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An Example Summary of This Analysis
In order to explore the curvilinear relationship between diabetes and BMI, the IV was cen-
tered at 20, and then squared and cubed versions of the centered BMI variable were created 
and entered sequentially (on individual steps) into the analysis. A small percentage (less than 
0.4%) of the sample had inappropriate levels of influence by virtue of having standardized 
residuals greater than |5.0|. After these cases were removed, the entry of each term (linear, 
quadratic, cubic) contributed to a significant improvement in model fit, as Table 7.4 shows. 
Because all three terms were significant, the final logistic regression equation was used to 
create predicted values across a broad range of BMI (10–60). These predicted values were 
converted from logits to conditional probabilities for ease of interpretation.

As you can see in Figure 7.13b, the probability of being diagnosed with diabetes is rela-
tively low and slow to accelerate in adults with low BMI, but it begins to rise more rapidly as 
BMI moves toward the high 20s and continues to increase rapidly until the high 40s, where it 
levels off at a high prevalence.

effects to other parts of the generalized linear model: polytomous IVs and DVs. 
The answer is that because we look for curvilinearity in the IVs, any analysis with a 
continuous IV is a candidate for potential curvilinearity. This rules out looking for 
curvilinearity in simple ANOVA-type analyses (but not repeated measures!). Let us 
expand our exploration to multinomial logistic regression, and return to our example 
from Chapter 6 and the National Education Longitudinal Study of 1988 (NELS88) 
data involving student achievement (zACH, our z-scored version of the student 
achievement variable) and marijuana use (MJ; coded 0 = never tried it, 1 = tried it 
1−2 times, 2 = tried it 3−19 times, and 3 = tried it 20 or more times). In the previous 
analysis, we observed that higher achievement test scores tended to relate to lower 
probabilities of trying marijuana at each level.

Let us expand that analysis to add a quadratic term (zACH2) to the equation 
already described above. The initial model had a likelihood ratio test of χ2

(3) = 129.49, 
p < .0001 when the first term was entered, with a final −2LL of 12,991.445. Adding 
zACH and zACH2 significantly improves the model −2LL to 12,969.033 (for a likeli-
hood ratio test of χ2

(3) = 22.41, p < .0001). The cubic effect did not add a significant 
improvement to model fit and thus was disregarded (Table 7.5).

Binary logistic regression models were created to determine whether there were 
any inappropriately influential outliers with the curvilinear effect in the analysis. 
Examining the deviance residuals, for example, revealed many cases with values over 
2.00, which would be potential candidates for removal. However, none exceeded 
3.00, and thus all were retained. As with the logistic regression analysis, the pre-
dicted values were restricted to reasonable ranges (in this case, zACH between −2 
and +2, which captured most of the sample) and values were converted from logits 
to conditional probabilities. As you can see in Figure 7.14, the probability of try-
ing marijuana 1−2 times, 3−19 times, or 20 or more times (compared with 0 times) 
remains relatively flat while achievement is below average and then tends to drop 
more steeply. The exception is the second group (tried marijuana 1−2 times), which 




