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CHAPTER 1. LINEAR REGRESSION

Introduction

It is likely that you have thought about a variety of relationships between 
different variables. For example, on a personal level you might have won-
dered whether studying an additional hour will lead to a substantially better 
score on an upcoming exam. Or, will getting additional experience in a non-
paid internship increase the likelihood of obtaining a full-time position in 
an organization you wish to work for. Or, if you go to the gym an additional 
hour each week, will this lead to a substantial weight loss.

Relationships between variables are also at the heart of many academic 
disciplines. Political scientists may focus on the possible link between con-
tributions to political leaders and decisions those leaders subsequently take. 
Economists may be interested in how mortgage interest rates affect the hous-
ing market. Marketing firms are likely interested in how different forms of 
advertising lead to improved sales of a product. Policy analysts are often 
interested in how a change in a policy, such as a new curriculum in elemen-
tary education, might lead to different outcomes, such as improved test scores. 
Public health researchers might be interested in determining how the inci-
dence of cancer is related to the amount of red meat that is consumed. Others 
might be interested in how student standardized test scores are related to the 
marital status, education, and income of the parents, or how wages in metro-
politan areas are related to the number of immigrants in the metropolitan area.

The point is that interest in understanding relationships is common and 
widespread. Researchers, both in the natural and social sciences, often want 
to delve much more deeply into the nature of those possible relationships. 
And when the variables of interest, such as contributions to political office 
seekers and votes on a particular issue, can be quantified, a very common 
method used for analyzing those relationships is linear regression analysis. 
Regression analysis is a statistical technique that provides a way of conve-
niently summarizing the relationship between a variable of interest and one 
or more variables that are anticipated to influence that variable.

This volume is about linear regression analysis, that is, analysis of cases 
in which the relationship between the variable to be explained and the other 
variable or variables can be summarized by a straight line. The volume is 
intended to provide the reader with a basic understanding of how regression 
analysis can be carried out, how the results from such analysis are inter-
preted, and the variety of ways in which regression analysis is used both in 
academic settings and in public and business arenas. The current chapter 
illustrates how a single variable can be used to explain variations in another 
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variable, for example, the influence of mortgage interest rates on the number 
of new houses constructed. Chapter 2 shows how more complex relation-
ships, in which a single variable is hypothesized to depend on two or more 
variables, can be estimated using regression analysis. For example, how do 
volume of traffic, speed, and weather conditions affect the number of acci-
dents on highways? In most applications of regression analysis, researchers 
rely on data that constitute a sample drawn from a population. As is shown in 
Chapter 3, in these instances it is necessary to test hypotheses in order to gen-
eralize the findings to the population from which the sample was drawn. The 
final two chapters expand on the discussion of regression analysis. Chapter 4  
focuses on the data used and Chapter 5 on a variety of problems and issues 
researchers face when using this technique. Throughout the volume we keep 
the discussion as simple as possible and provide examples to illustrate how 
regression analysis is applied in a variety of disciplines. Our objective is to 
give the reader a solid but basic understanding of linear regression analysis, 
not to make the reader an expert. Thus many more complex statistical issues 
are not covered in this book. Readers who wish a more in-depth coverage are 
referred to the suggested readings provided in Appendix D.

Hypothesized Relationships

The two statements, “The more a political candidate spends on advertising, 
the larger the percentage of the vote the candidate will receive” and “Mary is 
taller than Jane,” express different types of relationships. The first statement 
implies that the percentage of the vote that a candidate receives is a func-
tion of, or is caused by, the amount of advertising, while in the second state-
ment, no causality is implied. More precisely, the former expresses a causal 
or functional relationship while the latter does not. A functional relationship 
is a statement (often expressed in the form of an equation) of how one vari-
able, called the dependent variable, depends on one or more other variables, 
called independent or explanatory variables.1 In the example, the share of the 
vote a candidate receives is dependent on (is a function of) the amount spent 
on advertising. Another independent variable that might be included in the 
analysis is the number of prior years in office, in which case the functional 
relationship would be stated as, “The candidate’s share of the vote depends 
on the amount of advertising as well as the candidate’s prior years in office.”

Researchers are often interested in testing the validity or falsity of hypoth-
esized functional relationships, called hypotheses2 or theories. We show in 
Chapter 3 how linear regression is used to test such hypotheses. But first we 
explain how a regression equation is estimated.

Linear regression analysis is applicable to a vast array of subject mat-
ter. Consider the following situations in which regression analysis has been 
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employed: a study of the effect of polluting industries on mortality rates in 
Chinese cities (Hanlon and Tian 2015), a study of how proximity to fast-food 
restaurants relates to the percentage of ninth graders who are obese (Currie, 
Della Vigne, Moretti, and Pathania 2010), a study of the relationship between 
income tax rebates and sales of hybrid electric vehicles (Chandra, Gulati, and 
Kandikar 2010), a study of the effect of changes in cigarette prices on smok-
ing among smokers of different smoking intensities (Cavazos-Rehg et al. 
2014), and a study showing the effect of severe drops in temperature on the 
number of trials for the crime of witchcraft in 16th and 17th century Europe 
(Oster 2004). All of these examples are cases in which the application of 
regression analysis was useful, although the application was not always as 
straightforward as the example to which we now turn.

A Numerical Example

To facilitate the discussion of linear regression analysis, the following food 
consumption example will be referred to throughout the book. Suppose one 
were asked to investigate by how much a typical family’s food expenditure 
increases as a result of an increase in its income. While most would agree 
that there is a relationship between income and the amount spent on food, 
the example is in fact an investigation of an economic theory. The theory 
suggests that the expenditure on food is a function of family income;3 that 
is, C f I= ( ) , read “C is a function of I,” where C (the dependent variable) 
refers to the expenditure on food, and I (the independent variable, some-
times called the regressor) denotes income. Throughout the book we will 
refer to the theory that C increases as I increases as the hypothesis.4

The investigation of the relationship between C and I allows for both test-
ing the theory that C increases as a result of increases in I and obtaining an 
estimate of how much food consumption changes as income changes. One 
can therefore consider the investigation as an analysis of two related ques-
tions: (l) Does spending on food increase when a family’s income increases? 
(2) By how much does spending on food change when income increases or 
decreases? In this chapter we explain how a linear relationship between the 
two variables is estimated in order to provide descriptive answers to these 
questions, although, as will be seen in Chapter 3, these questions cannot be 
answered with certainty.

A common strategy for answering questions such as these is to observe 
income and food consumption differences among a number of families 
and note how differences in food consumption are related to differences 
in income. Here we employ the hypothetical data given in columns l and 2 
of Table 1.1 to answer this question. The data represent annual income and 
food consumption information from a sample of 50 families in the United 
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Table 1.1 Food Consumption, Family Income, and Family Size Data

(1)
Food Consumption

(2)
Income

(3)
Family Size

(4)
Has a Garden

$780 $24,000 1 NO

1,612 20,000 1 NO

1,621 37,436 1 NO

1,820 36,600 2 YES

2,444 10,164 1 YES

3,120 2,500 1 NO

3,952 29,000 1 YES

4,056 40,000 1 NO

4,160 30,154 1 NO

4,160 34,000 1 YES

4,300 46,868 1 NO

4,420 15,000 1 NO

5,200 36,400 2 YES

5,200 25,214 2 YES

6,100 21,400 2 YES

6,240 68,620 2 YES

6,587 1,200 3 NO

7,020 40,000 2 NO

7,040 52,000 1 NO

7,540 31,100 2 NO

7,600 107,602 4 NO

8,060 134,000 2 NO

8,632 59,800 3 NO

8,800 68,000 4 NO

8,812 80,210 2 NO

8,840 67,000 1 NO

9,100 50,000 6 NO

9,150 53,420 1 NO

9,360 55,000 1 NO

9,658 65,000 1 NO

9,660 66,000 2 YES

9,880 28,912 3 YES

10,192 100,000 1 YES

10,296 50,356 4 YES
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(1)
Food Consumption

(2)
Income

(3)
Family Size

(4)
Has a Garden

10,400 45,000 4 NO

11,263 168,000 4 NO

11,700 110,200 4 NO

11,960 75,000 3 NO

12,036 150,200 1 YES

12,064 44,746 2 NO

12,240 171,170 2 NO

12,652 170,000 5 NO

13,260 27,000 2 NO

14,377 132,543 2 YES

14,731 192,220 2 NO

15,300 141,323 4 NO

16,584 84,059 2 NO

16,870 176,915 5 NO

18,776 189,654 5 NO

20,132 151,100 3 NO

Source: Hypothetical data

States for one year. Assume that this sample was chosen randomly from 
the population of all families in the United States.5 The associated levels of 
these two variables have been plotted as the 50 points in Figure 1.1. We are 
going to use this sample to draw inferences about how income affects food 
consumption for the population of families.

Casual observation of the points in Figure 1.1 suggests that C increases as 
I increases. However, the magnitude by which C increases as I increases for 
the 50 families is not obvious. For this reason the presentation of data in tab-
ular or graphical form is not by itself a particularly useful format from which 
to draw inferences. These formats are even less desirable as the number of 
observations and variables increases. Thus we seek a means of summarizing 
or organizing the data in a more useful manner.

Any functional relationship can conveniently be expressed as a math-
ematical equation. If one can determine the equation for the relationship 
between C and I, one can use this equation as a means of summarizing 
the data. Since an equation is defined by its form and the values of its 
parameters, the investigation of the relationship between C and I entails 
learning something from the data about the form and parameters of the 
equation.
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The economic theory that suggests that C is a function of I does not indi-
cate the form of the relationship between C and I. That is, it is not known 
whether the equation is of a linear or some other, more complex form.6 In 
some problems the general form of the equation is suggested by the theory, 
but since this is not so in the food expenditure problem, it is necessary to 
specify a particular form. We shall assume that the form of the equation for 
our problem is that of a straight line, which is the simplest and most com-
monly used functional form.7 (A review of the algebraic expression for a 
straight line is given in Box 1.1.)
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Figure 1.1 Scatter Diagram of Family Income and Food Consumption

Box 1.1 Algebraic Expression for a Straight Line

As you may remember from algebra, a straight line relating two vari-
ables X and Y, with Y considered a function of X, can be expressed 
using the formula Y = a + bX, where a and b are numbers; a is the 
intercept, which is the value of Y when X is zero, and b is the slope, 
which measures the change in Y associated with a unit increase or 
decrease in X. For example if Y = 2.5 + 0.7X, a two-dimensional graph 
with Y on the vertical axis and X on the horizontal axis would show 
the line passing through the vertical axis at Y = 2.5 (since X is zero at 
that point) and with a slope of 0.7, which means that for any one-unit 
increase in X there is a 0.7-unit increase in Y.
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Given this assumption, one can express the functional relationship that 
exists between C and I for all U.S. families as

 C I= +α β  [1.1]

where α (the Greek letter alpha) and β (the Greek letter beta) are the 
unknown parameters assumed to hold for the population of US families, 
and are referred to as the population parameters.

Given the assumption that the form of the equation of the possible rela-
tionship between C and I can be represented by a straight line, what remains 
is to estimate the values of the population parameters of the equation using 
our sample of 50 families. The two questions posed earlier refer to the value 
of the slope—that is, the value of β. The first question asks whether β is 
greater than zero, while the second asks the value of β. By obtaining an esti-
mate of the value of β, a statement can be made as to the effect of changes 
in income on the amount spent on food for the 50 families in our sample. As 
shown in Chapter 3, inferences can be drawn from this estimate of β about 
the behavior of all families in the population.

Before proceeding, it is important to note the following. The actual or 
“true” form of the relationship between I and C is not known. We have simply 
assumed a particular form for the relationship in order to summarize the data 
in Figure 1.1. Further, we do not know the values of the population param-
eters of the assumed linear relationship between C and I. The task is to obtain 
estimates of the values of α and β. We will denote these estimates as a and b.8

Estimating a Linear Relationship

The question that may come to mind at this point is, “How can it be stated that 
income and food consumption are related by a precise linear equation when 
the data points in Figure 1.1 clearly do not lie on a straight line?” The answer 
comprises three parts. First, the assumption that a straight line is a good sum-
mary of the data points does not imply that C and I are related in precisely 
this manner for every family. Second, the hypothesis is based on the implicit 
assumption that only income and food consumption differ between these fami-
lies. However, other things, such as family size and tastes, are not likely to 
be the same for all families and thus affect the amount spent on food. Third, 
there is randomness in people’s behavior; that is, an individual or family, for 
no apparent reason, may buy more or less food than some other family that 
appears to be in exactly the same situation with regard to income, taste, and the 
like. Thus one would not expect the data points to lie consistently on a straight 
line even if the line did represent the average response to changes in income.
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More formally the regression equation is expressed as

 C Ii i i= + +α β ∈  [1.2]

In this form we say that food consumption of the ith family, Ci , depends 
on its income, Ii. The term єi is referred to as the error term, and captures 
the fact that given the values of α and β, the equation will not exactly predict 
a family’s food consumption given its income for reasons discussed in the 
previous paragraph.

As noted previously, from the data points in Figure 1.1 it is not obvious 
how much C increases as I increases; that is, it is uncertain what the slope 
of the line summarizing the data points should be. To see this, consider the 
two solid lines that have been arbitrarily drawn through the points in Figure 
1.2. Line 1 has the equation C = 5000 + 0.04I, and line 2 has the equation  
C = 2000 + 0.15I. Which of these two lines is the better estimate of how 
food consumption changes as income changes? This is the same as ask-
ing which of the two equations is better at summarizing the relationship 
between C and I found in Table 1.1. More generally, which line among all 
the straight lines that it is possible to draw through the points in Figure 1.2 
is the “best” in terms of summarizing the relationship between C and I? 
Regression analysis, in essence, provides a procedure for determining the 
regression line, which is the best straight line (or linear) approximation of 
the relationship between C and I. This procedure is equivalent to finding 
particular values for the slope and intercept.

An intuitive idea of what is meant by the process of finding a linear 
approximation of the relationship between the independent and dependent 
variables can be obtained by taking a string or ruler and trying to “fit” the 
points in Figure 1.1 to a line. Move the string up or down, or rotate it until 
it takes on the general tendency of the points in the graph.

What property should this best-fitting line possess? If asked to select which 
of the two solid lines in Figure 1.2 is better at summarizing (estimating) the 
relationship between income and food consumption, one would undoubtedly 
choose line l, because it is “closer” to the points than line 2. (This is not to 
imply that line l is the regression line.)

Closeness or distance can be measured in different ways. Two possible 
measures are the vertical distance and the horizontal distance between the 
observed points and a line. In the normal case, where the dependent vari-
able is plotted along the vertical axis, distance is measured vertically as the 
differences between the observed points and a fitted line. This is shown in 
Figure 1.2, where the vertical dotted line drawn from the data point to line l 
measures the distance between the observed data point and the line. In this 
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case distance is measured in dollars of consumption, not in feet or inches. 
The choice of the vertical distance stems from the theory stating that the 
value of C depends on the value of I. Thus, for a particular value of income, 
it is desired that the regression line be chosen so as to predict a value of food 
consumption that is as close as possible to the value of food consumption 
observed at that income level.

The regression line cannot minimize the distance for all points simultane-
ously. In Figure 1.2 it can be seen that some points are closer to line 1, while 
others are closer to line 2. Thus a method of averaging or summing up all 
these distances is needed to obtain the best fitting line.

Although several methods exist for summing these distances, the most 
common method in regression analysis is to find the sum of the squared 
values of the vertical distances. This is expressed as

 Σi
n

i iC C= −1
2( )

^
 [1.3]

where Ci is the actual value of C for the ith family, Ci
^

 (read “C hat sub i”)  
is the value of C for the ith family that would be estimated by the regres-
sion line and n is the number of observations over which the expression is 
summed.9
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Figure 1.2  Two Possible Summaries of the Income-Consumption 
Relationship
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Least Squares Regression

In the most common form of regression analysis, the line that is chosen is 
the one that minimizes

 Σi
n

i iC C= −1
2( )

^
 [1.4]

which is called the sum of the squared errors, frequently denoted SSE.10 
For each observation, the distance between the observed and the predicted 
level of consumption can be thought of as an error, since the observed level 
of consumption is not likely to be predicted exactly but is missed by some 
amount ( )C Ci i−

^
. As noted above, this error may be due, for example, to 

randomness in behavior or other factors such as differences in family size. 
Because the squares of the errors are minimized, the term least squares 
regression analysis is used, with the estimation technique commonly 
referred to as ordinary least squares (OLS).

The reasons for selecting the sum of the squared errors lie in statistical 
theory that is beyond the scope of this book. However, an intuitive rationale 
for its selection can be presented. If the errors were not squared, distances 
above the line would be canceled by distances below the line. Thus it would 
be possible to have several lines, all of which minimized the sum of the 
nonsquared errors.11 It is implicit that closeness is good, while remoteness 
is bad. It can also be argued that the undesirability of remoteness increases 
more than in proportion to the error. Thus, for example, an error of four 
dollars is considered more than twice as bad as an error of two dollars. One 
way of taking this into account is to weight larger errors more than smaller 
errors, so that in the process of minimizing it is more important to reduce 
larger errors. Squaring errors is one means of weighting them.

Let a and b represent the estimated values of α and β for the still unknown 
regression line. Ci

^
 can be expressed as C a bIi i

^
= + . Substituting a bIi+  

for Ci

^
 in expression 1.4, the expression for SSE can be rewritten as

 SSE C a bIi
n

i i= − −( )=Σ 1

2  [1.5]

Note that the term in parentheses in equation 1.5 is the error term, that is, 
an estimate of ∈i , from equation 1.2.

Expressions for a and b can be found that minimize the value of equa-
tion 1.5 and hence give the least squares estimates of α and β, which in turn 
define the regression line. (See Appendix A for the derivation of the formulas 
using the calculus.)

For the given set of data in Table 1, the a and b that minimize equation 
1.5 are a = 4,155.21 and b = +0.064. (Statistical packages, which are readily  
available, generate the values of a and b. For purposes of completeness, 
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Appendix A shows how the actual values of a and b are calculated.) Therefore, 
the least squares line, which is drawn in Figure 1.3, has the equation

 C = 4,155.21 + 0.064I [1.6]

These results mean, for example, that the estimate of consumption for a 
family whose annual income is $10,000 is $4,795.21—that is, $4,795.21 = 
$4,155.21 + 0.064($10,000). Remember, this is an estimate of C and not nec-
essarily the amount one would observe for a specific family with an income 
of $10,000. The value of a, $4,155.21, is the estimated food consumption 
for a family with zero income. The value of b, 0.064, implies that for this 
sample, each dollar change in family income results in a change of $0.064 in 
food consumption in the same direction (note the positive sign for b). When 
interpreting the results of a regression analysis, it is important to keep in 
mind the unit of measure for the variables used in the equation (see Box 1.2).

Box 1.2 Importance of the Units of Measure

The estimate of the slope coefficient β is interpreted as the change 
in the dependent variable associated with a one-unit change in the 
independent variable. In our food example, both income and the 
amount spent on food are measured in dollars, so a one-unit change 
is one dollar. But what if each variable had been measured in thou-
sands of dollars? In that case, observations for the first family in 
Table 1.1 would be 0.780 (thousands of dollars spent on food) and 
24 (thousands of dollars income), and the regression result would be  
C = 4.15521 + 0.064I. Here the intercept represents the same 4.15521 
thousands of dollars and for each thousand-dollar increase in income 
(a one-unit increase) there would be an associated 0.064 thousand (in 
other words, $64) increase in food consumption. This of course is a 
6.4 cent increase in food consumption per dollar increase in income.

But what if income were measured in thousands while C contin-
ued to be shown in dollars? Then the resulting equation would be  
C = 4155.21 + 64I. Again this would mean that for each additional one 
thousand dollars in income (i.e., a one-unit increase in I), there would 
be an associated $64 increase in food consumption. The “story” about 
the relationship between C and I remains the same in spite of the dif-
ferent sizes of the coefficients. The important lesson to keep in mind 
is to be aware of the units of measure any time you interpret linear 
regression results.
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These conclusions, of course, hold only for this particular sample. 
When the least squared technique is applied to additional samples of 
consumers, one would obtain additional (generally different) estimates 
of α and β.

It is important to point out that regression analysis does not prove 
causation. Our estimate of β is consistent with the theory that an increase 
in income causes an increase in food consumption. However, it does not 
prove causation. Note that we could have reversed the equation, making  
I depend on C, and argued that higher food consumption makes for 
healthier and more productive workers who thus have higher incomes. 
Since I and C increase together, this alternative relationship would 
also be supported. It would take some alternative experiment or test to 
determine the direction of the causation. Our estimate of β, however, 
is not consistent with the theory that food consumption decreases with 
increases in income.12

Note that linear regression requires that the regression equation relating 
the dependent and independent variables be linear, that is, a straight line. 
However, the equation relating Y and X does not have to be linear, so long 
as the estimated regression equation is linear. For example, suppose that we 
believe that the relationship between Y and X is given by Y X2 2= +α β . 
Thus, Y and X are not related by a straight line, but the relationship between 
the variables Y2 and X2 is linear, so one can estimate a linear regression 
using Y2 and X2. We return to this topic in Chapter 4.

C = 4155.21 + 0.064I

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$0 $50,000 $100,000
Income

F
o

o
d

 E
xp

en
d

it
u

re
s

$150,000 $200,000

Figure 1.3 “Best Fitting” Regression Line
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Examples

Before proceeding, three examples are presented to illustrate how regres-
sion analysis is used. Note that these examples have been selected in order 
to give the reader some idea of the variety of ways in which linear regression 
has been utilized in published research. They also represent only a portion 
of more extensive research that is included in the original articles; reading 
the entire article will provide much more information on the research that 
was conducted.

Example 1.1—Change in Education Performance

Goldin and Katz (2008, 346) examine the rise in education levels in the 
United States during the 20th century and its relationship to economic devel-
opment. As part of their analysis, they explore how increased educational per-
formance during the last two-thirds of the 20th century differed across states. 
In particular, they ask if states that had relatively low high school gradua-
tion rates in 1938 also had relatively low educational performance levels at 
the end of the century. To explore this question, they estimated a regression 
in which the independent variable is the state’s high school graduation rate 
in 1938 and the dependent variable is an index of educational performance 
for the 1990s. The index averages several National Assessment of Education 
Progress (NAEP) scores, Scholastic Aptitude Test (SAT) scores, and a mea-
sure of the high school dropout rate. The regression is estimated for the 48 
states that comprised the United States in 1938. The resulting regression is

 EPI = −2.02 + 4.09HSG [1.7]

where EPI is the educational performance index and HSG is the high 
school graduation rate in 1938. The positive coefficient on HSG implies that, 
on average, states with high (low) high school graduation rates in 1938 had 
a high (low) educational performance index in the 1990s. In other words, 
performance in the 1990s is positively related to high school graduation rates 
in 1938, consistent with the idea that relative performance of states did not 
change greatly overtime.

Example 1.2—Women in Films and Box Office Receipts

It has been noted that female actresses are underrepresented in films. To 
explore a possible explanation as to why this might be the case, Lindner, 
Lindquist, and Arnold (2015) examine whether the presence of at least two 
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women playing important roles in a film results in lower box office receipts. 
If this is the case, the result would suggest that the underrepresentation, 
at least in part, is due to lower public interest in such films. The authors 
estimate a regression in which the dependent variable is box office receipts 
and the explanatory variable is a measure of the presence of women in the 
film. They use data for 964 films for the period 2000−2009, and obtain the 
following regression equation:

 R = 84.843 − 11.356F [1.8]

where R is the box office receipts (in millions of dollars) of a film and F is 
a measure of the gender representation in the movie. The negative coefficient 
of −11.356 implies that the presence of important roles by females in movies 
is associated with lower box office receipts, consistent with the premise that 
the public is less interested in seeing movies that feature females.

Example 1.3—Using Measures of Extremities to Determine Height 

Forensic scientists can face the challenging task of determining the iden-
tity of individuals from commingled human remains. One variable that can 
be of use in determining identity is the approximate height of the presumed 
deceased. Linear regression analysis is one method that has been used to 
infer the height of the deceased when only measures of extremities, such 
as hands or feet, are available. For example, Krishan Kanchan, and Sharma 
(2012) obtained the following result when the height (HT) of 123 females 
living in Himachal Pradesh State in India was regressed on the length of 
their feet (FT), where each variable was measured in centimeters:

 HT = 74.820 + 3.579FT [1.9]

The results imply that each additional centimeter of foot length is associ-
ated with 3.579 cm. of additional height.

The Linear Correlation Coefficient

In the first part of this chapter, we demonstrated how regression analysis 
can be used to summarize the relationship between a dependent and an 
independent variable. We turn now to an explanation of descriptive statis-
tics designed to evaluate (1) the degree of association between variables and 
(2) how well the independent variable has explained the dependent variable.

The correlation coefficient measures the degree of linear association 
between two variables.13 To understand what statisticians mean by linear 
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association, consider Figure 1.4, which has the same 50 points as Figure 1.1. 
The average (or mean) level of food consumption is represented by the hori-
zontal dotted line, while the vertical solid line represents the mean level of 
income. The two lines divide the figure into the four quadrants denoted by 
Roman numerals. Levels of C that are greater than the average of $8,795.14 
lie above the dashed line in quadrants I and II, while less than average levels 
lie below, in quadrants III and IV. Similarly, income levels greater than the 
average lie to the right of $72,321.72 in quadrants I and IV, while those less 
than average lie to the left in quadrants II and III.

Figure 1.4 demonstrates that a majority of the points in the sample lie in 
quadrants I and III. Because of this pattern, the variables C and I are said 
to be positively correlated. Put differently, C and I are said to be positively 
correlated when C’s above (below) the mean value of food consumption, 
denoted C , are associated with I’s above (below) the mean value of income, 
denoted I . On the other hand, if the C’s below C  had been associated with 
the I’s above I  (and vice versa), one would have said that the variables 
were negatively correlated. The reader should be able to demonstrate that 
in this case the data points would have been clustered in quadrants II and 
IV. Other possibilities exist: If the data points had been spread fairly evenly 
throughout the four quadrants or in just quadrants II and III or just III and 
IV, one would have said that C and I were uncorrelated.

The particular descriptive statistic that measures the degree of linear 
association between two variables is called the correlation coefficient and 
is denoted r.14 Although we don’t provide the proof, r always lies between 

Figure 1.4 Linear Correlation Analysis: The Food Expenditure Problem
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the values of −1 and +l (−1.0 ≤ r ≤ +1.0). When there is little linear associa-
tion between two variables (when two variables are relatively unrelated),  
r is close to zero. In the presence of strong correlation, r is close to 1 (+1 for 
positive correlation, −1 for negative correlation).

Although the correlation coefficient is 0.756 (a positive number) for the 
food example, where it was hypothesized that changes in income caused 
changes in food expenditures, the presence of either positive or negative 
correlation does not necessarily indicate causality. In particular, because the 
correlation coefficient measures only the degree of association between two 
variables, it might reflect a cause-and-effect relationship; however there are 
other reasons besides causality that can influence the size of the coefficient. 
Variables may also appear correlated if both variables affect each other, if 
the two variables are both related to a third variable, or if the variables are 
systematically associated by coincidence.

An example of the first reason that both variables might affect each 
other is that IQ scores and student achievement scores are likely to be posi-
tively correlated. Although it seems reasonable that IQ influences achieve-
ment, many educators believe that this is only part of the story. Indeed, it 
seems likely that the IQ measure also reflects the level of achievement. 
An example of the second reason, that is, that the variables are related to 
a third variable, is the positive correlation that exists across cities between 
the number of churches and the number of bars. Although churches may 
spring up in response to bars (or bars in response to churches), the posi-
tive association most likely results because both variables are related to 
some other variable, such as population. A good example of the last reason, 
that the variables are related by coincidence, is the positive correlation of 
0.943 found between the number of letters in the names of the teams in the 
Central Division of the National Baseball League and the number of wins 
during the 2014 regular season.15

The Coefficient of Determination

Recall that for any problem, the regression line is defined to be the line lying 
closest to the data points (closest in the sense that the line minimizes the 
sum of the squared errors term). Often, for comparative purposes, it is useful 
to know just how close is “close”; in other words, it is helpful to be able to 
evaluate what is referred to as the goodness of fit of the regression line.

An intuitive feeling for what is meant by goodness of fit is given in 
Figure 1.5, in which two distinct sets of data points have been plotted along 
with the two lines that minimize the sum of the squared errors. The two 
regression lines have the same values for a and b. The data points in panel 
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A of Figure 1.5 are clearly closer to the regression line than the data points 
in panel B.

The measure of relative closeness used by statisticians for evaluating 
goodness of fit is called the coefficient of determination. Because of its 
relationship to the correlation coefficient, this measure is generally referred 
to as the R2. (The coefficient of determination is actually the square of  
the correlation coefficient, and is commonly referred to as “R squared.”) 
The R2 statistic measures closeness as the percentage of total variation in the 
dependent variable explained by the regression line. Formally, the measure 
is defined as

 R C C Ci
n

I i
n

I
2

1
2

1
2= − −= =Σ Σ( ) / (C )

^  [1.10]

To measure variation in a family’s food consumption, we want some com-
mon base from which to measure differences in C. To the extent that families 
consume more or less than the mean food consumption, denoted C , there 
is variation in food consumption. Thus we use C  as the base for measuring 
variations in C between families.

The denominator of equation 1.10 is a measure of the total variation in the 
dependent variable about its mean value C . For example, consider a house-
hold with an income of $21,400 and observed consumption of $6,100 (the 
15th observation shown in Table 1.1). Since the mean value of consumption 
is $8,795.14, the observed variation of C from the mean is −$2,695.14 for 
this observation (−$2,695.14 = 6,100 − 8,795.14). So that negative varia-
tions do not cancel positive variations, the individual variations are squared 
before they are summed.

The numerator of equation 1.10 is a measure of the total variation explained 
by the regression line. For example, from regression equation 1.6, it follows 
that the best estimate of food consumption for the family with an income 
of $21,400 is $5,524.81 ($5,524.81 = 4,155.21 + 0.064($21,400). Since this 
is −$3,270.33 from the mean (−$3,270.33 = $5,524.81 − $8,795.14), it is 
said that −$3,270.33 is the variation explained by the regression line for this 
observation. The total explained variation is found by summing the squares 
of these variations for the entire sample.

For the food expenditure problem, the value of the R2 is 0.571, and one 
can say that the regression line explains 57.1% of the total variation in food 
expenditures. Stated somewhat differently, it can be said that 57.1% of the 
variation (about the mean) in the dependent variable has been explained by 
(or is attributable to) variation (about the mean) in the independent variable.

Notice that if the data points were all to lie directly on the regression 
line, the observed values of the dependent variable would be equal to the 
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Figure 1.5 Comparison of Goodness of Fit for Two Regression Lines

Panel B: Regression Equation with Low R2

Panel A: Regression Equation with High R2

predicted values, and the R2 would be equal to l. As the independent variable 
explains less and less of the variation in the dependent variable, the value 
of R2 falls toward zero. Hence, as would be expected, the R2 for the data 
in panel A of Figure 1.5, 0.741, is greater than that for the data in panel B  
of Figure 1.5, 0.209.
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Regression and Correlation

It is important to note that linear regression, the correlation coefficient, and 
the coefficient of determination are all related but that they provide differ-
ent amounts of information and are based on different assumptions. First, as 
indicated previously, the coefficient of determination is simply the square 
of the correlation coefficient. An examination of Figure 1.4 should also con-
vince the reader that if two variables are positively (negatively) correlated, 
the regression coefficient, that is, b, will have a positive (negative) sign.16

While this general relationship between r and b will always hold, one 
might ask if one of these two measures provides more information than 
the other. The answer is that the regression coefficient is more informative, 
since it indicates by how much and in what direction the dependent vari-
able changes as the independent variable changes, whereas the correlation 
coefficient indicates only whether or not the two variables move in the same 
or opposite directions and the degree of linear association. This additional 
information from regression is obtained, however, at the cost of a more 
restrictive assumption—namely, that the dependent variable is a function 
of the independent variable. It is not necessary to designate which is the 
dependent and which the independent variable when a correlation coeffi-
cient is obtained.

Summary

Linear regression analysis provides a method for summarizing how one vari-
able, referred to as the independent variable, explains variation in another, 
referred to as the dependent variable. In simple linear regression analysis, 
the relationship takes the form of a straight line defined by the slope coef-
ficient and the intercept coefficient. The specific line chosen among all pos-
sible lines to summarize the relationship between the two variables is the 
one that minimizes the sum of the squared errors. The coefficient of deter-
mination provides a measure of the goodness of fit between the regression 
line and the data used to estimate the regression line. In the next chapter we 
examine how the same technique can be used to explore the relationship 
between a dependent variable and several independent variables.
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