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Interactions as Conditional Differences

In additive regression models, the coefficients for dummy independent variables
capture differences between groups on the dependent variable, whereas the coeffi-
cients for interval independent variables capture the additional contribution of each
unit of the interval variable. Occasionally, researchers consider interactive effects
between two independent variables on the dependent variable. This requires modeling
interactions.

Table 6.1 shows the means for math scores. The pattern in math scores is that those
with a college-graduate parent score higher than those not with a college-graduate
parent and those living with two biological parents score higher than those not living
with two biological parents. The general pattern for the differences on the parental
education variable holds within family structure categories. At the same time, the gen-
eral pattern for differences on the family structure variable also holds within categories
of the parental education variable.

Table 6.2 shows differences in math scores between categories of the family structure
variable within categories of the parental education variable. The two-biological-parent
category is the contrast group. The means for biological-parent/stepparent category
and the single-parent category are lower than the mean for the two-biological-parent
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Table 6.1 Mean Math Scores by Family Structure and

College-Graduate Parent

Family Structure | Not College Grad. College Grad. Total
Two Bio. 49.27 56.28 52.88
Bio./Step. 48.18 53.72 50.32 L
Single 48.19 54.44 50.14 L
Other Fam. 46.95 53.83 49.10 |
Total 48.59 55.54 51.63

L O

Table 6.2 Differences in Mean Math Scores by Family Structure and
College-Graduate Parent

Difference in
Family Structure Not College Grad. College Grad. Differences
Two Bio. — — —
Bio./Step. -1.09 —2.56 -1.47
Single —-1.08 —-1.84 -.76
Other Fam. =2.32 —2.45 —-.13
-

category both among those not with a college-graduate parent and among those with a
college-graduate parent.

The pattern of mean differences by family structure can be compared for the two
groups by taking the difference in the differences. This calculation shows that the
mean differences by family structure are more negative in the college-graduate-parent
category than in the not-college-graduate-parent category. The differences in the dif-
ferences show whether there is interaction. The idea of interaction, then, is simply that
mean differences on the first independent variable are conditional on the second inde-
pendent variable.

Another way to compare is to switch which variable is used as the “conditioning”
variable. Since the parental education variable was the conditioning variable in Table 6.2,
I use family structure as the conditioning variable in Table 6.3.

Table 6.3 shows that although those not with a college-graduate parent have a lower
math score than those with a college-graduate parent, the difference is less in the
biological-parent/stepparent and single-parent categories than in the two-biological-
parent category. These differences in differences are shown in the last column.

Note that the differences in differences are the same for when I use the parental
education variable as the conditioning variable as when I use the family structure

Copyright ©2017 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Modeling Interactions ** 81

Table 6.3 Differences in Mean Math Scores by Family Structure and
College-Graduate Parent

Family Structure | Not College Grad. College Grad. | Difference in Differences
Two Bio. — 7.01 —

Bio./Step. — 5.54 —1.47 b
Single — 6.25 -.76

Other Fam. — 6.88 —-.13

variable as the conditioning variable. Thus, the same set of differences in differences
can be interpreted in two different ways depending on what variable is chosen as the
conditioning variable.

Interactions Between Dummy Variables

The first step in considering interactions between dummy variables in regression is to
examine the additive model shown in Equation 1. This model includes C,, which is “1”
if college graduate parent and “07 if not. ' The model also includes family structure
variables for biological parent/stepparent, single parent, and other family. C;, not-col-
lege-graduate parent, and F,, two biological parents, are the excluded variables:

Y=a+0bC+bF,+bF,+bF, (1)

The following matrices show the data matrices for the additive model. The essence
of an additive model is that the effects of one variable are not conditioned on the values
of a second variable. We could say the values on one variable are independent of the val-
ues of the second. The coefficient for the intercept is the mean for not-college-graduate/
two biological parents:

u ¢ F, F, F,
1 0 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1

Copyright ©2017 by SAGE Publications, Inc.
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



82 < ELEMENTARY REGRESSION MODELING

Equation 2 includes interaction variables. We can create the interactions variable
between two sets of dummy variables by multiplying all the variables in the first set by
all the variables in the second set:

Y=a+bC +b,F,+bF,+bF,+bCF,+bCF,+bCF (2)
U C, F, F, F, C,F, C,F, CiE,
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 1 0 0
1 1 0 1 0 0 1 0
1 1 0 0 1 0 0 1

The interaction variables are nested in what we might call the additive variables.
All three interaction variables are nested within C,. In addition, C,F, is nested within
F,, C/F, is nested within F,, and C|F, is nested within F,. As you can see, the interaction
variables are nested in two different additive variables. The effects of family structure
depend on parental education, and theeffects of parental education depend on family
structure. Thus, there is a decision about what is the “conditioning” variable.

The differences as captured by the interaction variables can be viewed in two
ways. They can be viewed as capturing differences in parental education effects by
family structure or as capturing differences in family structure effects by parental
education.

In addition to creating an equation that models differences in effects for groups,
we can create an equation that models the effects within each group. Equation 3 esti-
mates the effects of family structure within categories of parental education. The
change from the previous equation is that rather than using the F,, F,, and F, variables,
the equation includes C F,, C/F,,and C/F,:

Y=a+0bC+b,CF,+bCF+bCF,+bCF,+bCF+bCF, (3)

Equations 2 and 3 take different approaches to modeling interactions. Equation 2
estimates the effects of family structure for those not with a college-graduate parent
with the F,, F,, and F, coefficients and then the difference from those effects for those
with a college-graduate parent with the C F,, C|F,, and C F, coefficients. In contrast,
Equation 3 estimates the effects of parental structure for those not with a college-
graduate parent with the C F,, C;F,,and CF, coefficients and then the effects of family
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structure for those with a college-graduate parent with the C\F,, C,F,,and C F, coeffi-
cients. I refer to the first equation as a “standard interaction model” and to the second
equation as a “within-group effects” model.'

We can see the relationship of the interaction variables in the within-group effects
model in the following matrices. The C F,, C F;,and C F, variables and the C,F,, C\F,,
and C,F, are not nested within one another. What is happening is the F, variable has
been split into two parts with C F, being those in both category C, and category F, and
with C,F, being those in both category C, and category F,. Thus, in the within-group
effects model, we split the F, variable into two parts, one for those in G, and one for
those in C,. The same is true for F, and F,.

The within-group effects model is the model that contains the coefficients that
the standard interaction model is testing the differences between.* The primary rea-
son that researchers may have difficulty interpreting interaction coefficients in the
standard interaction model is a lack of clarity about the underlying within-group
effects model:

U C, c,F, CJF, CJF/ “CJF, CF, C,F,
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1

Table 6.4 shows results from regression analysis that examines the effects of
family structure and parental education on math scores. Model 1 is the additive
model and shows that those with a college-graduate parent score higher in math
than those not with a college-graduate parent. The model also shows that those liv-
ing with two biological parents score higher in math than those not living with two
biological parents. An additive model assumes that the effect of family structure is
the same at all levels of parental education. For example, the disadvantage of living

1. Gordon (2010), pages 253—277, presents an alternative discussion of the standard interaction
model using the concept of conditional means.

2. Demaris (2004), page 147; Jaccard (1990), pages 42—45; and Hardy (1993), pages 44—46, show
how to calculate within-group effects by hand but do not show how to use dummy variables
to estimate those coefficients. The disadvantage of simply adding coefficients to calculate
within-group effects is that no standard error for the coefficient is created.
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Table 6.4 Interactions Between Family Structure and
College-Graduate Parent With Math Score as

Dependent Variable
Model

1 2 3
Independent Variable B B B
College-Graduate Parent 6.65% 7.01% 7.01*
Bio./Step. -1.70* —-1.09* —
Single -1.39% —-1.08* —
Other Fam. —2.43% —2.32% —
Not College Grad. x Bio./Step. — — -1.09*
Not College Grad. x Single — — —-1.08%
Not College Grad. x Other Fam. — — -2.32%
College Grad. x Bio./Step. — —1.47* —2.56*
College Grad. x Single — —.76% —1.84*
College Grad. x Other Fam. — -13 —2.45%
Intercept 49.45 49.27 49.27
R? 124 125 125

p<.05.

in a single-parent family would be the same despite whether the student’s parent had
a college degree.

Model 2/in Table 6.4 is the standard interaction model.” A common way of misin-
terpreting the standard interaction model is to discuss the model as one would for
control models. An example of such a misinterpretation would be to say “the effect
for college graduate parent increased going from Model 1 to Model 2 and the effects
for family structure decreased when the interactions were controlled” Although the
standard interaction model is created by adding variables to the additive model, what
happens when those variables are added is definitely not like what happens when vari-
ables are added in control modeling.

To understand properly what is happening when the interaction variables are
added to the additive model, we should first estimate Model 3, which is the within-
group effects model. Model 3 in this example takes the family structure variables in

3. Linneman (2014), Chapter 12, provides a basic introduction to calculating and interpreting
interactions in regression.
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Model 1 and splits them into two sets of effects, one set for those not with a college-
graduate parent and one for those with a college-graduate parent. Model 3 shows that
the family structure effects are more negative for those with a college-graduate parent
than for those not with a college-graduate parent. What Model 3 does not tell us is
whether the two sets of coefficients are significantly different from one another. If the
two sets are not significantly different, then Model 1 is the correct specification. If
the two sets of coefficients are significantly different, then Model 3 is the correct
specification.

Thus, Model 2 tests whether the family structure effects for those not with a
college-graduate parent are different from the family structure effects for those with a
college-graduate parent. Two coefficients for the interaction variables in Model 2 are
significantly different from zero. This shows that the effects for family structure for
those with a college-graduate parent are significantly more negative than the coeffi-
cients for those not with a college-graduate parent.

So far, we have examined the effects of family structure conditioned on parental
education. The second way to consider interactions is to examine the effects of
parental education conditioned on family structure-as shown in Equation 4 and the
following matrices:

Y=a+bF,+b,F,+b,F,+bC+bCF,+bCF,+bCF, (4)
U F, F, F, C, C,F, c,F, C,F,
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1

The coefficient for C, in Equation 4 measures the effect of parental education for
those living with two parents. The coefficients for C F,, C/F,, and C F, measure the
additional effect of parental education in the other three categories.

Equation 5 shows the within-group effects model where the parental educa-
tion effect is conditioned on family structure. It uses C,F, rather than C, as in
Equation 4. The estimated coefficient for C, in Equation 4 and the coefficient
for C,F, in Equation 5 are the same, and both capture the parental education effect
for those with two biological parents. However, Equation 5 estimates the parental
education effect for those in each other family structure type rather than the
differences for those types:
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Y=a+bF,+bF,+b,F,+b,CF+bCF,+bCF+bCF, (5)
9] F, F, F, C.F, C.F, C.F, C.F,
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1

The C,F,, C\F,, C/F,, and C/F, variables in the previous matrices are the variables
that result when the C, variable is subdivided into parts for each family structure cate-
gory. Table 6.5 shows the results for the within-group effects model that uses the subdi-
vided variables. In Model 3, the parental education effects appear less positive for those
not living with two biological parents. The standard interaction model, Model 2, shows
that the parental education effects for those not living with two biological parents are

Table 6.5 Interactions Between Family Structure and
College-Graduate Parent With Math Score

as Dependent Variable

Model

Independent 1 2 3
Variable B B B
Bio./Step. -1.70% —-1.09* —-1.09*
Single —1.39* —-1.08% —-1.08%
Other Fam. —2.43% —2.32% —2.32%
College-Graduate Parent 6.65% 7.01* —
Two Bio. x College Grad. — — 7.01*
Bio./Step. x College Grad. — —1.47% 5.54*
Single x College Grad. — —.76* 6.25%
Other Fam. x College Grad. — —-.13 6.88%
Intercept 49.45 49.27 49.27
R’ 124 125 125

p<.05.
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significantly less than the parental education effect for those living with two biological
parents. The significant interactions in Model 2 indicate that Model 3 is the correct
specification for parental education effects, not Model 1.

I have shown that although there is one standard interaction model for the interac-
tion between two sets of dummy variables, there are two different within-group effects
models. In the examples in Table 6.5, one within-group effects model showed that
family structure effects are greater for those living with a college-educated parent than
for those not. The other within-group effects model showed that the parental education
effect was more for those living with two biological parents than for those not.

These are two ways of addressing the same underlying issue. To say.that the disad-
vantage of not living with two biological parents is more for those living with a college-
educated parent is the same as saying that the advantage of living with a college-educated
parent is less for those not living with two biological parents. Depending on which vari-
able that we choose as the conditioning variable, we can interpret the interaction results
in two ways. I reiterate that it is imperative to decide on which variable is the conditioning
variable to interpret a standard interaction model properly.

In the previous discussion, I outlined two typesof interaction models, the standard
interaction model and the within-group effects model. Equation 6 is a third type of
model that I refer to as the “all differences” interaction model. This model estimates
only first-order differences.

The parental education variable has two categories, and the family structure variable
has four categories. Thus, there are-eight combinations of the two variables. The all-
differences interaction model estimates the difference in means for seven of the catego-
ries from one of the categories, the one chosen as the excluded variable. In Equation 6,
the C,F, variable is excluded.

The data matrices for the equation include seven interaction variables and the unit
vector. The interaction variables are nested only within the unit vector. The coefficients
for the interactionvariables estimate the difference in the mean for the group captured
by the interaction variable and the mean for the contrast group. The all-differences
interaction model is a type of additive model because the interaction variables are
not nested:

Y=a+bCF,+b,_CF,+b,CF,+b,CF+bCF,+bCF,+bCF, (6)

U C,F, CJF, CJF, CF  CF, CF, CF,

O N == Yy S Gy R Y
CO OO O
oloNoNoNolSNoNe)
cCOoOO0OoORrOOO
COORrROOOO
CORrPO0OO0OOOO
O OO0 O0C OO
EYeoNololoRoNoNe)
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There is one more model that involves interactions between two set of dummy
variables, and I refer to this model as the “all-means” model. In this example, the all-
means model involves including all eight interaction variables capturing the interaction
between parental education and family structure. The unit vector is not included. The
coefficients in this model estimate the mean for each subgroup, hence, the name “all-
means model” This is not a model that we would estimate for research purposes.
However, the model is useful for purposes of understanding interactions and the role of
the intercept.

When we look at the data matrices that follow Equation 7, we observe that
none of the variables is nested within any other variable and that is why the model
would estimate all means. Substituting the unit vector for any one of the interaction
variables would lead to estimation of differences from the mean for the excluded
category:

Y=bCF, +b,CF,+ b,CF,+ b,CF,+b,CF+bCF,+b,CF,+b,CF, (7)

COFl COF2 COF3 COF4 ClFl C1F2 C1F3 ch4
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

Table 6.6 shows the results for the all-differences model and the all-means
model. The all-differences model includes seven interaction variables and excludes
the variable for not-college-graduate parent/two biological parents. The unit vector
is included instead of this variable. As a result, the intercept is the mean for that
category.

The all-means model includes the dummy variable for not-college-graduate par-
ent/two biological parents in place of the unit vector and, thus, estimates all means.
The dummy variable coefficients in Model 1 can be obtained by subtracting the
means in Model 2 from mean for the not-college-graduate-parent/two-biological-
parent group.
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Table 6.6 Interactions Between Family Structure

and College-Graduate Parent With
Math Score as Dependent Variable

Model
1

Independent Variable B B
Intercept 49.27* — P
Not College Grad. x Two Bio. — 49.27 5
Not College Grad. x Bio./Step. -1.09* 48.18

Not College Grad. x Single —-1.08* 48.19

Not College Grad. x Other Fam. | —2.32* 46.95
College Grad. x Two Bio. 7.00* 56.27
College Grad. x Bio./Step. 4.44* 53.71
College Grad. x Single 5.17* 54.44
College Grad. x-Other Fam. 4.55* 53.82

R 125 —

p <.05.

Interactions Between Dummy Variables and an Interval Variable

Modeling interactions between a set of dummy independent variables and an interval-
level independent variable is simpler than the case of interactions between two sets of
dummy variables because there is only one within-group effects model to consider.*

4. This book does not discuss interactions between two interval variables. I find that these
interactions are difficult to interpret. As an alternative, I suggest dividing into categories the
interval variable that it is conditioned on and then using the procedure for interactions
between dummy variables and an interval variable. For a brief discussion of interactions
between interval variables, see Gordon (2010), and for more extensive treatments, see Jaccard
(1990, 2001).
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Equation 8 is the standard interaction model for the interaction between family struc-
ture and socioeconomic status (SES). F, is two biological parents, F, is biological par-
ent/stepparent, F, is single parent, and F, is other family. SES is parental SES quartile
and has four values:

Y=a+bF,+bF,+bF,+bSES +b.F,SES + b F,SES + b F,SES (8)

SES F,SES F,SES .'E,SES

PR RRRERERERERRR R R
OO0 OORHRRPRREEFPOOOO
OCO0OO0OOHRPHRPOOOOOOOO
PFRFRPEFOO0O000000O00 OO0
BSWNEFE D WNRE D WN RS WN -
OO0 OOWNROOOO
OCOO0OOBWNHROOOOOOOO
B WNHFOOOOOOODOOO OO

In Equation 8, the interactions are formed by multiplying each dummy variable
times the interval variable. Examination of the data matrices that follow Equation 8
shows that the interaction variables are all nested within the SES variable. This
means the coefficients for the interaction variables will estimate differences from the
coefficient for SES. The coefficient for the SES variable will capture the SES effect
for the subgroup not covered by the interactions, those in two-biological-parent
families:

Y=a+ bF,+b,F,+ b,F,+ b,F SES + b.F,SES + b.F,SES + b F,SES )

Equation 9 for the within-group effects model uses F,SES rather than SES as in
the standard interaction model. Examination of the following data matrices shows
that the within-group effects model basically takes the interval SES variable and
breaks it into four subparts, one for each family structure group:
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U F, F, F, F,SES F,SES F,SES F,SES
1 0 0 0 1 0 0 0
1 0 0 0 2 0 0 0
1 0 0 0 3 0 0 0
1 0 0 0 4 0 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 2 0 0
1 1 0 0 0 3 0 0
1 1 0 0 0 4 0 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 2 0
1 0 1 0 0 0 3 0
1 0 1 0 0 0 4 0
1 0 0 1 0 0 0 1
1 0 0 1 0 0 0 2
1 0 0 1 0 0 0 3
1 0 0 1 0 0 0 4

Model 3 in Table 6.7 is the within-group effects interaction model, and the SES
coefficient is largest for two biological parents and smaller for the other three groups.

Table 6.7 Interactions Between Family
Structure and Parental SES With

Math Score as Dependent Variable

Model
1 2 3
Independent Variable B B B
Bio./Step. —-1.58* .04 .04
Single —-.53% .64 .64
Other Fam. —1.59% —1.24*% | —1.24%
SES QUAR 3.32% 3.52* —
Two Bio. x SES QUAR — — 3.52*
Bio./Step. x SES QUAR — —.64* 2.88*
Single x SES QUAR — —.51% 3.01%
Other Fam. x SES QUAR — -.11 3.41%
Intercept 43.75 4323 | 43.23
R 147 .147 .147

p<.05.
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Model 2 is the standard interaction model and shows that the SES coefficient for other
family is not significantly different than the coefficient for two biological parents,
whereas the coefficients for the other two groups are significantly smaller than the
coefficient for two biological parents.

It is possible to estimate a third-order difference in a two-way interaction model. A
first-order difference is a simple difference. A second-order difference is a difference in
a difference. Thus, a third-order difference is a difference in a difference in a difference.
In Equations 10 and 11, the INTSUM variable is used to estimate third-order differences.
INTSUM sums up the three interaction variables:

Y=a+bF,+b,F,+ b,F,+ b,SES + bINTSUM + bF,SES + b.F,SES (10)

INTSUM = F,SES + F,SES + F,SES (11)

U F, F, F, SES INTSUM F.SES F,SES
1 0 0 0 1 0 0 0

1 0 0 0 2 0 0 0

1 0 0 0 3 0 0 0

1 0 0 0 4 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 2 2 0 0

1 1 0 0 3 3 0 0

1 1 0 0 4 4 0 0

1 0 1 0 1 1 1 0

1 0 1 0 2 2 2 0

1 0 1 0 3 3 3 0

1 0 1 0 4 4 4 0

1 0 0 1 1 1 0 1

1 0 0 1 2 2 0 2

1 0 0 1 3 3 0 3
2 0 0 1 4 4 0 4

I replace F,SES in Equation 9 with INTSUM in Equation 10. The coefficients for
F,SES, F,SES, and F,SES in Equation 9 estimated interaction effects. However, the F.SES
and F,SES variables in Equations 10 and 11 are nested in the INTSUM variable. Thus,
each coefficient now estimates the difference in the interaction effect for that variable
from the interaction effect for F,SES.

Model 1 in Table 6.8 is a standard interaction model and estimates the interaction
of SES quartile with family structure. The three family structure variables are multi-
plied times SES to calculate the interaction variables. In Model 2, the Bio./Step. x SES
variable is replaced by the INTSUM variable, which is the sum of the three interaction
variables in Model 1.
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Table 6.8 Interactions Between Family
Structure and Parental SES With

Math Score as Dependent
Variable
Model
1 2

Independent Variable B B
Bio./Step. 03 03 B
Single 64* .64% L
Other Fam. -1.24% | —1.24* b
SES QUARTILE 3.52* 3.52%
Bio./Step. x SES QUAR. —.64* —
INTSUM — —.64*
Single x SES QUAR. —.51* -.13
Other Fam. x SES QUAR. -11 .53
Intercept 43.23 43.23
R 147 .147

p <.05.

The coefficient for the INTSUM variable in Model 2 of Table 6.8 is the same as the
coefficient for Bio./Step. x SES in Model 1. When we replace a standard interaction vari-
able such as Bio./Step. x SES with a “summer” variable like INTSUM, the summer variable
will have the same coefficient as the variable that it replaced. The coefficients that change
are the variables that previously were not nested in the Bio./Step. x SES variable but are
now nested in the INTSUM variable. The coefficients for Single x SES and Other x SES,
which estimated interaction effects like the coefficient for Bio./Step. x SES in Model 1,
now estimate differences from the interaction effect for Bio./Step. x SES in Model 2.

Although the within-group effects model and the standard interaction model are
basic tools for analyzing interactions, using a variable like INTSUM is likely to be a rare
occurrence for most researchers. However, the example using the INTSUM variable
illustrates how a “summer” variable can estimate a third-order difference, a difference
of a difference of a difference. Use of the INTSUM variable also illustrates a general
property of interaction variables. That is, although we can create only one set of inter-
action variables with two independent variables, the number of models we can create
with this set of interaction variables is varied. When someone says, “Run the interac-
tions,” the appropriate response should be “Which model?”
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Three-Way Interactions

In regression modeling, researchers typically use control models, but they also often
use two-way interaction models. Three-way interactions models are rare in published
research. The many additional variables in a three-way interaction models make inter-
pretation difficult. Where would a researcher even start in interpreting such a model?
Model 1 in Table 6.9 has four dummy variables and is an additive model. Model 2 adds
seven interaction variables and is a three-way interaction model and seems complex.
Model 2 has a mixture of variables, and it is not immediately obvious how to analyze
such a complex model.

Table 6.9 Interactions Among Race/Ethnicity,

Female, and College-Graduate Parent
With Math Score as Dependent Variable

Model

1 2
Independent Variable B B
Black —4.54* —-3.68%
Other Race/Ethnicity .16 .06
College-Graduate Parent 6.80% 7.17*
Female -.13 25
College Grad. x Female — —.84*
Black x College Grad. — —-3.68*
Other x College Grad. — 71
Black x Female — —-.08
Other x Female — —.44
Black x College Grad. x Fem. — 2.87*
Other x College Grad. x Fem. — .25
Intercept 49.13 48.96
R 136 138

p<.05.
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The challenge of interpreting a three-way interaction model is illustrated in the mod-
els in Table 6.9. The additive model includes two dummy variables for race/ethnicity, a
single dummy variable for college-graduate parent, and a single dummy variable for
female. The three way-interaction model then adds seven interaction variables to the
additive model. There is one two-way interaction variable for the interaction between
college-graduate parent and female. There are two two-way interaction variables for the
interaction between race/ethnicity and college-graduate parent. There are two two-way
interactions for the interaction between race/ethnicity and female. Finally, there-are two
interaction variables for the three-way interaction among race/ethnicity, college-graduate
parent, and female. The three-way interaction model more than doubles the number of
variables in the additive model. Interpreting this model seems difficult as a result of the
number and variety of variables.

In two-way interaction models, the standard interaction model estimates differ-
ences between coefficients in the within-group effects model. Thus, it is necessary to
choose the within-group effects model of interest to interpret the standard interaction
model properly. We can take a similar approach in working with a three-way interac-
tion model.” There will also be a standard interaction model and a within-group effects
model in the three-way interaction case.

Specifying the within-group model for three-way interactions involves focusing
on one set of two-way interactions. Although there are three alternative two-way mod-
els in this example, the focus in Model 2 in Table 6.10 is on the two-way interaction
between college-graduate parent and female. Model 3 is the same as the three-way
interaction model in Table 6.9, but the variables are listed in a specific order. The three-
way interaction model can be viewed as taking the two additive variables and the two-
way interaction for college-graduate parent and female and then interacting those
three variables with race/ethnicity.

Model 1 in Table 6.11 is the standard interaction model. At the top of the col-
umn are the variables for Black and other, which will serve as the conditioning vari-
ables. Next are variables for college-graduate parent, female, and the two-way
interaction between those variables. Again, the focus is on the two-way interaction
between college-graduate parent and female when interpreting the three-way inter-
action analysis. Model 1 also includes six additional variables that capture the three-
way interaction.

Within Model 2 in Table 6.11 are standard interaction models for the interaction
between college-graduate parent and female for Whites, Blacks, and other, sepa-
rately. Thus, Model 1 can be viewed as testing whether the interactions between
college-graduate parent and female are different for Blacks and other as compared
with Whites. Model 2, on the other hand, shows the two-way interaction model for
each race/ethnic group.

5. Jaccard (2001), pages 24-30, suggests that one approach to making three-way interactions
more interpretable is to view three-way interactions as two-way interactions conditioned on a
third variable.
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Table 6.10 Interactions Among Race/Ethnicity, Female,

and College-Graduate Parent With Math Score

as Dependent Variable
Model
1 2 3
Independent Variable B B B F
Black —4.54* —4.54* —-3.68% P
Other Race/Ethnicity .16 17 .06
College-Graduate Parent 6.80% 7.04* 7.17*
Female —-13 .08 25
College Grad. x Female — —.48 —.84*
Black x College Grad. — — -3.68%
Black x Female — — -.08
Black x College Grad. x Fem. — — 2.87%
Other x College Grad. — — 71
Other x Female — — —.44
Other x College Grad. x Fem. — — 25
Intercept 49.13 49.03 48.96
R 136 136 138
7.
p<.05.

The key to a three-way interaction analysis is whether the three-way interaction
coefficient is significantly different from zero. In this particular analysis, the key variable
is the Black x college-graduate parent x female interaction. The three-way interaction
involving other race/ethnicity is not substantively interesting.

The coefficient for the Black x college-graduate parent x female variable is sig-
nificant, and interpretation of the three-way interaction model is appropriate.
Examining the within-group two-way interactions in Model 2 in Table 6.11 helps
greatly in interpreting the three-way interaction. The three-way interaction coeffi-
cient in Model 1 is 2.87. This is the difference between the coefficient two-way
interaction between college-graduate parent and female for Blacks and the coeffi-
cient for Whites (2.03 — (—.84)). These two-way interaction coefficients can be inter-
preted in two ways. I interpret them as the additional female effect for those with a
college-graduate parent.
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Table 6.11 Interactions Among Race/Ethnicity, Female, and
College-Graduate Parent With Math Score as

Dependent Variable
Model
1 2 5 h
Independent Variable B B B B B
Black -3.68* | —3.68% — —+ —
Other Race/Ethnicity .06 .06 — - —
College-Graduate Parent 7.17* — 7.17* 3.49% | 7.88%
Female .25 — 25 .17 -.19
College Grad. x Female —.84% — —.84% 2.03* | —.60
White x College Grad. — 7.17* — — —
White x Female — 25 — — —
White x College Grad. x Fem. — —.84* — — —
Black x College Grad. —3.68% 3.49* — — —
Black x Female —.08 17 — — —
Black x College Grad. x Fem. 2.87% 2.03% — — —
Other x College Grad. 71 7.88* — — —
Other x Female —.44 -.19 — — —
Other/x College Grad. x Fem. 24 —-.60 — — —
Intercept 48.96 48.96 48.96 45.28 49.02
R 138 138 117 .063 126
>
p <.05.

Also, the last three columns in Table 6.11 show models for the two-way interaction
between college-graduate parent and female for Whites only in Model 3, for Blacks
only in Model 4, and for other race/ethnicity only in Model 5. The coefticients in these
three models are the same as the coefficients in the within-group model, Model 2.
Thus, the standard interaction model, Model 1, tests whether the respective coeffi-
cients in Models 3, 4, and 5 are equal. This means that running separate interaction
models is equivalent to running interaction models with the race/ethnicity variable as
the conditioning variable.
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Table 6.12 Interactions Among Race/Ethnicity, Female, and

College-Graduate Parent With Math Score as

Dependent Variable
Model
1 2 3
Independent Variable B B B r
Black —3.68% —3.68% —-3.68* F
Other Race/Ethnicity .06 .06 .06
College-Graduate Parent 7.17* — —
Female .25 — —
College Grad. x Female —.84* — —
White x College Grad. — 7.17* 7.17%
White x Female — .25 —
White x Not College Grad. x Fem. - — 25
White x College Grad. x Fem. — —.84* —.59*
Black x College Grad. —-3.68% 3.49% 3.49*
Black x Female -.08 17 —
Black x Not College Grad. x Fem. — — 17
Black x College Grad. x Fem. 2.87* 2.03* 2.20*
Other x College Grad. 71 7.88% 7.88%
Other x Female —.44 -19 —
Other x Not College Grad. x Fem. — — -19
Other x College Grad. x Fem. 24 —.60 -79*
Intercept 48.96 48.96 48.96
R 138 138 138
p <.05.

In the discussion on two-way interactions, I suggested that the best way to inter-
pret a two-way interaction is to interpret the within-groups model. Table 6.12 shows
a further developed within-groups model for the three-way interaction. In this
model, there is a separate female effect for those not with a college-graduate parent
and for those with a college-graduate parent within each race/ethnic group. The
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female effect for Whites not with a college graduate parent is not significant, whereas
the female effect for Whites with a college-graduate parent is significantly negative.
In contrast, the female effect for Blacks not with a college-graduate parent is not
significant, whereas the female effect for Blacks with a college-graduate parent is
significantly positive.

White females with a college-graduate parent score lower in math than males do,
but the reverse is true for Blacks. Black females with a college-graduate parent score
higher in math than do males. A college-graduate parent disadvantages females-among
Whites but advantages females among Blacks. In both groups, there is no sex difference
for those not with a college-graduate parent.

Estimating Separate Models

In my analysis of three-way interactions, I showed that we can view a three-way inter-
action model as a set of two-way interaction models conditioned on a third variable.
We can use this modeling approach to test whether coefficients for subgroups in sepa-
rate models are equal. For example, a researcher may use regression modeling to arrive
at a specific model and then look to see whether the coefficients in the model are dif-
ferent for Whites, Blacks, and other race/ethnicity.® One approach to determining
whether the models are different from one another is the Chow test.” However, we can
conduct an equivalent test that uses interactions.

Table 6.13 shows separate models for Whites, Blacks, and other race ethnicity for the
effect of family structure, college-graduate parent, and family income on math scores.

The results indicate that/although there is a significant positive effect of two-
biological-parent family for White, there is no significant effect for Blacks. In addition,
the effect for college-graduate parent is less for Blacks than Whites, but the effect of
income is larger for Blacks than for Whites.

The method of using interactions to estimate separate models interacts all the
independent variables with the conditioning variable.® In this case, race/ethnicity is the
conditioning variable and we interact each of the three dummy variables representing
race/ethnicity with the other independent variables.

Table 6.14 shows the results of regression involving interacting race/ethnicity with the
other independent variables. Model 1 is the additive model, and Model 2 shows the

6. Hardy (1993), page 49, and Jaccard (2001), page 17, make the important point that the prob-
lem with estimating separate models and comparing coefficients across models is that no
significance test for the difference between coefficients is conducted.

7. Demaris (2004), pages 110-112, and Gordon (2010), pages 277-286, present the Chow test
for testing the difference between separate models. I feel using the F test for linear regression or
the chi-square test for logistic regression for testing the difference in fit between the additive
model and the with-in group effects model is a simpler approach.

8. Demaris (2004), pages 151-152, and Hill, Griffiths, and Judge (1997), pages 190-192, discuss
how to use interactions to do a global test for the difference between similar regression models
for two or more groups.
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Table 6.13 Separate Models for Whites, Blacks, and
Other Race/Ethnicity for Effects of

Family Structure, College-Graduate
Parent, and Family Income With Math
Score as Dependent Variable

White Black Other
Independent Variable B B B
Two-Biological-Parent Family | 1.15* 81 1.39*
College-Graduate Parent 5.48* 3.31* 6.15* E
Family Income 4% A7* A7*
Intercept 47.61 44.30 47.36
R’ 141 .080 151

>
p<.05.

standard interaction model that allows the effects of two-biological-parent family,
college-graduate parent, and family income to vary by race/ethnicity. When we focus on the
White/Black contrast, we observe that Model 2 indicates that the difference in the effects of
two-biological-parent family and family income are not significantly different from one
another. However, the coefficient for the Black x college-graduate parent is significant,
indicating that the effect of college-graduate parent is less for Blacks than for Whites.

Model 3 in Table 6.14 is the within-group effects interaction model. Notice that the
coefficients for two-biological-parent family, college-graduate family, and family
income for Whites, Blacks, and other race/ethnicity are the same as those for the sepa-
rate models in Table 6.13. Model 4 is what I call the “separate models model” This
model is estimated by suppressing the intercept and adding a dummy variable for White
to the model. The coefficients for two-biological-parent family, college-graduate
parent, and family income are the same as in Model 3. The difference between Model 3
and Model 4 s that the coefficients for Black and other race/ethnicity in Model 4 are no
longer additive variables as in Model 3 but are now the same as the intercepts for the
separate models as in Table 6.12.

I do not recommend estimating the separate models model except for the purpose
of learning and exploring regression modeling. However, the separate models model
does show that it is possible to estimate one regression model that replicates exactly the
results from running separate models.

Example Using Logistic Regression

Family income has an important influence on whether a student attends a private high
school. Those with families with higher incomes are more likely to attend since private
high schools often cost substantially more than public schools.
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Table 6.14 Interactions Among Race/Ethnicity and Family

Structure, College-Graduate Parent, and Family Income
With Math Score as Dependent Variable

Model

1 2 3 4 F
Independent Variable B B B B
White — — — 47.61
Black —3.98% -3.31* —-3.31* 44.30
Other Race/Ethnicity AT* —-.26 —.26 47.36
Two-Biological-Parent Family 1.19* 1.15% — —
College-Graduate Parent 5.49* 5.48% — —
Family Income 15% 4% — —
White x Two-Parent Family — — 1.15* 1.15*
White x College-Graduate Parent — — 5.48* 5.48*
White x Family Income — — 14 4%
Black x Two-Parent Family — —.34 .81 .81
Black x College-Graduate Parent — —2.17* 3.31* 3.31*
Black x Family.Income — .03 A7* A7*
Other x Two-Parent Family — .24 1.39% 1.39%
Other x College-Graduate Parent — .67% 6.15% 6.15%
Other x Family Income — .03* A7* A17*
Intercept 47.46 47.61 47.61 —
R .160 162 162 —

p<.05.

The analysis in Table 6.15 considers whether the effect of family income ($10,000
units) is the same for Blacks as for Whites. Model 1 shows a significant effect of income
in the additive model. Model 2 is the standard interaction model and shows a signifi-
cantly higher effect for family income for Blacks than for Whites. The coefficient for
family income in Model 3 is .08 for Blacks and .06 for Whites. Each additional unit of
family income has a greater impact on Black chances than on those of Whites.
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Table 6.15 Interactions Among Race/Ethnicity and

Family Income With Private High School

as Dependent Variable
Model
1 2 3
Independent Variable B B B i
Black -.13 -.30* —.30% 3
Other Race/Ethnicity -21* —.22* —.22* b
Family Income .06* .06* —
White x Fam. Inc. — — .06*
Black x Fam. Inc. — .02% .08*
Other x Fam. Inc. — .00 .06*
Intercept -2.15 -2.14 -2.14
-2 log-likelihood 16,639.7 16,632.0 16,632.0

N 4

p <.05.

The analysis in Table 6.16 considers the interaction between race/ethnicity and
whether the parent is-a college graduate on chances of attending private high school.
When the variables involved in the interaction are both categorical, the researcher has
a choice about which variable to condition on the other. In the analysis in Table 6.16,
college-graduate parent is conditioned on race/ethnicity.

The coefticient for Black x College Grad. is significant and negative. This indicates
that the effect of college-graduate parent is less for Blacks than for Whites. Model 3
in Table 6.16 shows that the effect of college-graduate parent is 1.46 for Whites and
1.18 for Blacks. Having a college-graduate parent is less of an advantage for Blacks than
for Whites.

In Table 6.17, race/ethnicity is conditioned on college-graduate parent. The coef-
ficient for Black x College Grad. in Model 2 is significant and negative. This indicates
that the Black coefficient is more negative among those who have a college-graduate
parent than among those who do not have a college-graduate parent. Model 3 shows
that the Black coefficient among those who do not have a college-graduate parent is
—.03 and not significant and that the coefficient for those with a college-graduate par-
ent is —31 and significant. There is a racial difference in chances of attending private
high school among those who have a college-graduate parent but not among those who
do not have a college-graduate parent.
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Table 6.16 Interactions Between Race/Ethnicity and
College-Graduate Parent With Private High School

as Dependent Variable

Model

1 2 3
Independent Variable B B B
Black -.19* -.03 -.03
Other Race/Ethnicity —22% —.15% —.15%
College-Graduate Parent 1.40* 1.46* —
White x College Grad. — — 1.46*
Black x College Grad. — —-.28* 1.18*
Other x College Grad. — —-11 1.35*
Intercept -2.30 —2.34 -2.34
-2 log-likelihood 16,757.1 16,752.4 16,752.4

p <.05.

Table 6.17 Interactions Between Race/Ethnicity and
College-Graduate Parent With Private High

School as Dependent Variable

Model

1 2 3
Independent Variable B B B
College-Graduate Parent 1.40* 1.46* 1.46*
Black —.19* -.03 —
Other Race/Ethnicity —22* —-.15* —
Not College Grad. x Black — — -.03
Not College Grad. x Other — — —-.15*
College Grad. x Black — —.28* -31*
College Grad. x Other — —-.11 —.26%
Intercept -2.30 —2.34 -2.34
-2 log-likelihood 16,757.0 16,752.4 16,752.4

p<.05.
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An additive model constrains the effect of an independent variable to be the same in categories of
a second independent variable. Estimating interaction models allows the researcher to remove this
constraint and to allow the effects of an independent variable to vary for subgroups.

I argue that for any standard interaction model, there is a within-group effects model that
serves as the basis for the standard interaction model. The within-group effects interaction model
estimates the effect of an independent variable within subgroups defined by a second independent
variable. The standard interaction model then provides the test for whether the effect of an inde-
pendent variable is equal across subgroups. I suggest that a common reason that the standard
interaction model can be misinterpreted or can be difficult to interpret is a result of the lack of a
clearly defined and recognized within-group effects interaction model.

This chapter does not address interactions between two interval variables. I'find that interac-
tions between two interval variables are difficult to interpret. Since the coefficient is not readily
interpretable, a fuller understanding of the meaning of the interaction coefficient for two interval
variables is best achieved by graphing the relationship measured by the interaction coefficient.” In
contrast, I show in this chapter that interactions involving independent variables represented by
dummy variables are readily interpretable. Therefore, I suggest that a more interpretable way to
analyze interactions between two interval variables is to convert one of the interval variables into
a categorical variable captured by dummy variables. I would suggest at least three or four catego-
ries for the recoded interval variable to model the effects of the variable adequately. Although such
an approach is less parsimonious because a variable whose effect on the dependent variable was
captured with one coefficient is now captured with multiple coefficients, the advantage of inter-
pretability outweighs, in my view, any loss of parsimony.

When doing regression analysis using interaction variables, the researcher must pay close
attention to the sample size in each sample subgroup. One rule of thumb is that if a sample size of
25 is needed to get a good estimate of a population mean, then any subgroups as defined by an
interaction variable need to.have sample sizes of at least 25. So after creating a dummy variable
that represents an interaction, look at the frequency distribution for the variable to make sure that
both of the categories defined by the dummy variable have a sample size of at least 25.

Key Concepts

conditional differences: the idea that the difference between two groups on a dependent variable will vary
within categories of a third variable.

two-way interaction: a variable constructed by multiplying two independent variables; when one of the
variables involved is a dummy variable, then the interaction variable will be a subset of one or both of the
independent variables involved in the interaction.

9. Gordon (2010) provides a brief treatment of interactions between interval variables. Jaccard (1990, 2001)
provide more extensive treatments.
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standard interaction model: an interaction model that incorporates interactions between two sets of inde-
pendent variables; the interaction coefficients in a standard interaction model measure the additional effect
of one of the independent variables for one group compared with the effect of the same independent vari-
able for another group when at least one of the sets of independent variables is measured with dummy
variables.

within-group effects interaction model: an interaction model that incorporates interactions between two
sets of independent variables; the interaction coefficients in a within-group effects interaction model mea-
sure the effect of one of the independent variables for one group and the effect of that same independent
variable for another group when at least one of the sets of independent variables is measured with dummy
variables.

three-way interactions: a variable constructed by multiplying three independent variables; to enhance inter-
pretability, I suggest that researchers view a three-way interaction as a set of two-way interactions condi-
tioned on a third independent variable.

separate models interaction model: a two-way interaction model that estimates in one model separate
regression models for subgroups defined by a third independent variable; the objective of the discussion of
the separate models model was to show that interactions can be used to estimate the same coefficients that
can be obtained by estimating separate regressions for subgroups.

Chapter Exercises

1. Replicate the regressions and the table for the interaction between race/ethnicity and college-
graduate parent with private as the dependent variable like in Table 6.14. Use PRIVATE,
BLACK, OTHRACE, PARCOLL, WPARCOLL, BPARCOLL, and OPARCOLL in the analysis.

2. Run regressions using the linear regression procedure, and create a table similar to the one for
the interaction between race/ethnicity and college-graduate parent with math score as the
dependent variable. Use X2TXMTSCOR, BLACK, OTHRACE, PARCOLL, WPARCOLL,
BPARCOLL, and OPARCOLL in the analysis.

How do the effects of college-graduate parent compare for Whites and Blacks?

3. Run regressions using the linear regression procedure, and create a table for the interaction
between family structure and family income with math score as the dependent variable like in
Table 6.7. You will use the following variables in creating the models: two biological parent,
biological parent/stepparent, single, other family, and family income. Use X2TXMTSCOR,
STEP, SINGLE, FAMOTH, FAMINC, TWOINC, STEPINC, SINGLEINC, and FAMOTHINC
in the analysis.

How do the effects of family income differ for those in two-biological-parent, biological-parent/
stepparent, and single-parent families?
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