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1
Introduction

After a presentation and an overview of the contents of the whole book, this chapter 
continues with an intuitive introduction to structural equation modeling (SEM) by 
presenting a few examples of such modeling.

These models are very simple, but are chosen to illustrate the broad spectrum 
of research problems that can be analyzed by the collection of tools in the bag 
called SEM. This will not only acquaint you with prototypes of problems and mod-
els discussed in more depth in later chapters, but also stress the way SEM solves 
the problem of measuring the vague concepts often met in the social and behav-
ioral sciences (intelligence, preference, social status, attitude, literacy and the like), 
for which no generally accepted measuring instruments exist.

A short outline of the history of SEM follows subsequently.
Then you will learn how to cope with another problem. Unlike the natural sci-

ences, the ideal way of doing causal research, namely experimentation, is more 
often than not impossible to implement in the social and behavioral sciences. This 
being the case, we face a series of difficulties of a practical as well as a philo-
sophical nature.

You will also find a short introduction to the matrices appearing in the output 
from EQS, the computer program used in this book.

Rather than presenting a deep discussion of the mathematical and statistical 
calculations, which are the basis for SEM estimation, a brief, intuitive explanation 
of the principles is presented instead.

1 Purpose and Plan of the Book

As you can see from the title, this book is an introduction to structural equation 
modeling – or SEM for short. SEM is a very large subject indeed. It is not just one 
statistical method, such as regression analysis or analysis of variance, that you 
should know from your introductory course in statistics. In fact these two statistical 
techniques can be shown to be special cases of SEM, and the same goes for more 
advanced statistical models that you might have met, such as MANOVA, discriminant 
analysis and canonical correlation.

So you can see that general SEM is a rather large toolbox that can serve you in lots 
of different data analysis situations. This means that it is impossible to cover, in a 
rather slim volume like this one, the more advanced and complicated topics in this 
rapid developing area.
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4 Chapter 1 Introduction 

Furthermore, this is a non-mathematical treatment, which means that you will 
encounter very few formulas and, instead of mathematical deductions, you will find 
verbal explanations often of a more intuitive character.

The reader I have in mind is a student within the social and behavioral sciences who 
has completed an introductory course in statistics up to and including multiple regression 
analysis, and also has some experience of the IBM statistics program SPSS.

Plan of the book
The book consists of three parts.

Part 1 includes three chapters. This first chapter starts by presenting a few 
simple examples, each being a prototype of the kind of more complicated prob-
lems you will meet in later chapters. As you will learn from these examples, a 
central problem in SEM is the extent to which you can draw causal conclusions 
based on non-experimental data. A discussion of the problems involved takes up a 
good deal of space.

The variables you want to enter into your structural equation model must be measured. 
Chapter 2 considers problems connected with judging the quality of your measurements, 
by introducing the concepts of reliability and validity, and Chapter 3 presents principal 
components analysis and exploratory factor analysis as simple tools for examining the 
dimensionality in your data.

You should now be well equipped to embark on Part 2 of the book, where in 
Chapter 4 you are introduced to the steps in SEM and to the various problems that can 
arise as you go through these steps. In the process you will also be introduced to EQS 
programming by means of a very simple multiple regression example similar to those 
that you have probably met several times before.

In Chapter 5 you will learn how to enter data into an EQS data file, and you will be 
introduced to two interactive programming tools in EQS, namely ‘Build EQS’ and 
‘Diagrammer’, the latter making it possible to program a model just by drawing it.

The next three chapters (6, 7 and 8) present the three ‘main models’ of SEM, the 
prototypes of which you met in Chapter 1 but now in more realistic (and complicated) 
forms. The examples are taken from a variety of disciplines: psychology, political 
science, health and marketing.

Part 3 of the book moves on to more advanced topics. In Chapter 9 the analysis is 
extended to deal with the values of the variables and not just the relations between them 
(as is most often the case in SEM). Chapter 9 also deals with models based on data from 
more than one population in order to compare populations and examine the extent to 
which the same model can be used to describe them all.

Chapter 10 will show you how to deal with problems caused by incomplete and non-
normal data, while Chapter 11 introduces you to the so-called latent curve model used 
to model trends based on panel data.

2 Theory and Model

This is a book about drawing conclusions based on non-experimental data on the rela-
tionships between non-measurable concepts – and about using the computer program 
EQS to facilitate the analysis.

01_Blunch_Ch-01_Part-1.indd   4 9/22/2015   2:47:28 PM



 1.2 Theory and Model 5

Scientific work is characterized by the fact that a scientist works with models, i.e. simpli-
fied descriptions of the phenomenon in ‘the real world’ that is the object of the research. An 
example of such a model is the hierarchy-of-effects model depicting the various stages 
through which a recipient of an advertising message is supposed to move from awareness 
to (hopefully) the final purchase (e.g. Lavidge & Steiner, 1961). See Figure 1a.

Another example comes from the theory of the pioneering French sociologist and 
philosopher Emile Durkheim: that living an isolated life increases the probability of 
suicide (Durkheim, 2002 [1897]). This theory can be depicted as in Figure 1b.

We can see that a scientific theory may be depicted as a graphic model in which the 
hypothesized connections among the concepts of the theory are shown as arrows.

What then is SEM?
SEM is a collection of tools for analyzing connections between various concepts in 

cases where these connections are relevant either for expanding our general knowledge 
or for solving some problem.

Examples of such problems are as follows:

1. Health officials might be interested in mapping a possible connection between 
smoking during pregnancy and infant health.

2. School authorities might be interested in examining the effects of various factors 
having a possible impact on students’ academic achievement.

3. A psychologist might be interested in developing a questionnaire that could 
‘measure’ the respondent’s ‘style of information processing’, i.e. whether the 
respondent prefers a verbal and/or visual modality of processing information 
about his or her environment. In that connection the psychologist is interested in 
mapping the possible connection between a person’s ‘style of information pro-
cessing’ and the same person’s answers to the various proposed questions.

4. A health researcher might be interested in mapping a possible connection between 
a person’s psychical well-being and the same person’s physical reactions.

5. An advertising manager or a health official might (for different reasons) be 
interested in mapping a possible connection between cigarette advertising and 
cigarette sales.

The key term is the word possible. We are not sure that a connection exists, but we want 
to find out whether it exists and, if so, to measure the strengths of the connection in 
numerical form.

So, SEM is a set of tools for verifying theories. In principle we start out with an a 
priori theory about the system we want to map, and then use SEM to test our model 
against empirical data. SEM is a confirmatory rather than an exploratory technique.

Exposure

Isolated life Suicide

Knowledge
Positive
attitude

Buy(a)

(b)

Figure 1 (a) The hierarchy-of-effects model; (b) Durkheim’s suicide model
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6 Chapter 1 Introduction 

Our hope is that we can confirm our model and as a result be able to measure the strength 
of the various connections and in that way answer questions such as ‘By how much can we 
expect each extra pack of cigarettes smoked during pregnancy to reduce birth weight?’

However, this does not exclude the possibility that our analysis might lead to modifica-
tions of the original model as we gain more insight while working with our model – so 
the distinction between confirmatory and exploratory is not a sharp one.

As the name ‘structural equation modeling’ suggests, the first step is to form a 
graphic depiction – a model – showing how the various concepts fit together.

Let us look at the examples above.

Example 1
Cigarette smoking during pregnancy and infant health
(Mullahy, 1997)

If we measure cigarette smoking in ‘total number of cigarettes smoked during pregnancy’ 
and infant health by ‘birth weight’ we can suggest the model shown in Figure 2a. The 
concepts are shown in rectangles and the ‘connection’ between them is depicted as an 
arrow indicating the direction of a possible causal effect: we suspect the mother’s cigarette 
smoking affects the child’s birth weight and not the other way round.

In this example it is easy to decide on the direction of a (possible) effect, but at times 
this can be more problematic – for example, Example 5 in the list above, where an 
advertising manager hopes that advertising will promote sales but cannot rule out the 
possibility that a positive covariation between advertising and sales figures could be 
due to the way the advertising budget is compiled, e.g. using a fixed percentage of sales 
income for advertising. That is why I have avoided words like ‘cause’ and ‘effect’ in 
the list of examples above and used the more vague expression ‘connection’. As you 
will learn in Section 4, it takes more than covariation to confirm a possible causal 
effect, and SEM is (in principle) only the analysis of covariations.

b is a measure of the strength of the connection and δ (disturbance) depicts the 
combined effect of all other factors influencing the child’s birth weight.

Number of cigarettes
smoked during pregnancy

Number of cigarettes
smoked during pregnancy

Birth
weight

Birth
weight

Family income

(b)

(a)
β

β

β

δ

δ

2

1

Figure 1.2 Example 1: a traditional regression model
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 1.2 Theory and Model 7

There are many other such causes, most of which (in order to keep the model simple) 
could be summed up in economic terms as measured by total family income, so let us 
modify our model by including ‘family income’ as shown in panel (b). In this way we 
reduce the ‘noise’ summed up in d. The two-headed arrow depicts a possible covaria-
tion between ‘total number of cigarettes smoked during pregnancy and ‘family income’, 
a covariation not ‘explained’ by the model. You may know this phenomenon under the 
name of multicollinearity from when you learned multiple regression in your introduc-
tory statistics course. If you need a refresher, consult Appendix A.

So much for the word ‘model’ in structural equation modeling. But what about the 
words ‘structural equation?

If we let the Greek letters b1 and b2 stand for the strength of the two effects while b0 
is a constant, we can just as well express our model in the structural equation

 Y X X= + + +β β β δ0 1 1 2 2
 (1)

where Y is ‘birth weight’, X1 is ‘number of cigarettes smoked during pregnancy’ and X2 
is ‘family income’.

This is a traditional multiple regression model that most of us should know from our 
introductory course in statistics. So, you can see that multiple regression is a special 
case of SEM. As mentioned above, SEM is (mostly) about mapping ‘relations’, so the 
regressions coefficients b1 and b2 are the parameters of interest here (I have, however, 
added the intercept b0 just to make the equation look familiar to you).

An obvious way to judge the correctness of the model in Figure 2b is to take a 
sample of mothers from the relevant population and question them about the three 
variables ‘birth weight’, ‘number of cigarettes smoked during pregnancy’ and 
‘family income’.

You can therefore test the model’s agreement with empirical data by multiple regression 
and in that way verify the model.

In this case you do not need EQS to estimate the parameters (b0, b1, b2 and the 
variance of d) in the model, but if you do you will get exactly the same result as if 
you used traditional regression analysis.

(Note that covariances between independent variables are not considered parameters 
of the model in regression analysis – but they are in SEM, a point worth remembering!)

Usually, however, our models are a bit more complicated – and then regression 
analysis will not do the job. This can be illustrated using the second example above.

Example 2
Students’ academic achievements

The model shown in Figure 3 was used by Joireman and Abbott (2004) to examine the 
impact of various factors that they suggested affected students’ academic achievements.

This model is more representative of the complexity usually met in SEM – and here 
traditional regression analysis will (in general) not do the job.

In Example 1, ‘number of cigarettes smoked’ and ‘family income’ are traditionally 
called independent variables while ‘birth weight’ is the dependent variable; it depends 
on ‘number of cigarettes smoked’ and ‘family income’ – or at least that is what we think 
may be the case.
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8 Chapter 1 Introduction 

A glance at the model in Figure 3 reveals that here things are a bit more complicated. 
Looking only at the connection between ‘mother’s education’ and ‘homework’, you 
could say that ‘mother’s education’ is the independent variable and ‘homework’ the 
dependent variable. However, ‘mother’s education’ is dependent on ‘ethnicity’, so it is 
also a dependent variable.

This shows that we have to draw a very important distinction between exogenous  
variables, whose values are determined by variables not included in the model, and endog-
enous variables, the values of which are determined by other variables in the model.

In the model in Figure 3 (apart from δ-variables) the only exogenous variable is 
‘ethnicity’ – all other variables are endogenous.

Example 3
Constructing a measuring instrument

A psychologist is constructing a questionnaire that can measure a person’s ‘style of 
processing’, i.e. the person’s preference to engage in a verbal and/or visual modality of 
processing information about his or her environment.

The psychologist decides to use a summated scale.
A summated scale is compiled by adding up scores obtained from answering a 

series of questions. One of the most popular scales is the Likert scale. Here the 
respondents are asked to indicate their agreement with a series of statements by 
checking a scale from, say, 1 (strongly disagree) to 5 (strongly agree) and the scores 
are then added to make up the scale. The scale values are in the opposite direction for 
statements that are favorably worded versus unfavorably worded in regard to the 
concept being measured.

Examples of such questions – or items as they are called in this connection – to 
measure ‘style of processing’ are as follows:

Time spent
on watching

TV

Father’s
education

Ethnicity
Engagement

in school
activities

Mother’s
education

Homework

Achievement

δ1 δ3

δ2 δ5

δ4 δ6

Figure 3 Example 2: model used to explain the impact of factors affecting students’ 
academic achievements
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 1.2 Theory and Model 9

1. I enjoy work that requires the use of words.
2. There are some special times in my life that I like to relive by mentally ‘picturing’ 

just how everything looked.
3. When I’m trying to learn something new, I’d rather watch a demonstration than 

read how to do it.

The psychologist has formulated around 50 such items (statements) and is now won-
dering which of them should be chosen for inclusion in the questionnaire – the criteria 
of course being that the ones with the strongest ‘connection’ to the concept ‘style of 
processing’ should be the preferred ones.

The problem can be modeled as shown in Figure 4.

The X-variables in the figure are three items supposed to measure ‘style of  
processing’, and the three ε-variables indicate that factors other than the variable 
‘style of processing,’ affect how people answer a question. e is the combined effect 
of all such ‘disturbing’ effects. In other words, e is the measurement error of the item 
in question.

You may wonder why the variable ‘style of processing’ in the model in Figure 4 is 
shown as an ellipse (just like the concepts in Figure 1), while the concepts in Figure 2 
are depicted as rectangles. This is done because there is a fundamental difference 
between ‘number of cigarettes’, ‘family income’ and ‘birth weight’ on the one hand, 
and ‘style of processing’ on the other.

The first-mentioned concepts are measurable, i.e. there exist well-defined ways of 
measuring them. They are measured in number of cigarettes, in dollars (or whatever 
currency is relevant) and in pounds or kilograms. Such measurable variables are called 
manifest variables, and they are traditionally depicted as squares or rectangles.

A characteristic of the concept ‘style of processing’ in the model in Figure 4 is that 
it is not directly measurable by a generally accepted measuring instrument, a character-
istic it shares with many concepts from the social and behavioral sciences – satisfaction, 
preference, intelligence, lifestyle, social class and literacy, just to mention a few. Such 
non-measurable variables are called latent variables. Latent variables are traditionally 
depicted as circles or ellipses

As such concepts cannot be measured directly, they are measured indirectly by  
indicators – in this case items in a Likert scale – and such indicators are manifest variables.

Figure 4 Example 3: model used in scale development

Style of
processing

X1

X2

X3 ε3

ε2

ε1
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10 Chapter 1 Introduction 

The arrows connecting a latent variable to its manifest variables should be interpreted 
as follows:

If a latent variable were measurable on a continuous scale – which of course is not 
the case as a latent variable is not (directly) measurable on any scale – variations in a 
person’s (or whatever the analytical unit may be) position on this scale would be mir-
rored in variations in its manifest variables. This is the reason why the arrows point 
from the latent variable towards its manifest indicators and not the other way round.

The purpose is now to estimate the parameters in the model in Figure 4, these para-
meters being the three regression coefficients and the variances of the ε-variables, and 
then use the result to select the ‘best’ items (i.e. the ones with the strongest connection 
to ‘style of processing’) for use in the summated Likert scale.

In this case we cannot use traditional regression analysis, because one of the vari-
ables is latent, but EQS can do the job.

In fact, the three items in this example are taken from the 22-item SOP (Style of 
Processing) scale by Childers, Houston & Heckler (1985). We will return to this 
example in Chapter 7.

The selection of items for summated and non-summated scales is discussed in the 
next chapter.

Example 4
The effects of depression on the immune system

A health researcher is interested in evaluating the (possible) connection between 
depression and the state of the immune system, and tentatively suggests the model 
shown in Figure 5 (this figure is part of a more complicated model, to which we will 
return in Chapter 8).

As can be seen, the model contains the hypothesized effect of ‘depression’ on ‘immune 
system’ as well as the connections between the two latent (non-measurable) variables 
and their manifest (measurable) indicators.

The model thus consists of two parts:

1. The structural model describing the (causal?) connections between the latent 
variables. Mapping of this connection is the main purpose of the analysis.

2. The measurement model describing the connections between the latent variables 
and their manifest indicators.

Figure 5 Example 4: a model with latent variables

1

1

1 Depression
Immune
system

1

1

1

1δX3ε3

ε2

ε1 ε4

ε5

ε6

X2

X1 X4

X5

X6

23θ λ32

λ22 β12

λ12 λ41

λ61

λ51

F2 F1
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 1.2 Theory and Model 11

We can translate the graphic model into a set of equations:

 

F

X

X

X

1 12 2

1 12 2 1 4 41 1 4

2 22 2 2 5 51 1 5

3

= +
= + = +
= + = +
=

β δ
λ ε λ ε
λ ε λ ε
λ

F

X F F

X F F

332 2 3 6 61 1 6

2 3 23

F X F

COV

+ = +

=

ε λ ε

ε ε θ( ),

 
(2)

where F1 is the state of the immune system and F2 depression. As in EQS, I use F as a 
designation for the latent variables, because such theoretical constructs are often 
referred to as factors (cf. Chapter 3 Factor Analysis). The first equation describes the 
structural model and the last seven the measurement model.

We note that a hypothesized causal structure can be depicted in two ways:

1. As a graph with variables shown as circles (or ellipses) and squares (or rectangles), 
(possible) ‘causal’ links shown as arrows and covariation not explained by the 
model shown as two-headed arrows.

2. As a system of equations.

Both ways of depicting models have their advantages. The graph has great communica-
tive power, and the equations make it possible to use traditional algebraic manipulations. 
Usually during a study you sketch one or more models, and then translate the drawings 
into equations, which are used as input to calculations. Newer computer programs (such 
as EQS) also make it possible to draw a graph of the model, which the program then 
translates into program statements (‘equations’) and carries out the calculations necessary 
to estimate the parameters.

Throughout the book I will use the notation in Figure 5. Latent variables are depicted 
by circles or ellipses and manifest variables by squares or rectangles. A one-headed 
arrow depicts a hypothesized relationship between two variables, the arrow pointing 
from the independent to the dependent variable, while a two-headed arrow indicates 
covariance unexplained by other variables in the model. b denotes a coefficient in the 
structural model and l a coefficient in the measurement model.

Coefficients usually have a subscript with two digits, the first indicating the head of 
the arrow and the second the foot. However, if no risk of misunderstanding exists, only 
one subscript is used.

Covariances between exogenous (predetermined) variables are denoted by f and 
covariances between error terms are denoted by q. Subscripts indicate the variables 
involved. If the two digits of the subscript are the same, it indicates a variance. 
Variances are not shown in the figure.

In this case we have several latent variables:

1. The two variables that are the center of our research: ‘depression’ and ‘state of 
the immune system’.

2. d (disturbance) is the combined effect of all factors having an effect on the 
dependent variable, but not explicitly included in the model.

3. The six e-variables indicate that factors other than the latent variable (‘depression’ 
or ‘state of the immune system’) affect the result of a measurement – e (error) is 
the combined effect of all such ‘disturbing’ effects.
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12 Chapter 1 Introduction 

Depression could be measured by Likert items such as:

X1: I am sad all the time and I cannot snap out of it.

X2: I am so restless and agitated that I have to keep moving or doing something.

X3: I have as much energy as ever.

Most often you will have more than three items in a scale, but three will do as an 
illustration (in fact the three items mentioned above are taken from one of the most 
widespread scales for measuring the strength of depression: ‘Beck’s Depression 
Inventory’ (Beck, Ward, Mendelson, & Erbaugh, 1961)). Observe that the variables X1 
to X3 are expected to correlate, because they are all functions of the same variable 
‘depression’ – they are measuring the same concept. However, a glance at the wording 
of X2 and X3 shows that they are indeed very similar, and they could be expected to 
correlate more than by their mutual cause ‘depression’. If that should be the case X2 
and X3 measure not only the same latent variable ‘depression’, but also the same aspect 
of that concept, hence the two-headed arrow in Figure 5.

A characteristic of the summated scale is that in taking an unweighted sum of the 
various scores you implicitly assume that all the questions (or items) making up the 
scale measure the concept to the same precision. An advantage of SEM is that instead 
of summing the various items, you can use the items separately, and in that way weight 
them in accordance with their quality in measuring the concept in question.

Now, we cannot measure the state of the immune system by using a questionnaire. 
Instead we carry out a few tests to measure variables that could be used as indicators, such 
as number of leukocytes, number of lymphocytes and PHA-stimulated T-cell proliferation.

To sum up, a theory is a number of hypothesized connections among conceptually 
defined variables. These variables are often latent, i.e. they are not directly measurable 
and must be operationalized in a series of manifest variables.

These manifest variables and their interrelations are all we have at our disposal to 
uncover the connections among the latent variables.

The benefits of using latent variables
The variables with which the social science researcher works are usually more diffuse 
than concepts such as weight, length and the like, for which well-defined and generally 
accepted measuring methods exist. Rather, the social scientist works with concepts 
such as attitudes, literacy, alienation, social status, etc. Concepts that are not directly 
measurable and therefore must be measured indirectly via indicators, whether they are 
questions in a questionnaire or some sort of test.

If we compare SEM with a traditional regression model such as

 Y Xi i i= + +β β δ0 1
 (3)

it is obvious that the latter is based on an assumption which is rarely mentioned but 
is nevertheless usually unrealistic: that all variables are measured without error. (The 
assumption of no measurement error always applies to the independent variable, 
whereas you can assume that di includes measurement error in the dependent variable 
as well as the effect of excluded variables.)
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 1.3 A Short History of SEM 13

An assumption of error-free measurements is of course always wrong in principle, 
but it will serve as a reasonable simplification when measuring, for example, weight, 
volume, temperature and other variables for which generally agreed measurement units 
and measuring instruments exist.

On the other hand, such an assumption is clearly unrealistic when the variables are 
lifestyle, intelligence, attitudes and the like. Any measurement will be an imperfect 
indicator of such a concept. Using more than one indicator per latent variable makes it 
possible to assess the connection between an indicator and the concept it is assumed to 
measure, and in this way evaluate the quality of the measuring instrument.

Introducing measurement models has the effect of freeing the estimated parameters 
in the structural model from the influence of measurement errors. Or – put another 
way – the errors in the structural model (‘errors in equations’ d) are separated from 
the errors in the measurement model (‘errors in variables’ e).

What then is SEM?
As should be clear from the examples, SEM is not a single statistical model, but rather 
a collection of models originated in different disciplines at different times and brought 
together, because they can be shown to be special cases of a general model.

In Example 1 you met the traditional regression model that you should already know 
from your introductory statistics course, and in Example 2 several such models were 
put together to form a system of regression functions. Such systems are known in psy-
chology and related fields as path models and in economics as simultaneous equation 
models or econometric models.

The model in Example 3 is generally known as the confirmatory factor model, and 
in Example 4 the path model and the confirmatory factor model are brought together to 
form the general structural equation model, of which the models in the first three 
examples are special cases. In fact, the general model can be shown to include many of 
the linear models that are bases for statistical techniques you may already know: analy-
sis of variance, canonical correlation and discriminant analysis, to mention a few. So 
the structural equation model is very general indeed and well suited for analyzing a 
broad spectrum of problems in many disciplines.

3 A Short History of SEM

SEM can trace its history back more than 100 years.
At the beginning of the twentieth century C. Spearman laid the foundation for factor 

analysis and thereby for the measurement model in SEM (Spearman, 1904). He tried to 
trace the different dimensions of intelligence back to a general intelligence factor. In the 
1930s L.L. Thurstone invented multi-factor analysis and factor rotation (more or less in 
opposition to Spearman) and thereby founded modern factor analysis where intelli-
gence, for instance, was thought of as being composed of several different intelligence 
dimensions (Thurstone, 1947; Thurstone & Thurstone, 1941).

About 20 years after Spearman, S. Wright developed so-called path analysis 
(Wright, 1918, 1921). Based on box and arrow diagrams like those in Figure 3, he 
formulated a series of rules that connected correlations among the variables to 
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14 Chapter 1 Introduction 

parameters in a model of the assumed data-generating process. Most of his work 
was on models with only manifest variables, but a few also included models with 
latent variables.

Wright was a biometrician and it is amazing that his work was more or less unknown 
to scientists outside this area, until it was taken up by social researchers in the 1960s 
(Blalock, 1961, 1971; Duncan, 1975).

In economics a parallel development took place in what came to be known as 
econometrics. However, this development was unaffected by Wright’s ideas and was 
characterized by an absence of latent variables – at least in the sense of the word used 
in this book. However, in the 1950s econometricians became aware of Wright’s work, 
and some of them found to their surprise that he had pioneered the estimation of sup-
ply and demand functions and in several respects was far ahead of econometricians 
of that time (Goldberger, 1972).

In the early 1970s path analysis and factor analysis were combined to form the gen-
eral SEM of today. Foremost in its development was K.G. Jöreskog, who created the 
well-known LISREL (LInear Structural RELations) program for analyzing such models 
(Jöreskog, 1973).

However, LISREL is not alone in this. Among other similar computer programs, 
mention can be made of RAM (Reticular Action Model) (McArdle & McDonald, 
1984), included in the SYSTAT package of statistics programs under the name 
RAMONA (Reticular Action Model Or Near Approximation), AMOS (Analysis of 
MOment Structures (Arbuckle, 1989) and of course EQS (EQuationS) (Bentler, 1985).

Jöreskog was a statistician but published much of his research in psychological 
journals. No wonder then that psychology was the area where this ‘new’ way of 
thinking first gained widespread use.

The first discipline to ‘import’ SEM – and the area where it has found most use 
outside of psychology – is marketing. One of the first articles on SEM in the Journal 
of Marketing Research was by Bagozzi (1977), and three years later this author 
published a book on the use of SEM in marketing (Bagozzi, 1980).

Since then there has hardly been an area within the social and life sciences where 
SEM has not gained more and more appreciation.

The reasons for this are very simple: we often have to struggle with measurement 
problems; and the possibilities to perform experiments are often limited.

Last but not least, SEM forces you to think in terms of hypotheses, models and 
verification, i.e. it speaks the language of science and forces you to think as a scientist.

There is an exception to the development sketched above, namely economics, where 
the use of latent variables (in the SEM sense) is not apparent, despite modern econo-
mists spending more and more time analyzing ‘soft’ variables like health, values, etc.

4 The Problem of Non-experimental Data

Basing causal conclusions on non-experimental data usually necessitates statistical mod-
els comprising several equations as opposed to traditional regression analysis and analysis 
of variance, which serve us so well in the simpler situations we meet when we analyze 
experimental data. Besides, the statistical assumptions underlying the models used are 
more difficult to fulfill in non-experimental research, and, last but not least, the concept 
of causality must be used with greater care in non-experimental research.
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As is well known, we are not able to observe causation – considered as a ‘force’ from 
cause to effect. What we can observe is:

1. Co-variation – the fact that two factors A and B covary is an indication of the 
possible existence of a causal relationship, in one direction or the other.

2. The time sequence – the fact that the occurrence of A is generally followed by 
the occurrence of B is an indication of A being a cause of B (and not the other 
way round).

However (and this is a crucial requirement):

3. These observations must be made under conditions that rule out all other expla-
nations of the observations than that of the hypothesized causation.

These three points could be used as building blocks in an operational definition of the 
concept of causation, even if this concept ‘in the real world’ is somewhat dim and per-
haps meaningless except as a common experience facilitating communication between 
people (Hume, 2000 [1739]).

It is clear from the above that we can never prove a causal relationship; we can only 
render it probable. It is not possible to rule out all other explanations, but we can try to 
rule out the ones deemed most ‘probable’ to the extent that makes the claimed explanation 
‘A is the cause of B’ the most probable.

The extent to which this can be done depends on the nature of the data from which 
the conclusions are drawn.

The data
The necessary data can be obtained in one of two different ways:

1. Data can be ‘historical’ in the sense that they mirror ‘the real world’, e.g. the 
actual consequences that a firm’s pricing policy has had on sales.

2. Data can be experimental: you can make your own ‘world’ in which you can 
manipulate the variables whose effects you want to investigate.

Historical data are often called observational data in order to indicate that while in an 
experiment you deliberately manipulate the independent variables, you do not inter-
fere with the variables in non-experimental research more than necessary in order to 
observe (i.e. measure) them.

The necessity of a closed system
To rule out all possible explanations except one is of course impossible, and since we 
can examine only a subset of (possible) explanations it is obvious that causal relation-
ships can only be mapped in isolated systems. Clearly, experimental data are to be 
preferred to non-experimental data, because in an experiment we create our own world 
in accordance with an experimental plan designed to reduce outside influences.

It is much more difficult to cut out disturbing effects in a non-experimental study. 
In an experiment we create our own little world, but when we base our study on the 
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real world we must accept the world as it is. We deal with historical data and cannot 
change the past.

While it seems obvious that causality can only be established – or according to 
Hume (2000 [1739]) only be meaningful – in a scientific model which constitutes a 
closed system, it is a little more complicated to define ‘closed’.

Example 5
The determinants of cigarette sales

In Figure 6 – inspired by Bass (1969) – some of the factors determining cigarette sales 
are depicted. There are an enormous number of possible factors influencing cigarette 
sales – many more than shown in the figure. It would not be very difficult to expand 
the model to cover several pages of this book. In causal research it is necessary to keep 
down the number of variables – in this example (as Bass did) to the variables on the 
gray background.

Figure 6 Example 5: the demand for cigarettes (d-terms not shown)

Distribution

Income
Sales of 
lter

cigarettes
Advertising for

lter cigarettes

Relative price of

lter cigarettes

Sales of non-
lter
cigarettes

Taxes Distribution

Advertising for
non-
lter cigarettes

Anti-smoking
campaign

As any limit on the number of variables must necessarily cut causal relations, we cannot 
demand that the system has no relation to the surrounding world. What we require is 
that all effects on a variable in the model, from outside the model, can be summarized 
in one variable which is of purely random (i.e. non-systematic) nature, and with a 
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variance small enough not to ‘drown’ effects from variables in the model in ‘noise’. If 
we use the Greek letter δ (disturbance) to designate the combined effects of excluded 
independent variables (noise), we can write

 Y f X X X X Xj p= +( , , ,..., ,..., )1 2 3 δ  (4a)

where Y is the dependent variable in the model, and Xj j (j = 1, 2, …, p) are exoge-
nous variables included in the model and supposed to influence Y. If the model is 
really ‘closed’, Xj (for j = 1, 2, ….p) and d must be stochastically independent. This 
is the same as demanding that for each and every value of Xj the expected value of 
d is the same and consequently the same as the unconditional expected value of d. 
This can be written as

 E X E jj( | ) ( )δ δ= = 0 forallvaluesof  (4b)

(for a definition of expected value, see Appendix A).
If condition (4b) is not met, a ceteris paribus interpretation of the parameters indi-

cating the influence of the various independent variables is not possible, because the 
effects of variables included in the model are then mixed up with the effects of variables 
not included in the model.

Simon (1953, 1954) has given Hume’s operational definition of causality a modern 
formulation.

Example 6
The disturbance must be independent of exogenous variables

As is well known (Appendix A), least squares estimation in traditional regression 
analysis forces δ to be independent of the exogenous variables X1 , …, Xj , …, Xp in the 
model – and so do the estimation methods used in EQS. But the point is that this condi-
tion must hold in the population and not just in our model. So, be careful in specifying 
your model.

Consider the following model:

score obtained at exam = f (number of classes attended) + d

Think about what variables are contained in d: intelligence, motivation, age and earlier 
education, to name but a few. Do you think that it is likely that the ‘number of classes 
attended’ does not depend on any of these factors?

Three different causal models
Figure 7 shows three causal models from marketing, depicting three fundamentally dif-
ferent causal structures.

Dominick (1952) reported an in-store experiment concerning the effect on sales of 
four different packages for McIntosh apples. The experiment ran for four days in four 
retail stores. The causal model is shown in Figure 7a. In order to reduce the noise d, the 
most influencing factors affecting sales (apart from the package) were included in the 
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experiment, namely the effects on sales caused by differences among the shops in 
which the experiment was conducted, the effects caused by variations in sales over 
time, and the varying number of customers in the shops during the testing period.

Figure 7 Three types of causal models (d-terms not shown)

Package

Shop

Sales (a)
Time

Number of
customers

Model 1: hierarchy-of-effects model

Model 2: low-involvement model

Exposure Awareness Attitude

Price
(b)

(c)

Market share

Market shareExposure Awareness

Price

Attitude

X1

X1  = average income for persons ≥ 20 years
X2  = relative price of non-�lter cigarettes
Y1  = sales of �lter cigarettes to persons ≥ 20 years
Y2  = sales of non-�lter cigarettes to persons ≥ 20 years
Y3  = advertising expenditures for �lter cigarettes/number of persons ≥ 20 years
Y4  = advertising expenditures for non-�lter cigarettes/number of persons ≥ 20 years

Y1 Y3

X2 Y2 Y4

Aaker and Day (1971) tried to decide which of the two models in Figure 7b best 
describe buying behavior in regard to coffee. The question is whether buying coffee is 
considered a high-involvement activity (in which an attitude towards a brand is founded 
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on assimilated information prior to the actual buying decision), or a low-involvement 
activity (where the attitude towards the brand is based on the actual use of the product). 
The non-experimental data came partly from a store panel (market shares and prices) 
and partly from telephone interviews (awareness and attitude). The models in the figure 
are somewhat simplified compared with Aaker and Day’s original models, which addi-
tionally included a time dimension showing how the various independent variables 
extend their effects over subsequent periods of time.

Bass (1969) analyzed the effects of advertising on cigarette sales using the model in 
Figure 7c based on time series data.

The three examples illustrate three types of causal models of increasing complexity.
The model in Figure 7a has only one box with ingoing arrows. Such models are 

typical of studies based on experimental data, and the analysis is uncomplicated since:

1. There is no doubt about the orientation of the arrows – they depart from the 
variables being manipulated and from variables incorporated in the model in 
order to reduce the amount of noise.

2. The model can be expressed in only one equation.
3. The parameters in this equation can (subject to the usual assumptions) be 

estimated with regression analysis or analysis of variance (or in this case, 
analysis of covariance) – simple statistical techniques which can be found in 
any introductory statistics text.

In Figures 7b and c there are several boxes with both ingoing and outgoing arrows, 
so the model translates into more than one equation, because every box with an 
ingoing arrow is a dependent variable, and for every dependent variable there is  
an equation. For example, the hierarchy-of-effects model can be expressed by the 
following equations:

awareness = f1(exposure) + d1

attitude = f2(exposure, awareness) + d2

market share = f3(attitude, price) + d3

Such a system of equations, where some of the variables appear as both dependent and 
independent variables, is typical of causal models based on non-experimental data. This 
complicates the analysis, because it is not obvious a priori that the various equations 
are independent with regard to estimation, so can we then estimate the equations one 
by one using traditional regression analysis?

While the graphs in Figure 7b are acyclic (i.e. it is not possible to pass through 
the same box twice by following the arrows), the graph in 7c is cyclic: you can walk 
your way through the graph by following the arrows and pass through the same box 
several times. In a way you could say that such a variable has an effect on itself – a 
problem that I return to in Chapter 6. In the example the cyclic nature comes from 
reciprocal effects between advertising and sales: not only does advertising influence 
sales – which is the purpose – but sales could also influence advertising through 
budgeting routines.

We therefore have two (possible) causal relationships between advertising and sales, 
and the problem is to separate them analytically – to identify the two relationships.

01_Blunch_Ch-01_Part-1.indd   19 9/22/2015   2:47:32 PM



20 Chapter 1 Introduction 

This identification problem does not arise in acyclic models, at least not under certain 
reasonable assumptions. The causal chain is a ‘one-way street’, just as in an experiment. 
This means that not only is the statistical analysis simpler, but also the same thing applies 
to the substantive interpretation and the use of the results.

Causality in non-experimental research
Care must be taken in interpreting the coefficients in a regression equation when using 
non-experimental data.

To take a simple example from marketing research, suppose a market researcher 
wants to find the influence of price on sales of a certain product. The researcher decides 
to run an experiment in a retail store by varying the price and noting the amount sold. 
The data are then analyzed by regression analysis, and the result is

 sales a a price= +0 1( )  (5a)

where a0 and a1 are the estimated coefficients.
Suppose the same researcher also wants to estimate the influence of income on sales 

of the same product. Now, the researcher cannot experiment with people’s income, so 
he or she takes a representative sample from the relevant population and asks the 
respondents – among other things – how much of the product they have bought in the 
last week, and also asks them about their annual income. The researcher then runs a 
regression analysis, the result of which is

 sales b b income= +0 1( )  (5b)

How do we interpret the regression coefficients a1 and b1 in the two cases?
The immediate answer we would get by asking anyone with a knowledge of 

regression analysis is that a1 shows by how many units sales would change if the 
price were changed by one unit and b1 by how many units sales would change if 
income were changed one unit.

However, this interpretation is only valid in the first case, where prices were actually 
changed.

In the second case, income is not actually changed, and b1 depicts by how many 
units we can expect a household’s purchase to change if it is replaced by another 
household with an income one unit different from the first.

Therefore the word ‘causality ’ must be used with great care in non-experimental 
research, if we cannot rule out the possibility that, by replacing a household (or 
whatever the analytical unit may be) with another, the two units could differ on other 
variables than the one that is of immediate interest.

This is exactly the reason why an earlier name for SEM, – ‘causal modeling’ – went 
out of use.

It is only fair to mention that the use of SEM is in no way restricted to non-experimental 
research, although this is by far its most common use. Readers interested in exploring the 
possible advantages of using SEM in experimental research are referred to Bagozzi (1977) 
and Bagozzi and Yi (1994).

However, in this book you will find SEM used only on non-experimental data. The 
point to remember is that SEM is based on relations among the manifest variables 

01_Blunch_Ch-01_Part-1.indd   20 9/22/2015   2:47:33 PM



 1.5 The Data Matrix and Other Matrices 21

measured as covariances, and (as you have probably heard several times before)  
‘correlation is not causation’. Therefore – as pointed out at the beginning of this  
section – it takes more than statistically significant relations to ‘prove’ causation.

If time series data are available you can also use the time sequence to support your 
theory, but – and this is the crucial condition – you cannot for pure statistical reasons rule 
out the possibility that other mechanisms could have given rise to your observations.

A claimed causal connection should be based on substantiated theoretical arguments.

5 The Data Matrix and Other Matrices

In the computer output from EQS, in the EQS manual and whenever you read an article 
where SEM is used, you will come across a wide variety of matrices. Therefore a few 
words on vectors and matrices are in order.

A matrix is a rectangular arrangement of numbers in rows and columns. In the 
data matrix in Table 1, Xij is the value of variable j on observation i. In this book the 
observation is most often a person, and the variable is an answer to a question in a 
questionnaire.

The need to be able to describe manipulations, not of single numbers but of whole 
data matrices, has resulted in the development of matrix algebra. Matrix algebra can be 
considered a form of shorthand, where every single operator (e.g. + or –) describes a 
series of mathematical operations performed on the elements of the matrices involved. 
So, matrix algebra does not make it easier to do actual calculations, but does make it 
easier to describe the calculations.

Table 1 Data matrix

Variable       →
Observation ↓

1 2 … j … p

1 X11 X12 … X1j … X1p

2 X21 X22 … X2j … X2p

            

i Xi1 Xi 2 … Xij … Xip

            

n Xn1 Xn2 … Xnj … Xnp

In matrix notation the data matrix is

 X =

x x x x

x x x x

x x x x

x x x x

j p

j p

i i ij ip

n n nj np

11 12 1 1

21 22 2 2

1 2

1 2

 

 

 

 



























 (6)
   

   
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Matrices are denoted by uppercase boldface letters and ordinary numbers (called 
scalars) by lowercase italicized letters. The matrix X is an n × p matrix, i.e. it has  
n rows and p columns.

A single row in the matrix could be considered as a 1 × p matrix or a row vector, the 
elements of which indicate the coordinates of a point in a p-dimensional coordinate 
system in which the axes are the variables and the point indicates an observation. In this 
way we can map the data matrix as n points in a p-dimensional space – the variable 
space. Vectors are denoted by lowercase boldface letters:

 xi i i ij npx x x x=  1 2    (7)

Alternatively, we could consider the data matrix as composed of p column vectors and 
map the data as p points each representing a variable in an n-dimensional coordinate 
system – the observation space – the axes of which refer to each of the n observations:

 
x j

j

j

ij

nj

x

x

x

x

=



























1

2





 (8)

It is often an advantage to base arguments on such geometrical interpretations.
In addition to the data matrix you will meet a few other matrices. The sum of cross-

products (SCP) for two variables Xj and Xk is defined as

 SCP = − −
=i

n

ij j ik kX X X X
1
ΣΣ( )( )  (9)

If j = k we obtain the sum of squares (SS). The p × p matrix

 C =

SS SCP SCP SCP

SCP SS SCP SCP

SCP SCP

11 12 1 1

21 22 2 2

1 2

… …
… …

� � � �

j p

j p

i i …… …
� � � �

… …

SCP SCP

SCP SCP SCP SS

ij ip

p p pj pp1 2



























 (10)

containing the SCP and – on the main diagonal (the northwest–southeast diagonal) –  
the SS of p variables is usually called the sum of squares and cross-products  
(SSCP) matrix.

If all elements in C are divided by the degrees of freedom n – 1 (see Appendix A), we 
obtain the covariance matrix S, containing all covariances and, on the main diagonal, the 
variances of the p variables:
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 s =

s s s s

s s s s

s s s s

s s

j p

j p

i i ij ip

n n

11 12 1 1

21 22 2 2

1 2

1 2

… …
… …

� � � �
… …

� � � �
…… …s snj np



























 (11)

If all variables are standardized

 X
X X

sstd
ij j

j
=

−
 (12)

where X j  is the mean and sj the standard deviation of Xj, to have mean 0 and variance 
1.00 before these calculations, S becomes the correlation matrix R:

 R =

1

1

12 1 1

21 2 2

1 2

1 2

r r r

r r r

r r r r

r r r

j p

j p

i i ij ip

n n nj

… …
… …

� � � �
… …

� � � �
… …… 1



























 (13)

6 How Do We Estimate the Parameters of a Structural 
Equation Model?

At first it seems impossible to estimate, for example, the regression coefficient b12 in 
Figure 5. After all, b12 connects two latent (i.e. non-measurable) variables. To give you 
an intuitive introduction to the principle on which estimation of parameters in models 
with latent variables is based, consider the simple regression model

 Y X= +β δ  (14)

where both X and Y are measurable, and assume – without loss of generality – that both 
variables are measured as deviations from their mean. Under this assumption we have 
the following expected values E (see Appendix A):

 E Y E X E( ) ( ) ( )= = =δ 0  (15)

Further,

 Var Y E Y( ) ( )= 2  (16a)

 Var X E X( ) ( )= 2  (16b)

 Cov YX E YX( ) ( )=  (16c)
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Now

 Var Y Var X X( ) ( )= + = +β δ β σ σδ
2 2 2  (17a)

because E(Xd) = 0 following the usual assumption of regression analysis, and from 
(16c) we get

 

Cov YX E YX E X X

E X E X

X

( ) ( ) ( )

( ) ( )

= = +[ ]
= +

=

β δ

β δ

βσ

2

2

 (17b)

We can then write the two covariance matrices

 
σ

σ σ

σ

βσ β σ σδ

X

YX Y

X

X X

2

2

2

2 2 2 2












=

+













 (18)

The model (14) implies a functional connection between the theoretical covariance 
matrix and the parameters of the model – here b and σδ

2 .
If the empirical values are substituted for the theoretical ones, (18) becomes

 
s

s s

s

bs b s s

X

YX X

X

X X

2

2

2

2 2 2 2












≅

+











δ

 (19)

The ‘approximately equals’ sign @ has been substituted for = because we cannot in 
general expect the two matrices to be exactly equal, but the better the model describes 
the data, the more equal the matrices will be.

To generalize: if there is a one-to-one correspondence between the sample covari-
ance matrix and the parameters of a model assumed to have generated the sample 
(i.e. if the model is identified) – which is not always the case – then the model can 
be estimated, its fit tested, and several measures of fit can be calculated based on the 
difference between the sample covariance matrix and the matrix implied by the 
model. This difference is called the residual matrix:

 
s

s s

s

bs b s s s bs s b
X

YX Y

X

X X YX X Y

2

2

2

2 2 2 2 2 2 2

0










−

+












=

− −δ ss sX
2 2+











δ
 (20)

Therefore SEM is often called analysis of covariance structures.
In the regression case above, we can see that minimizing the elements of the residual 

matrix leads to the traditional estimates of b and s2
d:

 
β

σδ

≈ = =

≈ −

b
s

s

s s

YX

X

YX

XX

y yx

2

2 2 2

SCP

SS  (21)

which makes all entries in the residual matrix equal to zero.
You can therefore look at least squares not as a method to minimize the sum of squares 

for the residuals, but to minimize the difference between the two matrices in (19).
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This is the basis on which estimation in SEM is built. Every model formulation 
implies a certain form for the covariance matrix of the manifest variables, and the 
parameters are estimated as the values that minimize the difference between the sample 
covariance matrix and the implied covariance matrix, i.e. the residual matrix – or to put 
it more precisely, a function of the residual matrix is minimized.

In this chapter you met the following concepts:

 • theory and model
 • exogenous and endogenous 

variable
 • summated scale, Likert scale
 • manifest and latent variables
 • structural model and 

measurement model
 • cyclic and acyclic models

 • data matrix, SSCP matrix, 
covariance matrix and 
correlation matrix

 • population and sample 
covariance matrix

 • implied covariance matrix
 • residual matrix

Questions

1. Why should a researcher prefer to work with latent variables? (List all the reasons 
you can.)

2. Explain the concepts ‘measurement model’ and ‘structural model’.

3. To what extent is it possible to support a hypothesis of causal connections using 
SEM?

4. Explain the difference between cyclic and acyclic models.

5. Explain the various matrices X, C, S and R.

6. Look at Figure 3. Do you have any comments on the model? Do you have any 
suggestions for modifications of the model?
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