
GIST

GIS Algorithms
Ningchuan Xiao

Xiao_GIS Algorithms_AW .indd   6 03/07/2015   15:5800_Xiao_Prelims.indd   3 10/29/2015   10:57:46 AM



SAGE Publications Ltd
1 Oliver’s Yard 
55 City Road
London EC1Y 1SP

SAGE Publications Inc.
2455 Teller Road
Thousand Oaks, California 91320

SAGE Publications India Pvt Ltd
B 1/I 1 Mohan Cooperative Industrial Area
Mathura Road
New Delhi 110 044

SAGE Publications Asia-Pacific Pte Ltd
3 Church Street
#10-04 Samsung Hub
Singapore 049483

Editor: Robert Rojek
Editorial assistant : Matt Oldfield
Production editor: Katherine Haw
Copyeditor: Richard Leigh
Proofreader: Richard Hutchinson
Indexer: Bill Farrington
Marketing manager: Michael Ainsley
Cover design: Francis Kenney
Typeset by: C&M Digitals (P) Ltd, Chennai, India
Printed and bound by CPI Group (UK) Ltd, 
 Croydon, CR0 4YY

 Ningchuan Xiao 2016

First published 2016

Apart from any fair dealing for the purposes of research or 
private study, or criticism or review, as permitted under the 
Copyright, Designs and Patents Act, 1988, this publication 
may be reproduced, stored or transmitted in any form, or by 
any means, only with the prior permission in writing of the 
publishers, or in the case of reprographic reproduction, 
in accordance with the terms of licences issued by the 
Copyright Licensing Agency. Enquiries concerning 
reproduction outside those terms should be sent to 
the publishers.

Library of Congress Control Number: 2015940434

British Library Cataloguing in Publication data

A catalogue record for this book is available from 
the British Library

ISBN 978-1-4462-7432-3
ISBN 978-1-4462-7433-0 (pbk)

At SAGE we take sustainability seriously. Most of our products are printed in the UK using FSC papers and boards. 
When we print overseas we ensure sustainable papers are used as measured by the PREPS grading system.  
We undertake an annual audit to monitor our sustainability.

To Alester, for understanding everything.

00_Xiao_Prelims.indd   4 10/30/2015   3:13:41 PM



1
Introduction

Algorithms1 are designed to solve computational problems. In general, an algorithm is a 
process that contains a set of well designed steps for calculation. For example, to cor-
rectly calculate the sum of 18 and 19, one must know how to deal with the fact that  
8 plus 9 is more than 10, though different cultures have different ways of processing that. 
Even for a simple problem like this, we expect that the steps used can help us get the 
answer quickly and correctly. There are many problems that are more difficult than the 
simple problem of addition, and solving these problems, again efficiently and correctly, 
requires more careful design of the computational steps.

In GIS development and applications, algorithms are important in almost every 
aspect. When we click on a map, for example, we expect a quick response from the 
computer system so that we can pull out relevant information about the point or area we 
just clicked on. Such a fundamental daily routine for almost every GIS application 
involves a variety of algorithms to ensure a satisfying response. It starts from searching 
for the object (point, line, polygon, or pixel) underneath the clicking point. An efficient 
search algorithm will allow us to narrow down to the area of interest quickly. While a 
brute-force approach may work by physically checking every object in our data, it will 
not be useful for a large data set that will make the time of finding the target impractically 
long. Many spatial indexing and query algorithms are designed to address this issue. 
While the search is ongoing, we must check whether the object in our data matches the 
point clicked. For polygons, we must decide whether the click point is within a polygon 
in our data, which requires a special algorithm to quickly return a yes or no answer to 
decide whether the point is in the polygon. Geospatial data normally come from many 
different sources, and it has been common practice to transform them into the same coor-
dinate system so that different data sets can be processed consistently. Another common 
application of the multiple data sources is to overlay them to make the information more 
useful together.

There are many aspects of an algorithm to be examined. It is straightforward to require 
that an algorithm solve the problem correctly. For some algorithms, it is easy to prove their 

1The word “algorithm” itself comes from medieval Latin algorismus, which is from the name of 
al-Khwa–rizmī, a Persian mathematician, astronomer, and geographer, who made great contributions 
to the knowledge of algebra and world geography.

01_Xiao_Ch 01.indd   1 10/29/2015   10:58:26 AM



GIS Algorithms2

correctness. For example, we will introduce two search algorithms later in this chapter, 
and their correctness should be quite straightforward. Other algorithms, however, are not 
so obvious, and proving their correctness will require more formal analysis. A second 
feature of algorithms is their efficiency or running time. Of course we always want an 
algorithm to be fast, but there are theoretical limits on how fast or efficient an algorithm 
can be, as determined by the problem. We will discuss some of those problems at the end 
of the book under topics of spatial optimization. Besides correctness and running time, 
algorithms are often closely related to how the data are organized to enable the processes 
and how the algorithms are actually implemented.

1.1 Computational concerns for algorithms

Let us assume we have a list of n points and the list does not have any order. We want to 
find a point from the list. How long will we take to find the point? This is a reasonable 
question. But the actual time is highly related to a lot of issues such as the programming 
language, the skill of the person who codes the program, the platform, the speed and 
number of the CPUs, and so on. A more useful way to examine the time issue is to know 
how many steps we need to finish the job, and then we analyze the total cost of perform-
ing the algorithm in terms of the number of steps used. The cost of each step is of course 
variable and is dependent on what constitutes a step. Nevertheless, it is still a more reli-
able way of thinking about computing time because many computational steps, such as 
simple arithmetic operations, logical expressions, accessing computer memory for infor-
mation retrieval, and variable value assignment, can be identified and they only cost a 
constant amount of time. If we can figure out a way to count how many steps are needed 
to carry out a procedure, we will then have a pretty good idea about how much time the 
entire procedure will cost, especially when we compare algorithms.

Returning to our list of points, if there is no structure in the list – the points are stored 
in an arbitrary order – the best we can do to find a point from the list is to test all the 
points in the list, one by one, until we can conclude it is in or not in the list. Let us assume 
the name of the list is points and we want to find if the list includes point p0. We can 
use a simple algorithm to do the search (Listing 1.1).

Listing 1.1: Linear search to find point p0 in a list.

for each point p in points:
if p is the same as p0:

return p and stop

The algorithm in Listing 1.1 is called a linear search; in it we simply go through all 
the points, if necessary, to search for the information we need. How many steps are nec-
essary in this algorithm? The first line is a loop and, because of the size of the list, it will 
run as many as n times when the item we are looking for happens to be the last one in the 
list. The cost of running just once in the loop part in line 1 is a constant because the list is 
stored in the computer memory, and the main operation steps here are to access the infor-
mation at a fixed location in the memory and then to move on to the next item in the 

1
2
3

01_Xiao_Ch 01.indd   2 10/29/2015   10:58:26 AM



Introduction 3

memory. Suppose that the cost is c1 and we will run it up to to n times in the loop. The 
second line is a logic comparison between two points. It will run up to n times as well 
because it is inside the loop. Suppose that the cost of doing a logic comparison is c2 and 
it is a constant too. Line 3 simply returns the value of the point found; it has a constant 
cost of c and it will only run once. For the best case scenario, we will find the target at 
the first iteration of the loop and therefore the total cost is simply c1 + c2 + c, which can 
be generalized as a constant b + c. In the worst case scenario, however, we will need to 
run all the way to the last item in the list and therefore the total cost becomes c1n + c2n + c, 
which can be generalized as bn + c, where b and c are constants, and n is the size of the 
list (also the size of the problem). On average, if the list is a random set of points and we 
are going to search for a random point many times, we should expect a cost of c1n/2 + 
c2n/2 + c, which can be generalized as b′n + c, and we know b′ < b, meaning that it will 
not cost as much as the worse case scenario does.

How much are we interested in the actual values of b, b′, and c in the above 
analysis? How will these values impact the total computation cost? As it turns out, 
not much, because they are constants. But adding them up many times will have a 
real impact and n, the problem size, generally controls how many times these con-
stant costs will be added together. When n reaches a certain level, the impact of the 
constants will become minimal and it is really the magnitude of n that controls the 
growth of the total computation cost.

Some algorithms will have a cost related to n2, which is significantly different from the 
cost of n. For example, the algorithm in Listing 1.2 is a simple procedure to compute the 
shortest pairwise distance between two points in the list of n points. Here, the first loop 
(line 2) will run n times at a cost of t1 each, and the second loop (line 3) will run exactly  
n2 times at the same cost of t1 each. The logic comparison (line 4) will run n2 times and we 
assume each time the cost is t2. The calculation of distance (line 5) will definitely be more 
costly than the other simple operations such as logic comparison, but it is still a constant as 
the input is fixed (with two points) and only a small finite set of steps will be taken to carry 
out the calculation. We say the cost of each distance calculation is a constant t3. Since we 
do not compute the distance between the point and itself, the distance calculation will run 
n2–n times, as will the comparison in line 6 (with time t4). The assignment in line 7 will 
cost a constant time of t5 and may run up to n2–n times in the worst case scenario where 
every next distance is shorter than the previous one. The last line will only run once with a 
time of c. Overall, the total time for this algorithm will be t1n + t1n

2 + t2n
2 + t3 (n

2-n) +  
t4 (n

2-n) + t5 (n
2 - n) + c, which can be generalized as an2 + bn + c. Now it should be clear 

that this algorithm has a running time that is controlled by n2.

Listing 1.2: Linear search to find shortest pairwise distance in a list of points.

let mindist be a very large number
for each point p1 in points:

for each point p2 in points:
if p1 is not p2:

let d be the distance between p1 and p2
if d < mindist:

mindist = d
return mindist and stop

1
2
3
4
5
6
7
8

01_Xiao_Ch 01.indd   3 10/29/2015   10:58:26 AM



GIS Algorithms4

In the two example algorithms we have examined so far, the order of n indicates the 
total cost and we say that our linear search algorithm has a computation cost in the order 
of n and the shortest pairwise distance algorithm in the order of n2. For the linear search, 
we also know that, when n increases, the total cost of search will always have an upper 
bound of bn. But is there a lower bound? We know the best case scenario has a running 
time of a constant, or in the order of n0, but that does not apply to the general case. When 
we can definitely find an upper bound but not a lower bound of the running time, we use 
the O-notation to denote the order. In our case, we have O(n) for the average case, and 
the worst case scenario as well (because again the constants do not control the total cost). 
In other words, we say that the running time, or time complexity, of the linear search 
algorithm is O(n). Because the O-notation is about the upper bound, which is meant to 
be the worst case scenario, we also mean the time complexity of the worst case scenario. 

There are algorithms for which we do not have the upper bound of their running time. 
But we know their lower bound and we use the Ω-notation to indicate that. A running 
time of Ω(n) would mean we know the algorithm will at least cost an order of n in its 
running time, though we do not know the upper bound of the running time. For other 
algorithms, we know both upper and lower bounds of the running time and we use the 
Θ-notation to indicate that. For example, a running time of Θ(n2) indicates that the algo-
rithm will take an order of n2 in running time in all cases, best and worst. This is the case 
for our shortest distance algorithm because the process will always run n2 times, regard-
less of the outcome of the comparison in line 6. It is more accurate to say the time 
complexity is Θ(n2) instead of O(n2) because we know the lower bound of the running 
time of pairwise shortest distance is always in the order of n2.

Now we reorganize our points in the previous list in a particular tree structure as 
illustrated in Figure 1.1. This is a binary tree because each node on the tree can have at 
most two branches, starting from the root. Here the root of the tree stores point (6, 7) 
and we show it at the top. All the points with X coordinates smaller than or equal to that 
at the root are stored in the left branches of the root and those with X coordinates greater 
than that of the root point are stored in the right branches of the root. Going down the 
tree to the second level, we have two points there, (4, 6) and (9, 4). For each of these 
points, we make sure that the rest of the points will be stored on the left if they have a 
smaller or equal Y coordinate value, and on the right if greater. We alternate the use of 
X and Y coordinates going down the tree, until we find the point we are looking for or 
reach the end of a branch (a leaf node).

To use the tree structure to search for a point, we start from the root (we always start 
from the root for a tree structure) and go down the tree by determining which branch to 
proceed along using the appropriate coordinate at each level of the tree. For example, to 

_____________________(6,7)_____________________
/ \

________(4,6)_________ ________(9,4)________
/ \ / \

__(2,3)___ ___(3,7)___ __(7,4)___ __(9,6)__
/ \ / \ / \ / \

(0,5) (5,2) (2,9) (4,9) (7,2) (9,1) (8,8) (10,10)
/ \ / \ / \ / \ / \ / \ / \ / \

(0,2) (0,6) (3,1) (5,3) (1,7) (1,10) (5,8) (6,10) (7,1) (7,3) (9,0) (8,4) (9,5) (7,10)
/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \

Figure 1.1 A tree structure that stores 29 random points. Each node of the tree is labeled 
using a point with X and Y coordinates that range from 0 to 10

01_Xiao_Ch 01.indd   4 10/29/2015   10:58:26 AM



Introduction 5

search for a target point of (1, 7), we first go to the left branch of the root because the X 
coordinate of our target point is 1, smaller than that in the root. Then we go the the right 
branch of the second level node of (4, 6) because the Y coordinate (7) is greater than that 
in the node. Now we reach the node of (3, 7) at the third level of the tree and we will go 
to the left branch there because the target X coordinate is smaller than that in the node. 
Finally, we reach the node (2, 9) and we will move to its left branch because the Y coor-
dinate in the target is smaller than that in the node. In sum, given a tree, we can write the 
algorithm in Listing 1.3 to fulfill such a search strategy using a tree structure.

Listing 1.3: Binary search to find point p0 in a tree.

let t be the root of the tree
while t is not empty:

let p be the point at node t
if p is the same as point p0:

return p and stop
if t is on an even level of the tree:

coordp, coordp0 = X coordinates of p and p0
else:

coordp, coordp0 = Y coordinates of p and p0
if coordp0 <= coordp:

t = the left branch of t
else:

t = the right branch of t

This is called a binary search, using the tree structure. Based on our discussion about 
running time, it is straightforward to see that the running time of this search algorithm is 
determined by the number of times we have to run the while loop (line 2), which is 
determined by the height of the tree, as defined by the number of edges from the root to 
the farthest leaf node. The above tree has a height of 4 and can hold up to 31 points  
(we only have 29 here). In general, for a binary tree with a height of H, we can store up 
to 20 + 21 + 22 + … + 2H = 2H+1 - 1 items. In other words, if we have n points in total that 
fill all the nodes in a perfectly balanced binary tree where all the leaf nodes are at exactly 
the same level, we have 2H+1 - 1 = n and hence H = log2 (n + 1) - 1. In this case, when 

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

_____________(4,9)_____________
/ \

(2,9) _____(8,4)______
/ \ / \

(4,6) (1,10) ___(9,4)___ __(6,10)___
/ \ / \ / \ / \

(3,7) _____(9,1)_____ (5,8) __(7,10)__
/ \ / \ / \ / \

(2,3) (7,1) (7,4) (6,7) (8,8)
/ \ / \ / \ / \ / \

(1,7) (3,1) (9,0) (5,3) (9,6)
/ \ / \ / \ / \ / \

(0,2) (7,3) (9,5) (10,10)
/ \ / \ / \ / \

(0,6) (5,2)
/ \ / \

(0,5) (7,2)
/ \ / \

Figure 1.2 An unbalanced tree structure to store 29 random points

01_Xiao_Ch 01.indd   5 10/29/2015   10:58:27 AM



GIS Algorithms6

such a tree is given, we have a running time of the order of log2 (n+1), which is at the same 
order as log2 n, and we say the running time is O(log2 n). For a balanced but not perfect 
tree, meaning the difference between the heights of all leaf nodes is at most 1, we can still 
achieve a running time of O(log2 n) since the farthest leaf node has a height of H. When a 
balanced tree cannot be guaranteed, however, things can get worse. An example of an 
unbalanced tree is given in Figure 1.2 where we have exactly the same points but the tree 
has a height of 8. Therefore, we know the binary search algorithm is more efficient than 
linear search because O(log2 n) < O(n), but the actual running time is dependent on how 
the tree is constructed and can be longer than O(log2 n) if the tree is unbalanced.

Since using a balanced binary tree to store the points can greatly improve the effi-
ciency of search, will that also help to reduce the running time of calculating the shortest 
pairwise distance? The brute-force approach we discussed here has a running time of 
Θ(n2), which grows quickly as n increases. It would be reasonable to look for a more 
efficient way to get the shortest pairwise distance in a list of points. The answer to our 
question is yes, and the key lies in the use of tree structures. We will continue to explore 
this topic in the second part of the book where we discuss different tree structures in more 
depth. Throughout the book, we do not focus much on the theoretical analysis of running 
time for each algorithm. Instead, we will conduct more empirical analysis by actually 
running the algorithms on different data sets.

The discussion about search and especially binary search on a tree logically leads to 
the topic of data structure: how we store and organize data to facilitate the procedures in 
an algorithm. A tree structure is a good example of how the original data stored in a list 
can be reorganized to achieve better search performance. Many data structures are 
problem-specific. Some data structures can be complicated, but the increase in storage is 
often compensated by a decrease in running time.

1.2 Coding

Algorithms can be described in different ways. We use verbal statements in this chapter 
to describe the linear and binary search algorithms. For theoretical work, a formal 
description that details the steps but is not necessarily executable will suffice. We call 
this type of description pseudo-code because it is not real computer code, though very 
close. In this book, we take a more practical and explicit route by describing algorithms 
in an actual computer programming language. Specifically, we use Python to describe the 
algorithms covered in this book.

Writing computer programs (i.e., coding) to describe algorithms has a substantial 
benefit: all the algorithms will immediately be executable. In this way, we present 
everything related to how the algorithms work in the plain text of the book. The code 
becomes part of the text and consequently becomes an open source experiment where 
each line of the process can be examined, modified, and improved. However, this 
code as text approach may present too much information, especially when the pro-
gramming language may need ancillary code to help the main task. For example, 
many programming languages require end of line symbols and brackets as part of the 
code to ensure syntax correctness. These symbols, when added as part of the text, may 

01_Xiao_Ch 01.indd   6 10/29/2015   10:58:27 AM



Introduction 7

hamper the reading process and therefore make it difficult for us to concentrate on the 
main contents of the text. We choose Python in this book largely because of its simple 
syntax, along with many of its popular, powerful, and well maintained modules. All 
the programs listed in this book were tested in Python 2.7, which is a stable and 
widely adopted version at the time of writing. The majority of the programs in this 
book only use the basic Python features, so these programs in principle are likely to 
be compatible with newer versions of Python.

Python has become a popular programming language in recent years, including the 
use of Python for plugins in GIS packages such as QGIS and ArcGIS. It is important to 
point out that programming in Python is a skill that can definitely be acquired through 
learning and practice. To help readers make a quick start on the language, a short intro-
duction to Python is included as Appendix A. This is not a comprehensive tutorial as 
many of the online tutorials have more detailed and in-depth discussion about the lan-
guage. However, many of Python’s useful features, especially those related to the main 
text, are included in the tutorial.

1.3 How to use this book

The main text of this book is divided into three major parts.The general logic here is to start 
the book with a discussion on the most fundamental aspects of the data – the geometry – 
before we move on to more advanced topics in spatial indexing and spatial analysis and 
modeling. At the end of each chapter we review the major literature related to the topics 
covered in a section called Notes. At the end of the book, we also include three appendices 
to help readers understand the Python programming language and the structure of the 
programs included in the book.

In Part I, we focus on locations, or more specifically on coordinates that can be used 
to help us understand geospatial information. In Chapter 2, we examine a few algorithms 
to compute different kinds of distance, such as distances between points and distance 
from a point to a line. We also look at the calculation of polygon centroids and a widely 
used algorithm called point-in-polygon that efficiently helps us determine whether a 
point is located within a polygon. The final topic in Chapter 2 is about the transformation 
between coordinate systems involving map projections. Chapter 3 covers a traditional 
GIS operation, known as overlay. As “old” as this topic is, the actual computation of 
overlaying two polygons can be tedious, though not necessarily complicated. Many of 
the topics in this part of the book are related to the field of computational geometry. But 
we focus on those that are most relevant to the GIS world.

Part II is centered around the idea of spatial indexing. Spatial information is special. 
Though the general concept in indexing, divide and conquer, is the same for spatial infor-
mation, because of the two dimensions (or more in some cases) in spatial information, 
more dedicated algorithms must be designed. We first introduce the basic concepts of 
indexing in Chapter 4, where we focus on the development of a tree structure. Chapter 5 
is devoted to k-D trees that are commonly used to index point data. Chapter 6 covers a 
popular indexing technique called quadtrees, for both point and raster data. Chapter 7 
extends the discussion to indexing lines and polygons in spatial data.

01_Xiao_Ch 01.indd   7 10/29/2015   10:58:27 AM



GIS Algorithms8

Part III of the book focuses on the heart of GIS applications: spatial analysis and 
modeling. We first explore the interpolation methods on point data in Chapter 8 where 
we compare and contrast two commonly used interpolation methods: inverse distance 
weighting and kriging. We also include a data simulation algorithm called midpoint 
displacement from the fractal geometry literature. Chapter 9 is devoted to spatial pat-
tern analysis where the calculation of indices such as Moran’s I is included. 
Algorithms for network analysis, especially those calculating the shortest paths, are 
included in Chapter 10. We devote two chapters to topics in spatial optimization: in 
Chapter 11 we focus on the exact methods and in Chapter 12 we explore some of the 
heuristic methods.

In addition to the three parts in the main text, we have also included three appendices 
to cover some of the technical details about coding. It should be obvious that, while we 
talk about algorithms most of the time, this book is about coding as well. For this reason, 
a short introduction to Python is first included. Then we compile a short introduction on 
the Python binding of a powerful library called GDAL/OGR and a Python library for 
spatial analysis called PySAL. The purpose here is to help readers quickly get started 
with these libraries so that they can have a sense how “real-world” data sets can be 
closely related to the topics (and code of course) presented in this book.

Most of the programs listed in this book are also given a file name that can be used 
in other programs. In that case the name of the program is listed in the caption of each 
code listing. We use directories to organize the programs. In the last appendix, we 
provide an overview of the code by listing all the Python programs and example data 
sets and discuss how they can be used.

Each of the chapters in this book could easily be extended into another book to cover 
the depth of each topic. This book, then, is a survey of the general topics in GIS algo-
rithms. The best way to grasp the breadth of the topics presented in this book is coding. 
A collective Github page2 is under development where readers can contribute their 
thoughts on implementing the algorithms included in this book and new algorithms that 
are beyond the scope of the book. While theoretical derivation is not the focus of this 
book, empirical analysis definitely is. We have included many experiments in the text 
and have suggested more in the exercises. This, however, should not limit further exper-
iments, especially those that are innovative and overarch various topics. The book will 
only be successful if it achieves two goals: first, based on the skills built on understand-
ing the algorithms and code, that readers are able to develop their own tool sets that fit 
different data sets and application requirements; and second, that coding becomes a habit 
when it comes to dealing with geospatial data. 

2https://github.com/gisalgs

01_Xiao_Ch 01.indd   8 10/29/2015   10:58:27 AM


