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C H A P T E R  5A

Multiple Regression Analysis

5A.1 General Considerations

Multiple regression analysis, a term first used by Karl Pearson (1908), is an extremely useful extension 
of simple linear regression in that we use several quantitative (metric) or dichotomous variables in 
combination rather than just one such variable to predict or explain the value of a quantitatively mea-
sured criterion (outcome/dependent) variable. Most researchers believe that using more than one 
predictor or potentially explanatory variable can paint a more complete picture of how the world works 
than is permitted by simple linear regression because behavioral scientists generally believe that behav-
ior, attitudes, feelings, and so forth are determined by multiple variables rather than just one. Using 
only a single variable as a predictor or explanatory variable as is done in simple linear regression will 
at best capture only one of those sources. In the words of one author (Thompson, 1991), multivariate 
methods such as multiple regression analysis have accrued greater support in part because they “best 
honor the reality to which the researcher is purportedly trying to generalize” (p. 80).

Based on what we have already discussed regarding simple linear regression, it may be clear that 
multiple regression can be used for predictive purposes, such as estimating from a series of entrance 
tests how job applicants might perform on the job. But the regression technique can also guide research-
ers toward explicating or explaining the dynamics underlying a particular construct by indicating 
which variables in combination might be more strongly associated with it. In this sense, the model that 
emerges from the analysis can serve an explanatory purpose as well as a predictive purpose.

As was true for simple linear regression, multiple regression analysis generates two variations of 
the prediction equation, one in raw score or unstandardized form and the other in standardized form 
(making it easier for researchers to compare the effects of predictor variables that are assessed on differ-
ent scales of measurement). These equations are extensions of the simple linear regression models and 
thus still represent linear regression, that is, they are still linear equations but use multiple variables as 
predictors. The main work done in multiple regression analysis is to build the prediction equation. This 
primarily involves generating the weighting coefficients—the b (unstandardized) coefficients for the 
raw score equation and the beta (standardized) coefficients for the standardized equation. This predic-
tion model informs us that if we weight each of the predictors as the statistical analysis has indicated, 
then we can minimize our error in predicting the dependent variable.
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158  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

5A.2 Statistical Regression Methods

The regression procedures that we cover in this chapter are known as statistical regression methods. The 
most popular of these statistical methods include the standard, forward, backward, and stepwise meth-
ods, although others (not covered here), such as the Mallows Cp method (e.g., Mallows, 1973) and the 
maxi R squared and mini R squared (see Freund & Littell, 2000), have been developed as well. Using 
such a label that includes the term “statistical” may seem a little odd (of course regression is a statisti-
cal procedure), but the label is meant to communicate something rather important but subtle regard-
ing the analysis procedures. The reason for calling the procedures “statistical regression methods” is to 
emphasize that once the researchers identify the variables to be used as predictors, they relinquish all 
control of the analysis to the mathematical algorithms in carrying out the analysis.

In statistical regression procedures, the mathematical procedures determine the optimal weighting 
for each of the predictors as a set that will minimize the amount of prediction error. Researchers cannot, 
for example, propose that this particular variable be given “priority” by allowing it to do its prediction 
work ahead of the other variables in the set. Although they were actively making decisions about what 
constructs were to be used as predictors, how to measure those constructs, who was to be sampled and 
how, and so on, now that they are on the brink of analyzing their data the researchers must passively 
wait for the software to generate its output and inform them of the way the software has deemed it best 
to weight each of the variables in the prediction model and/or which variables were granted “priority” in 
the analysis by the algorithm (assuming that such “priority” was permitted by the regression method).

This relinquishing of complete control when using the statistical regression methods is not necessarily 
a bad thing in that we are trying to maximize the predictive work of our variables. However, as we 
have become increasingly familiar and comfortable with more complex alternative methods in which 
researchers take on more active roles in shaping the prediction model, the use of these statistical methods 
has given way to alternatives that call for more researcher input into the process of building the model; 
many of these methods are covered in Chapters 6A and 6B as well as in Chapters 12A through 14B.

5A.3 The Two Classes of  
Variables in a Multiple Regression Analysis

The variables in a multiple regression analysis fall into one of two categories: One category comprises 
the variable being predicted and the other category subsumes the variables that are used as the basis of 
prediction. We briefly discuss each in turn.

5A.3.1 The Variable Being Predicted

The variable that is the focus of a multiple regression design is the one being predicted. In the regression 
equation, as we have already seen for simple linear regression, it is designated as an upper case Ypred. This 
variable is known as the criterion variable or outcome variable but is often referred to as the dependent 
variable in the analysis. It needs to have been assessed on one of the quantitative scales of measurement.

5A.3.2 The Variables Used as Predictors

The predictors comprise a set of measures designated in the regression equation with upper case Xs 
and are known as predictor variables or independent variables in the analysis. In many research design 
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Chapter 5A: Multiple Regression Analysis  159

courses, the term independent variable is reserved for a variable in the context of an experimental 
study, but the term is much more generally applied because ANOVA (used for the purpose of compar-
ing the means of two or more groups or conditions) and multiple regression are just different expres-
sions of the same general linear model (see Section 5A.5). In the underlying statistical analysis, 
whether regression or ANOVA, the goal is to predict (explain) the variance of the dependent variable 
based on the independent variables in the study.

Talking about independent and dependent variables can get a bit confusing when the context is not 
made clear. In one context (that of the general linear model), predicting the variance of the dependent 
variable is what the statistical analysis is designed to accomplish. This is the case whether the research 
(data collection) design is ANOVA or regression.

In the context of the research methodology underlying the data collection process itself, experi-
mental studies are distinguished from regression or correlation studies by the procedures used to 
acquire the data. Some of the differences in the typical nature of independent variables in experimental 
and regression studies within this methodology and data collection context are listed in Table 5a.1. For 
example, in experimental studies, independent variables are often categorical and are manipulated by 
the researchers and dependent variables can be some sort of behaviors measured under one or more 
of the treatment conditions. However, independent variables may also be configured after the fact in 
correlation designs (e.g., we may define different groups of respondents to a survey medical treatment 
satisfaction based on the class of medication patients were prescribed) rather than be exclusively based 
on manipulated conditions. In regression designs, it is usual for all of the variables (the variable to be 
predicted as well as the set of predictor variables) to be measured in a given “state of the system” (e.g., 
we administer a battery of personality inventories, we ask employees about their attitudes on a range of 
work satisfaction issues, we extract a set of variables from an existing archival database). To minimize 
the potential for confusion, our discussion will remain in the context of the statistical analysis; should 
we refer to the methodological context, we will make that explicit.

Table 5a.1  Some Differences in How Independent Variables Are Treated  
in Experimental and Regression Studies
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160  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

5A.4 Multiple Regression Research

5A.4.1 Research Problems Suggesting a Regression Approach

If the research problem is expressed in a form that either specifies or implies prediction, multiple 
regression analysis becomes a viable candidate for the design. Here are some examples of research 
objectives that imply a regression design:

 • We want to predict one variable from a combined knowledge of several others.
 • We want to determine which variables of a larger set are better predictors of some criterion 

variable than others.
 • We want to know how much better we can predict a variable if we add one or more predictor 

variables to the mix.
 • We want to examine the relationship of one variable with a set of other variables.
 • We want to statistically explain or account for the variance of one variable using a set of other 

variables.

5A.4.2 The Statistical Goal in a Regression Analysis

The statistical goal of multiple regression analysis is to produce a model in the form of a linear equa-
tion that identifies the best weighted linear combination of independent variables in the study to 
optimally predict the criterion variable. That is, in the regression model—the statistical outcome of 
the regression analysis—each predictor is assigned a weight. Each predictor for each case is multiplied 
by that weight to achieve a product, and those products are summed together with the constant in the 
raw score model. The final sum for a given case is the predicted score on the criterion variable for 
that case.

The weights for the predictor variables are generated in such a way that, across all of the cases in 
the analysis, the predicted scores of the cases are as close to their actual scores as is possible. Closeness 
of prediction is defined in terms of the ordinary least squares solution. This strategy underlying the 
solution or model describes a straight-line function for which the sum of the squared differences between 
the predicted and actual values of the criterion variable is minimal. These differences between the pre-
dictions we make with the equation or model and the actual observed values are the prediction errors. 
The model thus can be thought of as representing the function that minimizes the sum of the squared 
errors. When we say that the model is fitted to the data to “best” predict the dependent variable, what 
we technically mean is that the sum of squared errors has been minimized.

5A.4.3 The Regression Weights For the Predictors

Because the model configures the predictors together to maximize prediction accuracy, the specific 
weight (contribution) assigned to each independent variable in the model is relative to the other indepen-
dent variables in the analysis. Thus, we can say only that when considering this particular set of variables, 
this one variable is weighted in the model to such and such an extent. In conjunction with a different set 
of independent variables, the weight assigned to that variable may turn out to be quite different.

This “relativity” of the variable weights has a couple of implications for the interpretation of the 
results. One implication is to recognize that the weight is not a feature of the variable per se but sim-
ply describes the particular role that it has played in this one analysis in combination with these other  
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Chapter 5A: Multiple Regression Analysis  161

specific variables predicting this particular outcome variable. Even a variable that can substantially pre-
dict the outcome variable in isolation may have received a very low weight in the multiple regression 
analysis because its prediction work might be redundant with one or more other predictors in the model.

A second implication for the interpretation of the results is that we tend to focus on how well the 
model as a whole performed. This is typically thought of in terms of the amount of variance of the outcome 
variable that is explained by the model as described in Section 5A.9.

5A.4.4 Fully Specifying the Regression Model

It is possible that variables not included in the research design could have made a substantial difference 
in the results. Some variables that could potentially be good predictors may have been overlooked in 
the literature review, measuring others may have demanded too many resources for them to be 
included, and still others may not have been amenable to the measurement instrumentation available 
to researchers at the time of the study. However, our working assumption in interpreting the results of 
the regression analysis is that the model is fully specified, that is, that we have captured all of the impor-
tant variables that are predictive of our outcome variable. With this assumption in place, we can draw 
inferences about the phenomenon we are studying from the results of our analysis. To the extent that 
potentially important variables were omitted from the research, the model is said to be incompletely 
specified and may therefore have less external validity than is desirable.

Because of this assumption, we want to select the variables for inclusion in the analysis based on 
as much theoretical and empirical rationale as we can bring to bear on the task. It is often a waste of 
research effort to realize after the fact that a couple of very important candidate predictors were omitted 
from the study. Their inclusion would have potentially produced a very different dynamic and would 
likely have resulted in a very different model than what we have just obtained.

5A.5 The Regression Equations

The regression equation, representing the prediction model, is perhaps the most straightforward 
expression of the general linear model that was introduced more than two centuries ago by Adrien-
Marie Legendre in 1805 (Stigler, 1990) in which a weighted linear composite of a set of variables is used 
to predict the value of some variable. For multiple regression analysis, what is predicted is a single 
variable but it is possible to predict the value of a weighted linear composite of another set of variables 
as we do in canonical correlation analysis (see Chapter 7A).

Just as was the case for simple linear regression, the multiple regression equation is produced in 
both raw score and standardized score form. We discuss each in turn.

5A.5.1 The Raw Score Model

The multiple regression raw score (unstandardized) model (equation) is an expansion of the raw score 
(unstandardized) equation for simple linear regression. It is as follows:

Ypred = a + b1X1 + b2X2 + . . . + bnXn

In this equation, Ypred is the predicted score on the criterion variable, the Xs are the predictor 
variables in the equation, and the bs are the weights or coefficients associated with the predictors. 
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162  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

These b weights are also referred to as partial regression coefficients (Kachigan, 1991) because each 
reflects the relative contribution of its independent variable when we are statistically controlling for the 
effects of all the other predictors. Each b coefficient informs us of how many units (and in what direc-
tion) the predicted Y value will increment for a 1-unit change in the corresponding X variable (we will 
show this by example in a moment), statistically controlling for the other predictors in the model. 
Because this is a raw score equation, it also contains a constant representing the Y intercept, shown as 
a in the equation.

All the variables are in raw score form in the model even though the metrics on which they are 
measured could vary widely. If we were predicting early success in a graduate program, for example, 
one predictor may very well be average GRE test performance (the mean of the verbal and quantitative 
subscores), and the scores on this variable are probably going to be in the 150 to 165 range. Another 
variable may be grade point average, and this variable will have values someplace in the middle to high 
3s on a 4-point grading scale. We will say that success is evaluated at the end of the first year of the 
program and is measured on a scale ranging from a low 50 to a high of 75 (just to give us three rather 
different metrics for our illustration here).

The b coefficients computed for the regression model are going to reflect the raw score values we 
have for each variable (the criterion and the predictor variables). Assume that the results of this hypo-
thetical study show the b coefficient for grade point average to be 7.00 and for GRE to be about .50 
with a Y intercept value of –40.50. Thus, controlling for the effects of GRE, a 1-unit increase in grade 
point average (e.g., the difference between 3.0 and 4.0) is associated with a 7-point increase (because of 
the positive sign in the model) in the predicted success criterion variable. Likewise, controlling for the 
effects of grade point average, a 1-unit increase in GRE score is associated with a 0.50-point increase 
in the predicted success criterion variable. Putting these values into the equation would give us the 
following prediction model:

Ypred = −40.50 + (7)(gpa) + (.5)(GRE)

Suppose that we wished to predict the success score of one participant, Erin, based on her grade 
point average of 3.80 and her GRE score of 160. To arrive at her predicted score, we place her values 
into the variable slots in the raw score form of the regression equation. Here is the prediction:

 Ypred = −40.50 +  (7)(gpa) + (.5)(GRE)

 Ypred Erin = −40.50 + (7)(gpaErin) + (.5)(GREErin)

 Ypred Erin = −40.5 + (7)(3.80) + (.5)(160)

 Ypred Erin = −40.50 + (26.6) + (80)

 Ypred Erin = 66.10

We therefore predict that Erin, based on her grade point average and GRE score, will score a little 
more than 66 on the success measure. Given that the range on the success measure is from 50 to 75, it 
would appear, at least on the surface, that Erin would be predicted to have performed moderately suc-
cessfully. We would hope that this level of predicted performance would be viewed in a favorable light 
by the program to which she was applying.
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Chapter 5A: Multiple Regression Analysis  163

This computation allows you to see, to some extent, how the b coefficients and the constant came 
to achieve their respective magnitudes. We expect a success score between 50 and 75. One predictor is 
grade point average, and we might expect it to be someplace in the middle 3s. We are therefore likely to 
have a partial regression weight much larger than 1.00 to get near the range of success scores. But the 
GRE scores are probably going to be in the neighborhood of 150 plus or minus, and these may need to 
be lowered by the equation to get near the success score range by generating a partial regression weight 
likely to be less than 1.00. When the dust settles, the weights overshoot the range of success scores, 
requiring the constant to be subtracted from their combination.

Because the variables are assessed on different metrics, it follows that we cannot easily see from 
the b coefficients which independent variable is the stronger predictor in this model. Some of the 
ways by which we can evaluate the relative contribution of the predictors to the model will be 
discussed shortly.

5A.5.2 The Standardized Model

The multiple regression standardized score model (equation) is an expansion of the standardized score 
equation for simple linear regression. It is as follows:

Yz pred = β1Xz1 + β2Xz2 + . . . + βn Xzn

Everything in this model is in standardized (z) score form. Unlike the situation for the raw score 
equation, all the variables are now measured on the same metric—the mean and standard deviation 
for all the variables (the criterion and the predictor variables) are 0 and 1, respectively.

In the standardized equation, Yz pred is the predicted z score of the criterion variable. Each predictor 
variable (each X in the equation) is associated with its own weighting coefficient symbolized by the low-
ercase Greek letter β and called a beta weight, standardized regression coefficient, or beta coefficient, and 
just as was true for the b weights in the raw score equation, they are also referred to as partial regression 
coefficients. These coefficients usually compute to a decimal value between 0 and 1, but they can exceed 
the range of ±1 if the predictors are correlated enough between themselves (an undesirable state of affairs 
known as collinearity and multicollinearity (see Section 5A.21) that should be avoided either by remov-
ing all but one of the highly correlated predictors or by combining them into a single composite variable).

Each term in the equation represents the z score of a predictor and its associated beta coefficient. 
With the equation in standardized form, the Y intercept is zero and is therefore not shown.

We can now revisit the example used above where we predicted success in graduate school based 
on grade point average and GRE score. Here is that final model, but this time in standard score form:

Yz pred = β1Xz1 + β2Xz2 . . . + βnXzn

Yz pred = (.31)(gpaz) + (.62)(GREz)

Note that the beta weights, because they are based on the same metric, can now be compared to 
each other. We will treat this topic in more detail in Section 5A.14, but for now note that the beta coef-
ficient for the GRE is greater than the beta coefficient for grade point average. Thus, in predicting 
academic success, the underlying mathematical algorithm gave greater weight to the GRE than to 
grade point average.
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164  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

We can also apply this standardized regression model to individuals in the sample—for example, 
Erin. Within the sample used for this study, assume that Erin’s grade point average of 3.80 represents 
a z score of 1.80 and that her GRE score of 160 represents a z score of 1.25. We can thus solve the 
equation as follows:

 Yz pred = β1Xz1 + β2Xz2 + . . . + βnXzn

 Yz pred = (.31) (gpaz) + (.62) (GREz)

 Yz pred Erin = (.31) (gpaz Erin) + (.62) (GREz Erin)

 Yz pred Erin = (.31) (1.80) + (.62) (1.25)

 Yz pred Erin = (.558) + (.775)

 Yz pred Erin = 1.33

We therefore predict that Erin, based on her grade point average and GRE score, will score about 
1.33 SD units above the mean on the success measure. This predicted standardized outcome score of 
1.33 is equivalent to Erin’s raw (unstandardized) predicted outcome score of 66.10.

5A.6 The Variate in Multiple Regression

Multivariate procedures typically involve building, developing, or solving for a weighted linear combi-
nation of variables. This weighted linear combination is called a variate. The variate in this instance is 
the entity on the right side of the multiple regression equation composed of the weighted independent 
(predictor) variables.

Although the variate is a weighted linear composite of the measured variables in the model, it 
is often possible to view this variate holistically as representing some underlying dimension or  
construct—that is, to conceive of it as a latent variable. In the preceding example where we were pre-
dicting success in graduate school, the variate might be interpreted as “academic aptitude” indexed 
by the weighted linear combination of grade point average and GRE score. From this perspective, the 
indicators of academic aptitude—grade point average and GRE score—were selected by the researchers 
to be used in the study. They then used the regression technique to shape the most effective academic 
aptitude variate to predict success in graduate school.

Based on the previous example, the academic aptitude variate is built to do the best job possible to 
predict a value on a variable. That variable is the predicted success score. Note that the result of applying 
the multiple regression model—the result of invoking the linear weighted composite of the predictor 
variables (the variate)—is the predicted success score and not the actual success score. For most of the 
cases in the data file, the predicted and the actual success scores of the students will be different. The 
model minimizes these differences, but it cannot eliminate them. Thus, the variable “predicted success 
score” and the variable “actual success score” are different variables, although we certainly hope that 
they are reasonably related to each other. The variate that we have called academic aptitude generates 
the predicted rather than the actual value of the success score (we will see in Section 13A.4 that the 
structural equation used in structural equation modeling predicts the actual Y value because the 
prediction error is included as a term in the model).
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5A.7 The Standard (Simultaneous) Regression Method

The standard regression method, also called the simultaneous or the direct method, is what most authors 
refer to if they leave the regression method unspecified. It is currently the most widely used of the 
statistical methods. Under this method, all the predictors are entered into the equation in a single 
“step” (stage in the analysis). The standard method provides a full model solution in that all the predictors 
are part of it.

The idea that these variables are entered into the equation simultaneously is true only in the sense 
that the variables are entered in a single statistical step or block. But that single step is not at all simple 
and unitary; when we look inside this step, we find that the process of determining the weights for 
independent variables is governed by a coherent but complex strategy.

5A.7.1 The Example to Be Used

Rather than referring to abstract predictors and some amorphous dependent variable to broach this 
topic, we will present the standard regression method by using an example with variables that have 
names and meaning. To keep our drawings and explication manageable, we will work with a smaller 
set of variables than would ordinarily be used in a study conceived from the beginning as a regression 
design. Whereas an actual regression design might typically have from half a dozen to as many as a 
dozen or more variables as potential predictors, we will use a simplified example of just three predictors 
for our presentation purposes.

The dependent variable we use for this illustration is self-esteem as assessed by Coopersmith’s 
(1981) Self-Esteem Inventory. Two of the predictors we use for this illustration are Watson, Clark, 
and Tellegen’s (1988) measures of the relative frequency of positive and negative affective behaviors a 
person typically exhibits. The third independent variable represents scores on the Openness scale of 
the NEO Five-Factor Personality Inventory (Costa & McCrae, 1992). Openness generally assesses the 
degree to which respondents appear to have greater aesthetic sensitivity, seek out new experiences, and 
are aware of their internal states.

5A.7.2 Correlations of the Variables

It is always desirable to initially examine the correlation matrix of the variables participating in a 
regression analysis. This gives researchers an opportunity to examine the interrelationships of the 
variables, not only between the dependent variable and the independent variables but also between 
the independent variables themselves.

In examining the correlation matrix, we are looking for two features primarily. First, we want 
to make sure that no predictor is so highly correlated with the dependent variable as to be relatively 
interchangeable with it; correlations of about .70 and higher would suggest that such a predictor might 
best be entered in the first block of a hierarchical analysis (see Section 6A.2) or not included in the 
analysis rather than proceed with the standard regression analysis that we cover here. Second, we want 
to make sure that no two predictors are so highly correlated that they are assessing the same underly-
ing construct; again, correlations of about .70 and higher would suggest that we might want to either 
remove one of the two or combine them into a single composite variable before performing a standard 
regression analysis.
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Table 5a.2 displays the correlation matrix of the variables in our example. We have presented it in 
“square” form where the diagonal from upper left to lower right (containing the value 1.000 for each entry) 
separates the matrix into two redundant halves. As can be seen, the dependent variable of self-esteem 
is moderately correlated with both Positive Affect and Negative Affect but is only modestly correlated 
with Openness. It can also be seen that Positive Affect and Negative Affect correlate more strongly with 
each other than either does with Openness.

5A.7.3 Building the Regression Equation

The goal of any regression procedure is to predict or account for as much of the variance of the 
criterion variable as is possible using the predictors at hand. In this example, that dependent variable 
is Self-Esteem. At the beginning of the process, before the predictors are entered into the equation, 
100% of the variance of Self-Esteem is unexplained. This is shown in Figure 5a.1. The dependent 
variable of self-esteem is in place, and the predictors are ready to be evaluated by the regression 
procedure.

On the first and only step of the 
standard regression procedure, all 
the predictors are entered as a set 
into the equation. But to compute 
the weighting coefficients (b coeffi-
cients for the raw score equation and 
beta coefficients for the standardized 
equation), the predictors must be 
individually evaluated. To determine 
the weights, which represent the con-
tribution of each predictor given all of 
the other predictors in the set—this is 
the essence of standard regression—
each predictor’s weight is computed as 
though it had entered the equation last.

The purpose of treating each 
predictor as if it was the last to enter 
the model is to determine what  

Table 5a.2   Correlation Matrix of the Variables in the Regression Analysis

Figure 5a.1  Predictors Assembled Prior  
to the Regression Analysis

Positive
Affect

Negative
Affect

Openness

Self-Esteem
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Chapter 5A: Multiple Regression Analysis  167

predictive work it can do over and 
above the prediction attributable 
to the rest of the predictors. In 
this manner, standard regression 
focuses on the unique contribution 
that each independent variable 
makes to the prediction when sta-
tistically controlling for all the other 
predictors. These other predictors 
thus behave as a set of covariates in 
the analysis in that the predictive 
work that they do as a set is allowed 
to account for the variance of the 
dependent variable before the pre-
dictive work of a given predictor is 
evaluated. Because these other predictors are afforded the opportunity to perform their predictive 
work before the given predictor, we say that we have statistically controlled for these other predictors. 
Each predictor is evaluated in turn in this manner, so that the regression coefficient obtained for any 
predictor represents the situation in which all of the other predictors have been statistically con-
trolled (the other predictors have played the role of covariates).

This process is illustrated in Figure 5a.2. To evaluate the effectiveness of Positive Affect, the variables 
of Negative Affect and Openness are inserted as a set into the model. Negative Affect and Openness 
thus take on the role of covariates. Together, Negative Affect and Openness have accounted for some of 
the variance of Self-Esteem (shown as diagonal lines in Figure 5a.2).

With Negative Affect and Openness in the equation for the moment, we are ready to evaluate 
the contribution of Positive Affect. The criterion variable or dependent variable (Self-Esteem here) 
is the focus of the multiple regression design. It is therefore the variance of Self-Esteem that we want 
to account for or predict, and our goal is to explain as much of it as possible with our set of indepen-
dent variables. We face an interesting but subtle feature of multiple regression analysis in its efforts 
to maximize the amount of dependent variable variance that we can explain. In the context of mul-
tiple regression analysis, our predictors must account for separate portions—rather than the same  
portion—of the dependent variable’s variance. This is the key to understanding the regression process. 
With Negative Affect and Openness already in the model, and thus already accounting for some of 
the variance of Self-Esteem, Positive Affect, as the last variable to enter, must target the variance in 
Self-Esteem that remains—the residual variance of Self-Esteem. The blank portion of Self-Esteem’s 
rectangle in Figure 5a.2 represents the unaccounted-for (residual) portion of the variance of Self-
Esteem, and this is what the regression procedure focuses on in determining the predictive weight 
Positive Affect will achieve in the model.

After the computations of the b and beta coefficients for Positive Affect have been made, it is 
necessary to evaluate another one of the predictors. Thus, Positive Affect and another predictor (e.g., 
Negative Affect) are entered into the equation, and the strategy we have just outlined is repeated for 
the remaining predictor (e.g., Openness). Each independent variable is put through this same process 
until the weights for all have been determined. At the end of this complex process (which is defined as 
a single “step” or “block” despite its complexity), the final weights are locked in and the results of the 
analysis are printed.

Positive
Affect

Negative
Affect

Openness

Self-Esteem

Figure 5a.2  Evaluating the Predictive Power of Positive Affect
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168  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

5A.8 Partial Correlation

Most statistical software packages, such as IBM SPSS, routinely compute and have available for 
output other statistical information in addition to the regression weights and the constant. One such 
statistic is the partial correlation. In the context of our present discussion, this is a good place to 
broach that subject.

As the term implies, a partial correlation is a correlation coefficient. Everything that we have 
described about correlation coefficients (e.g., the Pearson r) applies equally to the particular coeffi-
cient known as a partial correlation. But as the term also implies, a partial correlation is special. When 
you think of the Pearson r, you envision an index that captures the extent to which a linear relation-
ship is observed between one variable and another variable. A partial correlation describes the linear 
relationship between one variable and a part of another variable. Specifically, a partial correlation is 
the relationship between a given predictor and the residual variance of the dependent variable when the 
rest of the predictors have been entered into the model. We discuss this in somewhat more detail in 
Section 5A.10.2.

Consider the situation depicted in Figure 5a.2. Negative Affect and Openness have been entered 
into the model (for the moment) so that we can evaluate the effectiveness of Positive Affect. The diago-
nal lines in Figure 5a.2 show the variance of Self-Esteem that is accounted for by Negative Affect and 
Openness; the remaining blank area shows the residual variance of Self-Esteem. The partial correla-
tion associated with Positive Affect is the correlation between Positive Affect and the residual vari-
ance of Self-Esteem when the effects of Negative Affect and Openness have been statistically removed, 
controlled, or “partialled out.” Such a correlation is called a partial correlation. A partial correlation 
describes the linear relationship between two variables when the effects of other variables have been 
statistically removed from one of them. In this sense, the variables already in the model are conceived 
of as covariates in that their effects are statistically accounted for prior to evaluating the relationship 
of Positive Affect and Self-Esteem. Once the regression procedure has determined how much Positive 
Affect can contribute over and above the predictive work done by the set of predictors already in the 
model (how much of the residual variance of Self-Esteem it can explain), the software starts the process 
of computing the weight that Positive Affect will receive in the model.

5A.9 The Squared Multiple Correlation

Assume that each of the three predictors has been evaluated in a single but obviously complex step or 
block, so that we know their weights and can construct the model. We will discuss the specific numerical 
results shortly, but first we need to cover three additional and important concepts and their associated 
statistical indexes: the squared multiple correlation, the squared semipartial correlations, and the 
structure coefficients.

The first of these is the squared multiple correlation, symbolized by R2 and illustrated in Figure 5a.3. 
All three predictors are now in the model, and based on our discussion in the last two sections, it likely 
makes sense to you that all three variables in combination are accounting for the amount of Self-Esteem 
variance depicted by the entire filled (shaded) area in Figure 5a.3.

You are already familiar with the idea that the degree of correlation between two variables can be 
pictured as overlapping figures (we have used squares to conform to the pictorial style of path analysis 
and structural equation modeling that we cover in the later chapters, but introductory statistics and 
research methods texts tend to use circles). For the case of the Pearson r (or any bivariate correlation), 
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Chapter 5A: Multiple Regression Analysis  169

the shaded or overlapping area would show the strength of the correlation, and its magnitude would 
be indexed by r2.

The relationship shown in Figure 5a.3 is more complex than what is represented by r2, but it is 
conceptually similar. Three variables are drawn as overlapping with Self-Esteem. Nonetheless, this still 
represents a correlation, albeit one more complex than a bivariate correlation. Specifically, we are look-
ing at the relationship between the criterion variable (Self-Esteem) on the one hand and the three 
predictors (Positive Affect, Negative Affect, and Openness) on the other hand. When we have three 
or more variables involved in the relationship (there are four here), we can no longer use the Pearson 
correlation coefficient to quantify the magnitude of that linear relationship—the Pearson r can index 
the degree of relationship only when two variables are being considered. The correlation coefficient we 
need to call on to quantify the degree of a more complex relationship is known as a multiple correlation 
coefficient. It is symbolized as an uppercase italic R. That said, the Pearson r is really the limiting case 
of R, and thus the bulk of what we have said about r applies to R.

A multiple correlation coefficient indexes the degree of linear association of one variable (the out-
come variable in the case of multiple regression analysis) with a set of other variables (the predictor 
variables in the case of multiple regression analysis), and the squared multiple correlation (R2), some-
times called the coefficient of multiple determination, tells us the strength of this complex relationship, 
that is, it tells us how much variance of the outcome variable is explained by the set of predictor vari-
ables. In Figure 5a.3, the diagonally shaded area—the overlap of Positive Affect, Negative Affect, and 
Openness with Self-Esteem—represents the R2 for that relationship. In this case, we are explaining the 
variance of Self-Esteem. The R2 value represents one way to evaluate the model. Larger values mean 
that the model has accounted for greater amounts of the variance of the dependent variable.

The second feature important to note in Figure 5a.3 is that the three predictors overlap with each 
other, indicating that they correlate with one another (as we documented in Table 5a.2). The degree to 
which they correlate affects the partial regression weights these variables are assigned in the regression 
equation, so the correlations of the predictors become a matter of some interest to researchers using a 
regression design.

The entire diagonal filled area
based on all three predictors
represents the explained
variance of Self-Esteem indexed
by the squared multiple
correlation (R2) which in this case
is .48.

Positive
Affect

Negative
Affect

Openness

Self-Esteem

Figure 5a.3  All Three Predictors Are Now in the Model
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170  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

5A.10 The Squared Semipartial Correlation

5A.10.1 The Squared Semipartial Correlation Itself

We have redrawn with a bit of a variation in Figure 5a.4 the relationship between the three predictors 
and the dependent variable previously shown in Figure 5a.3. In Figure 5a.4, we have distinguished the 
variance of Self-Esteem that is uniquely associated with only a single predictor by using a solid fill and 
have retained the diagonal fill area to represent variance that overlaps between two or all of the pre-
dictors. The amount of variance explained uniquely by a predictor is indexed by another correlation 
statistic known as the squared semipartial correlation, often symbolized as sr2. It represents the extent 
to which each variable does independent predictive work when combined with the other predictors 
in the model. Each predictor is associated with a squared semipartial correlation. The semipartial 
correlation describes the linear relationship between a given predictor and the variance of the 
dependent variable.

Positive
Affect

This is the variance of Self-Esteem
explained for that is unique to
Openness indexed by its squared
semipartial correlation

This is the variance of Self-Esteem
explained for that is unique to
Positive Affect indexed by its squared
semipartial correlation

This is the variance of Self-Esteem
explained for that is unique to
Negative Affect indexed by its
squared semipartial correlation

Negative
Affect

Openness

Self-Esteem

Figure 5a.4  A Depiction of the Squared Semipartial Correlations

Note. The solid fill represents self-esteem variance accounted for that is unique to each predictor; the diagonal fill represents self-esteem 
variance accounted for common to two or more predictors.

5A.10.2 The Difference Between the Squared  
Semipartial Correlation and the Squared Partial Correlation

Distinguishing between the squared semipartial and squared partial correlations is subtle but very 
important because these represent descriptions of two similar but different relationships between each 
predictor and the dependent variable. To simplify our discussion, we have drawn in Figure 5a.5 only 
two generic predictor (independent) variables (IV1 and IV2) for a given generic dependent variable.
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Chapter 5A: Multiple Regression Analysis  171

In Figure 5a.5, the lowercase letters identify different areas of the variance of the predictor and 
dependent variables so that we may contrast the squared semipartial correlation coefficient with the 
squared partial correlation coefficient. These different variance areas are as follows:

 • Area a is the variance of the dependent variable that is explained but cannot be attributed 
uniquely to either predictor.

 • Area b is the variance of the dependent variable that is explained uniquely by IV1.
 • Area c is the variance of IV1 that is not related to the dependent variable.
 • Area d is the variance of the dependent variable that is explained uniquely by IV2.
 • Area e is the variance of IV2 that is not related to the dependent variable.
 • Area f (the blank area of the dependent variable labeled twice in the figure) is the variance of the 

dependent variable that is not explained by either predictor (it is the residual variance of the 
dependent variable once the model with two predictors has been finalized).

Consider Area b in Figure 5a.5, although 
an analogous analysis can be made for Area d. 
This is the variance of the dependent variable 
that is explained only (uniquely) by IV1. 
Because we are dealing with squared correla-
tions that are interpreted as a percent of  
variance explained, we must compute a pro-
portion or percent, that is, we must compute 
the value of a ratio between two variances. 
Area b is the conceptual focus of both the 
squared semipartial correlation as well as the 
squared partial correlation for IV1; because it 
is the focus of the proportion we calculate, it 
must be placed in the numerator in the com-
putation for both the squared semipartial 
correlation and the squared partial correla-
tion. Stated in words, both the squared semi-
partial correlation and the squared partial 
correlation associated with IV1 each describe 
the percentage of variance attributable to the 
unique contribution of IV1.

The difference between the two indexes 
is what representation of the variance is 
placed in the denominator of the ratio. The 
denominator of a ratio provides the frame of 
reference. In the present situation, we wish 
to know the percentage of variance attributable to the unique contribution of IV1 with respect to one of 
two frames of reference:

 • The frame of reference used in computing the squared semipartial correlation is the total 
variance of the dependent variable. In Figure 5a.5, the denominator would be a + b + d + f. 
Thus, the computation of the squared semipartial correlation for IV1 is b/(a + b + d + f). 

DV

IV2

IV1

f

f

d

b

a
e

c

Figure 5a.5  Contrasting the Squared Semipartial and 
Squared Semipartial Correlations for IV1

Note. The squared semipartial correlation is computed as b/(a + b + d + f) 
and the squared partial correlation is computed as b/(b + f).
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172  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

What we obtain is the percent of variance of the dependent variable that is associated with the 
unique contribution of IV1.

 • The frame of reference used in computing the squared partial correlation between the pre-
dictor and the dependent variable is only that portion of the variance of the dependent variable 
remaining when the effects of the other predictors have been removed (statistically removed, 
nullified). In Figure 5a.5, the denominator would be b + f. Thus, the computation of the 
squared partial correlation for IV1 is b/(b + f). What we obtain is the percent of variance of the 
dependent variable not predicted by the other predictor(s) that is associated with the unique 
contribution of IV1.

Given that the frame of reference for the squared partial correlation contains only Areas b and 
f whereas the frame of reference for the squared semipartial correlation contains Areas b, f, a, and 
d, it follows that the denominator for the squared semipartial correlation will always be larger than 
the denominator for the squared partial correlation (unless the other areas have a zero value). 
Because (in pictorial terms) we are asking about the relative size of Area b for both squared correla-
tions, the upshot of this straightforward arithmetic is that the squared partial correlation will almost 
always have a larger value than the squared semipartial correlation. This explanation may be sum-
marized as follows:

 • The squared semipartial correlation represents the proportion of variance of the dependent 
variable uniquely explained by an independent variable when the other predictors are taken 
into consideration.

 • The squared partial correlation is the amount of explained variance of the dependent variable 
that is incremented by including an independent variable in the model that already contains 
the other predictors.

When the regression model is finally in place, as it is in Figure 5a.5, our interest in the squared 
partial correlation fades because it was more useful in constructing the model, and our interest shifts 
to the squared semipartial correlation. Thus, when examining Figure 5a.5 or the numerical results of 
the regression analysis, what interests us is the variance of the dependent variable that is uniquely 
explained by each predictor, that is, we are interested in the squared semipartial correlation associated 
with each predictor (in Figure 5a.5, that would be Areas b and d with respect to the total variance of 
the dependent variable).

5A.10.3 The Squared Semipartial  
Correlation and the Squared Multiple Correlation

In Figure 5a.5, the squared multiple correlation (R2) can be visualized as the proportion of the total 
variance of the dependent variable covered by Areas a, b, and d. That is, the squared multiple correla-
tion takes into account not only the unique contributions of the predictors (Areas b and d) but also the 
overlap between them (Area a). The squared semipartial correlations focus only on the unique contri-
butions of the predictors (Areas b and d).

Note that the sum of Area b (the variance of the dependent variable uniquely explained by IV1) 
and Area d (the variance of the dependent variable uniquely explained by IV2) does not cover all of 
the shaded area (it does not take into account Area a). Translated into statistical terms, the sum of the 
squared semipartial correlations—the total amount of variance uniquely associated with individual 
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Chapter 5A: Multiple Regression Analysis  173

predictors—does not equal the squared multiple correlation. The reason for this is that the predictor 
variables are themselves correlated and to that extent will overlap with each other in the prediction of 
the dependent variable that they are attempting to predict.

Generally, we can tell how well the model fits the data by considering the value of the squared 
multiple correlation. But we can also evaluate how well the model works on an individual predic-
tor level by examining the squared semipartial correlations (Tabachnick & Fidell, 2013b). With the 
squared semipartial correlations, we are looking directly at the unique contribution of each predictor 
within the context of the model, and, clearly, independent variables with larger squared semipartial 
correlations are making larger unique contributions.

There are some limitations in using squared semipartial correlations to compare the contributions 
of the predictors. The unique contribution of each variable in multiple regression analysis is very much 
a function of the correlations of the variables used in the analysis. It is quite likely that within the con-
text of a different set of predictors, the unique contributions of these variables would change, perhaps 
substantially. Of course, this argument is true for the partial regression coefficients as well.

Based on this line of reasoning, one could put forward the argument that it would therefore be 
extremely desirable to select predictors in a multiple regression design that are not at all correlated 
between themselves but are highly correlated with the criterion variable. In such a fantasy scenario, 
the predictors would account for different portions of the dependent variable’s variance, the squared 
semipartial correlations would themselves be substantial, the overlap of the predictors would be mini-
mal, and the sum of the squared semipartial correlations would approximate the value of the squared 
multiple correlation.

This argument may have a certain appeal at first glance, but it is not a viable strategy for both 
practical and theoretical reasons. On the practical side, it would be difficult or perhaps even impos-
sible to find predictors in most research arenas that are related to the criterion variable but at the same 
time are not themselves at least moderately correlated. On the theoretical side, it is desirable that the 
correlations between the predictors in a research study are representative of those relationships in the 
population. All else equal, to the extent that variables are related in the study as they are in the outside 
world, the research results may be said to have a certain degree of external validity.

The consequence of moderate or greater correlation between the predictors is that the unique 
contribution of each independent variable may be relatively small in comparison with the total amount 
of explained variance of the prediction model because the predictors in such cases may overlap consid-
erably with each other. Comparing one very small semipartial value with another even smaller semi-
partial value is often not a productive use of a researcher’s time and runs the risk of yielding distorted 
or inaccurate conclusions.

5A.11 Structure Coefficients

In our discussion of the variate, we emphasized that there was a difference between the predicted value 
and the actual score that individuals obtained on the dependent variable. Our focus here is on the 
predicted score, which is the value of the variate for the particular values of the independent variables 
substituted in the model. The structure coefficient is the bivariate correlation between a particular 
independent variable and the predicted (not the actual) score (Dunlap & Landis, 1998). Each predictor 
is associated with a structure coefficient.

A structure coefficient represents the correlation between an individual variable that is a part of 
the variate and the weighted linear combination itself. Stronger correlations indicate that the predic-
tor is a stronger reflection (indicator, gauge, marker) of the construct underlying the variate. Because 
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174  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

the variate is a latent variable, a structure coefficient can index how well a given predictor variable can 
serve as an indicator or marker of the construct represented by the variate. This feature of structure 
coefficients makes them extremely useful in multivariate analyses, and we will make considerable use of 
them in the context of canonical correlation analysis (Chapters 7A and 7B), principal components and 
factor analysis (Chapters 10A and 10B), and discriminant function analysis (Chapters 19A and 19B).

The numerical value of the structure coefficient is not contained in the output of IBM SPSS but is 
easy to compute with a hand calculator using the following information available in the output:

Structure coefficient=
r

R
xi y

where rxi y is the Pearson correlation between the given predictor (xi) and the actual (measured) depen-
dent variable, and R is the multiple correlation.

5A.12 Statistical Summary of the Regression Solution

There are two levels of the statistical summary of the regression solution, a characterization of the 
effectiveness of the overall model and an assessment of the performance of the individual predictors. 
Examining the results for the overall model takes precedence over dealing with the individual  
predictors—if the overall model cannot predict better than chance, then there is little point in evaluat-
ing how each of the predictors fared. We discuss evaluating the overall model in Section 5A.13 and 
examining the individual predictor variables in Section 5A.14.

5A.13 Evaluating the Overall Model

The overall model is represented by the regression equation. There are two questions that we address 
in evaluating the overall model, one involving a somewhat more complex answer than the other:

 • Is the model statistically significant?
 • How much variance does the model explain?

5A.13.1 Is the Model Statistically Significant?

The simpler of the two questions to answer concerns the statistical significance of the model. The issue 
is whether the predictors as a set can account for a statistically significant amount of the variance of the 
dependent variable. This question is evaluated by using an ANOVA akin to a one-way between subjects 
design (see Chapter 18A), with the single “effect” in the ANOVA procedure being the regression model 
itself. The degrees of freedom associated with the total variance and its partitions are as follows:

 • The degrees of freedom for the total variance are equal to N − 1, where N is the sample size.
 • The degrees of freedom for the regression model (the effect) is equal to the number of predictor 

variables in the model that we symbolize here as v.
 • The degrees of freedom for the error term are equal to (N − 1) − v; that is, it is equal to the total 

degrees of freedom minus the number of predictors in the model.
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Chapter 5A: Multiple Regression Analysis  175

The null hypothesis tested by the F ratio resulting from the ANOVA is that prediction is no better 
than chance in that the predictor set cannot account for any of the variance of the dependent variable. 
Another way to express the null hypothesis is that R2 = 0. If the F ratio from the ANOVA is statistically 
significant, then it can be concluded that the model as a whole accounts for a statistically significant 
percentage of the variance of the dependent variable (i.e., R2 > 0). In our example analysis using 
Positive Affect, Negative Affect, and Openness to predict Self-Esteem, the effect of the regression 
model was statistically significant, F(3, 416) = 129.32, p < .001, R2 = .48, adjusted R2 = .48. We would 
therefore conclude that the three independent variables of Positive Affect, Negative Affect, and 
Openness in combination significantly predicted Self-Esteem.

5A.13.2 The Amount of Variance  
Explained by the Model: R2 and Adjusted R2

5A.13.2.1 Variance Explained: The Straightforward Portion of the Answer

The more complex of the two questions to answer concerns how much variance of the dependent 
variable the model explains. We can answer this question at one level in a straightforward manner for 
the moment by examining the value of R2. In our example, the value for R2, shown in a separate table 
in the IBM SPSS output, was .483. The straightforward answer to the question, then, is that the three 
predictors in this particular weighted linear combination were able to explain about 48% of the variance 
of Self-Esteem.

We should also consider the magnitude of the obtained R2. One would ordinarily think of .483 as 
reasonably substantial, and most researchers should not be terribly disappointed with R2s consider-
ably less than this. In the early stages of a research project or when studying a variable that may be 
complexly determined (e.g., rate of spread of an epidemic, recovery from a certain disease, multicul-
tural sensitivity), very small but statistically significant R2s may be cause for celebration by a research 
team. Just as we suggested in Sections 2.8.2 for eta square, in the absence of any context R2 values, 
.10, .25, and .40 might be considered to be small, medium, and large strengths of effect, respectively 
(Cohen, 1988); however, we conduct our research within a context, and so the magnitude of the effect 
must be considered with respect to the theoretical and empirical milieu within which the research was 
originally framed.

5A.13.2.2 Variance Explained: R2 Is Somewhat Inflated

At another level, the answer to the question of how much variance is explained by the regression model 
has a more complex aspect to it. The reason it is more complex is that the obtained R2 value is actually 
somewhat inflated. Two major factors drive this inflation:

 • The inevitable presence of error variance.
 • The number of predictors in the model relative to the sample size.

We can identify two very general and not mutually incompatible strategies that can be implemented 
(Darlington, 1960; Yin & Fan, 2001) to estimate the amount of R2 inflation (as we will see in a moment, 
the ordinary terminology focuses on R2 shrinkage, the other side of the R2 inflation coin); one set of 
strategies is empirical and is focused on error variance; another set of strategies is analytic and is 
focused on the number of predictors with respect to sample size.
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176  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

5A.13.2.3 Variance Explained: Empirical  
Strategies for Estimating the Amount of R2 Shrinkage

Because it is a human endeavor, there is always some error of measurement associated with anything 
we assess. If this error is random, as we assume it to be, then some of that measurement error will 
actually be working in the direction of enhanced prediction. The multiple regression algorithm, how-
ever, is unable to distinguish between this chance enhancement (i.e., blind luck from the standpoint of 
trying to achieve the best possible R2) and the real predictive power of the variables, so it uses every-
thing it can to maximize prediction—it generates the raw and standardized regression weights from 
both true and error sources combined. By drawing information from both true score variance and 
error variance because it cannot distinguish between the two sources in fitting the model to the data, 
multiple regression procedures will overestimate the amount of variance that the model explains 
(Cohen et al., 2003; Yin & Fan, 2001).

The dynamics of this problem can be understood in this way: In another sample, the random 
dictates of error will operate differently, and if the weighting coefficients obtained from our original 
regression analysis are applied to the new sample, the model will be less effective than it appeared to 
be for the original sample, that is, the model will likely yield a somewhat lower R2 than was originally 
obtained. This phenomenon is known by the term R2 shrinkage. R2 shrinkage is more of a problem when 
we have relatively smaller sample sizes and relatively more variables in the analysis. As sample size and 
the number of predictors reach more acceptable proportions (see Section 5A.13.2.4), the shrinkage of 
R2 becomes that much less of an issue.

Empirical strategies estimating the amount of R2 shrinkage call for performing a regression 
analysis on selected portions of the sample, an approach generally known as a resampling strategy. In 
the present context, resampling can be addressed through procedures such as cross-validation, double 
cross-validation, and the use of a jackknife procedure.

To perform a cross-validation procedure, we ordinarily divide a large sample in half (into two 
equal-sized subsamples, although we can also permit one sample to be larger than the other) by ran-
domly selecting the cases to be assigned to each. We then compute our regression analysis on one sub-
sample (the larger one if unequal sample sizes were used) and use those regression weights to predict 
the criterion variable of the second “hold-back” sample (the smaller one if unequal sample sizes were 
used). The R2 difference tells us the degree of predictive loss we have observed. We can also correlate the 
predicted scores of the hold-back sample with their actual scores; this is known as the cross-validation 
coefficient.

Double cross-validation can be done by performing the cross-validation process in both directions—
that is, performing the regression analysis on each subsample and applying the results to the other. In a 
sense, we obtain two estimates of shrinkage rather than one, that is, we can obtain two cross-validation 
coefficients. If the shrinkage is not excessive, and there are few guidelines as to how to judge this, we 
can then perform an analysis on the combined sample and report the double cross-validation results to 
let readers know the estimated generalizability of the model.

The jackknife procedure was introduced by Quenouille (1949) and is currently treated (e.g., Beasley & 
Rodgers, 2009; Carsey & Harden, 2014; Chernick, 2011; Efron, 1979; Fuller, 2009; Wu, 1986) in the 
context of bootstrapping (where we draw with replacement repeated subsamples from our sample to 
estimate the sampling distribution of a given parameter). The jackknife procedure is also called, for 
what will be obvious reasons, a leave-one-out procedure.

Ordinarily, we include all of the cases with valid values on the dependent and independent 
variables in an ordinary regression analysis. To apply a jackknife procedure, we would temporarily 
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Chapter 5A: Multiple Regression Analysis  177

remove one of those cases (i.e., leave one of those cases out of the analysis), say Case A, perform the 
analysis without Case A, and then apply the regression coefficients obtained in that analysis to predict 
the value of the dependent variable for Case A. We then “replace” Case A back into the data set, select 
another case to remove, say Case B, repeat the process for Case B, and so on, until all cases have had 
their Y score predicted.

The comparison of these jackknifed results with those obtained in the ordinary (full-sample) 
analysis gives us an estimate of how much shrinkage in explained variance we might encounter down 
the road. IBM SPSS does not have a jackknife procedure available for multiple regression analysis, 
but that procedure is available for discriminant function analysis (see Section 19A.10.4). IBM SPSS 
does, however, offer a bootstrapping add-on module (IBM, 2013b) but we do not cover it in this book; 
coverage of this topic can be found in Chernick (2011), Davison and Hinkley (1997), and Efron and 
Tibshirani (1993).

5A.13.2.4 Variance Explained: Analytic  
Strategies for Estimating the Amount of R2 Shrinkage

In addition to capitalizing on chance, R2 can also be mathematically inflated by having a relatively 
larger number of predictors relative to the size of the sample, that is, R2 can be increased simply by 
increasing the number of predictors we opt to include in the model for a given sample size (e.g., 
Stuewig, 2010; Wooldridge, 2009; Yin & Fan, 2001). The good news here is that statisticians have been 
able to propose ways to “correct” or “adjust” the obtained R2 that takes into account both the sample 
size and the number of predictors in the model. When applied to the obtained R2, the result is known 
as an adjusted R2. This adjusted R2 provides an estimate of what the R2 might have been had it not been 
inflated by the number of predictors we have included in the model relative to our sample size. All of 
the major statistical software packages report in their output an adjusted R2 value in addition to the 
observed R2.

To further complicate this scenario, there are two different types of adjusted R2 values that are 
described in the literature, and there is no single way to compute either of them. Some of these formulas 
(e.g., Olkin & Pratt, 1958; Wherry, 1931) are intended to estimate the population value of R2, whereas 
others (e.g., Browne, 1975; Darlington, 1960; Rozeboom, 1978) are intended to estimate the cross-
validation coefficient (Yin & Fan, 2001). Yin and Fan (2001) made a comparison of the performance 
of 15 such formulas (some estimating the population value of R2 and others estimating the cross- 
validation coefficient), and Walker (2007) compared four estimates of the cross-validation coefficient 
in addition to a bootstrap procedure.

Our interest here is with the adjusted R2 as an estimate of the population value of R2. The algorithm 
that is used by IBM SPSS to compute its adjusted R2 value (IBM, 2013a) and three other well-known 
formulas, the Wherry formulas 1 and 2 and the Olkin–Pratt formula, are presented in Figure 5a.6. They 
all contain the following three elements:

 • The obtained value of R2 from the multiple regression analysis.
 • The sample size, designated as N.
 • The number of predictor variables in the model, which we are designating as v.

Although these formulas are somewhat different and when solved will lead to somewhat different 
adjusted values of R2, the estimates appear to be relatively close to each other from the standpoint of 
researchers. For example, let us assume that investigators conducting a hypothetical research study 
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178  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

used a sample size of 100 (what we would regard as too small an N) and eight predictor variables (an 
excessive number of predictors for that sample size), and they obtained an R2 of .25. The resulting 
adjusted R2 values from each of the formulas are as follows:

 • IBM SPSS algorithm: .184066
 • Wherry Formula 1: .1847827
 • Wherry Formula 2: .1929349
 • Olkin–Pratt formula: .1876552

Considering that these values hover around .18 or .19, the adjusted R2 values appear to be approxi-
mately three quarters the magnitude of the observed R2 value. In our view, this is a considerable amount 
of estimated shrinkage.

We can contrast this hypothetical result with our worked example. In our worked example, the 
adjusted R2 value was .479 (shown as part of the IBM SPSS output), giving us virtually the same value 
as the unadjusted R2. That such little adjustment was made to R2 is most likely a function of the sample 
size to number of variables ratio we used (the analysis was based on a sample size of 420 cases; with just 
three predictors, our ratio was 140:1).

Yin and Fan (2001) suggested that good quality estimates of adjusted R2 values were obtained with 
most of the R2 estimation formulas they evaluated when the ratio of sample size to number of predic-
tors was 100. In research environments where there are a limited number of potential cases that may 
be recruited for a study (e.g., a university, hospital, or organizational setting), such a ratio may be dif-
ficult to achieve. In more restrictive settings where we must accept pragmatic compromises to get the 
research done, our recommendations are that the sample size should generally be no less than about 
200 or so cases and that researchers use at least 20 but preferably 30 or more cases per predictor.

Note. In the formulas to complete the adjusted R2 value, R2 is the obtained value from the analysis, N is the sample size, and v is the 
number of predictor variables in the model.

Figure 5a.6  The IBM SPSS Formula, the Wherry Formulas 1 and 2, and  
the Okin–Pratt Formula for Computing the Adjusted R2 as an Estimate of the Population R2
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Chapter 5A: Multiple Regression Analysis  179

5A.14 Evaluating the Individual Predictor Results

We have performed the analysis for the regression design that we have been discussing, and portions 
of the output for the predictor variables is summarized in Table 5a.3. For each predictor, we show its 
unstandardized (b) and standardized (beta) regression weighting coefficients, the t value associated 
with each regression weight, the Pearson correlation (r) of each predictor with the dependent variable, 
the amount of Self-Esteem variance each predictor has uniquely explained (squared semipartial cor-
relation), and the structure coefficient associated with each predictor. The constant is the Y intercept 
of the raw score model and is shown in the last line of the table, and the R2 and the adjusted R2 values 
are shown in the table note.

Table 5a.3   Summary of the Example for Multiple Regression

5A.14.1 Variables in the Model

The predictor variables are shown in the first column of Table 5a.3. This represents a complete solution 
in the sense that all the independent variables are included in the final equation regardless of how 
much (or how little) they contribute to the prediction model.

5A.14.2 The Regression Equations

Using the raw and standardized regression weights, and the Y intercept shown in Table 5a.3, we have 
the elements of the two regression equations. These are produced below.

The raw score equation is as follows:

Self-Esteempred = 56.66 + (2.89)(pos affect) − (2.42)(neg affect) + (.11)(open)

The standardized equation is as follows:

Self-Esteemz pred = (.40)(pos affectz) − (.43)(neg affectz) + (.06)(openz)

5A.14.3 t Tests

IBM SPSS tests the significance of each predictor in the model using t tests. The null hypothesis is that 
a predictor’s weight is effectively equal to zero when the effects of the other predictors are taken into 
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account. This means that when the other predictors act as covariates and this predictor is targeting the 
residual variance, according to the null hypothesis the predictor is unable to account for a statistically 
significant portion of it; that is, the partial correlation between the predictor and the criterion variable 
is not significantly different from zero. And it is a rare occurrence when every single independent vari-
able turns out to be a significant predictor. The t test output shown in Table 5a.3 informs us that only 
Positive Affect and Negative Affect are statistically significant predictors in the model; Openness does 
not receive a strong enough weight to reach that touchstone.

5A.14.4 b Coefficients

The b and beta coefficients in Table 5a.3 show us the weights that the variables have been assigned at 
the end of the equation-building process. The b weights are tied to the metrics on which the variables 
are measured and are therefore difficult to compare with one another. But with respect to their own 
metric, they are quite interpretable. The b weight for Positive Affect, for example, is 2.89. We may take 
that to mean that when the other variables are controlled for, an increase of 1 point on the Positive 
Affect measure is, on average, associated with a 2.89-point gain in Self-Esteem. Likewise, the b weight 
of −2.42 for Negative Affect would mean that, with all of the other variables statistically controlled, 
every point of increase on the Negative Affect measure (i.e., greater levels of Negative Affect)  
corresponds to a lower score on the Self-Esteem measure of 2.42 points.

Table 5a.3 also shows the Y intercept for the linear function. This value of 56.66 would need to be 
added to the weighted combination of variables in the raw score equation to obtain the predicted value 
of Self-Esteem for any given research participant.

5A.14.5 Beta Coefficients

5A.14.5.1 General Interpretation

The beta weights for the independent variables are also shown in Table 5a.3. Here, all the variables are 
in z score form and thus their beta weights, within limits, can be compared with each other. We can 
see from Table 5a.3 that Positive Affect and Negative Affect have beta weights of similar magnitudes 
and that Openness has a very low beta value. Thus, in achieving the goal of predicting Self-Esteem to 
the greatest possible extent (to minimize the sum of the squared prediction errors), Positive Affect and 
Negative Affect are given much more relative weight than Openness.

5A.14.5.2 The Case for Using Beta Coefficients to Evaluate Predictors

Some authors (e.g., Cohen et al., 2003; Pedhazur, 1997; Pedhazur & Schmelkin, 1991) have cautiously 
argued that, at least under some circumstances, we may be able to compare the beta coefficients of the 
predictors with each other. That is, on the basis of visual examination of the equation, it may be pos-
sible to say that predictors with larger beta weights contribute more to the prediction of the dependent 
variable than those with smaller weights.

It is possible to quantify the relative contribution of predictors using beta weights as the basis of the 
comparison. Although Kachigan (1991) has proposed examining the ratio of the squared beta weights 
to make this comparison, that procedure may be acceptable only in the rare situation when those pre-
dictors whose beta weights are being compared are uncorrelated (Pedhazur & Schmelkin, 1991). In the 
everyday research context, where the independent variables are almost always significantly correlated, 
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Chapter 5A: Multiple Regression Analysis  181

we may simply compute the ratio of the actual beta weights (Pedhazur, 1997; Pedhazur & Schmelkin, 
1991), placing the larger beta weight in the numerator of the ratio. This ratio reveals how much more 
one independent variable contributes to prediction than another within the context of the model.

This comparison could work as follows. If we wanted to compare the efficacy of Negative Affect 
(the most strongly weighted variable in the model) with the other (less strongly weighted) predictors, 
we would ordinarily limit our comparison to only the statistically significant ones. In this case, we 
would compare Negative Affect only with Positive Affect. We would therefore compute the ratio of the 
beta weights (Negative Affect/Positive Affect) without carrying the sign of the beta through the compu-
tation (.43/.40 = 1.075). Based on this ratio (although we could certainly see this just by looking at the 
beta weights themselves), we would say that Negative Affect was 1.075 times a more potent predictor 
in this model. Translated to ordinary language, we would say that Negative Affect and Positive Affect 
make approximately the same degree of contribution to the prediction of Self-Esteem in the context of 
this research study with the present set of variables.

5A.14.5.3 Concerns With Using the  
Beta Coefficients to Evaluate Predictors

We indicated above that even when authors such as Pedhazur (1997; Pedhazur & Schmelkin, 1991) 
endorse the use of beta coefficient ratios to evaluate the relative contribution of the independent variables 
within the model, they usually do so with certain caveats. Take Pedhazur (1997) as a good illustration:

Broadly speaking, such an interpretation [stating that the effect of one predictor is twice as 
great as the effect of a second predictor] is legitimate, but it is not free of problems because the 
Beta is affected, among other things, by the variability of the variable with which they are 
associated. (p. 110)

Thus, beta weights may not be generalizable across different samples.
Another concern regarding the use of beta coefficients to evaluate predictors is that beta weight 

values are partly a function of the correlations between the predictors themselves. That is, a certain 
independent variable may predict the dependent variable to a great extent in isolation, and one would 
therefore expect to see a relatively high beta coefficient associated with that predictor. Now place 
another predictor that is highly correlated with the first predictor into the analysis, and all of a sudden, 
the beta coefficients of both predictors can plummet (because each is evaluated with the other treated 
as a covariate). The first predictor’s relationship with the dependent variable has not changed in this 
scenario, but the presence of the second correlated predictor could seriously affect the magnitude of the 
beta weight of the first. This “sensitivity” of the beta weights to the correlations between the predictors 
places additional limitations on the generality of the betas and thus their use in evaluating or compar-
ing predictive effectiveness of the independent variables.

The sensitivity of a beta coefficient associated with a given predictor to the correlation of that 
predictor with other predictors in the model can also be manifested in the following manner: If two or 
three very highly correlated predictors were included in the model, their beta coefficients could exceed 
a value of 1.00, sometimes by a considerable margin. Ordinarily, researchers would not include very 
highly correlated variables in a regression analysis (they would either retain only one or create a single 
composite variable of the set), but there are special analyses where researchers cannot condense such a 
set of variables (see Section 6B.2, for an example); in such analyses, researchers focus on R2 or (depending 
on the analysis) the change in R2 and ignore these aberrant beta coefficient values.
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Recognizing that the value of a beta coefficient associated with a variable is affected by, among 
other factors, the variability of the variable, the correlation of the variable with other predictors in the 
model, and the measurement error in assessing the variable, Jacob Cohen (1990) in one of his classic 
articles titled “Things I Have Learned (So Far)” went so far as to suggest that in many or most situa-
tions, simply assigning unit or unitary weights (values of 1.00) to all significant predictors can result 
in at least as good a prediction model as using partial regression coefficients to two decimal values 
as the weights for the variables. Cohen’s strategy simplifies the prediction model to a yes/no decision 
for each potential predictor, and although it is not widely used in regression studies, it is a strategy 
that is commonly used in connection with factor analysis where a variable is either included with a 
unitary weight or not included when we construct the subscales that are used to represent a factor 
(see Section 10B.14).

5A.14.5.4 Recommendations for Using Betas

We do not want to leave you completely hanging at this point in our treatment, so we will answer the 
obvious questions. Should you use the beta weights to assess the relative strengths of the predictors in 
your own research? Yes, although we have considerable sympathy with the wisdom expressed by 
Cohen (1990) of using unit weights. Should beta coefficients be the only index you check out? No. The 
structure coefficients and the squared semipartial correlations should be examined as well. And, ulti-
mately, using the raw regression weights to inform us of how much of a change in the dependent 
variable is associated with a unit difference in the predictor, given that all of the other predictors are 
acting as covariates, will prove to be a very worthwhile interpretation strategy.

5A.14.6 Pearson Correlations of  
the Predictors With the Criterion Variable

The fourth numerical column in Table 5a.3 shows the simple Pearson correlations between Self-
Esteem and each of the predictors. We have briefly described the correlations earlier. For present 
purposes, we can see that the correlations between Self-Esteem and Positive Affect and Openness are 
positive. This was the case because each of these variables is scored in the positive direction—higher 
scores mean that respondents exhibit greater levels of self-esteem and more positive affective behaviors 
and that they are more open to new or interesting experiences. Because higher scores on the Self-
Esteem scale indicate greater positive feelings about oneself, it is not surprising that these two predic-
tors are positively correlated with it. On the other hand, Negative Affect is negatively correlated with 
Self-Esteem. This is also not surprising because those individuals who exhibit more negative affective 
behaviors are typically those who have lower levels of self-esteem.

5A.14.7 Squared Semipartial Correlations

The next to last column of Table 5a.3 displays the squared semipartial correlations for each predictor. 
These correlations are shown in the IBM SPSS printout as “part correlations” and appear in the print-
out in their nonsquared form. This statistic indexes the variance accounted for uniquely by each pre-
dictor in the full model. What is interesting here, and this is pretty typical of multiple regression 
research, is that the sum of these squared semipartial correlations is less than the R2. That is, .14, .16, 
and .00 add up to .30 and not to the R2 of .48.
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The reason these squared semipartial correlations do not add to the value of R2 is that the independent 
variables overlap (are correlated) with each other. Here, the predictors uniquely account for 30% of the 
variance, whereas (by subtraction) 18% of the accounted-for variance is handled by more than one of 
them. We therefore have some but not a huge amount of redundancy built into our set of predictors.

Using the squared semipartial correlations is another gauge of relative predictor strength in the 
model. From this perspective, Positive Affect and Negative Affect are approximately tied in their unique 
contribution to the prediction model under the present research circumstances, whereas Openness is 
making no contribution on its own.

5A.14.8 The Structure Coefficients

The last column in Table 5a.3 shows the structure coefficients, an index of the correlation of each 
variable with the weighted linear combination (the variate or prediction model). These coefficients 
needed to be hand calculated (see Section 5A.11) because IBM SPSS does not provide them. For each 
independent variable in the table, we divided the Pearson r representing the correlation of the inde-
pendent variable and the dependent variable (shown in the fourth numerical column) by the value of 
the multiple correlation. To illustrate this computation for Positive Affect, we divide its Pearson cor-
relation with Self-Esteem (.55) by the value of R (the square root of R2); thus, .55 is divided by the 
square root of .483, or .55/.69 = approximately .80.

The structure coefficients indicate that Positive Affect and Negative Affect correlate reasonably 
highly with the variate. In this example, using the structure coefficients as a basis to compare the con-
tribution of the predictors presents the same picture as those painted by the beta weights and the 
squared semipartial correlations. We would use these structure coefficients to interpret the variate; in 
this example, we would say that in the context of this predictor set, the affect levels of individuals best 
predict self-esteem. Note that in the everyday world more than affect levels unquestionably predict 
self-esteem but, because we used only three predictors in this study, our conclusions are limited. Such 
a limitation is generally true for multiple regression analysis, in that we can draw our conclusions only 
on the variables in the study, and the variable set we used may not be inclusive of all the potential deter-
miners of our outcome variable (we may not be able to realistically fully specify all of the potentially 
viable predictors).

Such consistency in interpretation between the interpretations based on the structure coefficients 
and the beta coefficients as we saw in this example is not always obtained. Beta coefficients and struc-
ture coefficients differ in at least two important ways.

 • A beta coefficient associated with its predictor reflects the correlations of that predictor with 
the other predictors in the analysis. A structure coefficient does not take into account the 
degree to which that predictor correlates with the other predictors.

 • Beta coefficients can exceed the ordinary range of ±1 when the predictors are relatively highly 
correlated with each other. Many researchers are not keen on seeing, much less interpreting, beta 
weights greater than unity. However, structure coefficients are absolutely bounded by the range 
±1 because they are correlation coefficients, thus making them always clearly interpretable.

Our recommendations are consistent with what we offered above for beta weights. We concur with 
Thompson and Borrello (1985) that the structure coefficients are a useful companion index of relative 
predictor contribution. Unlike the beta coefficients and the squared semipartial correlations, structure 
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coefficients are not affected by the correlations between the predictors although, as is true for all of the 
regression statistics, the structure coefficients could change substantially if a different set of predictors 
happened to be used.

Pedhazur (1997) notes that structure coefficients will show the same pattern of relationships as the 
Pearson correlations of the predictors and the criterion. Because of this, Pedhazur is not convinced of 
the utility of structure coefficients. Nonetheless, in our view, by focusing on the correlation between 
the predictor and the variate, we believe that structure coefficients may add a nuance to the interpre-
tation of the regression analysis that we think is worthwhile. Furthermore, it is common practice to 
make extensive and regular use of structure coefficients in other multivariate analyses where our focus 
is on interpreting a variate (e.g., factor analysis, discriminant function analysis, canonical correlation 
analysis), and so it makes sense to include regression under that umbrella as well.

5A.15 Step Methods of Building the Model

The step methods of building the regression equation that we briefly cover here are part of the class of 
statistical regression methods, and it will be clear from our descriptions just how the software pro-
grams are in charge of the decision process for selecting the ordering of the predictors as the model is 
built. We cover here the forward method, the backward method, and the stepwise method. These 
methods construct the model one step at a time rather than all at once as the standard method does.

The primary goal of these step methods is to build a model with only the “important” predictors 
in it, although importance is still relative to the set of predictors that are participating in the analysis. 
The methods differ primarily in how they arrange the steps in entering or removing variables from 
the model.

5A.16 The Forward Method

In the forward method of multiple regression analysis, rather than placing all the variables in the 
model at once, we add independent variables to the model one variable at a time. Thus, each step cor-
responds to a single variable absorbed into the model. At each step, we enter the particular variable 
that adds the most predictive power at that time, with the proviso that the variable accounts for a sta-
tistically significant amount of the unexplained variance of the dependent variable (i.e., that its partial 
correlation is statistically significant). Most software applications use an alpha of .05 to define statisti-
cal significance. If we were working with the set of variables we used to illustrate the standard regres-
sion method, Negative Affect would be entered first. We know this because, with no variables in the 
model at the start and building the model one variable at a time, the variable correlating most strongly 
with the outcome variable (Self-Esteem in our example) would be entered first (assuming statistical 
significance).

In the forward method, once a variable is entered into the model, that variable remains perma-
nently in the model. It may seem odd for us to say this, but permanent membership in the model is not 
necessarily true for variables entered into the model for the other step methods we discuss. For the next 
step in the forward method, the remaining variables are evaluated and the variable with the highest 
statistically significant partial correlation (the correlation between the residual variance of Self-Esteem 
and that additional predictor) is entered provided that the partial correlation is statistically significant. 
In this case, Positive Affect would join Negative Affect as a predictor in the model.
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This process of adding variables to the model is repeated for each remaining predictor with the 
variables in the model all acting as covariates. We would find, with Negative Affect and Positive Affect 
in the model, that Openness would not be entered; that is, it would not account for a significant amount 
of the residual variance accounted for by Negative Affect and Positive Affect (i.e., it would not be asso-
ciated with a statistically significant partial correlation coefficient). Once the next variable in line (the 
best of the remaining predictors) fails to reach the entry criterion for entry into the model, the forward 
procedure ends with however many variables already in the model and the remaining variables not 
included in the model. In our example, the forward procedure would stop at the end of the second step 
and Openness would remain on the sidelines.

5A.17 The Backward Method

The backward method works not by adding significant variables to the model but, rather, by removing 
nonsignificant predictors from the model one step at a time. The very first action performed by the 
backward method is the same one used by the standard method; it enters all the predictors into the 
equation regardless of their worth. But whereas the standard method stops here, the backward method 
is just getting started.

The model with all the variables in it is now examined, and the significant predictors are marked 
for retention on the next step. Nonsignificant predictors are then evaluated, and the most expend-
able of them—the one whose loss would least significantly decrease the R2—is removed from the 
equation. A new model is built in the absence of that one independent variable, and the evaluation 
process is repeated. Once again, the most expendable independent variable (with the requirement 
that it is not statistically significantly contributing to R2) is removed. This removal process and model 
reconstruction process continues until there are only statistically significant predictors remaining in 
the equation. In our example, Openness would have been removed at the first opportunity. The back-
ward method would have stopped at that point because both remaining variables would have been 
significant predictors.

5A.18 Backward Versus Forward Solutions

Backward regression does not always produce the same model as forward regression even though it 
would have done so in our simplified example. Here is why: Being entered into the equation in the 
forward method requires predictors to meet a more stringent criterion than variables being retained 
in the model in the backward method. This creates a situation in which it is more difficult to get into 
the model than to remain in it. The alpha or probability level associated with entry and removal defines 
stringency or difficulty statistically.

Predictors earn their way into the equation in the forward method by significantly predicting 
variance of the dependent variable. The alpha level governing this entry decision is usually the traditional 
.05 alpha level. By most standards, this is a fairly stringent criterion. When we look for predictors to 
remove under the backward method, the alpha level usually drops to .10 as the default in most pro-
grams (the removal criterion needs to be somewhat less stringent than the entry criterion in order 
to avoid a logic glitch in the entry-removal decision process—see Section 5A.19). This means that a 
predictor needs to be significant at only .10 (not at .05) to retain its place in the equation. Thus, an 
independent variable is eligible to be removed from the equation at a particular step in the backward 
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method if its probability level is greater than .10 (e.g., p = .11), but it will be retained in the equation if 
its probability level is equal to or less than .10 (e.g., p = .09).

The consequences of using these different criteria for entry and removal affect only those variables 
whose probabilities are between the entry and removal criteria. To see why this is true, first consider 
variables that are not within this zone.

 • If a variable does not meet the standard of p = .10, it is removed from the equation. This 
variable would also by definition not meet the .05 alpha-level criterion for entry either, so there 
is no difference in the outcome for this predictor under either criterion—it is not going to wind 
up in the equation in either the forward or backward methods.

 • If a variable does meet the criterion of .05, it will always be allowed entry to the equation and 
will certainly not be removed by the backward method; again, there is no difference in outcome 
for such a predictor under either method.

Variables with probability levels between these two criteria are in a more interesting position. 
Assume that we are well into the backward process, and at this juncture, the weakest predictor is one 
whose probability is .08. This variable would not have been allowed into the equation by the forward 
method if it were considered for entry at this point because to get in, it would have to meet a .05 alpha 
level to achieve statistical significance. However, under the backward method, this variable was freely 
added to the equation at the beginning, and the only issue here is whether it is to be removed. When 
we examine its current probability level and find it to be .08, we determine that this predictor is sta-

tistically significant at the .10 alpha level. It 
therefore remains in the equation. In this case, 
the model built under the backward method 
would incorporate this predictor, but the model 
built under the forward method would have 
excluded it.

5A.19 The Stepwise Method

The stepwise method of building the multiple 
regression equation is a fusion of the forward 
and backward methods. The stepwise and for-
ward methods act in the same fashion until we 
reach the point where a third predictor is added 
to the equation. The stepwise method therefore 
begins with an empty model and builds it one 
step at a time. Once a third independent vari-
able is added to the model, the stepwise method 
invokes the right to remove an independent vari-
able if that predictor is not earning its keep.

Predictors are allowed to be included in the 
model if they significantly (p ≤ .05) add to the 
predicted variance of the dependent variable. 
With correlated independent variables, as we 

Dependent Variable

J

K

L

 Figure 5a.7  The Unique Contribution  
of Variable K Is Reduced by the Addition of  
Variable L
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Chapter 5A: Multiple Regression Analysis  187

have seen, the predictors in the equation admitted under a probability level of .05 can still overlap with 
each other. This is shown in Figure 5a.7.

In Figure 5a.7, predictor J was entered first, K was entered second, and L was just entered as the 
third predictor. We are poised at the moment when L joined the equation. Note that between predictors 
J and L, there is very little predictive work that can be attributed uniquely to K. At this moment, the 
squared semipartial correlation associated with K (showing its unique contribution to the prediction 
model) is quite small.

In the forward method, the fact that K’s unique contribution has been substantially reduced by L’s 
presence would leave the procedure unfazed because it does not have a removal option available to it. 
But this is the stepwise method, and it is prepared to remove a predictor if necessary. When the amount 
of unique variance that K now accounts for is examined with variables J and L acting as covariates, let’s 
presume that it is not significant at the removal criterion of .10 (say its p value is .126). K is thus judged 
to no longer be contributing effectively to the prediction model, and it is removed. Of course, as more 
predictors are entered into the equation, the gestalt could change dramatically, and K might very well 
be called on to perform predictive duties later in the analysis.

We have just described the reason that the entry criterion is more severe than the removal criterion. 
It can be summarized as follows. If getting into the equation was easier than getting out, then variables 
removed at one step might get entered again at the next step because they might still be able to achieve 
that less stringent level of probability needed for entry. There is then a chance that the stepwise proce-
dure could be caught in an endless loop where the same variable kept being removed on one step and 
entered again on the next. By making entry more exacting than removal, this conundrum is avoided.

5A.20 Evaluation of the Statistical Methods

5A.20.1 Benefits of the Standard Method

The primary advantage of using the standard method is that it presents a complete picture of the regression 
outcome to researchers. If the variables were important enough to earn a place in the design of the study, 
then they are given room in the model even if they are not adding very much to the R2. That is, on the 
assumption that the variables were selected on the basis of their relevance to theory or at least on the 
basis of hypotheses based on a comprehensive review of the existing literature on the topic, the standard 
model provides an opportunity to see how they fare as a set in predicting the dependent variable.

5A.20.2 Benefits of the Step Methods

The argument for using the stepwise method is that we end up with a model that is “lean and mean.” 
Each independent variable in it has earned the right to remain in the equation through a hard, com-
petitive struggle. This same argument applies when considering the forward and backward methods. 
The forward and backward methods give what their users consider the essence of the solution by 
excluding variables that add nothing of merit to the prediction.

5A.20.3 Criticisms of the Statistical Methods as a Set

One criticism of all the statistical methods is that independent variables with good predictive qualities 
on their own may be awarded very low weight in the model. This can happen because their contribution 
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188  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

is being evaluated when the contributions of the other predictors have been statistically controlled. 
Such “masking” of potentially good predictors can lead researchers to draw incomplete or improper 
conclusions from the results of the analysis. One way around this problem is for the researchers to 
exercise some judgment in which variables are entered at certain points in the analysis, and this is 
discussed in Chapter 6A. This issue is also related to multicollinearity, a topic that we discuss in 
Section 5A.21.

The step methods have become increasingly less popular over the years as their weaknesses have 
become better understood and as hierarchal methods and path approaches have gained in popularity. 
Tabachnick and Fidell (2013b), for example, have expressed serious concerns about this group of meth-
ods, especially the stepwise method, and they are not alone. Here is a brief summary of the interrelated 
drawbacks of using this set of methods.

 • These methods, particularly the stepwise method, may need better than the 40 to 1 ratio of 
cases to independent variables because there are serious threats to external validity (Cohen  
et al., 2003, p. 162). That is, the model that is built may overfit the sample because a different 
sample may yield somewhat different relationships (correlations) between the variables in the 
analysis and that could completely change which variables were entered into the model.

 • The statistical criteria for building the equation identify variables for inclusion if they are 
better predictors than the other candidates. But “better” could mean “just a tiny bit better” or 
“a whole lot better.” One variable may win the nomination to enter the equation, but the mag-
nitude by which the variable achieved that victory may be too small to matter to researchers.

 • If the victory of getting into the model by one variable is within the margin of error in the 
measurement of another variable, identifying the one variable as a predictor at the expense of 
the other may obscure viable alternative prediction models.

 • Variables that can substantially predict the dependent variable may be excluded from the 
equations built by the step methods because some other variable or combination of variables 
does the job a little bit better. It is conceivable that several independent variables taken together 
may predict the criterion variable fairly well, but step procedures consider only one variable at 
a time.

 • There is a tendency using the step methods to “overfit” the data (Lattin, Carroll, & Green, 
2003). Briefly, this criticism suggests that variables are chosen for inclusion in the model 
“based on their ability to explain variance in the sample that may or may not be characteristic 
of the variance in the population by capitalizing unduly on error, chance correlation, or both” 
(Lattin et al., 2003, p. 51).

5A.20.4 Balancing the Value of All the  
Statistical Methods of Building the Model

The standard method works well if we have selected the independent variables based on theory or 
empirical research findings and wish to examine the combined predictive power of that set of predic-
tors. But because they are functioning in combination, the weights of the predictors in the model are 
a function of their interrelationships; thus, we are not evaluating them in isolation or in subsets. The 
standard method will allow us to test hypotheses about the model as a whole; if that is the goal, then 
that is what should be used.

The step methods are intended to identify which variables should be in the model on purely 
statistical grounds. Many researchers discourage such an atheoretical approach. On the other hand, 
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Chapter 5A: Multiple Regression Analysis  189

there may be certain applications where all we want is to obtain the largest R2 with the fewest number 
of predictors, recognizing that the resulting model may have less external validity than desired. Under 
these conditions, some researchers may consider using a step method.

Before one decides that one of the statistical procedures is to be used, it is very important to 
consider alternative methods of performing the regression analysis. Although they do require more 
thoughtful decision making rather than just entering the variables and selecting a statistical method, 
the flexibility and potential explanatory power they afford more than compensate for the effort it takes 
to run such analyses. Some of these regression procedures are discussed in Chapter 6A and the path 
model approach is broached in Chapters 12A through 15B.

5A.21 Collinearity and Multicollinearity

Collinearity is a condition that exists when two predictors correlate very strongly; multicollinearity is a 
condition that exists when more than two predictors correlate very strongly. Note that we are talking 
about the relationships between the predictor variables only and not about correlations between each 
of the predictors and the dependent variable.

Regardless of whether we are talking about two predictors or a set of three or more predictors, 
multicollinearity can distort the interpretation of multiple regression results. For example, if two variables 
are highly correlated, then they are largely confounded with one another; that is, they are essentially 
measuring the same characteristic, and it would be impossible to say which of the two was the more 
relevant. Statistically, because the standard regression procedure controls for all the other predictors 
when it is evaluating a given independent variable, it is likely that neither predictor variable would 
receive any substantial weight in the model. This is true because when the procedure evaluates one of 
these two predictors, the other is (momentarily) already in the equation accounting for almost all the 
variance that would be explained by the first. The irony is that each on its own might very well be a 
good predictor of the criterion variable. On the positive side, with both variables in the model, the R2 
value will be appropriately high, and if the goal of the research is to maximize R2, then multicollinearity 
might not be an immediate problem.

When the research goal is to understand the interplay of the predictors and not simply to maximize 
R2, multicollinearity can cause several problems in the analysis. One problem caused by the presence 
of multicollinearity is that the values of the standardized regression coefficients of the highly correlated 
independent variables are distorted, sometimes exceeding the ordinarily expected range of ±1. A sec-
ond problem is that the standard errors of the regression weights of those multicollinear predictors can 
be inflated, thereby enlarging their confidence intervals, sometimes to the point where they contain the 
zero value. If that is the case, we could not reliably determine if increases in the predictor are associated 
with increases or decreases in the criterion variable. A third problem is that if multicollinearity is suf-
ficiently great, certain internal mathematical operations (e.g., matrix inversion) are disrupted, and the 
statistical program comes to a screeching halt.

Identifying collinearity or multicollinearity requires researchers to examine the data in certain ways. 
A high correlation is easy to spot when considering only two variables. Just examine the Pearson correla-
tions between the variables in the analysis as a prelude to multiple regression analysis. Two variables that 
are very strongly related should raise a “red flag.” As a general rule of thumb, we recommend that two 
variables correlated in the middle .7s or higher should probably not be used together in a regression or 
any other multivariate analysis. Allison (1999a) suggests that you “almost certainly have a problem if the 
correlation is above .8, but there may be difficulties that appear well before that value” (p .64).
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190  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

One common cause of multicollinearity is that researchers may use subscales of an inventory as 
well as the full inventory score as predictors. Depending on how the subscales have been computed, 
it is possible for them in combination to correlate almost perfectly with the full inventory score. We 
strongly advise users to employ either the subscales or the full inventory score, but not all of them in 
the analysis.

Another common cause of multicollinearity is including in the analysis variables that assess the 
same construct. Researchers should either drop all but one of them from the analysis or consider the 
possibility of combining them in some fashion if it makes sense. For example, we might combine height 
and weight to form a measure of body mass. As another example, we might average three highly corre-
lated survey items; principal components analysis and exploratory factor analysis, discussed in Chapters 
10A and 10B, can be used to help determine which variables might productively be averaged together 
without losing too much information. Further, related measures may be able to be used as indicators of 
a latent variable that can then be placed into a structure equation model (see Chapters 14A and 14B).

A less common cause of an analysis failing because of multicollinearity is placing into the analysis 
two measures that are mathematical transformations of each other (e.g., number of correct and incor-
rect responses; time and speed of response). Researchers should use only one of the measures rather 
than both of them.

Multicollinearity is much more difficult to detect when it is some (linear) combination of variables 
that produces a high multiple correlation in some subset of the predictor variables. We would worry if 
that correlation reached the mid .8s, but Allison (1999a, p. 141) gets concerned if those multiple cor-
relations reached into the high .7s (R2 of about .60). Many statistical software programs will allow us 
to compute multiple correlations for different combinations of variables so that we can examine them. 
Thus, we can scan these correlations for such high values and take the necessary steps to attempt to fix 
the problem.

Most regression software packages have what is called a tolerance parameter that tries to protect 
the procedure from multicollinearity by rejecting predictor variables that are too highly correlated 
with other independent variables. Conceptually, tolerance is the amount of a predictor’s variance not 
accounted for by the other predictors (1 − R2 between predictors). Lower tolerance values indicate that 
there are stronger relationships (increasing the chances of obtaining multicollinearity) between the 
predictor variables. Allison (1999a) cautions that tolerances in the range of .40 are worthy of concern; 
other authors have suggested that tolerance values in the range of .1 are problematic (Myers, 1990; 
Pituch & Stevens, 2016).

A related statistic is the variance inflation factor (VIF), which is computed as 1 divided by toler-
ance. A VIF value of 2.50 is associated with a tolerance of .40 and is considered problematic by Allison 
(1999a); a VIF value of 10 is associated with a tolerance of .1 and is considered problematic by Cohen 
et al. (2003), Myers (1990), and Pituch and Stevens (2016).

5A.22 Recommended Readings

Berk, R. A. (2003). Regression analysis: A constructive 
critique. Thousand Oaks, CA: SAGE.

Berry, W. D. (1993). Understanding regression assump-
tions (Sage University Papers Series on 
Quantitative Applications in the Social Sciences, 
series no. 07-92). Newbury Park, CA: SAGE.

Cohen, J. (1968). Multiple regression as a general 
data analytic system. Psychological Bulletin, 70, 
426–443.

Darlington, R. B. (1968). Multiple regression in psy-
chological research and practice. Psychological 
Bulletin, 69, 161–182.
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C H A P T E R  5B

Multiple Regression  
Analysis Using IBM SPSS

This chapter will demonstrate how to perform multiple linear regression analysis with IBM SPSS 
first using the standard method and then using the stepwise method. We will use the data file 

Personality in these demonstrations.

5B.1 Standard Multiple Regression

5B.1.1 Analysis Setup: Main Regression Dialog Window

For purposes of illustrating standard linear regression, assume that we are interested in predicting self-
esteem based on the combination of negative affect (experiencing negative emotions), positive affect 
(experiencing positive emotions), openness to experience (e.g., trying new foods, exploring new 
places), extraversion, neuroticism, and trait anxiety. Selecting the sequence Analyze  Regression  
Linear opens the Linear Regression main dialog window displayed in Figure 5b.1. From the variables 
list panel, we move esteem to the Dependent panel and negafect, posafect, neoopen, neoextra, neo-
neuro, and tanx to the Independent(s) panel. The Method drop-down menu will be left at its default 
setting of Enter, which requests a standard regression analysis (all of the predictors are entered into 
the model in a single step).

5B.1.2 Analysis Setup: Statistics Window

Selecting the Statistics pushbutton opens the Linear Regression: Statistics dialog window shown in 
Figure 5b.2. By default, Estimates in the Regression Coefficients panel is checked. This instructs IBM 
SPSS to print the value of the regression coefficient and related measures. We also retained the follow-
ing defaults: Model fit, which provides R square, adjusted R square, the standard error, and an ANOVA 
table; R squared change, which is useful when there are multiple predictors that are being entered in 
stages so that we can see where this information is placed in the output; Descriptives, which provides 
the means and standard deviations of the variables as well as the correlations table; and Part and 
partial correlations, which produces the partial and semipartial correlations when multiple predictors 
are used. Clicking Continue returns us to the main dialog screen.
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Figure 5b.1  Main Dialog Window for Linear Regression

Figure 5b.2  The Linear Regression Statistics Window
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5B.1.3 Analysis Setup: Options Window

Select the Options pushbutton; this displays the Linear 
Regression: Options dialog window shown in Figure 5b.3. 
The top panel is applicable if we were using one of the 
step methods, and we will discuss this in Section 5B.2. 
We have retained the defaults of including the Y inter-
cept (the constant) in the equation and of excluding 
cases listwise. The choice Exclude cases listwise (some-
times called listwise deletion) means that all cases must 
have valid values on all of the variables in the analysis 
in order to be included; a missing value on even one  
of the variables is sufficient to exclude that case. 
Selecting this choice ensures that the set of variables, 
and thus the regression model, is based on the same set 
of cases. So long as there is relatively little missing data, 
this choice is best. Clicking Continue returns us to  
the main dialog box, and selecting OK produces the 
analysis.

5B.1.4 Analysis Output: Descriptives and Correlations

We examine the output of the analysis in the order we suggest that you proceed. Figure 5b.4 contains 
descriptive information. The upper table contains the means and standard deviations of the variables, 
and the lower table shows the square correlation matrix. The correlation results are divided into three 
major rows: the first contains the Pearson r values, the second contains the probabilities of obtaining 
those values if the null hypothesis was true, and the third provides sample size.

The dependent variable esteem is placed by IBM SPSS on the first row and column of the correlation 
table, and the other variables appear in the order we entered them into the analysis. The study repre-
sented by our data set was designed for a somewhat different purpose, so our choice of variables was a bit 
limited. Thus, the correlations of self-esteem with the predictor variables in the analysis are higher than 
we would ordinarily prefer, and many of the other variables are themselves likewise intercorrelated more 
than we would typically find in most studies. Nonetheless, the example is still useful for our purposes.

5B.1.5 Analysis Output: Omnibus Analysis

Figure 5b.5 displays the results of the analysis. The middle table shows the test of significance of the 
model using an ANOVA. There are 419 (N − 1) total degrees of freedom. With six predictors, the 
Regression effect has 6 degrees of freedom. The Regression effect is statistically significant, indicating 
that the combination of predictors explains more of the variance of the dependent variable than can be 
done by chance alone.

The upper table in Figure 5b.5 labeled Model Summary provides an overview of the results. Of 
primary interest are the R Square and Adjusted R Square values, which are .607 and .601, respectively. 
We learn from these that the weighted combination of the predictor variables explained approximately 
60% of the variance of self-esteem. The loss of so little strength in computing the Adjusted R Square 
value is primarily due to our relatively large sample size combined with a relatively small set of  

Figure 5b.3  The Linear Regression  
Options Window
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predictors. Using the standard regression procedure where all of the predictors were entered simulta-
neously into the model, R Square Change went from zero before the model was fitted to the data to 
.607 when all of the variables were simultaneously entered.

5B.1.6 Analysis Output: Individual Predictor Results

The bottom table in Figure 5b.5 labeled Coefficients provides the details of the results. The Zero-order 
column under Correlations lists the Pearson r for the dependent variable (self-esteem in this case) with 
each of the predictors. These values are the same as those shown in the correlation matrix of Figure 5b.4.

Figure 5b.4  Descriptive Statistics and Correlations Output for Standard Regression
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The Partial column under Correlations lists the partial correlations for each predictor as it was 
evaluated for its weighting in the model (the correlation between the predictor and the dependent vari-
able when the other predictors are treated as covariates). For example, the partial correlation associated 
with posafect is .219. This represents the correlation between posafect and the residual variance of the 
self-esteem dependent variable when statistically controlling for the other predictor variables.

The Part column under Correlations lists the semipartial correlations for each predictor once the 
model is finalized. Squaring these values informs us of the percentage of variance of self-esteem that 
each predictor uniquely explains. For example, trait anxiety accounts uniquely for about 3% of the vari-
ance of self-esteem (−.170 * −.170 = .0289 or approximately .03) given the contributions of the other 
variables in the model.

The Y intercept of the raw score model is labeled as the Constant and has a value here of 96.885. 
Of primary interest here are the unstandardized or raw (B) and standardized (Beta) coefficients, and 
their significance levels determined by t tests. With the exception of negative affect and openness, all of 
the predictors are statistically significant. As can be seen by examining the beta weights, trait anxiety 
followed by neuroticism followed by positive affect were all making relatively larger contributions to 
the prediction model.

Figure 5b.5  The Results of the Standard Regression Analysis
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The regression coefficients are partial regression coefficients because their values take into account 
the other predictor variables in the model; they inform us of the predicted change in the depen-
dent variable for every unit increase in that predictor. For example, positive affect is associated with 
an unstandardized partial regression coefficient of 1.338 and signifies that, when controlling for the 
other predictors, for every additional point on the positive affect measure, we would predict a gain of 
1.338 points on the self-esteem measure. As another example, neuroticism is associated with a partial 
regression coefficient of −.477 and signifies that, when controlling for the other predictors, every 
additional point on the neuroticism measure corresponds to a decrement of .477 points on the 
self-esteem measure.

This example serves to illustrate two important related points about multiple regression analysis. 
First, it is the model as a whole that is the focus of the analysis. Variables are treated akin to team players 
weighted in such a way that the sum of the squared residuals of the model is minimized. Thus, it is the 
set of variables in this particular (weighted) configuration that maximizes prediction—swap out one of 
these predictors for a new variable and the whole configuration that represents the best prediction can 
be quite different.

The second important point about regression analysis that this example illustrates, which is related 
to the first, is that a highly predictive variable can be “left out in the cold,” being “sacrificed” for the 
“good of the model.” Note that negative affect in isolation correlates rather substantially with self-
esteem (r = −.572), and if it was the only predictor it would have a beta weight of −.572 (recall that in 
simple linear regression, the Pearson r is the beta weight of the predictor), yet in combination with the 
other predictors is not a significant predictor in the multiple regression model. The reason for it not 
being weighted substantially in the model is that one or more of the other variables in the analysis are 
accomplishing its predictive work. But the point is that just because a variable receives a modest weight 
in the model or just because a variable is not contributing a statistically significant degree of prediction 
in the model is not a reason to presume that it is itself a poor predictor.

It is also important to note that the IBM SPSS output does not contain the structure coefficients. 
These are the correlations of the predictors in the model with the overall predictor variate, and 
these structure coefficients help researchers interpret the dimension underlying the predictor model 
(see Section 5A.11). They are easy enough to calculate by hand, and we incorporate these structure 
coefficients into our report of the results in Section 5B.1.7. Structure coefficients are computed by 
dividing the Pearson correlation for the given variable by the value of the multiple correlation coef-
ficient associated with the model (r/R). For example, the structure coefficient for negafect would be 
−.572/.779 or −.734. This represents the correlation of each predictor with the predicted value of the 
dependent variable.

5B.1.7 Reporting Standard Multiple Regression Results

negative affect, positive affect, openness to experience, extraversion, neuroticism, and trait 
anxiety were used in a standard regression analysis to predict self-esteem. The correlations 
of the variables are shown in Table 5b.1. As can be seen, all correlations, except for the one 
between openness and extraversion, were statistically significant.

(Continued)
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198  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

The prediction model was statistically significant, F(6, 413) = 106.356, p < .001, and 
accounted for approximately 60% of the variance of self-esteem (R2 = .607, adjusted R2 = .601). 
lower levels of trait anxiety and neuroticism, and to a lesser extent higher levels of positive 
affect and extraversion, primarily predicted self-esteem. The raw and standardized regression 
coefficients of the predictors together with their correlations with self-esteem, the squared 
semipartial correlations, and the structure coefficients are shown in Table 5b.2. Trait anxiety 
received the strongest weight in the model, followed by neuroticism and positive affect. With 
the sizeable correlations between the predictors, the unique variance explained by each of 
the variables indexed by the squared semipartial correlations was quite low. Inspection of the 
structure coefficients suggests that, with the possible exception of extraversion (whose correla-
tion is still relatively substantial), the other significant predictors were strong indicators of the 
underlying (latent) variable described by the model, which can be interpreted as well-being.

(continued)

Table 5b.1   Correlations of the Variables in the Analysis (N = 420)

Table 5b.2   Standard Regression Results
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Chapter 5B: Multiple Regression Analysis Using IBM SPSS   199

5B.2 Stepwise Multiple Regression

We discussed the forward, backward, and stepwise methods of performing a regression analysis in 
Chapter 5A. To illustrate how to work with these methods, we will perform a stepwise analysis on the 
same set of variables that we used in our standard regression analysis in Section 5B.1. We will use the 
data file Personality in this demonstration. In the process of our description, we will point out areas 
of similarity and difference between the standard and step methods.

5B.2.1 Analysis Setup: Main Regression Dialog Window

Select Analyze  Regression  Linear. This brings us to the Linear Regression main dialog win-
dow displayed in Figure 5b.6. From the variables list panel, we move esteem to the Dependent panel 
and negafect, posafect, neoopen, neoextra, neoneuro, and tanx to the Independent(s) panel. The 
Method drop-down menu contains the set of step methods that IBM SPSS can run. The only one you 
may not recognize is Remove, which allows a set of variables to be removed from the model together. 
Choose Stepwise as the Method from the drop-down menu as shown in Figure 5b.6.

Figure 5b.6  Main Dialog Window for Linear Regression

5B.2.2 Analysis Setup: Statistics Window

Selecting the Statistics pushbutton brings us to the Linear Regression: Statistics dialog window 
shown in Figure 5b.7. We configure it in the same way as was discussed in Section 5B.1.2. Clicking 
Continue returns us to the main dialog box.
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200  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

5B.2.3 Analysis Setup: Options Window

Selecting the Options pushbutton brings us 
to the Linear Regression: Options dialog 
window shown in Figure 5b.8. The top panel 
is now applicable as we are using the stepwise 
method. To avoid looping variables continu-
ally in and out of the model, it is appropriate 
to set different probability levels for Entry 
and Removal. The defaults used by IBM 
SPSS that are shown in Figure 5b.8 are com-
mon settings, and we recommend them. 
Remember that in the stepwise procedure, 
variables already entered into the model can 
be removed at a later step if they are no lon-
ger contributing a statistically significant 
amount of prediction.

Earning entry to the model is set at an 
alpha level of .05 (e.g., a variable with a prob-
ability of .07 will not be entered) and is the 

more stringent of the two settings. But to be removed, a variable must have an associated probability of 
greater than .10 (e.g., a variable with an associated probability of .12 will be removed but one with an 
associated probability of .07 will remain in the model). In essence, it is more difficult to get in than be 
removed. This is a good thing and allows the stepwise procedure to function. Click Continue to return 
to the main dialog window, and click OK to perform the analysis.

5B.2.4 Analysis Output:  
Descriptives and Correlations

The descriptive statistics are identical to those pre-
sented in Section 5B.1.4, and readers are referred to the 
previous analysis for that output.

5B.2.5 Analysis Output: Omnibus Analysis

Figure 5b.9 displays the test of significance of the model 
using an ANOVA. The four ANOVAs that are reported 
correspond to four models, but don’t let the terminology 
confuse you. The stepwise procedure adds only one vari-
able at a time to the model as the model is “slowly” built. 
At the third step and beyond, it is also possible to remove 
a variable from the model (although that did not happen 
in our example). In the terminology used by IBM SPSS, 
each step results in a model, and each successive step 
modifies the older model and replaces it with a newer 
one. Each model is tested for statistical significance.

Figure 5b.7  The Linear Regression Statistics Window

Figure 5b.8  The Linear Regression 
Options Window
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Chapter 5B: Multiple Regression Analysis Using IBM SPSS   201

Examining the output shown in Figure 5b.9 informs us that the final model was built in four steps; 
each step resulted in a statistically significant model. Examining the df column shows us that one vari-
able was added during each step (the degrees of freedom for the Regression effect track this for us as 
they are counts of the number of predictors in the model). We can also deduce that no variables were 
removed from the model since the count of predictors in the model steadily increases from 1 to 4.

This deduction that no variables were removed is verified by the display shown in Figure 5b.10, 
which tracks variables that have been entered and removed at each step. As can be seen, trait anxiety, 
positive affect, neuroticism, and extraversion have been entered on Steps 1 through 4, respectively, 
without any variables having been removed on any step.

Figure 5b.9  Tests of Significance for Each Step in the Regression Analysis

Figure 5b.10  Variables That Were Entered and Removed
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202  PART II: BAsIc And AdvAnced RegRessIon AnAlysIs

Figure 5b.11, the Model Summary, presents the R Square and Adjusted R Square values for each 
step along with the amount of R Square Change. In the first step, as can be seen from the footnote 
beneath the Model Summary table, trait anxiety was entered into the model. The R Square with that 
predictor in the model was .525. Not coincidentally, that is the square of the correlation between trait 
anxiety and self-esteem (−.7242 = .525) and is the value of R Square Change.

On the second step, positive affect was added to the model. The R Square with both predictors 
in the model was .566; thus, we gained .041 in the value of R Square (.566 − .525 = .041), and this is 
reflected in the R Square Change for that step. By the time we arrive at the end of the fourth step, our 
R Square value has reached .603. Note that this value is very close to but not identical to the R2 value 
we obtained under the standard method (with the other statistically nonsignificant variables included 
in the model).

5B.2.6 Analysis Output: Individual Predictor Results

The Coefficients table in Figure 5b.12 provides the details of the results. Note that both the unstan-
dardized and standardized regression coefficients are readjusted at each step to reflect the additional 
variables in the model. Ordinarily, although it is interesting to observe the dynamic changes taking 
place, we are usually interested in the final model. Note also that the values of the regression coeffi-
cients are different from those associated with the same variables in the standard regression analysis. 
That the differences are not huge is due to the fact that these four variables did almost the same amount 
of predictive work in much the same configuration as did the six predictors using the standard 
method. If economy of model were relevant, we would probably be very happy with the trimmed 
model of four variables replacing the full model containing six variables.

Figure 5b.13 addresses the fate of the remaining variables. For each step, IBM SPSS tells us which 
variables were not entered. In addition to tests of the statistical significance of each variable, we also see 
displayed the partial correlations. This information together tells us what will happen in the following 
step. For example, consider Step 1, which contains the five excluded variables. Positive affect has the 
highest partial correlation (.294), and it is statistically significant; thus, it will be the variable next entered 
on Step 2. On the second step, with four variables (of the six) being considered for inclusion, we see that 
neuroticism with a statistically significant partial correlation of −.269 wins the struggle for entry next. By 
the time we reach the fourth step, there is no variable of the excluded set that has a statistically significant 
partial correlation for entry at Step 5; thus, the stepwise procedure ends after completing the fourth step.

Figure 5b.11  Model Summary
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Figure 5b.12  The Results of the Stepwise Regression Analysis

Figure 5b.13  The Results of the Stepwise Regression Analysis
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5B.2.7 Reporting the Stepwise Multiple Regression Results

negative affect, positive affect, openness to experience, extraversion, neuroticism, and trait 
anxiety were used in a stepwise multiple regression analysis to predict self-esteem. The corre-
lations of the variables are shown in Table 5b.1. As can be seen, all correlations except for the 
one between openness and extraversion were statistically significant.

A stepwise multiple regression procedure was performed to generate a parsimonious  predic-
tion model. The final model contained four of the six predictors and was reached in four steps with 
no variables removed. The model was statistically significant, F(4, 415) = 157.626, p < .001, and 
accounted for approximately 60% of the variance of self-esteem (R2 = .603, adjusted R2 = .599).  
lower levels of trait anxiety and neuroticism, and to a lesser extent higher levels of positive 
affect and extraversion, predicted self-esteem. The raw and standardized regression coefficients 
of the predictors together with their correlations with self-esteem, their squared semipartial 
correlations, and their structure coefficients are shown in Table 5b.3. Trait anxiety received 
the strongest weight in the model, followed by neuroticism and positive affect; extraversion 
received the lowest of the four weights. With the sizeable correlations between the predic-
tors, the unique variance explained by each of the variables indexed by the squared semipar-
tial correlations was relatively low: trait anxiety, positive affect, neuroticism, and extraversion 
uniquely accounted for approximately 4%, 2%, 3%, and less than 1% of the variance of self-
esteem. The latent factor represented by the model appears to be interpretable as well-being. 
Inspection of the structure coefficients suggests that trait anxiety and neuroticism were very 
strong indicators of well-being, positive affect was a relatively strong indicator of well-being, 
and extraversion was a moderate indicator of well-being.

Table 5b.3  Stepwise Regression Results
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