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Figure 5.9a  Standard Normal Cumulative Distribution

One interesting thing to note about the cumulative frequency distribution is that 
it is not a uniform, linear effect. The probabilities associated with a z = 1.0 change 
depend on the location of the initial threshold. If the first threshold is −3.0 and we 
increase by an increment of 1.0, the difference between z = −3.0 and −2.0 is the differ-
ence between 0.00135 probability and 0.0228, or a difference in probability of 0.0214. 
However, if the initial threshold is −0.50 and we increase by an increment of 1.0, the 
corresponding probabilities are 0.31 and 0.69, or a change in probability of about 0.39. 
Therefore, in probit regression (as in real estate), location matters.

The application this was originally developed for, however, was kill rate, or survival 
rate. Thus, it uses the inverse of this distribution, which you can see in Figure 5.9b.

Imagining a particular level of pesticide application, at a very low level, most of the 
population will survive; at a very high level, almost none of the population will survive. 
Thus, when we calculate the probit analysis in SPSS, you will see the inverse of what we 
expect. Using the probit link function, we can constitute a regression equation similar to 
that of logistic regression, as you can see in Equation 5.7:

	 Probit (Ŷ) = b0 + b1X1	 (5.7)

Similar to logistic regression, the hypotheses we are testing include the probit link:

H0: b1 = 0.0

Ha: b1 ≠ 0.0




