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Elementary Control Modeling

One of the fundamental problems that researchers address when using regression 
analysis is determining the degree to which an effect on a dependent variable that is 
associated with a particular independent variable occurs as a result of the relationship 
between that independent variable and other independent variables. In regression 
analysis, we call these other independent variables “control variables.”1

Table 5.1 is a simple example of using a control variable in ordinary least-squares 
regression analysis. The dependent variable is math score. The independent variables 
include a dummy variable for attends private school or public school and a set of dummy 
variables for parental education with high school or less as the excluded category. The 
first model shows that those students in private school score 5.06 higher than those 

1. Allison (1999), pages 16–19, provides an enlightening, introductory discussion of the issue of 
control in regression analysis.
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54  ❖  ELEMENTARY REGRESSION MODELING

students in public school. The coefficient in the second model for private is 2.66, and this 
coefficient decreased 47% from 5.06 in the first model.

The coefficient for private in the first model is the difference in mean math scores 
between those who attend private school and those who attend public school. The 
difference in the means is 5.06, and that is the same value as the coefficient for the 
dummy variable for private in Table 5.1.

When the three dummy variables for parental education are added to the model, 
the coefficient for private school decreased to 2.66. An important question for under-
standing control modeling is why does the coefficient decrease? I use two ways to 
explain what happens to the coefficient for the independent variable of interest when 
a control variable is added to a regression.2

The first way to explain how control works is to use the analytical technique of 
elaboration.3 In this instance, elaboration involves considering the difference between 
the mean math score for those in private and public schools within categories of 
parental education.

This method “controls” for parental education by considering the mean difference 
in math scores between respondents in private and public schools only for those 
respondents who have parents with the same level of education. This method produces 

2. An alternative way of thinking about control variables is to use the concepts of confounding, 
mediating, and suppressing variables as discussed in Demaris (2004), pages 98–104; Gordon 
(2010), Chapter 10; and Agresti and Finlay (2009), pages 307–313.

3. Linneman (2014), Chapter 10, discusses how to use elaboration to understand how control works 
in regression. The textbook also explains how to use small and big models to do control modeling.

Table 5.1  Control Model With Math 
Score as Dependent Variable

*p < .05.

Independent Variable

Model

1 2

B B

Private 5.06* 2.66*

2-Yr. Degree — 1.32*

4-Yr. Degree — 5.57*

Grad. Degree — 8.72*

Intercept 50.80 47.88

R2 .035 .140
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four mean differences, one for each level of parental education. Each difference is thus 
calculated with parental education controlled.

Elaboration for Controlling

Table 5.2 shows the difference between those respondents in private and public 
schools in mean math scores within categories of parental education. Although the 
overall difference is 5.06, the difference in each parental education category is less. A 
rough estimate of how much this method for “controlling” for parental education 
lowered the mean differences is the mean of these differences, which is 2.95. The mean 
of the differences is close to the coefficient for private, 2.66, in the regression that 
controlled for parental education.

Table 5.2  Means for Math Score for School Control Within 
Parental Education

Parental Education Private/Public Mean Math Difference

< HS or HS Only Public

Private

47.79

51.77

3.98

2-Yr. Degree Public

Private

49.09

52.76

3.67

4-Yr. Degree Public

Private

53.55

55.79

2.24

Grad. Degree Public

Private

56.84

58.75

1.91

Mean Difference 2.95

Total Public

Private

50.80

55.86

5.06

Demographic Standardization for Controlling

A second way to explain how control works is by using the method of demographic 
standardization.4 In this method, an overall mean is viewed as a weighted sum of sub-
group means. In direct demographic standardization, an overall mean is adjusted by 
changing the weights applied to the subgroup means.

4. Treiman (2009), Chapter 2, presents an excellent discussion of using elaboration and 
standardization for statistical control.
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56  ❖  ELEMENTARY REGRESSION MODELING

A classic example of direct demographic standardization is a standardized crude 
death rate. The distribution of deaths in human populations shows higher rates near 
birth and then lower rates for childhood, adolescence, and young adulthood. Death 
rates start rising in middle adulthood.

The crude death rate is the total number of deaths divided by the midyear popu-
lation. We can view this rate as a weighted sum of death rates for age groups weighted 
by the size of the age groups. Two populations can differ in overall crude death rates as 
a result of underlying differences in age-specific death rates and in underlying differ-
ences in age structure. Populations with age structures that feature higher proportions 
in younger age groups will have a lower crude death rate from that influence. 
Populations that feature higher proportions in older age groups will have a higher 
crude death rate from that influence. Directly standardized crude death rates use a 
standard age distribution and by doing so “control” for the effect of age structure on 
the overall crude death rate.

The first step in considering the issue of control is to specify an independent vari-
able of interest that is related to the dependent variable. In Table 5.3, we use school 
control as the independent variable of interest and we see that those in private schools 
score higher in math than those in public schools. The second step is to specify a con-
trol variable that, first, has an effect on the dependent variable and, second, is related 
to the independent variable of interest.

We will use parental education as a control variable in our consideration of the 
effect of school control on math scores. The rationale is that we know that parents 
with more education are more likely to send their children to private schools than 
parents with less education. We see in Table 5.3 that that those respondents with 
parents with more education score higher in math than those with parents with less 
education.

Table 5.3  Means for School 
Control and 
Parental Education

School Control Math Mean

Public 50.80

Private 55.86

Parental Ed.

< HS or HS Only 48.07

2-Yr. Degree 49.48

4-Yr. Degree 54.09

Grad. Degree 57.44
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The second characteristic of an effective control variable is that the variable be 
related to the independent variable of interest. In Table 5.4, we see that those respon-
dents in private school are more likely to have a parent who is a 4-year college graduate 
or has a graduate degree than those respondents in public school.

Table 5.4  Percentages for 
Type of School

Parental Ed.

Percentages

Public Private

< HS or HS Only 39.6 15.0

2-Yr. Degree 22.2 13.1

4-Yr. Degree 22.6 35.9

Grad. Degree 15.6 36.0

Total 100.0 100.0

Demographic standardization rests on the idea that the mean for any group is the 
weighted mean of the means for subgroups within the group. In this example, the means 
for respondents in public and private schools are the weighted means of the means in 
parental education subgroups.

Table 5.5 shows the public and private means expressed as weighted sums of the 
means for parental education subgroups. The product of the proportion in a subgroup 
times the mean for the subgroup is the contribution of the subgroup mean to the over-
all mean. Subgroups with higher proportions contribute more than subgroups with 
lower proportions.

The difference between the mean for respondents in private school and the mean 
for those in public school is 5.06. The difference is a result of two factors. One factor is 
that the respondents in private school have a higher math score in each category of 
parental education. The other factor is that the respondents in private school have 
higher proportions in the parental education categories where students score higher in 
math. The result from these two factors is a higher mean math score for those in private 
school compared with those in public school.

Table 5.5 shows the calculation of the mean for those respondents in private 
school and for those in public school as the weighted sum of the means in parental 
education subgroups. The calculation shows that the college graduate and graduate 
school categories contribute more to the mean for those in private school than for 
those in public school. On the other hand, the high school or less and some college 
categories contribute less.
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58  ❖  ELEMENTARY REGRESSION MODELING

In applying direct demographic standardization, the mean for those in private 
school is recalculated by using the parental education proportions for those in 
public school. Table 5.6 shows the calculation. The mean for those in private 
decreases from 55.86 to 53.99 when the parental education proportions for those 
in public school are used in place of the parental education proportions for those in 
private school.

Table 5.5  Group Means Expressed as Sum of Weighted Means for 
Subgroups 

Parental Ed.

Public Private

Prop.
Math
Mean Product Prop.

Math
Mean Product

< HS or HS Only .396 47.79 18.92 .150 51.77 7.77

2-Yr. Degree .222 49.09 10.90 .131 52.76 6.91

4-Yr. Degree .226 53.55 12.11 .359 55.79 20.03

Grad. Degree .156 56.84 8.87 .360 58.75 21.15

Product Sum 50.80 55.86

Table 5.6  Calculation of Standardized Mean

Parental Ed.

Private
Private 

Standardized on Public

Prop.
Math
Mean Product Prop.

Math
Mean Product

< HS or HS Only .150 51.77 7.77 .396 51.77 20.50

2-Yr. Degree .131 52.76 6.91 .222 52.76 11.71

4-Yr. Degree .359 55.79 20.03 .226 55.79 12.61

Grad. Degree .360 58.75 21.15 .156 58.75 9.17

Product Sum 55.86 53.99
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The difference between those in private school and those in public school in mean 
math scores decreases from 5.06 (55.86 − 50.80) to 3.19 (53.99 − 50.80). Notice that the 
difference of 3.19 is fairly close in size to the coefficient for private in the regression 
model in Table 5.1, where parental education was controlled (2.66). Thus, demo-
graphic standardization produces an approximation to a control model in regression. 
The idea of controlling, then, is to constrain statistically two groups to have the same 
distribution on the control variable.

Small and Big Models

Professor Arthur Goldberger, a noted econometrician and teacher at the University of 
Wisconsin–Madison, referred to “short” and “long” models when discussing control 
models, and I use similar terms here.5 A “big” model essentially adds more variables to 
the “small” model.

The simplest control model is shown in Table 5.7. A dummy variable for private 
school is the independent variable of interest. The control variables in the model 
include an interval variable measuring family income, a set of dummy variables mea-
suring parental education (high school or less excluded), and a set of dummy variables 
measuring family structure of the respondent (two biological parents excluded). Those 
in private school score 1.78 higher in math scores than those in public school when 
family income, parental education, and family structure are controlled.

One way to think about this is to view the result as what the difference would be if 
those in private school and those in public school had the same distributions on family 
income, parental education, and family structure. We would use this one-model 
approach if we wanted to know the effect of the independent variable of interest when 
correlated, but theoretically less interesting factors are controlled. In this case, atten-
dance at private school is related to family income, parental education, and family struc-
ture, but perhaps we are interested in the influence of attending private school itself and 
not interested in the characteristics of the children who attend private school. However, 
often we want to determine how much of the initial difference can be attributed to the 
control variables, and in this instance in Table 5.8, we use two regression models.

Table 5.8 shows that the effect for private school is 5.06 in the small model and 
1.78 in the big model. The coefficient decreased 3.28 in actual magnitude for a decrease 
of 65%. Thus, more than one half of the difference between those in private school and 
those in public school in math scores is a result of differences in the distributions 
between the two groups on family income, parental education, and family structure:

5. Goldberger (1998) calls the models “short” and “long” because he has equations for regression 
models in mind. I call the models “small” and “big” having presentation tables in mind. A small 
model has a smaller number of coefficients in a column of a table, and a big model has a bigger 
number of coefficients.
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Table 5.7  Linear Regression of 
Independent Variables 
on Math Score

Independent Variable B
Private 1.78*
Family Income .13*
2-Yr. Degree 1.14*
4-Yr. Degree 4.79*
Grad. Degree 7.34*
Bio./Step. −1.33*
Single −.82*
Other Fam. −1.87*
Intercept 47.92
R2 .157

*p < .05.

Table 5.8  Small and Big Models With Math 
Score as Dependent Variable

Independent
Variable

Model

1 2

B B

Private 5.06* 1.78*

Family Income — .13*

2-Yr. Degree — 1.14*

4-Yr. Degree — 4.79*

Grad. Degree — 7.34*

Bio./Step. — −1.33*

Single — −.82*

Other Fam. — −1.87*

Intercept 50.80 47.92

R2 .035 .157

*p < .05.
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Change big model coefficient small model coefficient
small 

=
−

mmodel coefficient
×100

= [(1.78 − 5.06)/5.06] × 100 = 64.8%

Family income, parental education, and family structure were effective control 
variables because the variables were strongly related to the dependent variable and 
strongly related to the independent variable of interest. In the regression in Table 5.8, 
those with higher family incomes had higher math scores than those not with high 
family incomes, those with higher parental education had higher math scores than 
those not with higher parental education, and those in two-biological-parent families 
had higher math scores than those not in two-biological-parent families.

Table 5.9 illustrates how family income, parental education, and family structure 
are strongly related to attending private school. Those in private school have higher 

Table 5.9  Percentages for Control Variables by Type 
of School

Family Income ($) Public Private

0–35,000 30.2 10.5

36,000–75,000 33.5 21.5

76,000–115,000 19.0 23.7

116,000+ 17.3 44.3

Total 100.0 100.0

Parental Ed. Public Private

< HS or HS Only 39.5 15.0

2-Yr. Degree 22.2 13.1

4-Yr. Degree 22.6 35.9

Grad. Degree 15.7 36.0

Total 100.0 100.0

Family Structure Public Private

Two Bio. Parents 53.7 72.3

Bio./Step. 15.1 8.3

Single Parent 21.7 14.3

Other Fam. 9.5 5.1

Total 100.0 100.0
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family income and are more likely to have higher parental education and to be in 
two-biological-parent families than those in public school.

The big model in which family income, parental education, and family structure 
were added explained 65% of the effect for private that we found in the small model. 
The big model allows us to determine how much the coefficient for private changes 
when the three control variables were added, but it does not allow us to determine the 
role of each control variable in explaining the coefficient. To determine the role of each 
control variable, we will need to estimate a series of control models. Complicating this 
decision is the fact that the control variables are usually correlated with one another.

Allocating Influence With Multiple Control Variables

The Venn diagram that follows illustrates the problem of determining the relative 
influences of family income and parental education in explaining the effect of private 
school on math scores.6 The circle for family income captures the part of the private 
school effect explained by family income, whereas the parental education circle does 
the same for parental education. The overlap captures the correlation between family 
income and parental education.7

Family
income

Parental
education

6. Agresti and Finlay (2009), pages 304–307, provide a brief discussion of control. They also use 
the idea of a Venn diagram to illustrate control, page 445.

7. The classic way to illustrate control is to use three-dimensional graphs such as in Fox (2015).

8. Goldberger (1998) points out that the first variable entered when doing a small–big model 
analysis always captures more of the R2 and, therefore, allocating R2 serves “no useful purpose.” 

The problem in regard to control modeling is that whichever variable is added to 
the regression model first will capture the part of the private coefficient explained by 
the joint correlation of family income and parental education.8 If we choose a model-
ing approach where we add variables in steps, the variable added earlier will have an 
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advantage over the variable added later. If we add each control variable separately, then 
the joint influence is captured repeatedly in the models. Although there is no solution 
to this problem, we can understand the extent of the problem by modeling the control 
variables in different ways.

One-at-a-Time Without Controls

Table 5.10 shows the one-at-a-time model without controls approach. That is, each 
control variable is added without the other control variables in the model. The coeffi-
cient for attending private school decreased to 3.14 (−38%) when we added family 
income, to 2.66 (−47%) when we added parental education, and to 4.61 (−9%) when 
we added family structure. Model 5 includes all control variables, and the coefficient 
for private decreased to 1.78 (−65%).

Notice that the percentage change when all the control variables were added to the 
model is less than the sum of the percentage changes when each variable was added 
separately. The overlap shown in the Venn diagram is captured more than once.

Table 5.10  One-at-a-Time Without Controls With Math 
Score as Dependent Variable

Independent
Variable

Model

1 2 3 4 5

B B B B B

Private 5.06* 3.14* 2.66* 4.61* 1.78*

Family Income — .23* — — .13*

2-Yr. Degree — — 1.32* — 1.14*

4-Yr. Degree — — 5.57* — 4.79*

Grad. Degree — — 8.72* — 7.34*

Bio./Step. — — — −2.04* −1.33*

Single — — — −2.30* −.82*

Other Fam. — — — −3.25* −1.87*

Intercept 50.80 49.01 47.88 51.91 47.92

R2 .035 .084 .140 .049 .157

*p < .05.
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Step Approach

The step approach in Table 5.11 involves adding one control variable, then an addi-
tional control variable, and then one more control variable.9 Rather than comparing 
the models with the control variable with Model 1, in this approach, Model 2 is com-
pared with Model 1, Model 3 with Model 2, and Model 4 with Model 3.

The coefficient for attending private school decreased to 3.14 (−38%) when we 
added family income, to 1.91 (−39%) when we added parental education, and to 1.78 
(an additional −7%) when we added family structure. The explanatory power of paren-
tal education decreases when using this approach compared with the one-at-a-time 
without controls approach because the first variable added gets the overlap in explan-
atory power as illustrated in the Venn diagram. Thus, only family income gets the 
overlap in explanatory power.

In Table 5.12, we add the dummy variables for parental education first and then 
the interval variable for family income. The coefficient for attending private school 

Table 5.11  Step Model With Math Score as 
Dependent Variable

Independent
Variable

Model

1 2 3 4

B B B B

Private 5.06* 3.14* 1.91* 1.78*

Family Income — .23* .13* .13*

2-Yr. Degree — — 1.16* 1.14*

4-Yr. Degree — — 4.93* 4.79*

Grad. Degree — — 7.51* 7.34*

Bio./Step. — — — −1.33*

Single — — — −.82*

Other Fam. — — — −1.87*

Intercept 50.80 49.01 47.26 47.92

R2 .035 .084 .153 .157

*p < .05.

9. Demaris (2004), page 88, provides an example of a step model.
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decreased to 2.66 (−47%) when we added parental education and to 1.91 (−28%) when 
we added family income. Family income explained 38% of the coefficient when it was 
added first compared with 28% when added second. This shows that order of entry 
definitely matters.

In the case of parental education and family income in Table 5.12, the variable 
entered first not only captures the joint influence with the other variable, but also it 
captures the joint influence with other possible explanatory variables, whether ana-
lyzed in the analysis or not. 

Please note that the step model described earlier is not created by the “stepwise” 
procedure found in the SPSS statistical program and in other statistical programs. Here, 
the step model refers to starting with a small model and adding variables by steps to 
create larger models that answer theoretical questions. The stepwise procedure in SPSS 
includes in the first model the independent variable that adds the most to R2, then 
includes in the second model the variable that adds the second most to R2, and so on. 
Using the step approach described in this book requires the researcher to enter variables 
in an order that is dictated by theoretical considerations, not by statistical considerations.

Table 5.12  Step Model With Math Score 
as Dependent Variable

Independent
Variable

Model

1 2 3 4

B B B B

Private 5.06* 2.66* 1.91* 1.78*

2-Yr. Degree — 1.32* 1.16* 1.14*

4-Yr. Degree — 5.57* 4.93* 4.79*

Grad. Degree — 8.72* 7.51* 7.34*

Family Income — — .13* .13*

Bio./Step. — — — −1.33*

Single — — — −.82*

Other Fam. — — — −1.87*

Intercept 50.80 47.88 47.26 47.92

R2 .035 .140 .153 .157

*p < .05.
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One-at-a-Time With Controls

The objective of control modeling is to determine how much of the effect of the inde-
pendent variable of interest can be explained by a control variable. We have observed 
how correlation between control variables complicates the analysis. A one-at-a-time 
model with controls deals with the correlation issue by considering the influence of 
each control variable with all other control variables in the model.

Model 1 determines the baseline effect for attending private school. To determine 
the influence of the control variables, Model 5 is compared with Models 2, 3, and 4. 
Models 2, 3, and 4 each contain two control variables, and Model 5 adds the third 
control variable. This allows us to consider the influence of each control variable above 
that of the other control variables.

In Table 5.13, the coefficient for attending private school decreased to 1.78 from 
2.47 when family income was added (−28%), comparing Models 2 and 5. The coefficient 
for private school decreased to 1.78 from 2.90 when parental education was added 
(−39%), comparing Models 3 and 5. Finally, the coefficient decreased to 1.78 from 1.91 
when family structure was added (−7%), comparing Models 4 and 5.

Table 5.13  One-at-a-Time With Controls With Math Score 
as Dependent Variable

Independent
Variable

Model

1 2 3 4 5

B B B B B

Private 5.06* 2.47* 2.90* 1.91* 1.78*

Family Income — — .22* .13* .13*

2-Yr. Degree — 1.28* — 1.16* 1.14*

4-Yr. Degree — 5.37* — 4.93* 4.79*

Grad. Degree — 8.46* — 7.51* 7.34*

Bio./Step. — −1.42* −1.73* — −1.33*

Single — −1.08* −1.57* — −.82*

Other Fam. — −2.14* −2.55* — −1.87*

Intercept 50.80 48.62 49.95 47.26 47.92

R2 .035 .145 .092 .153 .157

*p < .05.
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Unlike the other approaches, the one-at-a-time with controls approach has a series 
of intermediate models that have less analytical value than the intermediate models in 
the other approaches. The one-at-a-time with controls allows us to affirm the results 
from the one-at-a-time without controls approach that family income and parental 
education both have strong explanatory power for explaining the effect for private 
school. The model also affirms that parental education has more explanatory power 
than family income.

The difference in the explanation between the one-at-a-time without controls 
approach and the one-at-a-time with controls approach lies in the handling of the part 
of the effect of the independent variable of interest explained by the joint correlation 
between variables. In the first approach, the explanation provided by the joint correla-
tion is allocated to both variables, whereas in the second approach, the explanation is 
allocated to neither variable.

Hybrid Approach

All control variables do not play the same role in the analysis. Some control variables 
are simply correlated with the independent variable of interest. We need to control for 

Table 5.14  Hybrid Approach 
With Math Score 
as Dependent Variable

Independent 
Variable

Model

1 2 3

B B B

Private 5.06* 1.91* 1.78*

Family Income — .13* .13*

2-Yr. Degree — 1.16* 1.14*

4-Yr. Degree — 4.93* 4.79*

Grad. Degree — 7.51* 7.34*

Bio./Step. — — −1.33*

Single — — −.82*

Other Fam. — — −1.87*

Intercept 50.80 47.26 47.92

R2 .035 .153 .157

*p < .05.
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these variables, but they are not high in theoretical interest. Other control variables may 
have direct influences on the independent variable of interest, or they may represent the 
intermediate mechanism by which the independent variable of interest influences the 
dependent variable.

The hybrid approach is similar to the step approach in that the variables are 
added in steps. The first step involves adding control variables that are correlated with 
the independent variable of interest. Later steps add control variables that are the 
focus of the analysis. In this way, the hybrid model resembles a one-at-a-time with 
controls model.

In Table 5.14, the independent variable of interest is attending private school. It is well 
known that those students who attend private school are more likely to come from families 
with higher incomes and have parents with higher levels of education than those who 
attend public school. Higher family income and higher parental education are both known 
to increase chances of attending private school. Model 1 in Table 5.14 includes only the 
variable for private. Model 2 includes family income and parental education. The coeffi-
cient for private decreases from Model 1 to Model 2 as the influences of family income and 
parental education are controlled but remains significantly different from zero.

Suppose the researcher wants to focus on family structure and believes that part of 
the reason attending private school influences math scores is that those who live in less 
advantageous family structures are less likely to attend private school. Family structure 
operates like family income and parental education in that these variables represent 
who goes to private school rather than what happens in private school.

Model 3 controls for family structure. The coefficient for private is 1.78 and still 
significantly different from zero. This represents a decrease from 1.91 in Model 2 and 
a modest 7% decrease in the private coefficient. Once family income and parental 
education are controlled, we find that family structure plays a relatively small role in 
explaining the overall effect of private school on math scores.

Nestedness and Constraints

We can use the concepts of nestedness and constraints to analyze what happens when 
we use control models in regression analysis. Nestedness is the idea that the variables 
in one model are a subset of the variables in another model. In the case of control mod-
els, variables in the small model are a subset of variables in the big model. The fact that 
the small model is nested in the big model allows us to use the F test for improvement 
of model fit to determine whether the additional variables significantly increased R2.10

When we add one variable to the small model to obtain the big model, the t test 
for the added variable will produce the same result as the F test. However, if we wanted 
to test whether adding the three dummy variables for family structure, for example, 
significantly improved model fit, the F test would measure whether adding all three 

10. Allen (1997), pages 113–117, discusses how to use the F test to test changes in model fit 
between nested models. Agresti and Finlay (2009), page 337, shows how to calculate an F test.
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variables at once significantly improved model fit. Sometimes we might add three 
variables to a model, and only one has a significant t test. In this case, we do an F test 
to see whether the one significant variable in the set of three variables improved R2 
enough to warrant adding all three variables.

One approach to setting constraints is to set two coefficients equal. The small and 
big model approach to control modeling is a different way of setting constraints than 
setting coefficients equal. The small model is a constrained big model where certain 
coefficients are set to be equal to zero. We set this constraint by not adding the vari-
ables to the model.

Example Using Logistic Regression

Private schools in the United States are generally considered to be higher quality 
schools than public schools partly as a result of advantages in resources and teacher 
expertise. The analysis in Table 5.15 considers differences in private school attendance 
between non-Hispanic White students and Black students.

Table 5.15  Small and Big Models With 
Private High School as 
Dependent Variable

Independent Variable

Model

1 2

B B

Black −.37* −.02

Other Race/Ethnicity −.34* −.14*

Family Income — .04*

2-Yr. Degree — .36*

4-Yr. Degree. — 1.10*

Grad. Degree — 1.24*

Bio./Step. — −.71*

Single — −.32*

Other Fam. — −.54*

Intercept −1.47 −2.56

–2 log likelihood 17,999.3 15,859.1

*p < .05.

Copyright ©2017 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



70  ❖  ELEMENTARY REGRESSION MODELING

White and Black students differ on factors correlated with private school atten-
dance. The regression analysis in Table 5.15 considers the degree to which Black/
White differences in private school attendance are a result of differences in family 
income, parental education, and family structure. The analysis shows that Black stu-
dents are significantly less likely to attend private school than White students with 
other factors not controlled. The second model in Table 5.15 shows that when family 
income, parental education, and family structure are controlled, the Black/White 
difference is no longer significant.

Table 5.16  Percentages for School Control by 
Independent Variables

School Control

Public Private Total

Race/Ethnicity

White 81.4 18.6 100

Black 86.4 13.6 100

Other 86.0 14.0 100

Family Income ($)

0–35,000 93.6 6.4 100

36,000–75,000 88.7 11.3 100

76,000–115,000 80.2 19.8 100

116,000+ 66.2 33.8 100

Parental Educ.

< HS or HS Only 93.0 7.0 100

2-Yr. Degree 89.5 10.5 100

4-Yr. Degree 76.0 24.0 100

Grad. Degree 68.6 31.4 100

Family Structure

Two Bio. Parents 78.9 21.1 100

Bio./Step. 90.1 9.9 100

Single 88.4 11.6 100

Other Fam. 90.3 9.9 100
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A preliminary step in conducting a control modeling analysis is to examine a 
bivariate analysis for the relationship between the independent variables and the 
dependent variable and then to examine a bivariate analysis for the relationship 
between the independent variable of interest and the control variables. Table 5.16 
shows percentages attending private school by race/ethnicity, family income, parental 
education, and family structure. The results show that Blacks have a smaller percentage 
attending private school than Whites. The control variables are also strongly related to 
the dependent variable. Those with higher family incomes are more likely to attend 
than those with lower family incomes, those with more educated parents are more 
likely to attend than those with less educated parents, and those in two-parent families 
are more likely to attend than those not in two-parent families.

Table 5.17  Percentages for Control Variables by 
Race/Ethnicity

Race/Ethnicity

White Black Other

Family Income ($)

0–35,000 20.9 38.7 33.4

36,000–75,000 30.9 34.5 31.7

76,000–115,000 22.5 14.0 17.0

116,000+ 25.7 12.8 17.9

Total 100 100 100

Parental Educ.

< HS or HS Only 31.0 40.0 41.5

2-Yr. Degree 20.7 25.0 19.5

4-Yr. Degree 27.1 20.4 22.4

Grad. Degree 21.2 14.6 16.6

Total 100 100 100

Family Structure

Two Bio. Parents 59.6 44.9 55.9

Bio./Step. 13.9 13.6 14.2

Single 18.8 28.9 20.6

Other Fam. 7.7 12.6 9.3

Total 100 100 100
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Table 5.17 shows that the control variables are also related to the independent 
variable of interest. Blacks are less likely to have higher family incomes than are 
Whites, Blacks are less likely to have parents with a higher education than Whites, 
and Blacks are less likely to be in two-parent families than are Whites. The results 
of the bivariate analysis show that family income, parental education, and family 
structure are related to the dependent variable and that Blacks are disadvantaged on 
these variables compared with Whites. The results of the bivariate analysis suggest 
that controlling for family income, parental education, and family structure should 
explain part of the disadvantage that Blacks have compared with Whites in attend-
ing private school. The next question then is, to what degree do the control variables 
explain the disadvantage in attending private school for Blacks compared with 
Whites?

Table 5.18 shows the one-at-a-time model without controls. When we compare 
Models 2, 3, and 4 with Model 1, we see that although the coefficient for the 

Table 5.18  One-at-a-Time Without Controls With Private High 
School as Dependent Variable

Independent 
Variable

Model

1 2 3 4 5

B B B B B

Black −.37* −.13 −.19* −.27* −.02

Other Race/
Ethnicity

−.34* −.21* −.21* −.32* −.14*

Family Income — .06* — — .04*

2-Yr. Degree — — .42* — .36*

4-Yr. Degree. — — 1.41* — 1.10*

Grad. Degree — — 1.78* — 1.24*

Bio./Step. — — — −.89* −.71*

Single — — — −.69* −.32*

Other Fam. — — — −.89* −.54*

Intercept −1.47 −2.16 −2.48 −1.20 −2.56

–2 log-
likelihood

17,999.3 16,639.8 16,660.5 17,606.9 15,859.1

*p < .05.
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Black/White difference decreases when each control variable was added to the 
model, the decrease was largest for family income (−.37 to −.13). In fact, the Black/
White difference was not significant when family income was controlled. However, 
the Black/White difference decreased by almost one half when parental education 
was controlled, so parental education is also an important explanatory factor (−.37 to 
−.19). In addition, the Black/White difference decreased by about one third when 
family structure was controlled so family structure also has noticeable explanatory 
power (−.37 to −.27). The drawback to this one-at-a-time without controls analysis is 
that family income, parental education, and family structure are related to one 
another so they share explanatory power and each one captures that shared explana-
tory power when added to the model separately.

Table 5.19 shows the one-at-a-time with controls approach. In this case, 
Models 2, 3, and 4 are compared with Model 5. Again, the biggest decrease in the 
Black/White coefficient occurs when family income is controlled. The Black 

Table 5.19  One-at-a-Time With Controls With Private High School as 
Dependent Variable

Independent 
Variable

Model

1 2 3 4 5

B B B B B

Black −.37* −.13 −.07 −.05 −.02

Other Race/
Ethnicity

−.34* −.20* −.20* −.15* −.14*

Family Income — — .06* .04* .04*

2-Yr. Degree — .41* — .36* .36*

4-Yr. Degree. — 1.34* — 1.15* 1.10*

Grad. Degree — 1.68* — 1.30* 1.24*

Bio./Step. — −.76* −.79* — −.71*

Single — −.43* −.47* — −.32*

Other Fam. — −.65* −.67* — −.54*

Intercept −1.47 −2.23 −1.91 −2.77 −2.56

–2 log-likelihood 17,999.3 16,455.8 16,414.5 16,010.4 15,859.1

*p < .05.
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coefficient in Model 2 is −.19 and decreases to −.02 in Model 5 for a decrease in 
the coefficient of .17. The Black coefficient also decreases when parental educa-
tion is added, going from −.07 in Model 3 to −.02 in Model 5 for a decrease of 
.05. The decrease in the Black coefficient is smallest when family structure is 
added, going from −.05 in Model 4 to −.02 in Model 5 for a decrease of .03.

The analyses of the relative contributions of family income, parental education, 
and family structure that used the one-at-a-time without controls approach and the 
one-at-a-time with control approach were similar in saying the family income had the 
strongest explanatory power in explaining Black/White differences in attending pri-
vate school. Both approaches showed that parental education was next in explanatory 
power followed by family structure. However, the relative amount of the Black coeffi-
cient explained by each variable was different in each approach as a result of the large 
amount of influence shared by the three factors.

Table 5.20 illustrates a step approach. The focus is on what role does family struc-
ture play in explaining the lower chances of attending private school for Black 
students compared with White students. First, family income and parental education 
are controlled since both variables are related to private school attendance and to 
family structure. Model 2 shows that the Black/White difference in private school 
attendance decreases to nonsignificance when family income and parental education 

Table 5.20  Step Model With Private High School as 
Dependent Variable

Independent Variable

Model

1 2 3

B B B

Black −.37* −.05 −.02

Other Race/Ethnicity −.34* −.15* −.14*

Family Income — .04* .04*

2-Yr. Degree — .36* .36*

4-Yr. Degree. — 1.15* 1.10*

Grad. Degree — 1.30* 1.24*

Bio./Step. — — −.71*

Single — — −.32*

Other Fam. — — −.54*

Intercept −1.47 −2.77 −2.56

–2 log-likelihood 17,999.3 16,010.4 15,859.1

*p < .05.
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are controlled. Model 3 shows that adding family structure to the model that includes 
family income and parental education seems to lead to little further decrease in the 
Black/White coefficient.

The step model allows the variables added in the earlier steps to explain more of 
the coefficient for the independent variable of interest than the variables added in 
later steps as a result of the explanatory power of shared variation being captured in 
earlier steps. The contribution in the step model of adding family structure to the 
model in explaining the Black coefficient for Blacks of .03 [(−.02) − (−.05) = .03] is 
small compared with the joint contribution of family income and parental education 
[(−.05) − (−.37) = .32]. However, the contribution of family structure in the one-at-
time without control, while the smallest of the three, was relatively larger. Thus, I 
suggest that a researcher explore different control modeling approaches so that the 
researcher has a firm idea about the relative contributions of the control variables 
used in the analysis under different circumstances before making conclusions.

Summary

Control modeling is the most widely used regression modeling approach that I discuss in this book. 
Control modeling starts with the concept of an independent variable of interest. The objective of 
regression modeling is to eliminate related influences that might explain the relationship, as measured 
by a regression coefficient, between the independent variable of interest and the dependent variable.

Standardization is a method used by demographers to hold constant the influence of a control 
variable on the relationship between an independent variable of interest and a dependent variable. 
Although demographic standardization does not produce the same result as using a control vari-
able in dummy variable regression, the result from standardization is close enough that we can 
use the underlying concept in demographic standardization to understand control in regression 
analysis. That concept from demographic standardization is that control involves examining the 
difference between two groups on a dependent variable by making the underlying distribution on 
a third control variable equal for both groups.

A key underlying issue in control modeling is allocating the joint influence of two control 
variables in explaining the influence of an independent variable of interest on a dependent vari-
able. The difficulty is there is no accepted method for allocating the joint influence of two control 
variables. If two variables are related to one another and to a dependent variable, then the first 
variable entered as a control variable will capture its unique influence and the joint influence that 
the variable shares with a second control variable.

The one-at-a time without controls approach to control modeling allows each control variable 
to capture its unique influence in explaining the effect of the independent variable of interest and 
any joint influences that it shares with any other control variable. On the other hand, the one-at-a 
time with controls approach allows each control variable only to capture its unique influence in 
explaining the effect of the independent variable of interest. The control variables added first in the 
step approach capture the joint influence of variables added in subsequent steps. Thus, the order 
that variables are added in the step approach has a great influence on the overall interpretation of 
the influence of control variables in explaining the independent variable of interest.
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Researchers usually use only one control modeling approach to discuss their results in a 
research paper. However, I suggest that researchers carefully examine the results obtained by using 
alternative regression modeling approaches to understand the impact that adding control variables 
in some particular order had on the nature of the final result.

Key Concepts

control modeling: a modeling approach that involves first estimating the coefficient for an independent 
variable of interest and then adding control variables to take into account related influences.

elaboration: examining a relationship between two variables within categories of a third variable to control 
for the influence of the third variable.

demographic standardization: starts with the concept of a weighted mean where an overall mean is viewed 
as the sum of subgroup means weighted by the proportions for the subgroups; standardization involves cre-
ating an adjusted weighted mean for one group by using the subgroup proportions from a second group.

small and big models: a small model is a regression model where the variables included in the model are a 
subset of the variables included in a big model.

one-at-a-time without controls: a regression modeling procedure where only one control variable at a time 
is added to the small model, which includes the independent variable of interest.

step approach: a regression modeling procedure were one control variable is first added to the small model, 
which includes the independent variable of interest and then a second control variable is added to the second 
model to create a third model.

one-at-a-time with controls: a regression modeling procedure were only one control variable at a time is 
added to a smaller model, which includes the independent variable of interest and all other control variables.

hybrid approach: a regression modeling procedure that combines the step model regression modeling 
approach with the one-at-a-time with controls approach.

Chapter Exercises

1. Replicate the regressions and the table for the “one-at-a-time without controls” example in 
Table 5.10 by using X2TXMTSCOR, PRIVATE, FAMINC, TWOYR, FOURYR, GRAD, STEP, 
SINGLE, and FAMOTH.

2. Conduct a “one-at-a-time without controls” analysis like in Table 5.10, and create a table to pre-
sent the results. Include a bivariate preliminary analysis in your answer. Use the dummy variable 
for two-parent family as the independent variable of interest and family income, 2-year degree, 
4-year degree, graduate degree, and private as control variables. Use X2TXMTSCOR, TWOPAR, 
FAMINC, PAREDFOUR, PRIVATE, TWOYR, FOURYR, and GRAD in the analysis.

What is the relationship between the independent variables and the dependent variable? What 
is the relationship between the independent variable of interest and the control variables? What 
percentage of the coefficient for the independent variable of interest was explained by con-
trolling for all three sets of variables?
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Use the following formula to calculate that percentage:

big model coefficient small del coefficient
small model c

− mo
ooefficient ×100  

What percentage of the coefficient for the independent variable of interest was explained by 
controlling for each set of variables separately?

3. Conduct a “hybrid” analysis like in Table 5.14, create a table to present the results, and describe 
your findings. Use top 25% in math as the dependent variable, and use the dummy variable for 
two-parent family as the independent variable of interest; add family income, 2-year degree, 
4-year degree, and graduate degree in the second model, and add private in the third model as 
control variables. Use HIGHMATH, TWOPAR, FAMINC, PAREDFOUR, PRIVATE, TWOYR, 
FOURYR, and GRAD in the analysis.

What is the relationship between the independent variables and the dependent variable? What is 
the relationship between the independent variable of interest and the control variables? What 
percentage of the coefficient for the independent variable of interest was explained by con-
trolling for each set of variables in this stepwise manner?
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