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14 Visible learning for MatheMatics, grades K–12

2 + 2 = 4. 

It just adds up, right? But think about how you know that two plus two 
equals four. Did you memorize the answer from a flashcard? Did some-
one tell you that and then expect that you accept it as truth? Did you 
discover the answer while engaged in a relevant task? Were you asked 
to explore a concept, and when you grasped the concept, someone pro-
vided you with labels for the ideas? In all likelihood, it was a combina-
tion of these things that led you to come to understand the concept of 
the number two, the possibility of combining like items, and the idea 
that the sum is a result of these combinations. Over time, you were able 
to consider an unknown term such as x in the equation 2 + x = 4 and 
master increasingly complex ideas that are based on algebraic thinking. 
Your learning became visible to you, your teachers, and your family.

And that’s what this book is about—making learning visible. By visible 
learning, we mean several things. First and foremost, students and teach-
ers should be able to see and document learning. Teachers should under-
stand the impact that they, and their actions, have on students. Students 
should also see evidence of their own progress toward their learning goals. 
Visible learning helps teachers identify attributes and influences that  
work. Visible learning also helps teachers better understand their impact 
on student learning, and helps students become their own teachers. 
In this way, both teachers and students become lifelong learners and 
develop a love for learning. Importantly, this is not a book about visible 
teaching. We do, of course, provide evidence for various teacher moves, 
but our goal is not to make teaching visible but rather the learning visi-
ble. Before we explore the research behind visible learning, let’s consider 
the ways in which you may have been taught mathematics. We need to 
accept and understand that high-quality learning may require that we 
discard ineffective pedagogy that we may have experienced as learners 
of mathematics.

Forgetting the Past
Do you remember the Men in Black movies? The agents who are protect-
ing the universe have neuralyzers, which erase memories. They use them 
to erase encounters with intergalactic aliens so that people on planet 
Earth are kept in the dark about threats to their world. We wish we had 
that little flashy thing. If we did, we’d erase teachers’ memories of some 
of the ways they were taught mathematics when they were younger. And 
we’d replace those memories with intentional instruction, punctuated 
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chaPter 1. MaKe learning Visible in MatheMatics 15

with collaborative learning opportunities, rich discussions about mathe-
matical concepts, excitement over persisting through complex problem 
solving, and the application of ideas to situations and problems that mat-
ter. We don’t mean to offend anyone, but we have all suffered through 
some pretty bad mathematics instruction in our lives. Nancy remembers 
piles of worksheets. Her third-grade teacher had math packets that she dis-
tributed the first of each month. Students had specific calculation-driven 
problems that they had to do every night, page after page of practicing 
computation with little or no context. A significant amount of class time 
was spent reviewing the homework, irrespective of whether or not stu-
dents got the problem wrong or right. In fact, when she asked if they 
could skip the problems everyone completed correctly, she was invited to 
have a meeting with the teacher and the principal.

In algebra, Doug’s teacher required that specifically assigned students 
write out one of their completed homework problems on the chalk-
board while the teacher publicly commended or criticized people. Doug 
wasn’t academically prepared for entry-level algebra, so he hid outside 
the classroom until the teacher ran out of problems each day. (He took 
the tardies rather than show everyone he didn’t understand the home-
work.) When this ritual was completed, the teacher explained the next 
section of the textbook while students took notes. The teacher wrote 
on an overhead projector with rollers on each side, winding away, page 
after page. Doug learned to copy quickly into his Cornell notes since 
the teacher often accidentally erased much of what he wrote because 
of his left-hand hook writing style. When finished with this, students 
were directed to complete the assigned odd-numbered problems from 
the back of the book in a silent classroom. Any problems not completed 
during class time automatically became homework. Doug copied from 
his friend Rob on the bus ride home each day but failed every test. This 
spectator sport version of algebra did not work for students who did not 
already know the content. Doug’s learning wasn’t visible to himself, or 
to his teacher.

If you’re worrying about Doug, after failing algebra in ninth grade, he 
then had a teacher who was passionate about her students’ learning. 
She modeled her thinking every day. She structured collaborative group 
tasks and assigned problems that were relevant and interesting. Doug 
eventually went on to earn a master’s degree in bio-statistics.

John did okay in mathematics and enjoyed the routines, but if offered, 
he would have dropped mathematics at the first chance given. But his 
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16 Visible learning for MatheMatics, grades K–12

school made all students enroll in mathematics right to the last year of 
high school. It was in this last year that he met Mr. Tomlinson—rather 
strict, a little forbidding, but dedicated to the notion that every one 
of his students should share his passion for mathematics. He gave his 
students the end-of-the-year high-stakes exam at the start of the year to 
show them where they needed to learn. Though the whole class failed, 
Mr. Tomlinson was able to say, “This is the standard required, and I am 
going to get you all to this bar.” Throughout the year, Mr. Tomlinson 
persistently engaged his students in how to think in mathematics, 
working on spotting similarities and differences in mathematical prob-
lems so they did not automatically make the same mistakes every time. 
This teacher certainly saw something in John that John did not see in 
himself. John ended up with a minor in statistics and major in psycho-
metrics as part of his doctoral program.

These memories of unfortunate mathematics instruction need to be 
erased by Men in Black Agent K using his neuralyzer, as we know that 
one of the significant impacts on the way teachers teach is how they 
were taught. We want to focus on the good examples—the teachers we 
remember who guided our understanding and love of mathematics.

We’ve already asked you to forget the less-than-effective learning expe-
riences you’ve had, so we feel comfortable asking you one more thing. 
Forget about prescriptive curricula, scripted lesson plans, and work-
sheets. Learning isn’t linear; it’s recursive. Prescriptive curriculum isn’t 
matched to students’ instructional needs. Sometimes students know 
more than the curriculum allows for, and other times they need a lot of 
scaffolding and support to develop deep understanding and skills. As we 
will discuss later in this book, it’s really about determining the impact 
that teachers have on students and making adjustments to ensure that 
the impact is as significant as possible.

A major flaw of highly scripted lessons is that they don’t allow teachers 

to respond with joy to the errors students make. Yes, joy. Errors help 

teachers understand students’ thinking and address it. Errors should 

be celebrated because they provide an opportunity for instruction, and 

thus learning. As Michael Jordan noted in his Nike ad, “I’ve missed more 

than 9,000 shots in my career. I’ve lost almost 300 games. 26 times, I’ve 

been trusted to take the game winning shot and missed. I’ve failed over 

and over and over again in my life. And that is why I succeed.”

 Learning isn’t 
linear; it’s 
recursive.
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chaPter 1. MaKe learning Visible in MatheMatics 17

Linda remembers playing a logic game using attribute blocks with her 

students. The beginning of the game required that students listen care-

fully to the ideas of others and draw some conclusions as to whether 

those ideas were correct or accurate. At one point, she commented to 

an incorrect response, “That’s a really important mistake. I hope you 

all heard it!” The reaction of almost every student was a look of sur-

prise. It was as if the students were thinking, “Have you lost your mind? 

The goal in math is to get it right!” That response made a real impact 

on Linda’s teaching moves in terms of recognizing how important it is 

for students to understand they learn and develop understanding from 

making mistakes (and, in fact, she still says that to this day!). The very 

best mathematicians wallow in the enjoyment of struggling with math-

ematical ideas, and this should be among the aims of math teachers—to 

help students enjoy the struggle of mathematics.

When students don’t make errors, it’s probably because they already 
know the content and didn’t really need the lesson. We didn’t say throw 
away textbooks. They are a resource that can be useful. Use them wisely, 
and make adjustments as you deem necessary to respond to the needs of 
your students. Remember, it is your students, not the curriculum writers, 
who direct the learning in your classroom.

What Makes for Good Instruction?
When we talk about high-quality instruction, we’re always asked the 
chicken-and-egg question: “Which comes first?” Should a mathematics 
lesson start with teacher-led instruction or with students attempting to 
solve problems on their own? Our answer: it depends. It depends on the 
learning intention. It depends on the expectations. It depends on students’ 
background knowledge. It depends on students’ cognitive, social, and 
emotional development and readiness. It depends where you are going 
next (and there needs to be a next). And it depends on the day. Some days, 
lessons start with collaborative tasks. Other days, lessons are more effective 
when students have an opportunity to talk about their thinking with the 
entire class or see worked examples. And still other days, it’s more effec-
tive to ask students to work individually. Much of teaching is dependent 
on responding to student data in real time, and each teacher has his or 
her own strengths and personality that shine through in the best lessons. 
Great teachers are much like jazz musicians, both deliberately setting the 
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18 Visible learning for MatheMatics, grades K–12

stage and then improvising. Great teachers have plans yet respond to stu-
dent learning and needs in real time.

But even the most recognized performers had to learn techniques before 
applying them. Jazz musicians have to understand standards of music, 
even if they choose to break the rules. Similarly, great teachers need to 
know the tools of their craft before they can create the most effective 
lessons. Enter Visible Learning.

The Evidence Base
The starting point for our exploration of learning mathematics is John’s 
books, Visible Learning (2009) and Visible Learning for Teachers (2012). At 
the time these books were published, his work was based on more than 
800 meta-analyses conducted by researchers all over the world, which 
included more than 50,000 individual studies that included more than 
250 million students. It has been claimed to be the most comprehen-
sive review of educational research ever conducted. And the thing is, it’s 
still going on. At the time of this writing, the database included 1200 
meta-analyses, with more than 70,000 studies and 300 million students. 
A lot of data, right? But the story underlying the data is the critical matter; 
and it has not changed since the first book in 2009.

Meta-Analyses
Before we explore the findings, we should discuss the idea of a meta- 
analysis because it is the basic building block for the recommendations 
in this book. At its root, a meta-analysis is a statistical tool for combin-
ing findings from different studies with the goal of identifying patterns 
that can inform practice. It’s the old preponderance of evidence that 
we’re looking for, because individual studies have a hard time making a 
compelling case for change. But a meta-analysis synthesizes what is cur-
rently known about a given topic and can result in strong recommenda-
tions about the impact or effect of a specific practice. For example, there 
was competing evidence about periodontitis (inflammation of the tissue 
around the teeth) and whether or not it is associated with increased 
risk of coronary heart disease. The published evidence contained some 
conflicts, and recommendations about treatment were piecemeal. A 
meta-analysis of five prospective studies with 86,092 patients suggested 
that individuals with periodontitis had a 1.14 times higher risk of devel-
oping coronary heart disease than the controls (Bahekar, Singh, Saha, 

A meta-analysis is 
a statistical tool for 
combining findings 

from different studies 
with the goal of 

identifying patterns 
that can inform 

practice.

 Errors help 
teachers 

understand 
students’ thinking 
and address it. . . .  

They provide an 
opportunity for 
instruction, and 

thus learning.
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chaPter 1. MaKe learning Visible in MatheMatics 19

Molnar, & Arora, 2007). The result of the meta-analysis was a set of 
clear recommendations for treatment of periodontitis, such as the use 
of scaling and root planing (SRP), or deep cleaning of the teeth, as initial 
treatment. The evidence suggests that this has the potential of signifi-
cantly reducing the incidence of heart disease. While this book is not 
about health care or business, we hope that the value of meta-analyses 
in changing practice is clear.

The statistical approach for conducting meta-analyses is beyond the scope 
of this book, but it is important to note that this tool allows researchers 
to identify trends across many different studies and their participants.

Effect Sizes
The meta-analyses were used to calculate effect sizes for each practice. 
You might remember from your statistics class that studies report statis-
tical significance. Researchers make the case that something “worked” 
when chance is reduced to 5 percent (as in p < 0.05) or 1 percent (as in 
p < 0.01). What they really mean is that the probability of seeing the 
outcome found as the result of chance events is very small, less than  
5 percent or less than 1 percent. One way to increase the likelihood 
that statistical significance is reached is to increase the number of 
people in the study, also known as sample size. We’re not saying that 
researchers inflate the size of the research group to obtain significant 
findings. We are saying that simply because something is statistically 
significant doesn’t mean that it’s worth implementing. For example, if 
the sample size was 1,000 participants, then a correlation only needs 
to exceed 0.044 to be considered “statistically significant,” meaning 
the results are due to factors other than chance; if 10,000 are sampled, 
then a correlation of 0.014 is needed, or if 100,000 are sampled, then 
a correlation of 0.004 is sufficient to show a nonchance relationship. 
Yes, you can be confident that these values are greater than zero, but 
are they of any practical value? That’s where effect size comes in.

Say, for example, that a digital app was found to be statistically signifi-
cant in changing students’ learning in geometry. Sounds good, you say 
to yourself, and you consider purchasing or adopting it. But then you 
learn that it increased students’ performance by only three right answers 
for every twenty-five choices (and the research team had data from 9,000 
students). If it were free and easy to implement this change, it might 
be worth it to have students get a tiny bit better as users of geometric 
knowledge. But if it were time-consuming, difficult, or expensive, you 

Video 1.1  
What Is Visible Learning 
for Mathematics?

http://resources.corwin.com/
VL-mathematics

To read a QR code, you must have 
a smartphone or tablet with a 
camera. We recommend that you 
download a QR code reader app 
that is made specifically for your 
phone or tablet brand.
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20 Visible learning for MatheMatics, grades K–12

should ask yourself if it’s worth it to go to all of this trouble for such a 
small gain. That’s effect size—it represents the magnitude of the impact 
that a given approach has.

Visible Learning provides readers with effect sizes for many influences under 

investigation. As an example, self-verbalization and self-questioning— 

students thinking and talking about their own learning progress—has a 

reasonably strong effect size at 0.64 (we’ll talk more about what the effect 

size number tells us in the next section). The effect sizes can be ranked 

from those with the highest impact to those with the lowest. But that 

doesn’t mean that teachers should just take the top ten or twenty and try 

to implement them immediately. Rather, as we will discuss later in this 

book, some of the highly useful practices are more effective when focused 

on surface learning (initial acquisition of knowledge) while others work 

better for deep learning (consolidation of knowledge) and still others work 

to encourage transfer (application to new and novel situations).

Noticing What Does and Does Not Work
If you attend any conference or read just about any professional jour-
nal, not to mention subscribe to blogs or visit Pinterest, you’ll get the 
sense that everything works. Yet educators have much to learn from 
practices that do not work. In fact, we would argue that learning from 
what doesn’t work, and not repeating those mistakes, is a valuable use 
of time. To determine what doesn’t work, we turn our attention to effect 
sizes again. Effect sizes can be negative or positive, and they scale from 
low to high. Intuitively, an effect size of 0.60 is better than an effect size 
of 0.20. Intuitively, we should welcome any effect that is greater than 
zero, as zero means “no growth,” and clearly any negative effect size 
means a negative growth. If only it was this simple.

It turns out that about 95 percent or more of the influences (instruc-

tional strategies, ideas, or tools) that we use in schools have a positive 

effect; that is, the effect size of nearly everything we do is greater than 

zero. This helps explain why so many people can argue “with evidence” 

that their pet project works. If you set the bar at showing any growth 

above zero, it is indeed hard to find programs and practices that don’t 

work. As described in Visible Learning (2009), we have to reject the start-

ing point of zero. Students naturally mature and develop over the course 

of a year, and thus actions, activities, and interventions that teachers use 

Effect size 
represents the 

magnitude of the 
impact that a given 

approach has.

An influence is an 
instructional strategy, 

idea, or tool we use 
in schools.

EFFECT S IZE 
FOR SELF-

V ERBALIZ ATION  
AND SELF- 

QUESTIONING  
=  0.64
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chaPter 1. MaKe learning Visible in MatheMatics 21

should extend learning beyond what a student can achieve by simply attend-

ing school for a year.

This is why John set the bar of acceptability higher—at the average of all 
the influences he compiled—from the home, parents, schools, teachers, 
curricula, and teaching strategies. This average was 0.40, and John called 
it the “hinge point.” He then undertook studying the underlying attri-
butes that would explain why those influences higher than 0.40 had 
such a positive impact compared with those lower than 0.40. His find-
ings were the impetus for the Visible Learning story. We expect, at mini-
mum, students’ learning to progress a full year for every year that they 
are in school. And we hope that students gain more than that. Ensuring 
this level of growth requires a relentless focus on learning rather than 
on teaching.

Borrowing from Visible Learning, the barometer of influence and 
hinge point are effective in explaining what we focus on in this book 
and why. Here’s an example of how this might play out in learning 
mathematics. Let’s focus on volunteer tutors, which some have argued 
could be used to address the basic skills needs that some students have 
in mathematics. In essence, students are taught by volunteers, often par-
ents or university students, and this instruction focuses on topics such as 
adding fractions, long division, or some other skill. Importantly, we are 
not advocating for skills-based instruction, but rather using this exam-
ple to highlight the use of effect sizes. As with much of the educational 
research, there are studies that contradict other studies. For example, 
Scott (2007) described an experiment in engaging parents as volunteers 
to boost mathematics learning. She suggests that the effort was worth-
while but does not provide information on the impact it had in terms of 
learning that exceeded one year. Similarly, Carmody and Wood (2009) 
describe a volunteer tutoring program, this time with college seniors 
tutoring their younger peers in college mathematics classes. They report 
that their effort was generally well received, but do not provide infor-
mation about the impact that it had on students’ learning. That’s where 
the meta-analyses and effect size data can teach us. The barometer and 
hinge point for volunteer tutors are presented in Figure 1.1. Note that 
this approach rests in the zone of “teacher effects,” which is below the 
level of desired effects but better than reverse effects. Our focus in Visible 
Learning for Mathematics is on actions that fall inside the zone of desired 
effects, which is 0.40 and above. When actions are in the range of 0.40 
and above, the data suggest that the effort extends beyond that which 
was expected from attending school for a year.

Hinge point is 
the average point 
at which we can 
consider that 
something is working 
enough for a student 
to gain one year’s 
growth for a year of 
schooling.

The barometer of 
influence is a visual 
scale that can help 
us understand where 
an influence falls 
in terms of relative 
effect size.

EFFECT S IZE 
FOR VOLUNTEER 

TUTORS =  0.26
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Caution: That doesn’t mean that everything below 0.40 effect size is 

not worthy of attention. Hattie (2012) points out that the hinge point of 

0.40 is not absolute. In actuality, each influence does have its own hinge 

point; therefore the hinge point of 0.40 is simply a good starting point 

for discussion about the nuances, variability, quality of the studies, and 

other factors that give an influence a particular effect size. It’s just not 

black-and-white, and there are likely some useful approaches for teach-

ing and learning that are not above this average. For example, drama 

and arts programs have an effect size of 0.35, almost ensuring that stu-

dents gain a year’s worth of achievement for a year of education. We are 

not suggesting that drama and art be removed from the curriculum. In 

fact, artistic expression and aesthetic understanding may be valuable in 

and of themselves.

It is also important to realize that some of the aggregate scores mask 
situations in which specific actions can be strategically used to improve 
students’ understanding. Simulations are a good case. The effect size of 
simulations is 0.33, below the threshold that we established. But what if 

THE BAROMETER FOR THE INFLUENCE 
OF VOLUNTEER TUTORS
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chaPter 1. MaKe learning Visible in MatheMatics 23

simulations were really effective in deepening understanding, but not as 
useful when used for surface learning? (See Chapters 4 and 5 for more on 
surface and deep learning.) In this case, the strategic deployment of sim-
ulations could be important. There are situations like this that we will 
review in this book as we focus on the balance and sequencing of surface 
learning compared with deep learning or transfer learning. For now, let’s 
turn our attention to actions that teachers can take to improve student 
learning. We’ll start by directly addressing a major debate in mathematics 
education: direct instruction compared with dialogic approaches.

Direct and Dialogic Approaches  
to Teaching and Learning
Debates about the teaching of mathematics have raged for decades. In 
general, the debate centers on the role of direct instruction versus dia-
logic instruction, with some teachers and researchers advocating for 
one or the other. Proponents of both models of instruction have similar 
goals—student mastery of mathematics. But they differ in the ways in 
which learning opportunities are organized within the context of a lesson. 
According to Munter, Stein, and Smith (2015b):

In the direct instruction model, when students have the 
prerequisite conceptual and procedural knowledge, they will 
learn from (a) watching clear, complete demonstrations of how 
to solve problems, with accompanying explanations and accurate 
definitions; (b) practicing similar problems sequenced according 
to difficulty; and (c) receiving immediate, corrective feedback. 
Whereas in the dialogic model, students must (a) actively engage 
in new mathematics, persevering to solve novel problems; 
(b) participate in a discourse of conjecture, explanation, and 
argumentation; (c) engage in generalization and abstraction, 
developing efficient problem-solving strategies and relating their 
ideas to conventional procedures; and to achieve fluency with 
these skills, (d) engage in some amount of practice. (p. 6)

As the authors note, there are several similarities and some important dif-
ferences between these two competing models. In terms of similarities, 
both focus on students’ conceptual understanding and procedural fluency. 
In other words, students have to know the why and how of mathematics. 

Cop
yri

gh
t C

orw
in 

20
17



24 Visible learning for MatheMatics, grades K–12

Neither model advocates that students simply memorize formulas and pro-
cedures. As the National Council of Teachers of Mathematics (2014) states, 
procedural fluency is built on a foundation of conceptual understanding. 
Students need to develop strategic reasoning and problem solving. To 
accomplish this, both models suggest that (1) mathematics instruction be 
carefully designed around rigorous mathematical tasks, (2) students’ rea-
soning is monitored, and (3) students are provided ample opportunities 
for skill- and application-based practice.

Munter, Stein, and Smith (2015b) also identify a number of differences 
between the two models, namely in the types of tasks students are 
invited to complete, the role of classroom discourse, collaborative learn-
ing, and the role of feedback. Figure 1.2 contains their list of similari-
ties and differences. Importantly, these researchers also recognize that 
teachers use aspects of each model. As they note, “teachers in dialogic 
classrooms may very well demonstrate some procedures, just as students 
in a direct instruction classroom may very well engage in project-based 
activities” (p. 9). They argue that the purposes for using different aspects 
of each model may vary, and the outcomes may be different, but note 
that “high-quality instruction must include the identification of both 
instructional practices and the underlying rationales for employing 
those practices” (p. 9).

We agree that direct instruction should not be thought of as “spray-and-
pray” didactic show-and-tell transmission of knowledge. Neither direct nor 
dialogical instruction should be confused with “lots of talking” or didac-
tic approaches. John (Hattie, 2009) defines direct instruction in a way 
that conveys an intentional, well-planned, and student-centered guided 
approach to teaching. “In a nutshell, the teacher decides the learning 
intentions and success criteria, makes them transparent to the students, 
demonstrates them by modeling, evaluates if they understand what they 
have been told by checking for understanding, and re-tells them what they 
have been told by tying it all together with closure” (p. 206).

When thinking of direct instruction in this way, the effect size is 0.59. 
Dialogic instruction also has a high effect size of 0.82. This doesn’t mean 
that teachers should always choose one approach over another. It should 
never be an either/or situation. The bigger conversation, and purpose 
of this book, is to show how teachers can choose the right approach 
at the right time to ensure learning, and how both dialogic and direct 
approaches have a role to play throughout the learning process, but in 
different ways.

Direct instruction 
is when the teacher 

decides the 
learning intentions 

and success 
criteria, makes 

them transparent 
to the students, 

demonstrates 
them by modeling, 

evaluates if they 
understand what 

they have been 
told by checking 

for understanding, 
and re-tells them 

what they have been 
told by tying it all 

together with closure.

EFFECT S IZE 
FOR DIRECT 

INSTRUCTION =  0.59

EFFECT S IZE  FOR 
CLASSROOM 

DISCUSSION =  0.82
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COMPARING DIRECT AND DIALOGIC INSTRUCTION

Dialogic Instruction Distinction Direct Instruction

Fundamental to both knowing and 
learning mathematics. Students need 
opportunities in both small-group and 
whole-class settings to talk about their 
thinking, questions, and arguments.

The importance 
and role of talk

Most important during the guided practice 
phase, when students are required to 
explain to the teacher how they have 
solved problems in order to ensure they are 
encoding new knowledge.

Provides a venue for more talking and 
listening than is available in a totally 
teacher-led lesson. Students should 
have regular opportunities to work 
on and talk about solving problems in 
collaboration with peers.

The importance 
of and role of 
group work

An optional component of a lesson; when 
employed, it should follow guided practice 
on problem solving, focus primarily on 
verifying that the procedures that have 
just been demonstrated work, and provide 
additional practice opportunities.

Dictated by both disciplinary and 
developmental (i.e., building new 
knowledge from prior knowledge) 
progressions.

The sequencing 
of topics

Dictated primarily by a disciplinary 
progression (i.e., prerequisites determined 
by the structure of mathematics).

Two main types of tasks are important: 
(1) tasks that initiate students to new 
ideas and deepen their understanding of 
concepts (and to which they do not have 
an immediate solution), and (2) tasks 
that help them become more competent 
with what they already know (with type 2 
generally not preceding type 1 and both 
engaging students in reasoning).

The nature and 
ordering of 
instructional 
tasks

Students should be given opportunities to 
use and build on what they have just seen 
the teacher demonstrate by practicing 
similar problems, sequenced by difficulty. 
Tasks afford opportunities to develop the 
ability to adapt a procedure to fit a novel 
situation as well as to discriminate between 
classes of problems (the more varied 
practice students do, the more adaptability 
they will develop).

Students should be given time to wrestle 
with tasks that involve big ideas, without 
teachers interfering to correct their 
work. After this, feedback can come 
in small-group or whole-class settings; 
the purpose is not merely correcting 
misconceptions, but advancing students’ 
growing intellectual authority about how 
to judge the correctness of one’s own 
and others’ reasoning.

The nature, 
timing, source, 
and purpose of 
feedback

Students should receive immediate 
feedback from the teacher regarding 
how their strategies need to be corrected 
(rather than emphasizing that mistakes 
have been made). In addition to one-to-
one feedback, when multiple students 
have a particular misconception, teachers 
should bring the issue to the entire 
class’s attention in order to correct the 
misconception for all.

(Continued)
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(Continued)

Dialogic Instruction Distinction Direct Instruction

Students’ learning pathways are 
emergent. Students should make, refine, 
and explore conjectures on the basis of 
evidence and use a variety of reasoning 
and proof techniques to confirm or 
disprove those conjectures (CCSS-M- 
SMP 3), asking questions that drive 
instruction and lead to new investigations.

The emphasis 
on creativity

Students’ learning pathways are 
predetermined and carefully designed for. 
To “make conjectures and build a logical 
progression of statements to explore the 
truth of their conjectures” (CCSS-M-SMP 3)  
is limited to trying solution strategies for 
solving a problem posed to them.

Students’ thinking and activity are 
consistent sources of ideas of which to 
make deliberate use: by flexibly following 
students’ reasoning, the teacher can build 
on their initial thinking to move toward 
important ideas of the discipline.

The purpose 
of diagnosing 
student 
thinking

Through efficient instructional design 
and close monitoring (or interviewing), 
the teacher should diagnose the cause of 
errors (often a missing prerequisite skill) 
and intervene on exactly the component of 
the strategy that likely caused the error.

Students participate in the defining 
process, with the teacher ensuring that 
definitions are mathematically sound and 
formalized at the appropriate time for 
students’ current understanding.

The introduction 
and role of 
definitions

At the outset of learning a new topic, 
students should be provided an accurate 
definition of relevant concepts.

Representations are used not just for 
illustrating mathematical ideas, but 
also for thinking with. Representations 
are created in the moment to support/
afford shared attention to specific pieces 
of the problem space and how they 
interconnect.

The nature 
and role of 
representations

Representations are used to illustrate 
mathematical ideas (e.g., introducing an 
area model for multi-digit multiplication 
after teaching the algorithm), not to 
think with or to anchor problem-solving 
conversations.

Source: Munter, Stein, and Smith (2015b). Used with permission.

Figure 1.2

Many readers of Visible Learning (Hattie, 2009) attend to the details 

about effect sizes and measuring one’s impact (important, to be 

sure), but fewer may notice that this body of research points to when 

it works as well as what works. Knowing what strategies to imple-

ment when for maximum impact is what we think of as precision 
teaching.

Precision teaching 
is about knowing 

what strategies to 
implement when for 

maximum impact.
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The Balance of Surface,  
Deep, and Transfer Learning
As mentioned in the preface, it’s useful when planning for precision 
teaching to think of the nature of learning in the categories of surface, 
deep, and transfer. It is a framing device for making decisions about 
how and when you engage in certain tasks, questioning techniques, and 
teaching strategies. The most powerful model for understanding these 
three categories is the SOLO (structure of observed learning outcomes) 
model developed by Biggs and Collis (1982). In this model, there are 
four levels, termed “unistructural,” “multi-structural,” “relational,” and 
“extended abstract.” Simply put, this means “an idea” and “many ideas” 
(which together are surface), and “relating ideas” and “extending ideas” 
(which together signify deep). Transfer is when students take their learn-
ing and use it in new situations. Figure 1.3 shows two examples of the 
SOLO model for mathematics.

One key to effective teaching is to design clear learning intentions and 
success criteria (which we’ll discuss in Chapter 2), which include a com-
bination of surface, deep, and transfer learning, with the exact combina-
tion depending on the decision of the teacher, based on how the lesson 
fits into the curriculum, how long- or short-term the learning inten-
tions are, and the complexity of the desired learning. Also, we recognize 
that learning is not an event, it is a process. It would be convenient to 
say that surface, deep, and transfer learning always occur in that order, 
or that surface learning should happen at the beginning of a unit and 
transfer at the end. In truth, these three kinds of learning spiral around 
one another across an ever-widening plane. Also, we want to be clear 
that because learning does not fall into a linear and repeating pattern—
and is different for different students—we are in no way suggesting a 
specific order or scaffold of methods. In education, we spend a great 
deal of time debating particular methods of teaching and the pros and 
cons of certain strategies and their progression as applied to different 
content areas. The bottom line is that there are many phases to learning, 
and there is no one way or one set of understandings that unravels the 
processes of learning. Our attention is better placed on the effect we, as 
teachers, have on student learning. Sometimes that means we need mul-
tiple strategies, and, more often, many students need different teaching 
strategies from those that they have been getting (Hattie, 2012). Before 
further discussing how these phases of learning interweave, let’s dive 
into what each one means in terms of mathematics.

Teaching 
Takeaway

The issue should 
not be direct 
versus dialogic 
but rather the 
right approach at 
the right time to 
ensure learning.
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THE SOLO MODEL APPLIED TO MATHEMATICS

Learning Intentions Success Criteria

SOLO 1: Represent and solve problems involving addition and subtraction.

Uni-/Multi-
Structural

Know basic facts for addition and 
subtraction.

Represent addition and 
subtraction using multiple models 
(manipulatives, number lines, bar 
diagrams, etc.).

I know my sums to twenty in both 
addition and subtraction.

I can show my thinking using 
manipulatives and pictures. 

Relational Understand the meaning of 
addition or subtraction by 
modeling what is happening in a 
contextual situation (Carpenter, 
Fennema, Franke, Levi, & Empson, 
2014).

Recognize when either addition 
or subtraction is used to solve 
problems in different situations. 

When I read a word problem, I can 
describe what is happening and use 
addition or subtraction to find a 
solution. 

Extended 
Abstract

Use addition and subtraction to 
solve problems in a variety of 
situations. 

I can use what I know about 
addition and subtraction contexts 
to figure out how to use addition 
and subtraction to solve problems 
beyond those I solve in class.

SOLO 2: Reason with shapes and their attributes. 

Uni-/Multi-
Structural

Know the definitions and key 
attributes for shapes. 

I can identify and name the 
attributes of shapes. 

Relational Recognize relationships among 
shapes. 

I can explain how two shapes are 
related to each other. 

Extended 
Abstract

Classify two-dimensional shapes 
based on properties.

I can create a diagram to show how 
different quadrilaterals are related 
to each other. 

Source: Adapted from Biggs and Collis (1982).

This figure and a blank template are available for download at http://resources.corwin.com/VL-mathematics

 Copyright © 2017 by Corwin. All rights reserved. Reprinted from Visible Learning for Mathematics,  
Grades K–12: What Works Best to Optimize Student Learning by John Hattie, Douglas Fisher, Nancy Frey, 
Linda M. Gojak, Sara Delano Moore, and William Mellman. Thousand Oaks, CA: Corwin, www.corwin.com. 
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Figure 1.3
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Surface Learning
In mathematics, we can think of surface learning as having two parts. 
First, it is initial learning of concepts and skills. When content is new, 
all of us have a limited understanding. That doesn’t mean we’re not 
working on complex problems; it’s just that the depth of thinking isn’t 
there yet. Whether a student is exposed to a new idea or information 
through an initial exploration or some form of structured teacher-led 
instruction (or perhaps a combination of the two), it is the introduc-
tory level of learning—the initiation to, and early understanding of, 
new ideas that begins with developing conceptual understanding—and 
at the right time, the explicit introduction of the labels and procedures 
that help give the concepts some structure. Let us be clear: surface learn-
ing is not shallow learning. It is not about rote skills and meaningless 
algorithms. It is not prioritizing “superficial” learning or low-level skills 
over higher order skills. It should not be mistaken for engaging in pro-
cedures that have no grounding in conceptual understanding. Second, 
surface learning of concepts and skills goes beyond just an introductory 
point; students need the time and space to begin to consolidate their 
new learning. It is through this early consolidation that they can begin 
to retrieve information efficiently, so that they make room for more 
complex problem solving. For example, counting is an early skill, and 
one that necessarily relies initially on memorization and rehearsal. Very 
young children learn how to recite numbers in the correct order, and in 
the same developmental space are also learning the one-to-one corre-
spondence needed to count objects. In formal algebra, surface learning 
may focus on notation and conventions. While the operations students 
are using are familiar, the notation is different. Multiplication between 
a coefficient and a variable is noted as 3x, which means 3 times x. 
Throughout schooling, there are introductions to new skills, concepts, 
and procedures that, over time, should become increasingly easier for 
the learner to retrieve.

Importantly, through developing surface learning, students can take 
action to develop initial conceptual understanding, build mathemati-
cal habits of mind, hone their strategic thinking, and begin to develop 
fluency in skills. For example, surface learning strategies can be used 
to help students begin developing their metacognitive skills (thinking 
about their thinking). Alternatively, surface learning strategies can be 
used to provide students with labels (vocabulary) for the concepts they 
have discovered or explored. In addition, surface learning strategies can 
be used to address students’ misconceptions and errors.

Surface learning 
is not shallow 
learning. It is not 
about rote skills 
and meaningless 
algorithms.

Surface learning 
is the initiation to 
new ideas. It begins 
with development 
of conceptual 
understanding, 
and then, at the 
right time, labels 
and procedures are 
explicitly introduced 
to give structure to 
concepts.
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One challenge with surface learning is that there is often an overreliance 
on it, and we must think of the goal of mathematics instruction as being 
much more than surface learning. When learning stalls at the surface 
level, students do not have opportunities to connect conceptual under-
standings about one topic to other topics, and then to apply their under-
standings to more complex or real-world situations. That is, after all, one 
of the goals of learning and doing mathematics. Surface learning gives 
students the toolbox they need to build something. In mathematics, 
this toolbox includes a variety of representations (e.g., knowing about 
various manipulatives and visuals like number lines or bar diagrams) 
and problem-solving strategies (e.g., how to create an organized list or 
work with a simpler case), as well as mastering the notation and conven-
tions of mathematics. But a true craftsman has not only a repertoire of 
tools, but also the knowledge of which tools are best suited for the task 
at hand. Making those decisions is where deep learning comes to the 
forefront, and, as teachers, we should always focus on moving students 
forward from surface to deep learning.

Deep Learning
The deep phase of learning provides students with opportunities to con-
solidate their understanding of mathematical concepts and procedures 
and make deeper connections among ideas. Often, this is accomplished 
when students work collaboratively with their peers, use academic lan-
guage, and interact in richer ways with ideas and information.

Mrs. Graham started the school year for her fourth graders working with 
factors and multiples, connecting this work to previous third-grade expe-
riences with arrays as models for multiplication, and extending these 
ideas to understanding prime and composite numbers. Students started 
by building and describing rectangular arrays for numbers from 1 to 50 
(some students continued on to 100) and then discussed their answers 
to a variety of questions that developed the idea of prime and com-
posite numbers. Class discussion incorporated mathematical vocabulary 
so it became a natural part of the student conversations (surface learn-
ing). The next day, students played a game called Factor Game (http://
www.tc.pbs.org/teachers/mathline/lessonplans/pdf/msmp/factor.pdf) 
in which an understanding of primes and composites was crucial to 
developing strategies to win (deep learning is now occurring). However, 
the story doesn’t end there. In March, students were beginning to study 

Deep learning is 
about consolidating 

understanding 
of mathematical 

concepts and 
procedures and 

making connections 
among ideas.
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area and perimeter of rectangles. Following an initial exploration, sev-
eral students approached Mrs. Graham to comment, “This is just like 
what we did last September when we were building arrays and finding 
primes and composites!” Talk about making connections!

As you can see, students move to deep learning when they plan, investi-
gate, and elaborate on their conceptual understandings, and then begin 
to make generalizations. This is not about rote learning of rules or proce-
dures. It is about students taking the surface knowledge (which includes 
conceptual understanding) and, through the intentional instruction 
designed by the teacher, seeing how their conceptual understanding 
links to more efficient and flexible ways of thinking about the concept. 
In Mrs. Graham’s class, students began by developing surface knowl-
edge of factors and multiples using concrete models and connected that 
to primes and composites. Mrs. Graham’s use of the Factor Game pro-
vided students a way to apply their surface knowledge to developing 
strategies to win a game . . . deep knowledge. A teacher who nurtures 
strategic thinking and action throughout the year will nurture students 
who know when to use surface knowledge and when deep knowledge 
is needed.

We need to balance our expectations with our reality. This means more 
explicit alignment between what teachers claim success looks like, how 
the tasks students are assigned align with these claims about success, 
and how success is measured by end-of-course assessments or assign-
ments. It is not a matter of all surface or all deep. It is a matter of being 
clear about when surface and when deep is truly required.

Consider this example from algebra. A deep learning aspect of algebra 
comes when students explore functions—in particular, the meaning of 
the slope of a line. Surface knowledge focuses on understanding the 
term mx in the slope-intercept (y = mx + b) form to mean m copies of the 
variable x. Deep learning requires students to understand and show that 
this term represented visually is the steepness or flatness of the slope 
of a line and the rate of change of the variables. Such learning might 
come from working collaboratively to explore a group of functions rep-
resented in multiple ways (equations, tables of values, and graphs) and 
make inferences about the slope in each representation. At this point, 
students are connecting their conceptual knowledge of ratio to their sur-
face knowledge of algebraic notation and the process of graphing. This 
is deep learning in action.

Students move 
to deep learning 
when they plan, 
investigate, and 
elaborate on 
their conceptual 
understandings, 
and then 
begin to make 
generalizations.
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Transfer Learning
The ultimate goal, and one that is hard to realize, is transfer. Learning 
demands that students be able to apply—or transfer—their knowledge, 
skills, and strategies to new tasks and new situations. That transfer is 
so difficult to attain is one of our closely kept secrets—so often we pro-
nounce that students can transfer, but the processes of teaching them 
this skill are too often not discussed, and we’ll visit that in Chapter 6.

Transfer is both a goal of learning and also a mechanism for propel-
ling learning. Transfer as a goal means that teachers want students to 
begin to take the reins of their own learning, think metacognitively, 
and apply what they know to a variety of real-world contexts. When 
students reach this level, learning has been accomplished.

Nancy once heard a mathematics teacher say that transfer is what hap-
pens when students do math without someone telling them to do math. 
It’s when they reach into their toolbox and decide what tools to employ 
to solve new and complex problems on their own.

For example, transfer learning happens when students look at data from 
a science or engineering task that requires them to make sense of a linear 
function and its slope. They will use their surface knowledge of notation 
and convention, along with their deep understanding of slope as a ratio, 
to solve a challenge around designing an electrical circuit using mate-
rials with a variety of properties. Ohm’s law (V = iR, where V represents 
voltage, i represents the current, and R represents resistance) is the linear 
function that relates the relevant aspects of the circuit, and students will 
use their mathematics knowledge in finding their solution.

One of the concerns is that students (often those who struggle) attempt 
to transfer without detecting similarities and differences between con-
cepts and situations, and the transfer does not work (and they see this as 
evidence that they are dumb). Memorizing facts, passing tests, and mov-
ing on to the next grade level or course is not the true purpose of school, 
although sadly, many students think it is. School is a time to apprentice 
students into the act of becoming their own teachers. We want them 
to be self-directed, have the dispositions needed to formulate their own 
questions, and possess the tools to pursue them. In other words, as stu-
dents’ learning becomes visible to them, we want it to become the catalyst 
for continued learning, whether the teacher is present or not. However, 
we don’t leave these things to chance. Close association between a pre-
viously learned task and a novel situation is necessary for promoting 
transfer of learning. Therefore, we teach with intention, making sure that 

Transfer is the phase 
of learning in which 

students take the 
reins of their own 

learning and are able 
to apply their thinking 

to new contexts and 
situations.
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students acquire and consolidate the needed skills, processes, and meta-
cognitive awareness that make self-directed learning possible.

One of the struggles in teaching mathematics is to determine how much 
to tell students versus how to support students as they engage in pro-
ductive struggle on their own, and when to know which is the right 
step to take. Let’s take a look at helping elementary-age children build a 
toolbox of problem-solving strategies. Linda once attended a workshop 
for teachers that opened a whole new world of problem-solving strate-
gies to use when solving nonroutine or open-ended problems. She was 
excited to take these problems back to her students and give them the 
opportunities to solve rich problems that involved some higher order 
thinking—that is, solving problems that involve much more than sim-
ple calculations. After some careful planning, she started a Monday class 
with her fifth graders by presenting the following problem.

Mrs. Thompson, the school cook, is making pancakes for the 

special fifth-grade breakfast. She needs 49 pounds of flour. She can 

buy flour in 3-pound bags and 5-pound bags. She only uses full 

bags of flour. How can she get the exact amount of flour she needs?

Having never solved this type of problem before, the students rebelled. 
Choruses of “I don’t know what they want me to do!” rang out across 
the classroom. “But they said in this workshop that kids could do this!” 
Linda thought.

Refusing to give in to the students’ lament that the work was too hard, 
Linda decided that she needed to go about this differently. She resolved to 
spend each Monday introducing a specific strategy, presenting a problem 
to employ that strategy for students to solve together, and discuss their 
thinking. This was followed by an independent “problem of the week” for 
students to solve. After introducing all of the strategies (surface learning) 
and following up with independent applications of those strategies for 
students (deep learning), students continued to work independently or 
in small groups to solve a variety of open-ended problems on their own 
using strategies of their choice (transfer learning). Later that year, a group 
of girls approached Linda asking why she had saved all of the easy prob-
lems for the end of the year. That’s transfer!

It’s important to note that within the context of a year, a unit, or even 
a single lesson, there can be evidence of all three types of learning, and 
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THE RELATIONSHIP BETWEEN SURFACE, DEEP, 
AND TRANSFER LEARNING IN MATHEMATICS

Transfer: Apply conceptual
understanding and skills—with little
teacher assistance—to new and
parallel contexts and scenarios and
future units of study

In any given unit of
study, your ongoing,
continuous assessment
will tell you that your
learners are in various
places in their learning
along this path, and will
sometimes move back
and forth between
surface and deep as
they build understanding.
Transfer happens when
students apply what
they know to new
situations or new
concepts. It is your
goal to provide the
interventions and
strategies they need at
the right time for the
right reason.

Leverage prior knowledge from
previous unit

Deep: Deepen understanding by
making conceptual connections
between and among concepts and
applying and practicing procedural
skills

Surface: Build initial understanding
of concepts, skills, and vocabulary on
a new topic

Source: Spiral image copyright © iStock/EssentialsCollection/83158933.

Figure 1.4

that students can sometimes move among various kinds of learning 
depending on where they are as individual learners. Figure 1.4 describes 
the relationship between surface, deep, and transfer learning.

Surface, Deep, and Transfer  
Learning Working in Concert
As mentioned before, when it comes to the surface, deep, and transfer phases 
of learning, knowing what strategies to implement when for maximum 
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impact on learning is key. How, then, should we define learning, since learn-
ing is our goal? John defines it as

the process of developing sufficient surface knowledge 
to then move to deeper understanding such that one 
can appropriately transfer this learning to new tasks and 
situations.

Learning has to start with fundamental conceptual understanding, 
skills, and vocabulary. You have to know something before you can do 
something with it. Then, with appropriate instruction about how to 
relate and extend ideas, surface learning transforms into deep learning. 
Deep learning is an important foundation for students to then apply 
what they’ve learned in new and novel situations, which happens at 
the transfer phase. And tying all of this together is clarity about learning 
outcomes and success criteria, on the part of both teachers and students. 
If students know where they are going and how they’ll know when they 
get there, they are better able to set their own expectations, self-monitor, 
and predict or self-report their own achievement. All of these phases can 
be present within the body of a single lesson or multiday or multiweek 
unit, as well as extend across the course of a school year.

Conclusion
Teachers have choices. As a teacher, you can unintentionally use instruc-
tional routines and procedures that don’t work, or don’t work for the 
intended purpose. Or you can choose to focus on learning, embrace 
the evidence, update your classrooms, and impact student learning in 
wildly positive ways. You can consider the nature of the phases of sur-
face, deep, and transfer learning and concentrate on more precisely and 
strategically organizing your lessons and orchestrating your classrooms 
by harnessing the power of activities that are in the zone of desired 
effects—above a 0.40 hinge point. Understanding the phases of learning 
by examining the evidence will help you to make instructional choices 
that positively impact student learning in your classroom.

The following chapters are meant to help you design lessons and 
appropriately employ instructional moves that honor students’ need 
to develop their surface understanding of a topic, help you extend the 
depth of their mathematical learning, and help them transfer their 

EFFECT SIZE FOR 
SELF-REPORTED 

GRADES/STUDENT 
EXPECTATIONS = 1.44

EFFECT S IZE  FOR 
STUDENT SELF- 

MONITORING =  0.45

Video 1.2  
Balancing Surface, Deep, 
and Transfer Learning

http://resources.corwin.com/
VL-mathematics
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learning to new tasks and projects. The journey starts when you turn the 
page and delve into the topic that matters most—establishing learning 
intentions and success criteria. Let’s start the journey of making mathe-
matics learning visible for students.

Reflection and Discussion Questions

1. Think about the instructional strategies you use most often. Which 
do you believe are most effective? What evidence do you have for 
their impact? Save these notes so you can see how the evidence 
in this book supports or challenges your thinking about effective 
practices.

2. Identify one important mathematics topic that you teach. Think 
about your goals for this topic in terms of the SOLO model 
discussed in this chapter. Do your learning intentions and success 
criteria lean more toward surface (uni- and multi-structural) or 
deep (relational and extended abstract)? Are they balanced across 
the two?

3. A key element of transfer learning is thinking about opportunities 
for students to move their learning from math class, to use their 
knowledge to solve their own problems. Think about the important 
mathematical ideas you teach. For each one, begin to list situations 
that might encourage transfer of learning. These might be 
applications in another subject area or situations in real life where 
the mathematics is important.Cop
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