
Introduction to
STRUCTURAL  

EQUATION 
MODELING  

USING IBM SPSS 
STATISTICS AND EQS

NIELS J.  
BLUNCH

00_Blunch_Prelims.indd   3 9/22/2015   2:43:42 PM

http://twitter.com/?status=RT: Introducing Structural Equation Modeling from Niels J. Blunch %23freechapter from @SAGE_Methods  http://tinyurl.com/onm73gq


SAGE Publications Ltd
1 Oliver’s Yard 
55 City Road
London EC1Y 1SP

SAGE Publications Inc.
2455 Teller Road
Thousand Oaks, California 91320

SAGE Publications India Pvt Ltd
B 1/I 1 Mohan Cooperative Industrial Area
Mathura Road
New Delhi 110 044

SAGE Publications Asia-Pacific Pte Ltd
3 Church Street
#10-04 Samsung Hub
Singapore 049483

Editor: Jai Seaman
Assistant editor: James Piper
Production editor: Victoria Nicholas
Copyeditor: Neville Hankins
Proofreader: Kate Campbell
Indexer: David Rudeforth
Marketing manager: Sally Ransom
Cover design: Shaun Mercier
Typeset by: C&M Digitals (P) Ltd, Chennai, India
Printed and bound by CPI Group (UK) Ltd, 
Croydon, CR0 4YY

 Niels J. Blunch 2016

Apart from any fair dealing for the purposes of research or 
private study, or criticism or review, as permitted under the 
Copyright, Designs and Patents Act, 1988, this publication 
may be reproduced, stored or transmitted in any form, or 
by any means, only with the prior permission in writing of 
the publishers, or in the case of reprographic reproduction, 
in accordance with the terms of licences issued by 
the Copyright Licensing Agency. Enquiries concerning 
reproduction outside those terms should be sent to the 
publishers.

Library of Congress Control Number: 2015934011

British Library Cataloguing in Publication data

A catalogue record for this book is available from 
the British Library

ISBN 978-1-47391-621-0
ISBN 978-1-47391-622-7 (pbk)

At SAGE we take sustainability seriously. Most of our products are printed in the UK using FSC papers and boards. 
When we print overseas we ensure sustainable papers are used as measured by the Egmont grading system.  
We undertake an annual audit to monitor our sustainability.

00_Blunch_Prelims.indd   4 9/22/2015   2:43:42 PM



7
The Measurement Model in SEM: 

Confirmatory Factor Analysis

We start by examining the differences between the three models, which are usually 
put under the common designation of factor analysis: namely, principal components 
analysis, exploratory factor analysis and confirmatory factor analysis – the latter 
being in fact the measurement model of SEM. 

Next, you will learn two rules for identification in confirmatory factor models and 
you will explore estimation of confirmatory factor models through a classic example. 
You will also learn how EQS can help you to obtain parsimony, i.e. to find as simple 
and uncomplicated (but still well-fitting) model as possible. 

Then you will learn how confirmatory factor analysis can be used to select items 
for inclusion in a measurement model or for use in a summated scale. You will also 
learn how to use SEM to measure reliability and validity in ways that are more in 
accordance with the theoretical definition of these concepts than those presented 
in Chapter 2.

The chapter ends with a short discussion of reflective and formative indicators, 
and points to a problem in item selection that has often led researchers astray.

1 The Three Factor Models

In component analysis the components are linear functions of the original variables, 
whereas in factor analysis – whether exploratory or confirmatory – the roles are 
reversed: the variables are considered functions of latent variables called factors.

However, there are a number of important differences between exploratory factor 
analysis and confirmatory factor analysis.

In exploratory factor analysis: 

1. Every manifest variable is connected with every latent variable (as in component 
analysis).

2. Error terms are uncorrelated.
3. All parameters are estimated from the data.

In confirmatory factor analysis some or all of the above rules are violated:

1. Manifest variables are only connected with some pre-specified latent vari-
ables, the ideal being that every manifest variable is an indicator for one and 
only one factor.
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 7.1 The Three Factor Models 149

2. Some error terms may be allowed to correlate.
3. Some of the parameters may be restricted to certain values or to have the same 

values as other parameters, or they may be restricted to fulfill other conditions.

The differences among the three factor models are depicted in Figure 1 (it deserves 
mentioning that the component model and the exploratory factor model are shown prior 
to a possible rotation that could introduce correlations among the components or factors).

Comparing Figure 1 with Figure 1.5, it is obvious that the measurement model in 
SEM is a confirmatory factor model, and that it is this model that was the basis for 
the arguments against the classical methods of measuring reliability and validity in 
Chapter 2.

Remember that an indicator Xi can be:

 • a single item in a many-item scale;
 • a simple sum of several items, i.e. a summated scale; or 
 • a weighted sum of several items, e.g. a principal component. 

Component Analysis

Con�rmatory Factor AnalysisExploratory Factor Analysis
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Figure 1 The three factor models
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150 Chapter 7 Confirmatory Factor Analysis 

2  Identification and Estimation of Confirmatory  
Factor Models

In order to obtain identification every factor must be assigned a scale, either by fixing 
its variance or by fixing one of its regression coefficients; the same goes for the error 
terms. Further, the t-rule must be fulfilled but, as you have learned, this rule is only 
necessary, not sufficient.

Identification in confirmatory factor models
Two rules – both of which are sufficient, but not necessary – are worth mentioning 
(cf. Figure 4.2):

1. The three-indicator rule: A confirmatory factor model is identified if:

(a) Every factor has at least three indicators.
(b) No manifest variable is an indicator for more than one factor.
(c) The error terms are not correlated.

2. The two-indicator rule: A confirmatory factor model with at least two factors is 
identified if:

(a) Every factor has at least two indicators.
(b) No manifest variable is an indicator for more than one factor.
(c) The error terms are not correlated.
(d) The covariance matrix for the latent variables does not contain zeros.

The main advantage of confirmatory models is that prior knowledge can be taken into 
account when formulating the model. Further, confirmatory models open up for various 
methods of testing the models.

Example 1
Democracy in developing countries

Bollen has published several studies on the determinants of democratic development 
(e.g. Bollen 1979, 1980). In this example I use data from Bollen (1989). The data given 
in Table 1 contain eight variables. The first four are indications of degree of democracy 
in 75 developing countries in 1960, the four variables being:

V1 = freedom of the press

V2 = freedom of group opposition

V3 = fairness of election

V4 = elective nature of the legislative body

The next four variables are the same variables measured the same way in 1965.
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A component analysis of the covariance matrix gives the first three eigenvalues as

57.17

 8.47 (1)

 5.26

and presents a strong case for a one-component solution, although we know that in fact 
there are two sets of measurements, one for 1960 and one for 1965.

If we insist on a two-component solution, the component loadings (covariances) are 
(after a varimax rotation)

F1  F2

V1  1.28  1.86

V2  3.53  0.96

V3  0.53  2.94

V4  2.23  1.94 (2)

V5  1.14  1.78

V6  2.79  1.09

V7  1.49  2.47

V8  2.12  1.80

where we see that the two components in no way represent the two time periods.
Of course you can try an oblique rotation (which will give a correlation of 0.63 

between the two components), or use exploratory factor analysis instead of component 
analysis, but none of these techniques will separate the two time periods.

This shows the danger of letting the automatic use of exploratory methods lead you 
astray without theoretical considerations.

Table 1 Example 1: covariance and means matrix

V1 V2 V3 V4 V5 V6 V7 V8

V1

V2

V3

V4

V5

V6

V7

V8

Means

6.89

6.25

5.84

6.09

5.06

5.75

5.81

5.67

5.46

15.58

5.84

9.51

5.60

9.39

7.54

7.76

4.26

10.76

6.69

4.94

4.73

7.01

5.64

6.56

11.22

5.70

7.44

7.49

8.01

4.45

6.83

4.98

5.82

5.34

5.14

11.38

6.75

8.25

2.98

10.80

7.59

6.20

10.53

4.04
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152 Chapter 7 Confirmatory Factor Analysis 

Now, let us see how such considerations can guide us:

1. We must maintain two factors, one expressing the degree of democracy in 1960 
and the other the degree of democracy in 1965.

2. It is reasonable to assume that error terms in the same (manifest) measurement 
in the two years will correlate.

3. In the same way we will assume that the error terms for V2 and V4 (and V6 and 
V8) correlate, as these measurements are based on the same written source.

A model along these lines is shown in Figure 2.
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Figure 2 Example 1: the model

In order to estimate the model, two conditions must be satisfied:

1. We must create scales for the latent variables.
2. The model must be identified.

As mentioned earlier, the first condition can be met in two ways. The simpler way is 
to fix one of the regression coefficients for each factor to 1.00. This will transfer the 
scale of the indicator in question to its latent variable. Another possibility is to stan-
dardize the factors by fixing their variances to 1.00. On the screen the arrows 
connecting press60 and press65 to their respective factors are shown in red (as are the 
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 7.2 Identification and Estimation of Confirmatory Factor Models  153

arrows connecting the E-variables to their manifest variables), signaling that I have 
chosen the first possibility.

Regarding point 2 above, we have 23 parameters to estimate:

 6 coefficients

 7 covariances

 10 variances

As input we have 8 variances and 28 covariances. We thus have 13 ‘pieces of informa-
tion’ or degrees of freedom left over for testing. The t-rule is satisfied. However, the 
three-indicator rule cannot be used because of the correlated error terms. So the model 
is possibly identified.

A program for estimation of the model is given in Table 2.

Table 2 Example 1: EQS program

/TITLE
  Example 7.1. First run. Data from Bollen 1989
/SPECIFICATIONS
  DATA=’C:\Users\Sony\Desktop\EQS bog\EQS Chap 7\Bollen.ess’;
  VARIABLES=8; CASES=75; 
  METHOD=ML; ANALYSIS=COVARIANCE; MATRIX=COVARIANCE; 
/LABELS
  V1=press60; V2=opp60; V3=fair60; V4=elect60; V5=press65; 
  V6=opp65; V7=fair65; V8=elect65; 
  F1=dem60; F2=dem65
/EQUATIONS
  V1 =   1F1 + E1; 
  V2 =   *F1 + E2; 
  V3 =   *F1 + E3; 
  V4 =   *F1 + E4; 
  V5 =   1F2 + E5; 
  V6 =   *F2 + E6; 
  V7 =   *F2 + E7; 
  V8 =   *F2 + E8; 
/VARIANCES
   F1 = *;
   F2 = *;
   E1 TO E8 = *; 
/COVARIANCES
  F2,F1 = *; 
  E4,E2 = *; 
  E5,E1 = *; 
  E6,E2 = *; 
  E7,E3 = *; 
  E8,E4 = *; 
  E8,E6 = *; 
/PRINT
  FIT=ALL;
  TABLE=COMPACT;
/END
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154 Chapter 7 Confirmatory Factor Analysis 

Table 3 Example 1: output from first run (extract)

STANDARDIZED RESIDUAL MATRIX:                                    (1)

                           PRESS60      OPP60       FAIR60       ELECT60     PRESS65
                        V1        V2           V3           V4           V5
     PRESS60  V1        .001
     OPP60    V2       -.001      .014
     FAIR60   V3        .064     -.066     -.002
     ELECT60  V4       -.024      .018     -.004      .000
     PRESS65  V5        .002      .001      .026      .009     -.001
     OPP65    V6        .038      .034     -.096      .048     -.025
     FAIR65   V7       -.014      .002     -.014     -.006      .014
     ELECT65  V8       -.012      .035     -.050      .017     -.025

                      OPP65     FAIR65     ELECT65 
                       V6           V7        V8  
     OPP65    V6        .010
     FAIR65   V7       -.022     -.003
     ELECT65  V8        .015      .013      .004

              AVERAGE ABSOLUTE STANDARDIZED RESIDUAL =          .0203
  AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUAL =          .0248

GOODNESS OF FIT SUMMARY FOR METHOD = ML    

 INDEPENDENCE MODEL CHI-SQUARE   =   454.661 ON  28 DEGREES OF FREEDOM

 INDEPENDENCE AIC =     398.661   INDEPENDENCE CAIC =     305.771
       MODEL AIC =     -13.501          MODEL CAIC =     -56.628

 CHI-SQUARE =      12.499 BASED ON     13 DEGREES OF FREEDOM       (2)
 PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS       .48718

 THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS      11.679.

 FIT INDICES (3)
 -----------
 BENTLER-BONETT       NORMED FIT INDEX =     .973
 BENTLER-BONETT NON-NORMED FIT INDEX =     1.003
 COMPARATIVE FIT INDEX (CFI)         =    1.000
 BOLLEN’S          (IFI) FIT INDEX  =    1.001
 MCDONALD’S        (MFI) FIT INDEX   =    1.003
 JORESKOG-SORBOM’S  GFI  FIT INDEX     =     .962
 JORESKOG-SORBOM’S AGFI  FIT INDEX      =     .895

The program format should be familiar to you by now. In the /SPECIFICATIONS 
paragraph I state that the data should be chosen from the EQS data file ‘Bollen.ess’ and 
ask for GLS estimation. No new commands are involved, so I do not expect you to have 
any trouble with the contents.

Table 3 shows selected output.
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(Continued)

 ROOT MEAN-SQUARE RESIDUAL (RMR)       =     .324
 STANDARDIZED RMR                    =    .030
 ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA)    =      .000
 90% CONFIDENCE INTERVAL OF RMSEA  (       .000,          .111)

 MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)          (4)
 PARAMETER ESTIMATES (B) WITH STANDARD ERRORS AND TEST STATISTICS (Z)
 STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

                                                         R-

 DEP.VAR.      PREDICTOR   B      BETA   S.E.   Z      SQUARED
 ---------------------------------------------------------------
 V1  (PRESS60 )                                         .718
           F1  ( DEM60  ) 1.000    .848 
           E1  (PRESS60 ) 1.000    .531 
 V2  (OPP60   )                                         .516
           F1  (  DEM60 ) 1.267*   .719  .185  6.831@
           E2  (OPP60   ) 1.000    .695 
 V3  (FAIR60  )                                         .524
           F1  ( DEM60  ) 1.069*   .724  .154  6.925@
           E3  (FAIR60  ) 1.000    .690 
 V4  (ELECT60 )                                         .715
           F1  ( DEM60  ) 1.274*   .846  .148  8.626@
           E4  (ELECT60 ) 1.000    .534 
 V5  (PRESS65 )                                         .620
           F2  ( DEM65  ) 1.000    .788 
           E5  (PRESS65 ) 1.000    .616 
 V6  (OPP65   )                                         .567
           F2  ( DEM65  ) 1.227*   .753  .182  6.755@
           E6  (OPP65   ) 1.000    .658 
 V7  (FAIR65  )                                         .706
           F2  ( DEM65  ) 1.343*   .840  .174  7.736@
           E7  (FAIR65  ) 1.000    .542 
 V8  (ELECT65 )                                         .692
           F2  ( DEM65  ) 1.309*   .832  .172  7.597@
           E8  (ELECT65 ) 1.000    .555 

  VARIANCES OF INDEPENDENT VARIABLES
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

                       VARIANCE    S.E.      Z
 ------------------------------------------------
 FACTOR
            F1  ( DEM60  )4.943*  1.132  4.368@
            F2  ( DEM65  )4.240*  1.086  3.905@
 ERROR
            E1  (PRESS60 )1.937*   .454  4.269@
            E2  (OPP60   )7.427*  1.400  5.306@
            E3  (FAIR60  )5.130*   .975  5.264@
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156 Chapter 7 Confirmatory Factor Analysis 

            E4  (ELECT60 )3.195*   .754  4.240@
            E5  (PRESS65 )2.595*   .530  4.892@
            E6  (OPP65   )4.879*   .938  5.203@
            E7  (FAIR65  )3.183*   .723  4.405@
            E8  (ELECT65 )3.231*   .728  4.438@

 COVARIANCES AMONG INDEPENDENT VARIABLES
 STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
                            COVA.   S.E.   Z       CORR.
 -----------------------------------------------------------
 F1,F2   (DEM60   ,DEM65   ) 4.412*   .979  4.505@    .964
 E1,E5   (PRESS60 ,PRESS65 )  .635*   .374  1.697     .283
 E2,E4   (OPP60   ,ELECT60 ) 1.292*   .714  1.810     .265
 E2,E6   (OPP60   ,OPP65   ) 2.073*   .744  2.786@    .344
 E3,E7   (FAIR60  ,FAIR65  )  .828*   .619  1.336     .205
 E4,E8   (ELECT60 ,ELECT65 )  .472*   .460  1.024     .147
 E6,E8   (OPP65   ,ELECT65 ) 1.274*   .588  2.165@    .321

A few comments should clarify the contents

1. The standardized residual covariances (i.e. the residual correlations) are all 
extremely small, so there is not much to gain by introducing more parameters. 
On the contrary, it is perhaps possible to simplify the model by placing restric-
tions on parameter values.

2. We see that a χ2-test of the model has a P-value of 0.487. This means that there is 
a probability of 0.487 of getting this result or one that is more against our model, 
if the model is correct. Because of the reversed testing we are interested in the test 
not being significant. Therefore a P-value near 50% does not seem unsatisfying. 
We are, however, not interested in very large P-values, as this could be a sign of 
over-fitting, and therefore suggest that the model could be simplified. 

3. All the fit measures point in the same direction: We should indeed look for sim-
plifications of the model.

4. Next, there are the parameter estimates, their standard errors and test statistics. 
The only parameters that are not significant by traditional standards are 
(FAIR60,FAIR65) and (ELECT60,ELECT65) (one-sided tests, α = 0.05. 
Remember that the ‘@’ are for two-sided tests, but here one-sided tests seem 
more appropriate.

As the fit is so good, it should perhaps be possible to simplify the model. Generally, we 
want a parsimonious model with as few free parameters as possible. The danger with 
models that are ‘too good’ is that the good fit perhaps is obtained by profiting from 
peculiarities in the sample at hand, and that the results therefore would not show up in 
other samples from the same population. So, the simpler the model, the smaller the 
dangers of generalization – and also the simpler the model, the easier it is to interpret.

You could for instance argue that the connection between a latent variable and its 
indicator is the same in the two years, i.e. that the measuring instrument itself does not 
change between the two measurements. If so, you put in the following paragraph in the 
program in Table 2:

Table 3 (Continued)
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/CONSTRAINTS

(V2,F1) = (V6,F2);

(V3,F1) = (V7,F2); (3)

(V4,F1) = (V8,F2);

You will observe that these restrictions are not inconsistent with the data. The main 
results of this second run are shown in the model in Table 4, and the fit measures for 
the two models are:

First run Second run

χ2 =12.232

df =13    P=0.487

χ2=15.074

df = 16    P=0.519
 (4)

χ2 f

New model

Old model

15.074

12.232

16

13

Difference  2.842  3

 (5)

We compare the two models as follows:
The difference in χ2 is asymptotically distributed as  χ2 with three degrees of free-

dom. As a value of 2.842 with three degrees of freedom is not statistically significant 
according to traditional criteria, we prefer the new and simpler model.

This so-called χ2-difference test is restricted to cases where one of the two models is 
nested under the other – that is, one model can be obtained by placing restrictions on 
the other.

Table 4 Example 1: selected output, second run

  MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

  PARAMETER ESTIMATES (B) WITH STANDARD ERRORS AND TEST STATISTICS (Z)
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

                                                        R-
 DEP.VAR.      PREDICTOR   B      BETA   S.E.    Z      SQUARED
 ----------------------------------------------------------------
 V1  (PRESS60 )                                          .713
          F1  ( DEM60  ) 1.000    .845 
          E1  (PRESS60 ) 1.000    .535 
 V2  (OPP60   )                                          .479
          F1  ( DEM60  ) 1.213*   .692  .144   8.423@
          E2  (OPP60   ) 1.000    .722 

(Continued)
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158 Chapter 7 Confirmatory Factor Analysis 

 V3  (FAIR60  )                                          .582
          F1  ( DEM60  ) 1.210*   .763  .126   9.619@
          E3  (FAIR60  ) 1.000    .647 
 V4  (ELECT60 )                                          .704
          F1  ( DEM60  ) 1.273*   .839  .123  10.378@
          E4  (ELECT60 ) 1.000    .544 
 V5  (PRESS65 )                                          .644
          F2  ( DEM65  ) 1.000    .802 
          E5  (PRESS65 ) 1.000    .597 
 V6  (OPP65   )                                          .581
          F2  (  DEM65 ) 1.213*   .762  .144   8.423@
          E6  (OPP65   ) 1.000    .647 
 V7  (FAIR65  )                                          .667
          F2  ( DEM65  ) 1.210*   .817  .126   9.619@
          E7  (FAIR65  ) 1.000    .577 
 V8  (ELECT65 )                                          .695
          F2  ( DEM65  ) 1.273*   .833  .123  10.378@
          E8  (ELECT65 ) 1.000    .553 

VARIANCES OF INDEPENDENT VARIABLES
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

                        VARIANCE   S.E.    Z
 -------------------------------------------------
 FACTOR
            F1  ( DEM60  )4.770*  1.050   4.545@
            F2  ( DEM65  )4.588*  1.043   4.398@
 ERROR
            E1  (PRESS60 )1.916*   .442   4.334@
            E2  (OPP60   )7.633*  1.392   5.485@
            E3  (FAIR60  )5.027*   .985   5.104@
            E4  (ELECT60 )3.256*   .737   4.416@
            E5  (PRESS65 )2.538*   .529   4.793@
            E6  (OPP65   )4.874*   .943   5.166@
            E7  (FAIR65  )3.348*   .714   4.690@
            E8  (ELECT65 )3.267*   .735   4.448@

  COVARIANCES AMONG INDEPENDENT VARIABLES
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

                                 COVA.  S.E.    Z     CORR.
 --------------------------------------------------------------
   F1,F2   (DEM60   ,DEM65   ) 4.520*   .987   4.578@    .966
   E1,E5   (PRESS60 ,PRESS65 )  .582*   .372   1.564     .264
   E2,E4   (OPP60   ,ELECT60 ) 1.411*   .699   2.017@    .283
   E2,E6   (OPP60   ,OPP65   ) 2.098*   .748   2.806@    .344
   E3,E7   (FAIR60  ,FAIR65  )  .741*   .624   1.188     .181
   E4,E8   (ELECT60 ,ELECT65 )  .480*   .462   1.039     .147
   E6,E8   (OPP65   ,ELECT65 ) 1.275*   .595   2.143@    .319

Table 4 (Continued)
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 7.2 Identification and Estimation of Confirmatory Factor Models  159

In introducing these restrictions I had an eye on the output in Table 3, but my choice of 
restrictions was based on substantive reasoning. I was not just fishing in the output.

The revision of the original model was theory driven, but if model revision is more 
or less driven by empirical evidence the ‘testing’ is not meaningful, because you test on 
the same data that have formed the hypotheses. For example, if you drop non-significant 
parameters from a model you can be almost sure that the χ2-difference test will also be 
non-significant.

A digression: if you cannot substantiate that the measuring instrument functions in 
the same way on the two occasions, you cannot compare the degree of democracy at 
the two points in time, if you should want to do so (more about this in Chapter 9).

Sample or population?
There is a problem with the analysis in Example 1: should we consider the 75 developing 
countries as a random sample drawn from a larger population (and, if so, how is that 
population defined?), or do they constitute the complete population? This is a fundamental 
question.

The basic idea in statistical estimation and testing is that you use a sample to draw 
conclusions about the unknown parameters of the population, taking the sampling error 
into consideration. But if your ‘sample’ is in reality the population, your ‘parameter 
estimates’ are the population parameters, and consequently there is no need for testing!

Even if the sample could be considered as drawn at random from some population, 
it is in all probability so large a fraction of that population that special formulas should 
be used to calculate the standard errors. Remember this if your analysis in based on 
macro data.

Programming using the ‘Diagrammer’/‘Factor Model’
After opening the data file (Bollen.ess), click the ‘Diagrammer’ icon  and in the 
window in Figure 5.12 select ‘Factor Model’. The window in Figure 3a will appear.

(a)

(Continued)
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(d)

(c)

(b)

Figure 3 (Continued)
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(e)

Label Factor 1 ‘democracy60’. Then select ‘press60’, ‘opp60’, ‘fair60’ and ‘elect60’ 
and by clicking the little arrow copy them to ‘Indicators’ as shown in panel (b). Then 
select ‘Add’, and the variables are moved to the ‘Model Components’ as shown in 
panel (c).

At the same time ‘F2’ appears in the ‘Factor Structure’ section of the window 
and you repeat the procedure, labeling F2 ‘democracy65’ and using the last four 
indicators.

Pressing ‘OK’ moves you to the next step in the process – see panel (d). This gives 
you the possibility to include causal paths between factors, i.e. to build a general struc-
tural equation model like the ones treated in the next chapter. As such a connection is 
irrelevant in this case, just press ‘OK’ to go the third and last step.

The window in panel (e) appears. Select ‘All’ and when you click ‘OK’ the window 
in Figure 4 will appear – and you have finished your programming.
As you can see, the drawing in Figure 4 differs from the one in Figure 2, but feel free 
to experiment on your own with modifications to the drawing.

On the screen the arrows connecting the first indicator to its factor are red, signaling 
that the regression coefficient is fixed at 1.00 by default.

There is, however, a hidden problem here. You will remember that EQS allows only 
eight characters in labels, whereas ‘Diagrammer’ does not have such a restriction. This 
means that when you try to run the program shown in Figure 4, EQS will cut off all 
letters but the first eight, and you will receive an error message that F1 and F2 have the 
same label, so you have to rename the two factors before you run the program (e.g. call 
them dem60 and dem65 as in Table 2).

Figure 3 Example 1: the three steps in the ‘Diagrammer/Factor Model
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Figure 4 Example 1: the final model

3 Item Selection and Scale Construction

Very often confirmatory factor analysis will give a more differentiated picture of a 
scale’s characteristics than traditional item analysis or exploratory factor analysis. 

In Example 2.1 an item analysis in SPSS reduced the scale by three items and increased 
Cronbach’s α from 0.831 to 0.866. In Example 3.3 we reached the same conclusion using 
principal components analysis.

These are the two classical techniques for item analysis, but they are not without 
drawbacks:

1. A large Cronbach’s α and/or large item–rest correlations are no guarantee of 
unidimensionality.

2. In component analysis (and exploratory factor analysis) every manifest variable 
is connected to every latent variable, whereas in the ideal scale, every manifest 
variable is connected to only one factor. This blurs the picture (cf. Figure 1). 

3. In both cases the possibilities for statistical testing are limited. 

Example 2
Constructing a scale to measure ‘style of processing

Childers, Houston, and Heckler (1985) constructed a summated scale for measuring 
‘style of processing’ (SOP), i.e. a person’s preference to engage in a verbal and/or 
visual modality of processing information about his or her environment.
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You met this scale in Example 1.3.
The SOP scale is a 22-item, four-point scale, of which 11 items are assumed to 

reflect a verbal processing style and 11 a visual processing style. Childers et al. pro-
posed the two sub-scales to be used either separately or in combination as one 
scale – although they preferred using the combined scale.

The items are shown in Table 5. 
The scale was used by Sørensen (2001) in a project on consumer behavior, the 

respondents being 88 randomly selected Danish housewives. The scale used was a 
seven-point scale and not a four-point scale like the original one. You can find 
Sørensen’s data on the companion website.

Table 5 Example 2: SOP scale

 1. I enjoy work that requires the use of words.

 2. There are some special times in my life that I like to relive by mentally ‘picturing 
just how everything looked.*

 3. I can never seem to find the right word when I need it.*

 4. I do a lot of reading.

 5. When I’m trying to learn something new, I’d rather watch a demonstration than 
read how to do it.*

 6. I think I often use words in the wrong way.*

 7. I enjoy learning new words.

 8. I like to picture how I could fix up my apartment or a room if I could buy anything 
I wanted.*

 9. I often make written notes to myself.

10. I like to daydream.*

11. I generally prefer to use a diagram rather than a written set of instructions.*

12. I like to ‘doodle’.*

13. I find it helps to think in terms of mental pictures when doing many things.*

14. After I meet someone for the first time, I can usually remember what they look like, 
but not much about them.*

15. I like to think in synonyms of words.

16. When I have forgotten something I frequently try to form a mental ‘picture’ to 
remember it.*

17. I like learning new words.

18. I prefer to read instructions about how to do something rather than have someone 
show me.

19. I prefer activities that don’t require a lot of reading.*

20. I seldom daydream.

21. I spend very little time trying to increase my vocabulary.*

22. My thinking often consists of mental ‘pictures’ or images.*

Notes: *Denotes items that are reverse scored. Items 1, 3, 4, 6, 7, 9, 15, 17, 18, 19, and 21 
compose the verbal component. Items 2, 5, 8, 10 through 14, 16, 20, and 22 compose the 
visual component.
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Cronbach’s α was 0.76 for the verbal sub-scale and 0.71 for the visual sub-scale, 
while for the combined scale it was 0.74. In their original paper Childers et al. stated 
the same α to be 0.81, 0.86 and 0.88 respectively. In most circumstances, values of α of 
this size will lead to acceptance of the scales as reliable and unidimensional.

E1 V1

E3 V3

E4 V4

E6 V6

E7 V7

E9 V9
Verbal

processing

E15 V15

E17 V17

E18 V18

E19 V19

E21 V21

E2V2

E5V5

E8V8

E10V10

E11V11

E12V12
Visual

processing

E13V13

E14V14

E16V16

E20V20

E22V22

Figure 5 Example 2: model of Childers et al.’s SOP scale

Here I will use Sørensen’s data in order to evaluate the scale; the measurement 
model is shown in Figure 5.

In the program shown in Table 6, you will meet one new paragraph:

/LMTEST

PROCESS=SIMULTANEOUS;

SET=PEE,GVF;

This deserves a few remarks, but you will have to wait till I comment on the output in 
Table 8. 
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Table 6 Example 2: program for first run

/TITLE
  Example 7.2. First run. Data from Sørensen (2001) 
/SPECIFICATIONS
  DATA=’C:\Users\Sony\Desktop\EQS bog\EQS Chap 7\SOPX.ESS’;
  VARIABLES=22; CASES=88; 
  METHOD=GLS; ANALYSIS=COVARIANCE; MATRIX=COVARIANCE; 
/LABELS
  F1=VERBAL PROCESSING; F2=VISUAL PROCESSING;
/EQUATIONS
  V1 = *F1 + E1;   V3 = *F1 + E3;   V4 = *F1 + E4;   V6 = *F1 + E6; 
  V7 = *F1 + E7;   V9 = *F1 + E9;  V15 = *F1 + E15; V17 = *F1 + E17; 
 V18 = *F1 + E18; V19 = *F1 + E19; V21 = *F1 + E21; 

  V2 = *F2 + E2;   V5 = *F2 + E5;   V8 = *F2 + E8;  V10 = *F2 + E10;
 V11 = *F2 + E11; V12 = *F2 + E12; V13 = *F2 + E13; V14 = *F2 + E14;
 V16 = *F2 + E16; V20 = *F2 + E20; 
 V22 = *F2 + E22; 
/VARIANCES
  F1 = 1;
  F2 = 1;
  E1 TO E22 = *; 
/COVARIANCES
  F2,F1   = *;
/LM TEST
  PROCESS=SIMULTANEOUS;
  SET=PEE, GVF;
/PRINT
  FIT=ALL;
  TABLE=COMPACT;
/END

Table 7 Example 2: fit indices for first run

CHI-SQUARE =      242.239 BASED ON     208 DEGREES OF FREEDOM
  PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS      0.05189

  FIT INDICES
  -----------
  BENTLER-BONETT     NORMED FIT INDEX  =     0.203
  BENTLER-BONETT NON-NORMED FIT INDEX  =     0.479
  COMPARATIVE FIT INDEX (CFI)         =     0.531
  BOLLEN’S          (IFI) FIT INDEX   =     0.643
  MCDONALD’S        (MFI) FIT INDEX   =     0.823
  JORESKOG-SORBOM’S  GFI  FIT INDEX    =     0.747
  JORESKOG-SORBOM’S AGFI  FIT INDEX    =     0.692
  ROOT MEAN-SQUARE RESIDUAL (RMR)      =     0.899
  STANDARDIZED RMR                    =     0.230
  ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA)    =     0.043
  90% CONFIDENCE INTERVAL OF RMSEA  (       0.000,         0.065)

But, first, let us first take a look at the fit measures in Table 7.
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A chi-square of 242.239 with 208 degrees of freedom giving a P-value of 0.052 is a 
little on the low side. What is more serious is that the fit indices are not quite satisfac-
tory: the IFI and CFI indices below 0.80 should be taken seriously, so it is time to look 
at freeing parameters. 

In the previous example you met the χ2-difference test which was used to test if two 
models, one of which was nested under the other, were statistically different as far as 
fit was concerned.

You could of course use that same test here. For every fixed parameter (in this case 
parameters fixed at zero) – or groups of parameters – you would consider for ‘unfixing’, 
you could add them to the model and test whether the new model was significantly 
better than the old one.

That, however, would be a very tedious job, with a lot of model building and a lot 
of testing.

Fortunately EQS offers a way to do all the tests in one go without having to construct 
the various models you want to consider.

If you consider adding free parameters, use the Lagrange multiplier (LM) test, and 
if you think of fixing free parameters (not relevant in this case) use the Wald (W) test. 
The χ2-difference, LM and W tests are asymptotically equivalent, i.e. in large samples 
they will give the same results. 

The command

/LMTEST

PROCESS=SIMULTANEOUS;

orders EQS to do an LM test roughly equivalent to a series of χ2-difference tests, one 
for each fixed parameter, starting with the one that is expected to contribute most to a 
better fit, and then proceeding with the second most significant etc.

If I had not inserted the command

SET=PEE,GVF;

the output would have printed out a list of every fixed parameter in the model – and that 
would have been a very long list indeed. Remember that all parameters that are not in 
the model are considered fixed (at zero) and, for most of them, including them in the 
model would make no sense, e.g. introducing causal paths between manifest variables. 
The SET command restricts the number of parameters that are considered for inclusion 
in the model.

To understand the meaning of this command, you must understand that EQS groups 
parameters in three groups (or matrices):

1. A group (matrix) called PHI and abbreviated P consists of covariances between 
independent variables.

2. A group called GAMMA and abbreviated G consists of regression coefficients 
involving both dependent and independent variables.

3. A group called BETA and abbreviated B that contains regression coefficients 
involving only dependent variables.
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Dependent and independent are used here in the EQS sense. In the present case, only 
the modifications in the connections between V and F variables (i.e. VF parameters) 
and correlations between the Es (i.e. EE parameters) are worth considering.

The command SET = PEE, GVF tells EQS that the parameters to be considered are EE 
variables (found in the P matrix) and VF parameters (found in the G matrix).

If you use interactive programming, you will at one point choose ‘Build EQS/
LMTEST’ (see Figure 6a) to activate the window in panel (b), where you can see the 
three parameter matrices and their sub-matrices. When this window opens, several of 
the check boxes are checked by default, but just uncheck them and instead place your 
check marks as shown in the panel (c).

(a) (b)

(c)

Figure 6 Programming ‘LMTEST’
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From panel (b), you will guess that 

PROCESS=SIMULTANEOUS;

is the default, so I could just as well have omitted it. The two alternatives

PROCESS=SEQUENTIAL;

and

PROCESS=SEPARATE;

give you the possibility to specify the sequence of the tests – for example, to specify a 
sequence in accordance with an a priori theory. You will have to consult the manual 
(Bentler, 2006) for further information. 

Table 8 Example 2: output first run – Lagrange multiplier test

  LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS)

  ORDERED UNIVARIATE TEST STATISTICS:             
                                     HANCOCK          STANDAR-         
                         CHI-            208 DF   PARAM.      DIZED       PREDICTED
 NO  CODE   PARAMETER    SQUARE  PROB.   PROB.   CHANGE    CHANGE   RMSEA  CFI
 --  ----   ---------         ------  -----   -----   ------     -------  -----------
   1  2  6   E13,E11   9.146   0.002   1.000    0.820    0.580   0.038 0.642
   2  2  6     E8,E6   7.163   0.007   1.000   -0.371   -0.521   0.039 0.615
   3  2  6     E8,E3   6.908   0.009   1.000    0.487    0.584   0.040 0.612
   4  2  6     E8,E7   6.884   0.009   1.000   -0.255   -0.572   0.040 0.611
   5  2  6     E3,E2   6.884   0.009   1.000   -0.658   -0.578   0.040 0.611
   6  2  6    E15,E5   5.972   0.015   1.000   -0.688   -0.393   0.040 0.599
   7  2  6    E21,E6   5.673   0.017   1.000    0.454    0.434   0.041 0.595
   8  2  6     E6,E3   5.554   0.018   1.000    0.517    0.635   0.041 0.593
   9  2  6     E9,E4   5.530   0.019   1.000   -0.885   -0.370   0.041 0.593
  10  2  6    E18,E5   5.382   0.020   1.000    0.670    0.565   0.041 0.591
   -  -  -      -         -          -         -          -           -         -     -
   -  -  -      -         -          -         -          -           -         -     -
   -  -  -      -         -          -         -          -           -         -     -
   -  -  -      -         -          -         -          -           -         -     -
   -  -  -      -         -          -         -          -           -         -     -
 253  2  6    E16,E2   0.000    0.993   1.000   -0.002   -0.001   0.044 0.517
 254  2  0     F2,F2   0.000    1.000   1.000    0.000    0.000   0.044 0.517
 255  2  0     F1,F1   0.000    1.000   1.000    0.000    0.000   0.044 0.517

MULTIVARIATE LAGRANGE MULTIPLIER TEST BY SIMULTANEOUS PROCESS IN STAGE 1

  PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS STAGE ARE:
  PEE GVF

         CUMULATIVE MULTIVARIATE STATISTICS         UNIVARIATE INCREMENT
      ----------------------------------        ------------------------------
                                                        HANCOCK’S           
                          CHI-                CHI-          SEQUENTIAL      PREDICTED
 STEP   PARAMETER      SQUARE  D.F. PROB.  SQUARE PROB.   D.F. PROB.   RMSEA  CFI
 ----   ----------    ------   ---- -----  ------ -----   ---- -----   -----------
        1         E13,E11       9.146        1 0.002      9.146 0.002    208 1.000   0.038 0.642
       2         E8,E6       16.389         2 0.000      7.242 0.007    207 1.000   0.033 0.728
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       3          E8,E7       23.177        3 0.000      6.788 0.009    206 1.000   0.028 0.807
       4         E12,E8      28.917         4 0.000      5.740 0.017    205 1.000   0.023 0.872
       5         E19,E10     34.706         5 0.000      5.789 0.016    204 1.000   0.016 0.938
       6          E9,E4      40.215     6 0.000      5.509 0.019    203 1.000   0.001 1.000
       7         E3,E2      45.211     7 0.000      4.996 0.025    202 1.000  99.999 1.000
       8         E21,E6      50.094     8 0.000      4.883 0.027    201 1.000  99.999 1.000
       9          E15,E5      55.044     9 0.000      4.950 0.026    200 1.000  99.999 1.000
       10          E2,E1      59.898    10 0.000      4.854 0.028    199 1.000  99.999 1.000
   11          E6,E3      64.340    11 0.000     4.443 0.035    198 1.000  99.999 1.000
   12         E19,E6      68.959    12 0.000     4.619 0.032    197 1.000  99.999 1.000

 *** NOTE *** IF PREDICTED RMSEA COULD NOT BE CALCULATED, 99.999 IS PRINTED.
             IF PREDICTED  CFI  COULD NOT BE CALCULATED,  9.999 IS PRINTED.

You do not need to bother with the first two columns in Table 8 as they are only techni-
cal codes. In the third column you will find a list of fixed parameters (in this case they 
are all fixed at zero) sorted according to the size of increase in the model fit they would 
cause if the were freely estimated. The fourth and fifth columns show the chi-square 
and P-value of a test of the null hypothesis that the model fit would not increase if the 
parameter in question were freely estimated. 

As all the P-values in the first ten cases are less than 0.05 you would reject this null 
hypothesis in (at least) the first ten cases based on traditional criteria, but the problem 
with such a decision is that the various tests are not independent. They do not tell you 
what would happen if more than one parameter were set free simultaneously.

The next column shows the Hancock P-values, which are some sort of Bonferroni 
probabilities analogous to what you have probably met in your introductory statistics 
course. As you will guess from the P-values of 1.000, this criterion is much too 
conservative, and I will not recommend basing any conclusions on it.

The next two columns show the expected change in parameter values if the param-
eter in case were set free. At present these parameters are not in the model, i.e. they 
are fixed at zero. Consequently the expected parameter changes are the expected 
parameter values.

Because of the interdependencies among the marginal LM tests, it is safer to base 
decisions on the multivariate tests in the second panel in the table.

The first line shows the consequences of freeing the parameter (E13,E11), the next 
the consequences of simultaneously freeing (E13,E11) and (E8,E6), the third the 
consequences of freeing (E13,E11), (E8,E6) and (E8,E7), etc.

In the third, fourth and fifth columns you will see the chi-square, df and P for 
simultaneously freeing the parameters, mentioned in the line and the lines above. The 
next two columns show marginal tests of freeing a parameter if all parameters in 
the lines above have also been freed. 

It is tempting to free parameters, starting from the top until the marginal test 
becomes insignificant, but do not yield to the temptation.

As I advocated earlier, it is usually a good idea to base suggestions for modifications 
to a model on substantive rather than purely empirical evidence, so let us take a look at 
the items in Table 5. 

A few of them catch the eye:

1. Items 10 and 20 say nearly the same thing and serve as mutual controls on the 
consistency of the answers, so they should correlate more than by their common 
cause: ‘visual’.
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2. The same can be said of items 7 and 17.
3. Items 3 and 6 are also very close. If you cannot find a special word when you 

need it and therefore use another word, I think you will find that other word less 
suitable in the situation.

At least you should consider introducing these correlations in the model.

4. You should also expect correlations among items 5, 11 and 18. Whereas most of 
the other items only mention one of the processing styles, these three explicitly 
mention both, and compare them.

  According to their wording these three items could be placed in both sub-
scales. You should therefore consider letting them load on both factors.

A program along these lines is given in Table 9 and the output in Table 10. 
If you compare Table 10 with Table 7, you will observe that I have omitted the lines 

with E variables to save space. This will be done in all output tables from now on.

Table 9 Example 2: program for the second run

/TITLE
  Example 7.2. Second run. Data from Sørensen (2001) 
/SPECIFICATIONS
  DATA=’C:\Users\Sony\Desktop\EQS bog\EQS Chap 7\SOPX.ESS’;
  VARIABLES=22; CASES=88; 
  METHOD=GLS; ANALYSIS=COVARIANCE; MATRIX=COVARIANCE; 
/LABELS
  F1=VERBAL PROCESSING; F2=VISUAL PROCESSING;
/EQUATIONS
  V1  =  *F1 + E1;   V3 = *F1 + E3;   V4 = *F1 + E4;   V6 = *F1 + E6;
  V7  =  *F1 + E7;   V9 = *F1 + E9;  V15 = *F1 + E15; V17 = *F1 + E17;
  V18 =  *F1 + *F2 + E18;            V19 = *F1 + E19; V21 = *F1 + E21;

  V2  =  *F2 + E2;   V5 = *F1 + *F2 + E5;             V8 = *F2 + E8;
  V10 =  *F2 + E10; V11 =  *F1 + *F2 + E11;           V12 = *F2 + E12; 
  V13 =  *F2 + E13; V14 = *F2 + E14; V16 = *F2 + E16; V20 = *F2 + E20; 
  V22 =  *F2 + E22; 
/VARIANCES
  F1 = 1;
  F2 = 1;
  E1 TO E22 = *; 
/COVARIANCES
  F2,F1   = *;
  E10,E20 = *;
  E7,E17  = *;
  E3,E6   = *;
/LM TEST;
  PROCESS=SIMULTANEOUS;
  SET=PEE, GVF;
/PRINT
  FIT=ALL;
  TABLE=COMPACT;
/END
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Table 10 Example 2: selected output (second run) (E lines removed to save space)

CHI-SQUARE =      216.290 BASED ON     202 DEGREES OF FREEDOM
  PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS       .23235

  PARAMETER ESTIMATES (B) WITH STANDARD ERRORS AND TEST STATISTICS (Z)
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

                                                       R- 
DEP.VAR.      PREDICTOR   B     BETA   S.E.   Z      SQUARED 
------------------------------------------------------------
V1   (   V1    )                                         .276
           F1 (VERBALPR)   .543*    .526    .177  3.075@
V2   (   V2    )                                         .367
           F2 (VISUALPR)    .807*   .606    .198  4.067@
V3   (   V3    )                                         .286
           F1 (VERBALPR)    .760*   .535    .204  3.735@
V4   (   V4    )                                         .045
           F1 (VERBALPR)    .294*   .212    .219  1.345 
V5   (   V5    )                                         .598 (1)
           F1 (VERBALPR)   1.731*   .901   .349  4.956@
           F2 (VISUALPR)    -.417*   -.217    .373 -1.117 
V6   (   V6    )                                         .245
           F1 (VERBALPR)    .559*   .495   .169  3.299@
V7   (   V7    )                                         .097
           F1 (VERBALPR)    .256*   .311    .137  1.863 
V8   (   V8    )                                         .551
           F2 (VISUALPR)    .874*   .742   .161  5.436@
V9   (  V9    )                                         .173
           F1 (VERBALPR)    .779*   .416   .267  2.920@
V10   (  V10   )                                      .135
           F2 (VISUALPR)    .561*   .367    .211  2.656@
V11   (   V11   )                                      .386 (1)
           F1 (VERBALPR) 1.243*   .691   .317  3.915@
           F2 (VISUALPR) -.204*  -.113   .338  -.602 
V12   (   V12   )                                      .036
           F2 (VISUALPR)    .323*   .189   .244  1.324 
V13   (   V13   )                                      .630
           F2 (VISUALPR) 1.280*   .794   .218  5.884@
V14   (   V14   )                                      .137
           F2 (VISUALPR)  .698*   .370    .233  3.000@
V15   (   V15   )                                      .055 (2)
           F1 (VERBALPR)    .341*   .235    .236  1.442 
V16   (  V16   )                                      .204
           F2 (VISUALPR)    .680*   .452   .213  3.185@
V17   (   V17   )                                      .079 (2)
           F1 (VERBALPR)    .227*   .282  .136  1.665 
V18  (   V18   )                                      .722 (1)
           F1 (VERBALPR) 1.833* 1.124  .377  4.861@
           F2 (VISUALPR) -.977* -.599    .413    -2.363@
V19   (   V19   )                                      .536
           F1 (VERBALPR) 1.264*   .732   .203  6.218@
V20  (   V20   )                                      .173
           F2 (VISUALPR)    .647*   .416    .229  2.827@

(Continued)
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V21  (  V21   )                                      .010 (2)
           F1 (VERBALPR)    .125*  .099    .210   .596 
V22  (  V22   )                                      .591
           F2 (VISUALPR) 1.284*  .769    .198  6.486@

  COVARIANCES AMONG INDEPENDENT VARIABLES
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

                               COVA.  S.E.    Z      CORR.
 -------------------------------------------------------------
   F1,F2    (VERBALPR,VISUALPR)  .669*   .126   5.308@     .669 (3)
   E3,E6    (  V3     ,  V6     )  .460*   .213   2.158@     .391
   E7,E17   (  V7      ,  V17    )  .353*   .106   3.330@     .585
  E10,E20    (  V10     ,  V20    ) 1.425*   .359   3.965@     .708

Table 10 (Continued)

With a chi-square of 216.290 with 202 degrees of freedom giving a P-value of 0.233, 
the model seems satisfactory, and a look at the fit indices confirms this:

  CFI      SRMR      RMSEA      LO 90      HI 90

0.804      0.197        0.029          0.000        0.055

Although CFI is not quite up to standard (> 0.90–0.95), it is considerably larger than 
in the first run, and the other indices are all fine.

By studying the parameters of the model, you can observe the following:

1. Item 18 has significant loadings on both factors whereas items 5 and 11, which 
were supposed to measure visual processing style, actually both have signifi-
cant loadings on ‘verbal’ and non-significant loadings on ‘visual’. However, all 
coefficients have the expected signs.

2. The following regression coefficients are non-significant (one-sided test, α = 0.05): 
15, 17, 21, 5, 11 and 12. 

3. All the covariances are significant, and the correlation between the two fac-
tors is 0.669 (as the two factors are standardized, the correlation equals the 
covariance).

What, then, can we conclude?

1. The SOP scale has two dimensions as suggested by Childers et al. – in fact it has 
more than two dimensions showing up as highly significant correlations between 
items in the same main dimension.

2. Some of the items have very little loading on the factor they are supposed to 
measure. A reformulation or exclusion should be considered.

3. Although the two sub-scales correlate, there are in fact two dimensions, and 
treating them as one scale could – depending on the research question – cause 
problems, because it assumes that the two ways of processing are alternatives.

4. In fact it has long been known that verbal and visual processes take place in 
functionally separate cognitive systems and thus are not alternatives (Paivio, 1971).
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From this last point you will learn that it is of the utmost importance to spend a good 
deal of time making clear the nature of the concepts you intend to measure. This 
preliminary step is all too often not given the necessary care.

Now, in light of point 4 above, you may wonder: ‘Why do the two factors correlate 
at all?’

A possible explanation is that the correlation is caused by item 18 loading on both 
factors, and that the correlation would disappear if this item (together with items 5 
and 11) were removed.

This line of reasoning immediately gives birth to another question: the SOP scale 
is intended to measure preference, but do all items really measure preference? It 
seems to me that items 3, 6 and 14 measure ability rather than preference. Of course 
preference and ability must be expected to correlate, because we generally prefer 
activities where we feel we have the largest potential – but is ability not exogenous, 
and should the arrows connecting items 3, 6 and 14 to their latent variables not point 
in the opposite direction?

These two last points have taught us an important lesson: that serious thinking about 
the subject area is much preferred to thoughtless dependence on computer output.

If we delete items 5, 11 and 18 together with the three ‘ability questions’ we get the 
output in Table 11.

Table 11 Example 2: output from third run

CHI-SQUARE =      108.183 BASED ON     101 DEGREES OF FREEDOM
  PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS      0.29440

PARAMETER ESTIMATES (B) WITH STANDARD ERRORS AND TEST STATISTICS (Z)
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

                                                       R-
 DEP.VAR.       PREDICTOR  B     BETA    S.E.   Z     SQUARED
 ---------------------------------------------------------------
V1  (  V1    )                                         .552
           F1  (VERBALPR) 1.030*   .743  .177  5.812@
V2  (  V2    )                                         .171
           F2  (VISUALPR)  .610*   .413  .209  2.923@
V4  (  V4    )                                         .219
           F1  (VERBALPR)  .787*   .468  .232  3.397@
V7  (  V7    )                                         .595
           F1  (VERBALPR)  .851*   .771  .141  6.027@
V8  (  V8    )                                         .219
           F2  (VISUALPR)  .497*   .468  .164  3.028@
V9  (  V9    )                                         .039     (3)
           F1  (VERBALPR)  .392*   .198  .293  1.337 
V10 (  V10   )                                         .079
           F2  (VISUALPR)  .441*   .281  .229  1.922 
V12 (  V12   )                                         .019     (3)
           F2  (VISUALPR)  .244*   .137  .255   .958 
V13 (  V13   )                                         .655
           F2  (VISUALPR) 1.501*   .809  .221  6.788@
V15 (  V15   )                                         .123
           F1  (VERBALPR)  .577*   .350  .242  2.383@

(Continued)
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V16 (  V16   )                                         .225
           F2  (VISUALPR)  .800*   .474  .219  3.660@
V17 (  V17   )                                         .493
           F1  (VERBALPR)  .770*   .702  .142  5.422@
V19 (  V19   )                                         .132
           F1  (VERBALPR)  .564*   .364  .231  2.443@
V20 (  V20   )                                         .224
           F2  (VISUALPR)  .926*   .473  .252  3.674@
V21 (  V21   )                                         .223
           F1  (VERBALPR)  .744*   .473  .215  3.464@
V22 (  V22   )                                         .559
           F2  (VISUALPR) 1.259*   .748  .198  6.367@

  COVARIANCES AMONG INDEPENDENT VARIABLES
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

                                 COVA.  S.E.   Z       CORR.
 --------------------------------------------------------------
   F1,F2   (VERBALPR,VISUALPR) -.064*    .163   -.394    -.064     (1)
   E7,E17  (  V7    ,  V17  )  .278*    .143   1.939     .506     (2)
  E10,E20  (  V10   ,  V20  ) 1.997*    .423   4.722@    .767     (2)

The fit of this model is not too bad:

  CFI      SRMS      RMSEA      LO 90      HI 90

0.893      0.171       0.029          0.000        0.064

Of the three models, the third one is the best fitting. However, the most striking support 
for this model is found using the decision theoretic measures:

Model 1 Model 2 Model 3

AIC −174 −188 − 94
CAIC −897 − 890 − 445

Looking at the parameter estimates, we can see the following:

1. The correlation between the two factors disappeared, as it should according to 
theory.

2. The other two correlations are significant (remember: one-sided tests!).
3. Items 9 and 12 are not significant.

The purist would remove items 7 and 20 in order to get rid of the remaining correlations. 
However, as these correlations would probably be (nearly) constant and repeat them-
selves in future uses of the scale, they would not reduce its reliability. You could also 
consider removing or rephrasing the non-significant items.

Table 11 (Continued)
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If your research demands that you compare your study with others that used the SOP 
scale, it will perhaps be necessary for you to use the items as a summated scale (or 
scales). If that is not a demand, I would prefer to use the items un-summated. You could 
consider parceling if you need to keep down the number of parameters.

Example 1 (continued)
Democracy in developing countries

In the previous example you were introduced to the LM test. Now, I revert to Example 
1 to show you how this test works in connection with constrained parameters.

If you add the paragraph

/LM TEST;

PROCESS=SIMULTANEOUS;

to the program for the second run, the output will include the lines in Table 12, which 
clearly shows that none of the restrictions are unwarranted. You should compare the 
content of this table with the result of the χ2-difference test used earlier.

The last part of the section, testing the addition of parameters, is of course irrelevant 
in this case.

Table 12 Example 1: using the LM test to test constraints

LAGRANGE MULTIPLIER TEST (FOR RELEASING CONSTRAINTS)

  CONSTRAINTS TO BE RELEASED ARE:                     
          CONSTR:    1   (V2,F1)-(V6,F2)=0;
          CONSTR:    2   (V3,F1)-(V7,F2)=0;
          CONSTR:    3   (V4,F1)-(V8,F2)=0;

           UNIVARIATE TEST STATISTICS:
                                               PARAM.
   NO    CONSTRAINT    CHI-SQUARE   PROBABILITY   CHANGE
   --    -----------   ----------   -----------   ------
    1    CONSTR:    1      0.361       0.548      0.095
    2    CONSTR:    2      2.402       0.121     -0.272
    3    CONSTR:    3      0.004       0.950      0.009

         CUMULATIVE MULTIVARIATE STATISTICS              UNIVARIATE INCREMENT
         ----------------------------------              --------------------

  STEP  PARAMETER   CHI-SQUARE  D.F.  PROBABILITY       CHI-SQUARE  PROBABILITY
  ---- -----------  ----------  ----  -----------       ----------  -----------
    1  CONSTR:    2     2.402     1      0.121             2.402       0.121
    2  CONSTR:    1     2.550     2      0.279             0.148       0.701
    3  CONSTR:    3     2.577     3      0.462             0.027       0.869

  LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS)

ORDERED UNIVARIATE TEST STATISTICS:             

(Continued)
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                                          HANCOCK          STANDAR-         
                             CHI-          16 DF   PARAM.   DIZED    
PREDICTED
   NO  CODE   PARAMETER   SQUARE  PROB.  PROB.  CHANGE   CHANGE  RMSEA    CFI
   --  ----   ---------   ------  -----  -----  ------   ------  -------------
    1  2 12       V3,F2   2.982   0.084  1.000  -0.305  -0.041  99.999  1.000
    2  2 12       V7,F1   1.943   0.163  1.000   0.235   0.034  99.999  1.000
    3  2  0       V1,F1   0.523   0.469  1.000   0.095   0.017  99.999  1.000
    4  2  0       V5,F2   0.523   0.469  1.000  -0.095  -0.017  99.999  1.000
    5  2 12       V2,F2   0.508   0.476  1.000   0.113   0.014  99.999  1.000
    6  2 12       V1,F2   0.451   0.502  1.000   0.088   0.016  99.999  1.000
    7  2 12       V5,F1   0.420   0.517  1.000  -0.083  -0.014  99.999  1.000
    8  2 12       V6,F1   0.188   0.664  1.000  -0.066  -0.009  99.999  1.000
    9  2 12       V8,F1   0.024   0.877  1.000  -0.021  -0.003   0.007  1.000
   10  2 12       V4,F2   0.020   0.887  1.000   0.020   0.003   0.007  1.000

 *** NOTE *** IF PREDICTED RMSEA COULD NOT BE CALCULATED, 99.999 IS PRINTED.
             IF PREDICTED  CFI  COULD NOT BE CALCULATED,  9.999 IS PRINTED.

 ***** NONE OF THE UNIVARIATE LAGRANGE MULTIPLIERS IS SIGNIFICANT,
 ***** THE MULTIVARIATE TEST PROCEDURE WILL NOT BE EXECUTED.

4 Reliability and Validity

The classical methods of judging the reliability and validity of a measuring instrument 
all have their shortcomings since none of them actually take the latent variables explicitly 
into account as part of the measurement model.

Therefore the theoretical definitions of reliability and validity as coefficients of 
determination when regressing the measurement on the theoretical constructs cannot be 
used as a basis for calculations. However, using SEM as the basis for judging reliability 
and validity should open up this possibility.

Reliability
In Equation (2.3a) the reliability coefficient was defined as the coefficient of determina-
tion when a measurement (an indicator, a manifest variable) is regressed on its latent 
variable(s). Using SEM, you can use this definition to calculate reliability coefficients.

In the various outputs in this chapter you will find these squared multiple correla-
tions in the last column of the estimated regression coefficients.

It comes as no surprise that the two items with the smallest reliabilities are the ones 
that have non-significant regression coefficients. However, a few of the highly signifi-
cant items have rather small reliabilities and should be discarded or reformulated.

Anyway, if apart from measuring SOP you also want to measure several other con-
cepts in order to construct a ‘causal’ model, 16 (not to mention 22!) items are quite a 
lot. If the other latent variables in your model require a similar number of items your 
questionnaire will easily grow to a length that could cause messy data, because respon-
dents might refuse to participate, not answer all the questions, or fill out the 
questionnaire more or less at random in order to get the job done as quickly as possible.

In their efforts to obtain perfection scale, constructors very often end up with scales 
that are too long for practical use. The SOP scale is perhaps an example of this.

Table 12 (Continued)
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This way of calculating a reliability coefficient has at least five advantages:

1. It is based on the very definition of reliability.
2. It is possible to calculate the reliability of every single item and not just a sum 

of them.
3. It can be used whether the measurements are parallel, tau-equivalent or congeneric.
4. It does not assume errors to be uncorrelated across items.
5. It can be used when an item is an indicator for more than just one latent variable.

If you have only cross-sectional data it is in general not possible to estimate the specific 
variance, which is then absorbed into the error variance. In this case you must either 
assume that the specific variance is zero or consider the estimated reliabilities to be 
lower bounds.

Reliability in EQS
You can order EQS to print a wide assortment of reliability coefficients, all building on 
different assumptions, but you must be careful to use only coefficients that make sense 
in the actual case – remember from Example 6.2 that EQS printed Cronbach’s α 
although it had absolutely no meaning in the context.

Before we look at the complications involved in measuring reliability in a multi-
factor model such as the SOP scale, let us revert to a simpler one-factor example.

Example 3
Reliability of a one-factor scale

As mentioned several times in Chapter 2, calculation of Cronbach’s α presupposes that 
the scale in question is unidimensional. So let us open the data set ‘Fish1’ (used in 
Example 2.1) as an EQS data file and construct the program in Table 13.

The output is given in Table 14, on which I will give the following comments:

Table 13 Example 3: program for EQS calculation of reliability for a one-factor model

/TITLE
  Reliability Analysis using the dataset ‘Fish1’
/SPECIFICATIONS
  DATA=’c:\users\sony\documents\fish1.ess’;
VARIABLES=17; CASES=89; 
  METHOD=ML; ANALYSIS=COVARIANCE; MATRIX=RAW; 
/LABELS
  V1=FORB35;  V2=FORB36;  V3=FORB37;  V4=FORB38;  V5=FORB39; 
  V6=FORB40;  V7=FORB41;  V8=FORB42;  V9=TILB43;  V10=TILB44; 
  V11=TILB45; V12=TILB46; V13=TILB47; V14=TILB48; V15=TILB49; 
  V16=TILB50; V17=FORB36R; 
/RELIABILITY
  SCALE=V1,V3,V4,V5,V6,V7,V8,V17;
/PRINT
  TABLE=EQUATION;
/END
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Table 14 Example 3: EQS calculation of reliability for a one-factor model: output

RELIABILITY COEFFICIENTS
------------------------
CRONBACH’S ALPHA                    =     0.831                  (1)
RELIABILITY COEFFICIENT RHO          =     0.847                  (2)
MAXIMAL WEIGHTED INTERNAL CONSISTENCY RELIABILITY  =     0.886     (3)

MAXIMAL RELIABILITY CAN BE OBTAINED BY WEIGHTING THE VARIABLES AS FOLLOWS:
FORB35    FORB37    FORB38    FORB39    FORB40    FORB41    FORB42  
 0.2146   0.0954    0.0793    0.3590    0.2055    0.0523    0.1812
FORB36R 
 0.4440

STANDARDIZED FACTOR LOADINGS FOR THE FACTOR THAT GENERATES          (4)
MAXIMAL RELIABILITY FOR THE UNIT-WEIGHT COMPOSITE

BASED ON THE MODEL (RHO):
FORB35    FORB37    FORB38    FORB39    FORB40    FORB41    FORB42  
 0.7344   0.4561    0.4001    0.7950    0.6833    0.2390    0.6936
FORB36R 
 0.8490

1. First in the output is Cronbach’s α (which of course has exactly the same value 
as in Table 2.2). As you will remember, classical test theory does not include 
latent variables, and as calculation of α uses only manifest variables, it does not 
build the theoretical definition of reliability as formulated in Equation (2.3a).

  Also remember that α builds on the restrictive assumption that the items are at 
least equivalent.

2. Next comes Raykov’s ρ, which builds on the theoretical definition of reliability 
and is more general than α as it only demands the measurements to be conge-
neric; ρ is in most cases larger than α. Furthermore, ρ builds on the actual 
measurement model, which could have more than one factor. However, when 
you use the /RELIABILITY paragraph a one-factor model is assumed. ρ main-
tains the equal weighting of items. 

  Raykov (1997) presents a fine discussion and a comparison of the two reliability 
coefficients and even shows an EQS program for calculating ρ in the one-factor case. 

3. The next few lines show the reliability (ρ) that could be obtained if the items 
were optimally weighted and the optimal weights. As you will observe, the three 
items with the lowest weights are exactly the same as those that were discarded 
in our traditional item analyses in Examples 2.1 and 3.3.

4. Last in the output are the standardized factor loadings (regression coefficients) 
for a model with equal-weighted items.

Example 4 (continued from Example 2)
Reliability of a multi-factor scale

If you include the statement

RELIABILITY = YES

07_Blunch_Ch-07.indd   178 9/22/2015   2:46:28 PM



 7.4 Reliability and Validity 179

Table 15 Example 2: Reliability coefficients in a many-factor model

RELIABILITY COEFFICIENTS
  ------------------------
  CRONBACH’S ALPHA                                         =  0.745  (1)
  COEFFICIENT ALPHA FOR AN OPTIMAL SHORT SCALE               =  0.862  (2)
  BASED ON THE FOLLOWING  2 VARIABLES
    V7         V17    
  RELIABILITY COEFFICIENT RHO                               =  0.540  (3)
  GREATEST LOWER BOUND RELIABILITY                          =  0.921  (4)
  LI-BENTLER CORRECTED GREATEST LOWER BOUND RELIABILITY       =  0.901 
  GLB RELIABILITY FOR AN OPTIMAL SHORT SCALE                 =  0.928  (5)
  BASED ON 19 VARIABLES, ALL EXCEPT:
    V9         V12        V14   
  BENTLER’S DIMENSION-FREE LOWER BOUND RELIABILITY            =  0.921  (6)
  LI-BENTLER CORRECTED DIMENSION-FREE LOWER BOUND RELIABILITY  =  0.901
  SHAPIRO’S LOWER BOUND RELIABILITY FOR A WEIGHTED COMPOSITE   =  0.947  (7)

  WEIGHTS THAT ACHIEVE SHAPIRO’S LOWER BOUND:
    V1        V2        V3        V4        V5        V6        V7    
   0.2679    0.0401    0.3213    0.1406    0.3282    0.2637    0.2418
    V8        V9        V10       V11       V12       V13       V14   
   0.2400    0.1928    0.0268    0.2368    0.1308    0.1459    0.1575
    V15       V16       V17       V18       V19       V20       V21   
   0.2102    0.1348    0.2427    0.2744    0.3218    0.0553    0.1430
    V22   
   0.1720

  STANDARDIZED FACTOR LOADINGS FOR THE FACTOR THAT GENERATES
  MAXIMAL RELIABILITY FOR THE UNIT-WEIGHT COMPOSITE

  BASED ON THE MODEL (RHO):
    V1        V2        V3        V4        V5        V6        V7    
   0.2651    0.4266   -0.1454    0.1065    0.0909    0.0762    0.3562
    V8        V9        V10       V11       V12      V13        V14   
   0.3425    0.0308    0.6107   -0.0265   -0.0897    0.2935    0.0940
    V15       V16       V17       V18       V19       V20       V21   
   0.1512    0.1041    0.3651    0.0234    0.0969    0.6580    0.1724
    V22   
   0.2782

  BASED ON THE GREATEST LOWER BOUND (GLB):
    V1        V2        V3        V4        V5        V6        V7    
   0.4536    0.2801    0.5299    0.3045    0.5899    0.5632    0.4042
    V8        V9        V10       V11       V12       V13       V14   
   0.4487    0.3019    0.2605    0.4932    0.2171    0.3797    0.2985
    V15       V16       V17       V18       V19       V20       V21   
   0.2630    0.3624    0.3503    0.5012    0.6250    0.2677    0.2231
    V22   
   0.4393

1. First in the list is Cronbach’s α. In this case it is irrelevant, because it builds on 
a one-factor model and in addition demands that all regression coefficients and 
all error variances are equal and that all errors are uncorrelated. This is indeed a 
very unrealistic model in most cases. The two-factor structure in this case is 
reason enough to invalidate α.

In the /PRINT paragraph in the program in Table 6, the output will include the reliability 
coefficients shown in Table 15.
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2. The next two lines, which tell us that we could obtain a maximal α using only 
the two items V7 and V17, are of course irrelevant for the same reason.

3. Next is ρ, which takes into account the two-factor structure of the model. ρ also 
assumes unit weighting of the items and, in case of correlated error terms, these 
correlations are considered to be ‘noise’.

  Perhaps this last remark deserves a few more words for clarification.
  Recall Equation (2.2b), which in a ‘rougher’ form could be formulated as follows: 

 variance of X = variance explained by model + unexplained variance        (6)

 where X is a manifest variable, and we defined the reliability as

 ρxx =
variance explained by model

variance of  X
 (7)

 In the general factor model (whether it has one or more factors), we have several 
Xs, i.e. we have a vector of Xs, and consequently a covariance matrix (the input 
covariance matrix), which is divided into an implied (or model) matrix and a 
residual (or error) matrix (cf. Chapter 1’s Equation (20)):

 ΣΣ ΣΣ ΣΣ  

= + εm
 (8)

 The reliability is calculated using a formula analogous to (7), but with covariance 
matrices substituted for variances. By considering error covariances as ‘noise’, error 
variances and error covariances are put into Σ ε , and ΣΣm

 takes everything else.
  Whereas α assumes a one-factor structure and ρ builds on the actual model (in 

this case a two-factor structure), the following reliability measure builds on a 
many-factor structure with an unspecified number of factors and they consider 
all covariances to be ‘true’ – that is, all covariances are put into Σm

.
4. Greatest lower bound reliability demands that all variances are non-negative, 

whereas Bentler’s dimension-free lower bound reliability does not. However, 
they both have an upward bias that could be serious in small samples. The two 
Li-Bentler corrections allow for this. 

5. Also shown in the output is the reliability of an optimal short GLB scale together 
with a description of which items are included in this scale.

6. Shapiro’s lower bound reliability for a weighted composite (Shapiro, 1982) is 
based on weighting the items using the weights that maximize reliability, the 
weights also being shown in the output.

7. Last in the output are standardized factor loadings that maximize the reliability 
measures ρ and GLB (both of which presuppose unit weighted scores).

Validity
Calculation of a suitable measure for the validity is more complicated.

Let us assume that we have a manifest variable V, which is an indicator of more than 
one latent variable in our model. If as our starting point we take the validity of V to be the 
extent to which V is connected to each concept, F1, F2, … it is assumed to measure, then 
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the most straightforward measures of validity are the regression coefficients (V1,F1), 
(V1,F2), … in raw or standardized form. Each of these measures has the same advantages 
and drawbacks that we know from traditional regression analysis. One advantage of the 
standardized coefficients is that they are independent of the measurement units. This is 
very important in the case of SEM, where the measurement scales of the variables and 
especially those of the latent variables are often more or less arbitrary. On the other hand, 
standardized coefficients depend on the variances in the populations, and if we wish to 
compare several groups from different populations this could be a problem.

Another way is to start with the reliability coefficient as the coefficient of determina-
tion when regressing the variable V on all variables that have a direct effect on it. This is 
of course the squared correlation coefficient as defined in the section above on reliability. 

If we want the validity coefficient to measure that part of the variance in V attribut-
able to, for example, F1, we must deduce from the squared multiple correlation 
coefficient the variation caused by all other factors influencing V.

We can then define the validity coefficient of V with regard to F1 as

 UV.F1=R2
V–R2

V(F1) (9)

where R2
v is the coefficient of determination obtained by regressing V on all variables 

that have a direct influence on V, while R2
V(F1) is the coefficient of determination 

obtained by regressing V on the same variables except F1. The symbols in (9) are taken 
from Bollen (1989), who proposed the measure, to designate unique validity variance.

Example 2 (continued)
Constructing a scale to measure ‘style of processing’

Let us estimate the unique validity variance of process18 with regard to verbal in the 
model for the second run.

We have

 UV18.verbal = R2
V18 – R2

V18(verbal) (10)

R2
V18 can be read from Table 10, and R2

V18(verbal) is obtained by regressing process18 only 
on ‘visual’:

 
U verbalV18 0 722 0 064 0 658, . . .= − =

 
(11)

As pointed out several times, the concept of validity is much more problematic both to 
define and to measure than reliability. The reader is referred to Bollen (1989) and 
Raykov (2012) for further reading. 

5 Reflexive and Formative Indicators

In a confirmatory factor model (and also in an exploratory factor model), the arrows 
point from the latent variable to its manifest indicators. As a consequence, indicators of 
the same latent variable must correlate (cf. Figure 9a).
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It is a very common mistake among newcomers to SEM to overlook this simple fact, 
and to use indicators that are not necessarily correlated.

The classic example is that you want to measure a person’s consumption of alcoholic 
beverages, and to that end you use a series of questions each measuring the consump-
tion of one single beverage. That is, indicators such as:

Consumption of beer

Consumption of wine

Consumption of whisky

Consumption of cognac

etc.

While a (weighted) sum of these variables is a measure of total consumption of alcohol, 
there is no reason to believe that all these indicators should be correlated.
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Figure 7 Reflexive (a) and formative (b) indicators

In a graphic illustration of this situation, the arrows should point from the indicators 
and to the latent variable (cf. Figure 9b).
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The indicators in panel (a) of the figure are called reflexive: they reflect the underly-
ing latent variable. In contrast the indicators in panel (b) are called formative: they form 
or define the latent variable, which in this case is not latent at all, as it is a function of 
manifest variables.

While a certain amount of correlation should exist among reflexive indicators for the 
same latent variable, correlations among formative indicators are not a necessity.

It is important to be aware that classical test theory and concepts like reliability and 
validity assume indicators to be reflexive. Using formative indicators in SEM programs 
like EQS is rather complicated. Apart from identification problems (that can be very 
tricky to solve) you can see from the figure that making the indicators exogenous means 
that they lose their error terms, and that measurement errors will instead be absorbed in 
the disturbance of the latent variable together with other sources of unexplained vari-
ance if the latent variable is affected by other variables in a larger model.

In fact, you have already met examples of indicators that could perhaps be consid-
ered formative, namely the three problematic items forb38, forb39 and forb41 in the 
first fish example (Example 2.1).

In many applications of SEM, socio-economic variables are used to characterize a 
person. The various indicators used are most realistically seen as formative, but it is not 
uncommon to see them treated as reflexive.

The many problems with using formative indicators in traditional SEM are given an 
excellent treatment by Kline (2006).

If your model includes several latent variables with formative indicators, you could 
try using another SEM technique, namely partial least squares (PLS) invented by 
Herman Wold (Wold, 1975). An introduction to this technique can be found in Fornell 
and Cha (1994). A deeper treatment with many examples is given by Vinzi, Chin, 
Henseler, and Wang (2010). The newest textbook is by Hair, Hult, and Ringle (2014).

You could say that PLS relates to covariance-based SEM like component analysis 
relates to factor analysis (Compare Figure 7 with Figure 1). 

In this chapter you met the following concepts:

 • confirmatory factor analysis
 • three-indicator rule
 • two-indicator rule
 • R2 as a measure of reliability

 • unique variance as a measure 
of validity

•• χ2-difference test
 • Lagrange multiplier test

You have also been introduced to the EQS paragraphs: 

/CONSTRAINTS 

and

/RELIABILITY 

and to the various reliability measures in EQS.
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Questions

1. State the differences among the three (main) factor models, and discuss their virtues 
and vices.

2. Can you suggest further modifications to the model in Figure 3?

3. Reflecting on your own studies or research, comment on the various instruments 
EQS offers for helping you with model modifications. Discuss their virtues and vices.

4. Comment on the differences between reflective and formative indicators. Why is 
this distinction important?
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