
CHAPTER 3 • TRy youR HAnd AT Coding 25

3

Try Your Hand at Coding

Now that you have some sense of what coding, programming, and
computer science (CS) are about, let’s jump into some experiential 

learning. In this chapter, we encourage you to hop into some challenges, 
ignoring (for now) the practical application to teaching and learning in your 
classroom. Think of this instead as an open call, an opportunity to join the 
cast of this production called Computer Science!

Computer science education cannot make anybody an expert pro-
grammer any more than studying brushes and pigment can make 
somebody an expert painter.

—Eric Raymond, software developer and author

As with almost any subject, the best way to learn CS deeply is to prepare to 
teach it. In many cases, the first step toward feeling comfortable teaching 
something new is to have some positive personal experiences with it. In our 
opinion, the best way to ensure a positive personal experience with CS is to 
start at the very beginning.

TIME WELL SPENT

In the remainder of this chapter, we walk you through a few exercises that, 
as they progress, increase in both complexity and ultimate reward. You may 
feel tempted to take a pass on preliminary activities, as they may seem triv-
ial or overly simple. Be advised that these opportunities are worth your 
time. Just like a pre-workout stretch helps you stay limber and avoid injury, 
these exercises get you ready for learning in the chapters ahead. Additionally, 
it’s quite likely that most of your students will be starting this adventure 
from scratch, so going through this process yourself will help you be an 
empathetic facilitator of their experience.

Because we respect your time, we considered a great assortment of tutorials 
before distilling our set down to three warm-ups and two exercises that will 
prepare you best for the chapters that follow.

To keep tabs on your thoughts, feelings, concerns, and questions, we urge 
you to grab a notebook or a digital tablet. Take note of your experience with 

Cop
yri

gh
t C

orw
in 

20
17



PART 2 • CAsTing CAll26

each activity and write down questions as they come up. If those questions 
aren’t answered in the remainder of this book, then use our companion site, 
www.corwinpress/companion/codinginclass or Facebook page (facebook.
com/groups/CodingInClass) to get them answered. If you are involved in a 
book study, share your notes about your experiences with your fellow read-
ers, too. Keeping this experience collaborative is a big part of the fun.

PAIR PROGRAMMING

FIGURE 3.1 Key Strategy

© Virtaa/iStock photos

If you really want to make an impact as you go through the following exercises, 
we recommend pair programming (Figure 3.1). Pair programming is a proven 
method for both enhancing learning and writing better code. Sometimes called 
“peer programming,” it is the act of coding with another person by your side. In 
schools, this happens by seating two students at the same machine and designat-
ing one person as the “driver” and the other as the “navigator.” The driver works 
the mouse and keyboard—typing and maneuvering through the project—while 
the navigator pays attention to the big picture and makes sure that the code 
seems logical. The pair works like this for a short time (often by time limit, num-
ber of problems solved, or some other measurable mark); then they switch places.

It’s easy to see the benefits of pair programming in an educational setting. 
First, pair programming helps teachers to accommodate an entire classroom 
with half as many machines. Also, students in both roles are thinking aloud, 
which is a metacognitive strategy for evaluating and improving reasoning. 
As an added bonus, the fact that each group has its own built-in sounding 
board cuts down on the number of hands being raised for teacher assistance 
(Williams, Kessler, Cunningham, & Jeffries, 2000). This means that stu-
dents are also less likely to quit in frustration and are more likely to have 
fewer bugs in their resulting program (Williams & Upchurch, 2001).

The data surrounding pair programming is so strong that some companies 
have adopted it professionally. Often incorporated as part of an “extreme 
programming” mentality, studies show that these programming pairs turn 
out code of significantly higher quality in nearly the same amount of time 
as if each of the individuals had been working on his or her own. Besides, 
it’s nice to have a buddy to bounce your ideas off of, and this method offers 
an environment for encouragement when a task seems overly daunting.

Cop
yri

gh
t C

orw
in 

20
17



CHAPTER 3 • TRy youR HAnd AT Coding 27

For all of the previously mentioned reasons, as well as the desire to spread CS 
to every classroom in the nation, we suggest that you go through the follow-
ing exercises with a partner. If you’re unable to find someone who can phys-
ically sit with you at your machine, arrange a Google Hangout,* and share 
your screen as you go. It’s more than twice as nice to have another person to 
talk to and think aloud with as you progress through these activities.

Alone we can do so little, together we can do so much.

—Helen Keller, author and activist

Now that you’re prepared, it’s time to jump in. As with any good workout, 
we’ll start you with some warm-ups and stretches before we move to the 
main exercises. Give each a thorough try. As you go, take notes about your 
experiences, and consider the reflection prompt that follows each warm-up 
or exercise before you move from one to the next.

TEACHER WARM-UPS AND EXERCISES

Set aside a couple of hours to dig in to these warm-ups and exercises with a 
partner. Start at the beginning of the list, and move through sequentially, 
devoting 15–30 minutes to each. Every activity helps you build skills, confi-
dence and familiarity that you will draw on as you read the rest of the book.

Warm-ups

Warm-up 1: Magic Pen—Learn to think differently
(Play for 15–20 minutes)

Description: This flash-based physics game challenges a user to 
solve puzzles with only their magical pen and a library of shapes. 
Use this application to contemplate multiple solutions to difficult 
problems. The solutions are limited only by your imagination.

Computer Science Tie-in: Break up the long vignettes into shorter 
puzzles using decomposition. See if you can find similarities between 
obstacles using pattern matching; then repurpose a previous solution 
with new details by abstracting out differences. Be persistent!

Journal Questions

•	 How did you feel at the start of Magic Pen compared to 
after a few levels?

•	 When you hit your first point of frustration, were you 
tempted to give up?

•	 What kind of pep talk did you give yourself to persist a little 
longer?

http://media.abcya.com/games/magic_pen/flash/magic_pen.swf

http://goo.gl/ 
Y8puxq

Cop
yri

gh
t C

orw
in 

20
17



PART 2 • CAsTing CAll28

Warm-up 2: Play Auditorium—Persistence and debugging
(Play for 15–20 minutes)

Description: With beautiful streams of light and peaceful 
harmonies tinkling as you play, you will hardly realize how fast 
your pulse races as the level of difficulty increases. Every puzzle 
has a solution, but they are far from obvious.

Computer Science Tie-in: This is the ultimate test of persistence! 
Hang in there as you pass from challenge to challenge, debugging 
along the way. After each move, interpret the results to figure out 
what to do next. Are you getting closer to or further away from a 
solution?

Journal Questions

•	 Was Auditorium all trial and error, or were you able to read 
the game’s clues?

•	 At what points did you find yourself stopping to think and 
plan before proceeding?

•	 In what ways was it helpful to have another person go 
through the levels with you?

•	 Did “thinking aloud” help you combine your reasoning to 
get to the correct solution?

http://www.cipherprime.com/games/auditorium

Warm-up 3: Lightbot—Using the computer to program
(Play for 15–20 minutes)

Description: You’ll be coding before you even know what’s 
happening with this fun and friendly online game. Use instruction 
blocks such as a spring to jump and arrow to move forward as 
you navigate your lightbot among the squares to get to specific 
goal spaces.

Computer Science Tie-in: This application is intended to help you 
get used to dragging blocks to control the actions of your 
character and to learn how the process of calling functions 
enhances a program.

Journal Questions

•	 Do you see how your activities relate to programming?

•	 In what ways did intuition help you progress?

•	 How did talking through the problems and even gesturing 
contribute to your progress through the levels?

http://lightbot.com

http://goo.gl/
HQQfQD

http://goo.gl/ 
54dWWK

W

Cop
yri

gh
t C

orw
in 

20
17



CHAPTER 3 • TRy youR HAnd AT Coding 29

W

Exercise 1: CS Fundamentals Course 1—Vocabulary and concepts
(Play for 30–45 minutes)

Description: This step-by-step tutorial is a true introduction to the 
basics of CS. You will learn about algorithms, debugging, 
persistence, loops, and events in this bona fide CS curriculum! Try 
to go as far as you can with this introductory course.

(You can skip the “unplugged” lessons, but take note of them for later.)

Computer Science Tie-in: Use this application to get familiar with CS 
vocabulary and concepts, and learn how to combine foundational 
elements like conditionals and events to solve tricky problems.

Journal Questions

•	 You’re programming! How does it feel?

•	 Were you able to get the hang of the block-based 
programming style?

•	 Did you get to experience loops and events?

•	 How might this be helpful when learning other concepts, like 
functions and variables?

http://studio.code.org/s/course1

Exercise 2: Javascript.com by Code School—Practically 
programming (Play for 30–45 minutes)

Description: A smooth walk into text-based coding, this tutorial 
is a precursor to Code School’s JavaScript Road Trip. Follow the 
directions to learn the basics of JavaScript, a powerful and 
flexible language for HTML and the web.

Computer Science Tie-in: Experience the beauty of typing lines of 
code into the console and watching your computer respond to 
your commands. This is the last step before preparing to write 
entry-level apps of your own.

Journal Questions

•	 What was it like to control the computer with a language 
that is currently popular in the industry?

•	 Were you able to start picking up clues about some of the 
rules (like putting quotes around strings of characters or 
using semicolons at the end of statements)?

•	 Can you imagine writing a program on your own, from the 
very beginning, or are you more inclined at this stage to 
continue building from a program that already has a 
framework?

http://www.javascript.com

http://goo.gl/
OVGtsA

Exercises

http://goo.gl/
RhMF3m

Cop
yri

gh
t C

orw
in 

20
17



PART 2 • CAsTing CAll30

In Summary: Journal and Share—Post to Facebook group

Description: Summary reflection of warm-ups and exercises

Journal Questions

•	 What is your overall impression of “programming?”

•	 Were you able to think of these tasks as puzzles and 
challenges, or did they feel like homework?

•	 Which activity made you the most excited, and why?

•	 Which really tested you, and how did you feel about feeling 
uncertain at times?

•	 What would you tell someone else about your first 
experiences?

https://www.facebook.com/groups/CodingInClass

Summary

What Have I Done and What Do I Do Next?
This chapter has taken you on a long journey from the place of a lone edu-
cator exploring the possibility of incorporating CS into the classroom to 
that of an entry-level programmer! Now that you’ve had a taste, take a 
moment to pat yourself on the back. Celebrate a bit, then dive into the next 
chapter, where we start imagining what CS could look like as part of a well-
rounded classroom curriculum. Lights, camera, action!

https://goo.gl/
h6P7NC

W

Cop
yri

gh
t C

orw
in 

20
17



CHAPTER 4 • GETTinG STARTEd in THE ClASSRoom 31

4

Getting Started in 
the Classroom

As a teacher, you don’t have to look far to find concerns when it comes 
to integrating computer science into everyday instruction. You or your 

colleagues may be concerned about fitting one more piece of curriculum into 
an already crowded program. Parents worry about adding more “screen 
time” to a child’s routine. School administrators aren’t certain computer 
science is worth the cost of retraining teachers.

The trick, and moral responsibility, is to integrate computer science activ-
ities in a way that elevates the “pros” while diminishing the “cons” so 
students get the experiences they need.

When adding computer science to your plan, you can keep many issues 
under control with a simple gut check. Do students find all the computa-
tional activities interesting? If not, some may be overused. Do the activities 
enhance a science investigation or creative process? Creating a computer 
model or simulation can help your students to see or experience informa-
tion in a way that is otherwise impossible, and the possibilities for digital 
art are endless. If your answers all fall on the side of enhanced student 
experience, then you’re on the right track!

START LOW-TECH

One way computer science can be integrated into the classroom without 
additional screen time is through “unplugged” activities. Unplugged les-
sons are computer science activities that do not require digital devices or 
the internet. Consider them the “live theater” of CS! Often, they involve 
arts, crafts, games, and movement to get across vocabulary and concepts 
as complex and diverse as you might find in an entry-level college class. 
Showing is easier than telling, so give one of our “unplugged” lessons (like 
“Algorithms and Automation—A Compliment Generator” on page XXX), 
and peruse the companion site for links to some of our favorites.

Cop
yri

gh
t C

orw
in 

20
17



PART 2 • CASTinG CAll32

ENCOURAGE MOVEMENT

Part of being a responsible CS educator is teaching your students how to 
be responsible CS learners. This means students need to think about taking 
care of their bodies, their minds, and their environment.

When it comes to the body, the use of technology can take its toll. Sitting at 
a computer for long periods is not good for anyone’s health. Encourage kids 
to get up and walk around often, especially when programming on a 
machine. Allowing students to walk freely about the room to study what 
others are doing might be frowned on in math class, but in computer science, 
active collaboration is an effective learning technique.

Computer activity should take place in small chunks of time, ideally for no 
longer than you would expect a student to be able to sit and read on their 
own without interruption. Why? Well, when we are out in the world, 
humans usually look around in three-dimensional (3D) space with nearly 
180 degrees of range top to bottom, and side to side. When on a computer, 
we focus only on a 2D space with a range of about 30 degrees top to bot-
tom and 40 to 50 degrees side to side (“Monitor Height and Position 
Guidelines,” 2008). Spending too much time in this limited, high-contrast 
atmosphere can cause eye strain and muscle soreness. With this in mind, 
encourage students to follow the 20/20/20 Rule: Every 20 minutes, get up 
and stretch while looking at least 20 feet away for at least 20 seconds. Set 
a timer if you need to.

20/20/20/ Rule: Every 20 minutes, get up and stretch while looking at least 20 
feet away for at least 20 seconds.

These breaks are a great opportunity for conversation, too. If you want to 
give students’ full bodies a break, maybe some dance moves are in order! 
The Tut, Clap, Jive activity that we refer to on page XX would be fun day 
after day.

Issues of sedentary living extend beyond school, of course. Teach students 
that for each hour of screen time they have in a day, they should spend the 
same amount of time outside playing, engaging in sports, or just going for 
a restorative stroll. If they begin to hear this encouragement early, being 
active has a much better chance of becoming a habit than if they only hear 
it later in life.

When it comes to technology, it’s your job to help students manage their 
own well-being. Now that we’ve covered the physical bit, it’s time to talk 
about mental steadfastness as it relates to the digital world.

Cop
yri

gh
t C

orw
in 

20
17



CHAPTER 4 • GETTinG STARTEd in THE ClASSRoom 33

FOSTER CRITICAL CONSUMPTION

A recent report from the United Kingdom (“Children and Parents: Media Use 
and Attitudes Report,” 2015) shows that students are increasingly believing 
everything they read on the internet. This problem is probably compounded by 
the likelihood that their parents believe everything they read on the internet, 
too, and pass the information along. To exacerbate things further, intelligent 
search engines (like Google) have tuned their algorithms to the point where 
they offer “top results” based on known preferences (Herlocker, Dietterich, 
Forbes, & Maritz, 2012), so the “best” results for any search you create will 
tend to be consistent with whatever viewpoint you already have (White, 2013).

In the same way, social media sites like Facebook saturate your feed with 
posts from friends that you interact with the most, making it all but certain 
that the majority of viewpoints that you’re exposed to will continue to fuel 
your existing beliefs.

This is a great time for solidarity, but an awful time for the open-minded 
exploration of differing points of view. For that reason, every student should 
receive a thorough education on the credibility of the web. While not explic-
itly computer science, the care and proper use of search engines is important 
to CS education, and therefore, it is important to discuss in this book.

It helps for students to recognize that, like movies, web pages can seem 
authentic and still be entirely fictitious. Even after this message has been 
absorbed, there is power and authority in published words from other 
sources. It is worth taking your students through some exercises where 
they see how ludicrous even some of the most believable pages are. Teach 
them how to “check their work” in the same way that they might for math 
class. Have them take a “fact” and trace it back somewhere other than 
Wikipedia. Is one of the first results on the page from Snopes.com?

Truly educated citizens need to understand where their facts are coming 
from, and while we gave you a small taste of the need to learn about our 
sources of information, it would require another book entirely to do the 
subject justice. Please see our companion website for more details around 
lessons in this subject.*

People are very gullible. They’ll believe anything they see in print.

—E. B. White, Charlotte’s Web

PROTECT PRIVACY AND PREVENT CYBERBULLYING

It is said that “familiarity breeds contempt,” but apparently anonymity 
breeds disregard, criticism, and hostility. A study by the University of 

Cop
yri

gh
t C

orw
in 

20
17



PART 2 • CASTinG CAll34

Houston found that anonymous users were nearly twice as likely to post 
uncivil comments than users who were somehow required to identify 
themselves (53.3% to 28.8%, respectively; Santana, 2013). This explains a 
lot of the horrid behavior on the internet.

Students today have it hard enough straddling the digi-
tal divide with the pressure to be carrying the newest, 
best device. When you add anonymous internet interac-
tions to the mix, it creates the stuff of teenage night-
mares. Since roughly 91% of all teens access the internet 
from a mobile device, and nearly 71% of all teens fre-
quent more than one social media site (Lenhart, 2015), 
it’s almost certain that each of them will run into haters 
at some point.

If not monitored properly, the internet can be turned into a psychological 
weapon (“The Top Six Unforgettable Cyberbullying Cases,” 2013) full of 
venom and danger. So what is an educator to do when encouraging stu-
dents to browse and share on a regular basis?

Up to Age 13: Monitor and Protect
Most students younger than age 13 are not allowed to have their own 
accounts on social media in the United States. If you are using blogs or 
online learning sites in your classroom, make sure that you are in control 
of setting up each account. Educational sites for children (like Codecademy, 
Code.org, and Edublogs) will generally have bulk sign-up pages to associ-
ate students with your teacher account without sharing too much personal 
information, such as student IDs or email addresses.

If you are using sites that require individual emails for students, try creat-
ing a single Gmail address for each class; then append numbers to the end 
of it when signing up each student. For instance, if we made the Gmail 
address k!k!Class@gmail.com, then we could use k!k!Class+1@gmail.com 
for the first student, k!k!Class+2@gmail.com for the second student, and 
so on. Every message that came through to any of those accounts would 
then be delivered to you at the main k!k!Class@gmail.com account.

Age 13 and Older: Trust but Verify
Teenagers and the internet are a tumultuous combination. Teens are old 
enough to be treated with autonomy and trust, but they are still testing 
boundaries and challenging consequences. As an educator, how do you 
strike a balance?

At this age, we recommend that you work with their desire to express 
themselves and encourage appropriate use of social media in study and as 

Digital divide: 
Inequalities 
perpetuated by 
disparate access to 
computers and the 
internet.

Cop
yri

gh
t C

orw
in 

20
17



CHAPTER 4 • GETTinG STARTEd in THE ClASSRoom 35

a portfolio medium for their accomplishments. Be open about the pitfalls 
of posting on a forum that allows comments from the general public, and 
encourage students to protect their privacy by allowing only personal 
friends to access their profiles. Round the topic out by giving a name to 
cyberbullying and condemning it outright, with zero tolerance and well- 
defined ramifications. Follow up the conversation by describing what to 
do when a student believes that they have been the target of a bully online 
(Cyberbullying Research Center, n.d.).

No matter what age your students are, talk to them about being good dig-
ital citizens and respecting others, even when their identity is hidden. 
Remind students that the true measure of one’s character is what they do 
when no one is looking. Challenge them to defend their own accounts and 
protect those of others. If your students are prepared to make good 
choices, then when the time comes to act, they just might do the right 
thing.

If you aren’t already steeped in your district’s acceptable use practices 
(AUPs), look them up and respond accordingly. If you’d like a deeper dive 
into digital safety and citizenship, read Digital Citizenship in Schools, by 
Mike Ribble (ISTE, 2015).

ACHIEVE ACCESS

Teachers often cite two hurdles when it comes to incorporating computer 
science into their classroom: time and budget restrictions. Both of these 
can be addressed by selecting the right curriculum for your classroom.

Computer science can be introduced into multiple subjects even without 
having entire classes devoted to the subject. The truth is, computer science 
is the understanding of computing as a tool, and that tool can be used in 
service to any subject. At young ages, Scratch gives you a tool to bring CS 
into music (Heines, Ruthmann, Greher, & Maloney, 2012), CS Fundamentals 
allows you to use computer science in art (“Computer Science Fundamentals 
for Elementary School,” 2015), and Tynker brings computer science into 
math class (“Programming = Better Math Skills + Fun,” 2014).

For middle school and beyond, entire organizations are dedicated to inter-
disciplinary computing, including Bootstrap (math) and Project GUTS 
(science), which we point to in Chapter 16.

What’s more, when students become capable of understanding text-based 
programming languages, their world opens up with opportunities for CS 
integration. Imagine students going deeper with projects by adding formu-
las to spreadsheets, adding interactivity to maps, and creating graphical 
representations from data.

Cop
yri

gh
t C

orw
in 

20
17



PART 2 • CASTinG CAll36

The cost of equipping a school is nominal for most of the programs listed 
earlier. Many of the curriculum packages mentioned are free, and some 
providers even offer free professional development opportunities for edu-
cators. Functional equipment becomes the next consideration, but these 
costs can be mitigated through pair programming (because half as many 
machines are needed), more agile, on-demand access to school technology 
(as schools dismantle computer labs and supply more computers to class-
rooms), and adoption of BYOD (“bring your own device”) policies.

For the cases where classrooms are unable to procure 
hardware capable of running up-to-date browsers, 
unplugged CS lessons are the next best option. Many, 
like Conditionals with Cards* or For Loop Fun* use 
only paper, playing cards, and/or dice.

Suppose, however, that you are one of the lucky ones, 
and you have found the time and the hardware to 
implement a full-scale computer science program. You 
may worry that it’s like the old days when coding meant 
installing complicated programming environments and 
dozens of software patches, but have no fear. Today, 
many great entry-level programming environments are 
browser-based and operate online, allowing your stu-
dents to receive the benefits of an introductory CS edu-
cation through a handful of quality websites.

BANISH ANXIETY

In reality, we have found that the biggest barrier to providing students with 
a solid introduction to computer science is teacher anxiety.

Worry not, brave instructor, because the most important thing that you can 
teach in CS is how to learn, and you can model this as you learn alongside 
your students. Computer science changes fast. A programming language 
introduced to students their first year of high school might be outdated by 
the time they graduate. Even the most learned computer science professor 
doesn’t have enough CS knowledge to answer every stray question from an 
elementary student. For this reason, we ask that you become comfortable 
saying, “Let’s find out together.”

Adopt the motto, “Everyone a teacher, everyone a learner.” Students solid-
ify their learning when they teach someone else (Brooks & Brooks, 1993), 
so let them end a lesson by teaching you and their classmates what they 
discovered. This is a great opportunity to challenge students to put what 
they’ve learned—and how they learned it—into words. Thinking through 
their actions not only helps them accomplish the day’s task but it exposes 

Programming 
environment: A 
software workspace 
made for creating 
code.

Software patch: A 
piece of software 
designed to update 
or fix a computer 
program.

Cop
yri

gh
t C

orw
in 

20
17



CHAPTER 4 • GETTinG STARTEd in THE ClASSRoom 37

the processes of learning something new; a skill that can transfer to every 
learning challenge they encounter for the rest of their lives.

If you are used to dispensing knowledge and controlling most aspects of 
the learning experience, give yourself permission to let go—even if for only 
one group of kids around one topic. We promise the experience will be 
both enlightening and enriching for everyone involved.

Have no fear of perfection—you’ll never reach it.

—Salvador Dali, artist

Cop
yri

gh
t C

orw
in 

20
17




