedom are a problem when using OLS to model multilevel relation-
ships. When we use OLS and simply add group-level variables, such as region in the 
example above, we create a model that assumes individual-level degrees of freedom. 
At this point you may well be wondering, ‘What are degrees of freedom?’ – fair 
enough. As the name implies, degrees of freedom are related to how many of the 
values in a formula are able to vary when the statistic is being calculated. Our 
example data contains 13,646 students in eight different regions. These students 
then have 13,646 individual pieces of data. We use this information to estimate 
statistical relationships. In general, each statistic that we need to estimate requires 
one degree of freedom – because it is no longer allowed to vary. Many equations 
contain the mean, for example. Once we calculate a group mean, it is no longer 
able to vary. Again, once we calculate a standard deviation, we lose another degree 
of freedom. In the our examples above, degrees of freedom are determined from 
individual data, but if we have group characteristics in this individual-level data 
set, OLS calculates the degrees of freedom as though they are simply related to 
characteristics of individuals. In terms of group characteristics, the degrees of free-
dom should be based on the number of regions (8) rather than the number of 
pupils (13,646). The numbers – 13,646 versus 8 – are obviously very different. 
Degrees of freedom are integral in calculating tests of statistical significance. The 
resulting error from using the wrong degrees of freedom in OLS calculations is that 
it increases our likelihood of rejecting the null hypothesis when we should not. 
In other words, we are more likely to get statistically significant results – when we 
shouldn’t – if we use the individual level degrees of freedom instead of the group 
level degrees of freedom.
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Table 1.7 Summary of OLS ‘workarounds’ and their associated problems

Proposed solution Unresolved problem

Ignore group-level characteristics, 
focusing solely on individual 
attributes.

Misspecification of model if group-level variables are indeed important 
predictors of outcome of interest. Also, if outcomes for individuals are 
correlated by group membership, even if groups are not considered in the 
model, there is still a problem with independence of observations (i.e. ignoring 
it doesn’t make it go away). Possibility of committing atomistic fallacy.

Focus only on group variation and 
aggregate data to group level.

Ignores role of individual attributes in explaining outcome. May have 
problems if there are small numbers of groups. Possibility of committing 
ecological fallacy.

Separate regression estimations for 
each group.

Fails to address how the group properties may influence or interact with 
individual-level outcomes.

There may be a problem if there are many groups and if there are small 
groups.

Create dummy variables for groups 
and create interaction terms 
between group dummies and 
individual-level characteristics.

Same problems as fitting regression estimates for each group separately. 
Degrees of freedom for cross-level interaction terms problematic. As well, 
the groups are treated as though they are unrelated although they may 
have things in common if they are drawn from a larger population of groups. 

Adapted from Diez-Roux (2000: 173)

Table 1.7 summarizes the OLS ‘workarounds’ discussed above and their associ-
ated problems. The overarching problem is that when you use OLS models on data 
better suited to multilevel techniques you are very likely to underestimate standard 
errors and therefore increase the likelihood of results being statistically significant, 
possibly rejecting a null hypothesis when you should not. In other words, you are 
more likely to make a Type I error. If you correctly model your multilevel data then 
your results will be more accurately specified, more elegant, and more convincing, 
and your statistical techniques will match your conceptual model.

Multilevel modeling, in general and specific aspects of it, has also come in for 
some criticism. As with many debates of this kind, there is unlikely to be a firm 
and final conclusion, but we do advocate that users of any technique are aware of 
the criticisms and current debates. So we suggest that you start with this series of 
papers: Gorard (2003a, 2003b, 2007) and Plewis and Fielding (2003).

SOFTWARE

In the main text of this book we use Stata 13 software. We assume that the reader 
is familiar with the Stata software program as we do not see this book as an intro-
duction to Stata – see Pevalin and Robson (2009) for such a treatment for an earlier 
version of Stata. At the time of writing, Stata 13 was the current version, with some 
changes for the main commands used in this book from version 12 – namely, the 
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change from the xtmixed to the mixed command. While this changed little of 
the output and only a few options that are now defaults, it did impact on some of  
the other commands written by others for use after xtmixed. So, at times we use the 
Stata 12 command xtmixed, which works perfectly well in Stata 13 but is not offi-
cially supported. Stata 14 was released while this book was in production and we 
have checked that the do-files run in version 14.

As you may have gathered from the previous paragraph we use this font for 
Stata commands in the text. We italicize variable names in the text when we use 
them on their own, not part of a Stata command, but we also use italics to empha-
size some points – we hope that the difference is clear.

In the text we use the /// symbol to break a Stata command over more than 
one line. For example:

mixed z_read cen_pos || schoolid: cen_pos, ///

stddev covariance(unstructured) nolog

This is only done to keep the commands on the book page. In the do-files (avail-
able on the accompanying webpage at the URL given below), the command can 
run on much further to the right. We have tried to keep what you see on these 
pages and what you see in the do-file the same, but if you come across a command 
without the /// in the do-file then don’t worry about it.

At a number of points we include the Stata commands that we used to perform 
certain tasks, including data manipulation and variable creation. As with all soft-
ware, there are a number of ways to get what you want, some elegant and some a 
bit cumbersome. Our rationale is to start by using commands that are easy to fol-
low and then move on to some of the more integrated features in Stata. In doing 
so, we hope that what we are doing is more transparent. If your programming 
skills are more advanced than those we demonstrate then we’re sure you’ll be able 
to think of more elegant ways of coding in no time at all. In the do-files to accom-
pany this book we sometimes include alternate ways of programming to illustrate 
the versatility of the software.

There is a webpage to accompany this book at https://study.sagepub.com/
robson. On this webpage you will find do-files and data files for each of the 
chapters so you can run through them in Stata and amend them for your own 
use. You will also find the chapter commands in R, with some explanation how 
to use R for these multilevel models. The webpage will be very much a ‘live’ 
document with links to helpful sites and other resources. In the list of refer-
ences we have noted which papers are ‘open access’. Links to these papers are 
also on the webpage.

We have chosen to use Stata in this book for two reasons. First, we wanted to use 
a general-purpose statistical software package rather than a specialized multilevel 

01_Robson & Pevalin_Ch-01.indd   18 10/16/2015   2:52:51 PM



what is multilevel modeling? 19

package. If readers already have experience of Stata then we avoid the challenges 
of getting to grips with new software. Even so, we could have then chosen from 
Stata, SPSS, SAS, and R. Which brings us to the second reason: Stata is our pre-
ferred software. It’s what we use. It’s what we teach with. And it’s what we have 
previously written about. We chose to produce matching R code because R is a 
general-purpose software package and it is freely available. We both have previ-
ous experience with SPSS, and so SPSS code for the examples may well materialize 
on the webpage. For those who can’t wait, Albright and Marinova (2010) have 
produced a succinct primer for ‘translating’ multilevel models across SPSS, Stata, 
SAS, and R which is available at: http://www.indiana.edu/~statmath/stat/all/hlm/
hlm.pdf

If your preference is for a specialized multilevel package then we strongly 
recommend that you start with the resources available from the Centre for 
Multilevel Modelling at the University of Bristol and their MLWiN software (free 
to academics) at: http://www.bristol.ac.uk/cmm/

HOW THIS BOOK IS ORGANIZED

This book is organized into four chapters. This introductory chapter is followed 
by a chapter on random intercept models. This starts with a very quick review 
of OLS single-level regression to get us all on the same page and then gradu-
ally introduces random intercept models, how these differ from single-level 
OLS regression, and how to explore the nesting structures in your data. There 
are a few points where we touch on ongoing debates in the multilevel mod-
eling community. Not everything is clear-cut, but we try to steer you through 
these without getting stuck in the technicalities (and probably a never-ending 
debate!). We continue with developing random intercept models, building up 
slowly with plenty of illustrations and example commands and output which 
is explained. We try not to throw too many equations at you, but when we 
do, we explain them in words. We look at adding independent variables at 
different levels, interaction effects, model fit statistics, and model diagnostics. 
Throughout, we try to follow the same example, but at times we have to deviate 
from that to demonstrate some points. 

Chapter 3 is about random coefficient models, sometimes called random 
slope models. These are more complicated models than random intercepts, 
and we recommend that you read through Chapter 2 before starting out on 
this chapter. We pretty much follow the same topics as with random intercept 
models.
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And random coefficient models look like this, with group regression lines which 
are not parallel to each other:

In Chapter 4 we turn to how to present results from these models and how to 
use Stata to produce publication-quality tables.

CHAPTER 1 TAKEAWAY POINTS 

•• If your data contain nested levels, you should probably use multilevel modeling.

•• Ignoring the levels in your data and simply using ordinary regression techniques 

requires you to violate important assumptions in regression theory.

•• Multilevel modeling techniques allow you to better specify your model and achieve 

more accurate results.

•• This book only considers cross-sectional nested data.

•• Your models should be theory-driven and not motivated by the perceived need to 

add arbitrary complexity to your estimations.

Of course there will be more detail in the chapters, but to conclude this intro-
ductory chapter we will simply remark that random intercept models look like 
this, with parallel regression lines for each group:
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