
CHAPTER 1 • An InTRoduCTIon To ComPuTER SCIEnCE 3

1

An Introduction to
Computer Science

COMPUTER SCIENCE IS WITHIN YOU

Have you ever completed a Sudoku puzzle? Can you sing or play a tune
from sheet music? Can you decipher a knitting pattern or follow steps to
fold an origami figure? If you’ve ever attempted any of these things, then
you have already experienced one of the fundamental building blocks in
computer science (CS), the algorithm.

The word algorithm may sound technical and scary, but
really it’s just a list of steps that can be followed to carry
out a task. We see algorithms every day when we engage
in activities that have instructions. Games, recipes, and
crafts all become physical representations of algorithms,
unknowingly aligning us with our family computers—
because in the end, algorithms are also at the heart of
every piece of code.

In this book, we’ll encourage you to explore your relationship with that
digital diva, the personal computer. We’ll act as guides, taking you from
familiar territory into new terrain, where you’ll interact with computers as
a medium for invention. Start imagining how you’ll equip your students
for this journey, following President Obama’s advice:

“Don’t just buy a new video game, make one. Don’t just download the

latest app, help design it. Don’t just play on your phone, program it!”
—President Barack Obama (quoted in Machaber, 2014)

As you prepare to dive into computing activities in the pages to come, pack
up your enthusiasm for learning new things, arm yourself with a growth
mindset, and start imagining limitless possibilities!

By the way, here’s the first line of code ever written by a U.S. president:

moveForward(100);

If Obama can do it, you and your students can too!

Algorithm: A list of
steps that can be
followed to carry out
a task.

Cop
yri

gh
t C

orw
in

20
17

PART 1 • SToRyboARdIng4

Now, let’s kick things off by investigating the underpinnings of CS––
computational thinking. A brief scan here will ground you in the concept.
We provide a more comprehensive look in Chapters 6 through 10 (with
lesson plans!).

AN INTRODUCTION TO
COMPUTATIONAL THINKING

The buzz around computational thinking began in the early 2000s when
Jeannette M. Wing, a professor of computer science at Carnegie Mellon
University, introduced the term in a series of academic papers (Wing,
2006). At the time, she presented computational thinking as a set of
attitudes and skills a person would need to confidently persist toward
identifying, posing, and solving problems. The term soon morphed to
include capabilities that apply to preparation for CS. We’ll explore these
critical capabilities, as well as pay respect to the original concept of

open-minded problem solving that sometimes goes
missing in today’s world of standardized testing and
scripted lessons.

Distilled down to its most fundamental elements, com-
putational thinking is comprised of four pillars:

 • Decomposition

 • Pattern matching

 • Abstraction, and

 • Algorithms (sometimes referred to as automation)

With these four skills, one can prepare any problem for
a mechanical solution. But what does that really mean?

Let’s unpack each element as we consider something you’re likely familiar
with, a sudoku puzzle (Figure 1.1).

These little grids seem unassuming enough, but once you start to play,
you’ll see they’re packed with complexity. The point of a sudoku is to fill
in all the blank squares with digits (typically 1 through 9) in such a way
that there is exactly one of each digit in any given column, row, or block
of cells.

Even with a ton of experience solving these little enigmas, it can still be
quite challenging to describe how to go about it. If we want to prepare a
sudoku algorithm (a procedure or formula) for automation (running on
a machine), we’re going to need to use some computational thinking.

Computational
thinking: Using
special thinking
patterns and
processes to pose
and solve problems or
prepare programs for
computation. Notably
decomposition,
pattern matching,
abstraction, and
automation.

Cop
yri

gh
t C

orw
in

20
17

CHAPTER 1 • An InTRoduCTIon To ComPuTER SCIEnCE 5

First, let’s use decomposition on the problem by con-
sciously identifying the list of steps we might go through
to figure out what should happen in each space. For
ease of explanation, let’s focus on one 4 × 4 square at a
time in the mini-puzzle below, beginning with the upper
left blank cell (row 1, column 1).

Figure 1.2 below is a simple version of a sudoku puzzle. How would you
determine what goes into the first empty corner? As a human, I might fol-
low an algorithm like this:

1. Look at the numbers that are missing in row 1. (That would be 1 and 2.)

2. Look at the numbers that are missing in column 1. (That would be 2
and 3.)

3. Look at the numbers missing in quad-
rant 1. (That would be 1 and 2.)

4. If there is only one number missing from
all three sets, that is the number that goes
in the upper left cell. (And that would
be 2!)

5. If there is a second number missing from
all three sets, continue to the next cell
and come back when you have more
information.

Decomposition:
Breaking a problem
down into smaller,
more manageable
parts.

FIGURE 1.2 Simplified 4 × 4 Sudoku

3

3

4

4 2

2

1

1

FIGURE 1.1 Standard 9 × 9 Sudoku

7 8

8

8

8

8

3

3

3

3

4

4

5

5

5

5

5

5

9 1

1

1

1

1

1

4 7

7

7

7

7

1 2

2

2

2

2

2

2

2

4 6

6

6

6

6

9

9

9

9

Cop
yri

gh
t C

orw
in

20
17

PART 1 • SToRyboARdIng6

Sure, we’ve made this a bit straightforward, but the strategy should hold
when it comes to solving for any individual cell. Now, to illustrate, let’s look
at the steps for the cell in row 2, column 3. (No answers this time!)

1. Look at the numbers that are missing in row 2.

2. Look at the numbers that are missing in column 3.

3. Look at the numbers missing in quadrant 2.

4. If there is only one number missing from all three sets, that is the num-
ber that goes in the square.

5. If there is a second number missing from all three sets, continue to the
next square and come back when you have more information.

At this point, we can apply more computational thinking to try to get an
algorithm that will work for automating the discovery of a solution for any
sudoku.

Here, we will use pattern matching. Do you see any
patterns between our first set of steps and our second?
Let’s compare the first instruction in both.

Look at the numbers that are missing in row 1.

Look at the numbers that are missing in row 2.

The instructions are nearly identical. As a matter of fact, if you were to list
out steps for each and every cell, you would find that the only thing that
changed was the number of the row that you were working with. That’s a
pattern! What can we do with it?

This is where abstraction comes in. Abstraction is
simply the act of removing details that are too spe-
cific, so that one instruction can work for multiple
problems.

To complete the abstraction on the instructions above,
we might turn the sentence into something like this:

Look at the numbers that are missing in row _____.

The blank now becomes a spot where you enter the row number of the
empty square that you are currently working with.

Can you take the rest of the instructions and abstract them out so that you
wind up with a final algorithm for automation of a sudoku of this size?
Did you come up with a different method altogether?

Pattern matching:
Finding similarities
between items as a
way of gaining extra
information.

Abstraction: Ignoring
certain details in
order to come up
with a solution that
works for a more
general problem.Cop

yri
gh

t C
orw

in
20

17

CHAPTER 1 • An InTRoduCTIon To ComPuTER SCIEnCE 7

Mental Agility
How do you feel while working at puzzles like sudoku, deciphering crochet
patterns, learning new sheet music, or following diagrams to put together
Ikea furniture? Do you feel the burn as you stretch your mental muscles? Do
you enter a state of “flow” when deeply immersed? Do you find yourself
surprised at how time flies when you’re so engaged that every other concern
seems to vanish? Are you deeply satisfied when troubleshooting helps you
overcome obstacles and move forward? At the very least, aren’t you pleased
to have applied cognitive effort to a new challenge?

The kind of mental workout we’ve been talking about is similar to what one
might feel as a genuine, bona fide, creative problem solver taking the first
steps toward becoming a computer scientist. Get ready for more opportuni-
ties to apply your computational thinking to exercises and web activities in
the next chapters, and prepare for a deeper dive into computational thinking
in Chapters 6 through 10.

WHAT COMPUTER SCIENCE IS

You can think of computer science as the study of how to use
computers and computational thinking to solve problems,
not merely the act of using technology. It’s like the difference
between watching a movie and producing and directing
one (Figure 1.3). We already have a generation of filmgo-
ers; now we need more producers and directors (software
designers, developers, and programmers) who can create
the vast array of products and services the world needs.

Computer science:
The study and use
of computers and
computational thinking
to solve problems.

FIGURE 1.3 A Filmmaking Metaphor

Cop
yri

gh
t C

orw
in

20
17

PART 1 • SToRyboARdIng8

In the Beginning
You may be surprised to find out that CS as we know it developed a full
thirty years before the first reprogrammable computer (Rabin, 2012). It all
came about when Alan Turing and Alonzo Church theorized that there were
definite limits on what could be computed using methods of automation,
formalizing the idea of algorithms in the process.

Since then, CS has evolved from the study of what
can be automated to the practice of automating
with finesse! Computer science and computa-
tional thinking are not the same thing, but com-
putational thinking is a vital component when it
comes to translating real-world situations or

solutions into algorithms. In this book, we will often mention one without
the other, but we do so with the understanding that the two are strongest
together.

WHAT COMPUTER SCIENCE IS NOT

Next, and almost equally as important as knowing what computer science
is, is knowing what computer science is not. Often, families and educators
believe their students are learning CS because they are in a class that meets
in the computer lab several times a week. More often than not, these ses-
sions deal with learning to use specific software, such as a word processor
or graphic design program. These are great reasons to work with computers,
but they aren’t CS.

Computer science is an excellent tool for developing students’ digital skills.
In the process of learning CS, even the youngest kids learn to use a
keyboard, copy and paste, save files, and access the internet effectively and
responsibly. CS encompasses these frequently taught skills, but the
converse isn’t true.

Let’s address some other aspects of what CS is not. CS is not boring. It is
not a solitary act, and it is not an advanced subject that’s practiced only
by the most brilliant or privileged. CS is a set of beautiful, digital art
forms that allow you to express your thoughts and feelings while you
innovate and provide solutions for humanity. CS is a growing subject,
full of unexplored potential and room for deviation. It is not static or
depleted.

CS is also not just programming. While you might be hard-pressed to
describe the difference between the two terms, give us a few paragraphs
and you won’t be anymore.

Automation: Controlling a
process by automatic means,
reducing human intervention
to a minimum.

Cop
yri

gh
t C

orw
in

20
17

CHAPTER 1 • An InTRoduCTIon To ComPuTER SCIEnCE 9

Programming is just one specific area of CS. It is most often thought of as
writing code for a machine, but programming also encompasses the thought
processes, design structures, and debugging that occur while coding. Talking
about the programming process of CS is a lot like talking
about the scriptwriting process. It is a supremely impor-
tant element that provides the road map for the finished
product, but there are many other pieces to consider. In
filmmaking, those pieces might include acting, directing,
and editing; in CS, they include software engineering,
user interfaces, and hardware design.

People are also confused about the difference between programming and
coding. This distinction is a little more nuanced. For the most part, the
two terms can be used interchangeably, but to people who care, there is
a difference.

It used to be that just about everyone who wrote code was a programmer.
They were educated specialists who took pride in their craft and put great
thought into the programs they wrote. In the 1980s and 1990s, more and
more people began to teach themselves to develop computer code. The
details of logical and beautiful design were not always embedded into the
work of this new generation of self-made technologists, often referred to as
hackers or coders by their professional counterparts.

Today, the term hacker has taken on a more sinister connotation, whereas
the label coder continues to describe someone who can piece together a
program but may not have the chops to design code with finesse. As such,
a professional programmer may not take kindly to being called a coder.

That said, we frequently use the term coding in this book because it is
appropriate when describing programming at an entry level. We will also
frequently refer to programming and computer science when talking about
practices, classes, or curricula that encompass more than an introductory
glimpse of code.

As you read the rest of this book, we will show you not only how you can
test the CS waters on your own but also how you can bring this capability
to your students, beginning even with prereaders. No matter what your
level of experience, this is a journey worth taking. So, if you’re still con-
cerned about this digital trek . . . don’t worry, we’ve got you!

Debugging: To track
down and correct
errors.

Cop
yri

gh
t C

orw
in

20
17

