
GENERAL PRINCIPLES OF 
HYPOTHESIS TESTING

6

In Chapter 1, we described an experiment by Barlett (2015) in which he attempted to investigate 
whether there is a difference in hostility between those who receive insulting or nice online 
messages by conducting an experiment in which participants received messages that were 

either insulting or nice and then measuring the participants’ levels of hostility. We presented 
the results of this experiment at the beginning of Chapter 2. In this chapter, we will apply the 
concepts discussed in preceding chapters to describe the basic principles for testing statistical 
hypotheses. To make it easier to see those basic principles, we will assume for the moment that 
we know the population variances. We will postpone the actual analysis of Barlett’s data until 
Chapter 7, where we will use estimates of the population variance in the application of Student’s 
t-test.

As we saw in Chapter 1, we start with a research question and generate mutually exclusive and 
exhaustive experimental hypotheses as possible answers to our research question. Then we design a 
research study based on our research hypotheses and collect data. By making certain assumptions 
about the data, we can use a statistical model to assess whether the obtained results reflect real 
experimental effects or merely random (chance) factors. With the classical statistical model, this 
assessment is carried out by making assumptions about the shape of the populations from which the 
data were obtained, setting up statistical hypotheses about the parameters of these populations, and 
evaluating which hypothesis is best supported by the data. The results of our statistical hypothesis test 
are then generalized back to our experimental hypotheses to hopefully answer the question originally 
posed. In this chapter, we will examine the principles involved in testing statistical hypotheses 
with the classical statistical model, and in Chapter 9, we will do the same with the randomization/
permutation model.
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Chapter 6   ■   General Principles of Hypothesis Testing 149 

EXPERIMENTAL AND  
STATISTICAL HYPOTHESES

Experimental hypotheses are statements about the relationship between the independent 
and dependent variables in our experiment. In the classical statistical model, the 
parallel statistical hypotheses are about unknown parameters in the populations from 
which our data were sampled.

The independent variable in Barlett’s (2015) experiment was the message participants 
received from their “partner” after failing to solve an unsolvable Sudoku puzzle. This 
message was either an insulting message (“you suck”) or a nice message (“it’s OK”). There 
were a number of dependent variables; the one we discussed was the participants’ scores 
on a scale measuring state hostility (scores could range from 34 to 170, with higher scores 
indicating more hostility) after they received their “partner’s” message. (More details of 
this experiment are given in Chapter 1.)

Experimental Hypotheses

The experimental hypotheses for Barlett’s experiment were:

Cybervictimization (message content) does not affect state hostility.
Cybervictimization (message content) does affect state hostility.

These hypotheses are stated in terms of the independent and dependent variables in 
the experiment. To analyze his data using the classical statistical model, Barlett had to 
construct a parallel set of statistical hypotheses about the means of the populations from 
which the data were presumably sampled.

Statistical Hypotheses

If we assume that the experimental participants were sampled randomly from a normal 
distribution1 with a mean of μInsulting message and variance σ2

Insulting message, and that the 
control participants were sampled from a normal distribution with a mean μNice message 
and a variance σ2

Nice message, then the following statistical hypotheses can be generated to 
correspond to the experimental hypotheses in the experiment:

µInsulting message 5 µNice message

or
µInsulting message 2 µNice message 5 0

1 Here we are using the principle of potential populations we discussed in Chapter 1.
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Part III   ■   The Basics of Statistical  Inference150 

µInsulting message fi µNice message

or
µInsulting message 2 µNice message fi 0

In words, the first statistical hypothesis reads: “The mean of the population from 
which the participants in the Insulting message group were sampled is equal to the 
mean of the population from which the participants in the Nice message group were 
sampled.” This hypothesis can also be stated as “The mean of the population from 
which the participants in the Insulting message group were sampled minus the mean 
of the population from which the participants in the Nice message group were sampled 
equals 0.” Both versions convey the same information. We will see shortly that the 
second version fits better with the test statistic we use to test this hypothesis.

The second hypothesis is read in a similar manner, except that the means of the two 
populations are stated as not being equal; in other words, the difference between them is 
stated as not being equal to 0. As noted in Chapter 1, with the classical statistical model, 
statistical hypotheses are statements about the parameters of potential populations 
created for the purpose of using that model.

The two experimental hypotheses are mutually exclusive and exhaustive. That is, one of 
them must be true, but they both cannot be true, and they are the only possibilities: Either 
being a victim of cyberbullying (through having received an insulting message online) does 
or does not affect whether someone responds by experiencing hostility. The same logic holds 
for the statistical hypotheses; either µInsulting message 5 µNice message or µInsulting message fi µNice message.

For ease of exposition and to frame the discussion in this chapter in general terms, 
the groups in this experiment will be referred to as E and C, denoting experimental and 
control groups, respectively.

ESTIMATING PARAMETERS

Our statistical hypotheses tell us what parameters we need to estimate to construct a test 
statistic to help us decide which hypothesis our data support.

Statistical hypotheses are statements about the parameters of the populations from which 
our samples were obtained. To test these hypotheses, we use the information in our samples 
to obtain estimates of the unknown parameters. From Chapter 4, we know that the best 
estimate of the mean of a population is the mean of a random sample from that population. 
In a two-group experiment, we are concerned with two population means (in this case, µE and 
µC); therefore, we must use two estimates, one from the control group ( XC ) and one from the 
experimental group ( X E ). Since our statistical hypotheses are about the difference between 

Copyright ©2018 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 6   ■   General Principles of Hypothesis Testing 151 

these population means, the value of interest is the difference between the sample means 
X E−XC . Assuming that the sampling is random, we expect that our estimates X E  and 
XC  will be close to the parameters µE and µC.2 Therefore, if the hypothesis µE 2 µC 5 0 is 
indeed true, we expect that the quantity X E−XC  to be close to zero. On the other hand, if 
the other hypothesis (µE 2 µC fi 0) is true, then we expect X E−XC  to be a non-zero value 
that is somewhere close to the value of µE 2 µC. Since this other hypothesis says nothing about 
how far µE is from µC, the only thing we can say is that a large positive or negative value of 
X E−XC  is more consistent with µE 2 µC fi 0 than with µE 2 µC 5 0.

Therefore, we are faced with trying to answer the following questions: How far 
can X E−XC  be from zero before we conclude that the value is consistent with the 
hypothesis µE 2 µC fi 0? How close can X E−XC  be to zero before we conclude that it 
is consistent with the hypothesis µE 2 µC 5 0?

THE CRITERION FOR EVALUATING  
OUR STATISTICAL HYPOTHESES

When we test statistical hypotheses, we select one of the hypotheses and calculate 
the probability of obtaining (in a future research study) our results, or results even 
more extreme, assuming that the hypothesis is true. When that probability is below a 
predetermined level, we reject the hypothesis and accept the other one.

All statistical hypothesis tests are carried out by selecting one of our mutually exclusive and 
exhaustive hypotheses and calculating the probability of obtaining (in a future experiment) a 
similar result, or one even more extreme, assuming that the hypothesis being considered is true. If 
the hypothesis we select to test is true, we expect that probability to be high. If our chosen 
hypothesis is false, we expect that probability to be low (and the probability calculated 
from the other hypothesis to be higher). To calculate the probability of obtaining our 
observed difference X E−XC  based on the statistical hypothesis we choose to test, we 
need to create a test statistic to determine the probability of obtaining our data, assuming 
the statistical hypothesis we chose to test is correct. From the distribution of that test 
statistic, we can find the probability of obtaining our observed data.

CREATING OUR TEST STATISTIC

Of interest here is the difference between the two sample means, and therefore we 
need to create a test statistic that allows us to easily determine the probability of 

2 As noted in Chapter 1, we rarely expect our estimates to equal our parameters.
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obtaining our observed difference between those two sample means based on one of our 
statistical hypotheses. In the situation under consideration, we apply the standard score 
transformation to XE −XC  to create our test statistic, z.

To calculate the probability of obtaining our observed value of X E−XC ,  we need to 
know the distribution of that difference. From the central limit theorem, we know that 
when the original populations are normal distributions, the sample means X E  and XC  

will both have normal distributions with means µE and µC and variances σXE

2 =
σE

2

nE

 and 

σXC

2 =
σC

2

nC

σXC

2 =
σC

2

nC
, respectively. Theorem 4 in Chapter 3 can be extended to the 

present situation in which the numbers under consideration are sample means. Therefore, 
according to Theorem 4, the distribution of X E−XC  has a mean µE 2 µC and a variance 

σXE

2 +σXC

2
, and when the original populations are normal distributions, the distribution 

of X E−XC  is also a normal distribution.3

Knowing the mean and variance of this normal distribution, we can calculate the 
probability of obtaining values of X E−XC  that occur in any particular region of the 
distribution by using the normal distribution table in Appendix E. However, to use that 
table, we must transform the raw scores to a standard score distribution: 

 standard score = score−mean
standard deviation

 (6.1)

Using Equation 6.1 and substituting X E−XC  for the score, µE 2 µC for the mean, 
and σXE

2 +σXC

2  for the standard deviation, we get the following formula:

 z =
X E−XC( )− µE−µC( )

σXE

2 +σXC

2
 (6.2)

The final step is to select a hypothesis to test. In the present situation, only one of our 
two statistical hypotheses allows us to calculate the probability of obtaining a particular 
result, and that is the hypothesis µE 2 µC 5 0. The other hypothesis, µE 2 µC fi 0, 
cannot be used for direct calculation because it does not give a value for the difference 
between the population means. If that hypothesis were stated with a definite value (such 
as µE 2 µC 5 10), then calculating the probability of that result would be possible.

3 The distribution of XE−XC  is a theoretical distribution that could be generated if we perform our research 
study an infinite number of times. Each time we perform the experiment, we can obtain a value for XE−XC. 
Because the X ’s are estimates of parameters, neither they, nor  the values of XE−XC, will be the same from 
study to study. After an infinite number of these replications of the study, we will have a distribution that is 
normal in shape with a mean µE 2 µC and a variance σ

XE

2 +σ
XC

2 .
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The hypothesis that allows us to calculate this probability is called the null hypothesis 
and in this case is written as H0: µE 5 µC or H0: µE 2 µC 5 0. The other hypothesis 
is called the alternative hypothesis and in this case is written as H1: µE fi µC or  
H1: µE 2 µC fi 0.

By substituting µE 2 µC 5 0 into Equation 6.2, we arrive at our test statistic:

 z =
X E−XC( )
σXE

2 +σXC

2
 (6.3)

Equation 6.3 gives us the value we use to find the probability of obtaining our 
observed results, assuming the null hypothesis (in this case µE 2 µC 5 0) is true.

Because the form of a distribution is not changed by the standard score transformation, 
the distribution of z will be normal when the distribution of X E−XC  is normal (which 
it is when the original populations from which the random samples were taken were 
normal distributions). Furthermore, when H0 is true, µz 5 0 and σz

2 =1 .

DRAWING CONCLUSIONS  
ABOUT OUR NULL HYPOTHESIS

We can divide the distribution of our test statistic into two regions. Values of our test 
statistic in one of these regions (called the critical region) leads us to reject our null 
hypothesis. The size of the critical region represents the probability of getting a result 
judged unlikely to have occurred when the null hypothesis is true. The dividing line 
between these two regions is called the critical value.

The p-Value

The probability of obtaining a particular experimental result or one more extreme, assuming 
that H0 is true, is the p-value. According to Fisher (1925), we can use the p-value to 
assess the correctness of H0. For Fisher, the p-value is a measure of the implausibility 
of the null hypothesis; that is, the lower the p-value, the more implausible the null 
hypothesis. Therefore, when the p-value is lower than a certain value, we should take that  
as evidence that the null hypothesis is false. Fisher recognized that the null hypothesis 
might be true even when the p-value is a low number. According to Fisher (1956), 
a low p-value means that “either an exceptionally rare event has occurred, or the 
theory of random distribution [the null hypothesis] is not true” (p. 42). Nevertheless, 
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Fisher took the position that a low p-value should be taken as evidence that the null 
hypothesis is false.

How small does the p-value have to be for us to conclude that H0 is false? Unfortunately, 
there is no straightforward answer to that question. Should that probability be .1 
 (1 chance in 10), or .05 (1 chance in 20), or .01 (1 chance in 100), or .001 (1 chance in 
1,000)? While, as we will see later, the choice can depend in part on other considerations, 
Fisher proposed that we use p , .05 as our definition of “a rare event when H0 is true.” 
In other words, anytime the calculated value of p is less than or equal to .05, we reject H0 
and accept the alternative hypothesis H1. Fisher’s proposal has become the standard by 
which we decide whether to reject H0. We do not reject H0 when p . .05. As we will see 
later in this chapter, the latter case does not lead us to conclude that H0 is true.

The value of z that divides those results that lead to rejection of H0 from those that 
lead to non-rejection is called the critical value, and the set of all values of z that lead to 
rejection of H0 is called the critical region (see Figure 6.1).

We use the symbol α to represent the probability of getting a result in the critical 
region when the null hypothesis is true. We can represent this situation symbolically as 
follows:

	 α 5 Pr(test statistic in critical region|H0 true)  (6.4a)

or

	 α 5 Pr(reject H0 when it is true) (6.4b)

Therefore, any value of the test statistic for which p , α leads us to reject H0.

FIGURE 6.1 ■  Location of the critical value and critical region. Any 
calculated z that is in the critical region leads to rejection of 
H0. Calculated values of z that are outside the critical region 
do not lead to rejection of H0.

0

Distribution of z
when H0 true

Critical region

Critical value
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BUT SUPPOSE H0 IS FALSE?

When H0 is false, our test statistic does not come from the distribution based on H0 
being true; it comes from another normal distribution that has a mean fi 0. This 
other distribution is called the non-central distribution. While the p-value for our 
test statistic calculated from the distribution based on H0 being true may be low, the 
probability of getting our data from the non-central distribution will be higher when 
H0 is false.

The strategy for testing statistical hypotheses described above requires us to assume that 
the hypothesis we test (the null hypothesis) is true and to use the distribution of our test 
statistic (in this case z) to calculate the probability of obtaining our data. But suppose 
H0 is false?

When H0 is false, the distribution of z will also be a normal distribution with variance 
equal to 1, but the mean will not be equal to zero. The formulas for µz and σz

2  when H0 
is both true and false are derived in Box 6.1.

The mean of the test statistic z =
XE−X C

σE
2

nE

+
σC

2

nC

 is 

found by repeatedly drawing samples from the 
two populations, finding XE−X C  for each set of 
samples, converting to z using Equation 6.3, and 
then averaging all of the resulting z-statistics. 
Using the definition of the mean, we find that

µz =
zi

i=1

K

∑
K

where K is the number of z-scores generated 
by this procedure. Substituting Equation 6.3 for 
z produces

µz =

XE−X C

σE
2

nE

+
σC

2

nC

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

i=1

K

∑

K

Because the term under the square root sign is 
a constant with respect to the summation,

µz =
1

σE
2

nE

+
σC

2

nC

i
XE−X C( )

i=1

K

∑
K

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

BOX 6.1
ALGEBRAIC DERIVATION OF THE MEAN AND  
VARIANCE OF THE z-TEST STATISTIC
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We can distribute the summation sign to get 
the following:

µz =
1

σE
2

nE

+
σC

2

nC

i
XE

i=1

K

∑
K
−

X C
i=1

K

∑
K

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

The values in the brackets represent µE 2 µC. 
Therefore,

µz =
µE−µC

σE
2

nE

+
σC

2

nC

When H0 is true, µE 2 µC 5 0, and µz 5 0. When 
H0 is false, the value of µz depends on the actual 
difference between µE and µC, the population 
variances, and the sample sizes.

The variance of the z-test statistic can be found 
in a similar manner. Start with the definition 
of the variance as the mean of the squared 
deviations of scores from their means:

σz
2 =

zi −µz( )2
i=1

K

∑
K  

We can substitute z =
XE−X C

σXE−XC

 and µz =
µE−µC

σXE−XC

  
to get this:

σz
2 =

XE−X C

σXE−XC

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
−
µE−µC

σXE−XC

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥i=1

K

∑

K

2

Because the term σXE−XC

2  occurs in both parts 
and is a constant with respect to the summation,

σz
2 =

1
σXE−XC

2
i

XE−X C( )− µE−µC( )⎡
⎣⎢

⎤
⎦⎥i=1

K

∑
K

2

(Note: σXE−XC

2  is squared because it comes from 
a squared expression.)

The summation term is, by definition of 
variance, σXE−XC

2 . Therefore, σz
2 =1  both when 

H0 is true and when H0 is false.

The distributions of our test statistic when H0 is true and when H1 is true are 
represented in Figure 6.2. The two curves are presented separately because they are two 
mutually exclusive possibilities; that is, they cannot both happen at the same time: Either 
H0 is true, in which case our calculated z (Equation 6.3) comes from the top distribution, 
or H1 is true, in which case our calculated z (Equation 6.3) comes from the bottom 
distribution.4

4 Although our alternative hypothesis is two tailed (that is, µE 2 µC fi 0), this difference can only be on one side 
when the null hypothesis is false: Either µE 2 µC . 0 or µE 2 µC , 0. In the first situation, z is greater than 0, and 
in the second situation, z is less than zero. For the discussion here, we will assume the true state of affairs is that 
µE 2 µC . 0 and z . 0.
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We decide whether to reject or not reject H0 by calculating the probability of obtaining 
our observed value of z from the H0 (top) distribution. When H0 is true, the probability 
of getting a result in the critical region is low. On the other hand, when H0 is false and H1 
is true, our test statistic comes from the bottom distribution, and our getting a result in 
the critical region is more likely to occur. The bottom distribution in Figure 6.2 is called 
the non-central z distribution and is symbolized as z* (z-star).

ERRORS IN HYPOTHESIS TESTING

There are two types of errors we might make when testing statistical hypotheses. One 
error is to reject H0 when it is true, which is called a type I or alpha error. The other 
error is to not reject H0 when it is false, which is called a type II or beta error. We can 
only make a type I error when H0 is true and our test statistic is in the critical region. 
We can only make a type II error when H0 is false and our test statistic is not in the 
critical region.

FIGURE 6.2 ■  Location of the critical value and critical region. Any 
calculated z that is in the critical region leads to the rejection 
of H0. Calculated values of z that are outside the critical 
region do not lead to the rejection of H0.

0

0

Distribution of z
when H0 true

Critical region

Distribution of z
when H0 false (z*)

Critical value
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Although we reject H0 when the p-value is lower than our predetermined definition of an 
improbable event, there is the possibility that H0 is indeed true. In this case, our rejection 
of H0 leads to an error.5 Following Neyman and Pearson (1928a, 1928b), this error is 
called a type I or alpha error and is represented by the part of the distribution based on 
H0 being true that is in the critical region. We can only make a type I error (or an alpha 
error) when H0 is true and we obtain a result that falls in the critical region. The error is that 
we will decide to reject H0 when it is indeed true. The probability that we might make a 
type I or alpha error is  (see Equations 6.4a and 6.4b).

There is another kind of error we can make, namely, when H0 is false and our data 
do not lead us to reject it; that error will occur when our test statistic does not fall in the 
critical region. We use the symbol  to represent the probability of getting a result that is 
not in the critical region when the null hypothesis is false. We can represent this situation 
symbolically as follows:

�  5 Pr(test statistic is not in the critical region|H0 false) (6.5a)

or

�  5 Pr(do not reject H0 when it is false) (6.5b)

This probability is represented by the portion of the z* distribution that is outside the 
critical region. This error is called a type II or beta error. Since the probability of making 
a type II error (or beta error) is dependent on how much of the z* curve is outside the 
critical region, which in turn is dependent on the unknown mean of z*. It is not possible 
to calculate the probability of making a type II error. Nevertheless, there are ways to 
minimize this error, and these will be discussed in the next section.

When H0 is false and the calculated value of z is in the critical region, then H0 will be 
correctly rejected. This is not an error; it is a correct decision. The probability that one will 
correctly reject H0 when it is false is represented by the area of the z* curve that is in the 
critical region. The probability of correctly rejecting H0 when it is false is called power; that is,

 Power 5 Pr(test statistic in critical region|H0 false) (6.6a)

or

 Power 5 Pr(reject H0 when it is false)  (6.6b)

Since power and beta (probability of a beta or type II error) represent those parts of the z* 
distribution that are inside and outside the critical region, respectively, they are related by the 

5 It is easy to make the mistake of stating that “there is such and such a probability that H0 is true or not true.” 
H0 is either true or not, there is no probability attached to the truth or falseness of H0; the only probability here 
is associated with obtaining a given result (in a future experiment) assuming H0 is true.
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formula, power 5 1 2 beta. Therefore, those things that increase power also decrease beta, 
and vice versa. The relationships described here are represented in Figure 6.3.

Finally, when H0 is true and the calculated z does not fall in the critical region, one has no 
reason to reject H0. Does this outcome mean that H0 can be accepted? The answer is no, since 
logically one cannot prove a hypothesis true by finding evidence consistent with it. It may 
be that the hypothesis is actually false, but the data are still technically consistent with that 
hypothesis (or just not inconsistent enough with the hypothesis to warrant its rejection). We 
will discuss the reasons why one cannot prove H0 to be true and what one can do with results 
that do not lead to the rejection of H0 (see the section in this chapter titled “What Should We 
Do (or Not Do) When Our Data Do Not Allow Us to Reject the Null Hypothesis?”).

POWER AND POWER FUNCTIONS

If our experimental question involves trying to determine whether two treatments 
have different effects on behavior, then we want to design an experiment in which the 
probability of rejecting a false null hypothesis (the power of our test) is high. Although we 

FIGURE 6.3 ■  Relationship between the critical region, the probability of 
making a type I error (alpha), the probability of making a type 
II error (beta), and power (the probability of rejecting H0 when 
it is false).

0

0

Distribution of z
when H0 true

Critical region

Distribution of z
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Part III   ■   The Basics of Statistical  Inference160 

cannot calculate the power of our statistical hypothesis test, we know what factors affect 
the power, and we can use that information to design our experiment to maximize its 
power. Power functions provide us with a way to decide how large a sample size to use 
when we design our experiment.

Power is defined as the probability of rejecting H0 when it is false. It is represented in Figure 
6.3 as that area of the z* distribution that lies in the critical region. To determine the power 
of a hypothesis test, we would have to know the form and location of the z* distribution. 
Because z* is a normal distribution with variance 5 1 (see Box 6.1), the location of z* is 
determined by the mean of the distribution, which is shown in Box 6.1 to be

 µ
z * =

µE−µC

σE
2

nE

+
σC

2

nC

 (6.7)

From Equation 6.7, it can be seen that the location of the z* distribution (and hence 
the power of the test) is dependent on

1. the difference between the population means (µE 2 µC),
2. the population variances (σE

2  and σC
2 ), and

3. the sample sizes (nE and nC).

In addition, power will depend on

4. the critical value for the test that is based on the value of  we select as defining 
an improbable result when H0 is true.

Of these four things, all but the value µE 2 µC are known for any given experiment for 
which the z-test statistic can be used. Therefore, while we do not know what m

z *  is, we 
certainly know how to change its value and to influence the power of the test.

The Population Variances

We tend to think of the population variances as fixed values not under our control, 
but that belief is not entirely true. The scores under consideration are measurements of 
behavior. From classical measurement theory, we know that an observed score is made up 
of two components, a true score and an error component. Although we cannot directly 
measure the true score, we can estimate it as the expected value of an infinite number of 
the measurements. The error component is assumed to be randomly distributed around  
the true score so that the mean of the errors 5 0. The observed score can thus be represented 
by the following formula:

 Y 5 T 1 Error,  (6.8)
where µError 5 0. 
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Chapter 6   ■   General Principles of Hypothesis Testing 161 

From Theorem 3 in Chapter 3, the mean of a sum is the sum of the means, and the 
variance of a sum is the sum of the variances. Therefore,

 µY 5 µT 1 µError 5 µT  (6.9)

 sY
2 5 sT

2 1 s 2
Error  (6.10)

The variance of the true scores is a function of the variation of the individuals being 
measured. Homogeneous groups (such as when all members of the group share the same gender, 
same age, same background, and so forth) will have lower values for σT

2 . Heterogeneous 
groups will have larger values. For this reason, we try to use homogeneous groups in our 
experiments. We will see in Chapter 14 how we can apply analysis of variance to the possible 
sources of variance mentioned above to reduce the variances of the observed scores. 

The variance of the errors is affected by the reliability of our measuring instrument 
and how consistently the participants in a given group are treated. Reliability refers to 
getting the same value each time we take the measurement. A perfectly reliable measuring 
instrument yields the same value every time we use it (assuming the true score does 
not change over time). An unreliable measuring instrument yields different values each 
time the measurement is taken. An extreme example of using an unreliable measuring 
instrument is using a rubber band to measure the length of an object. Therefore, it is 
important to choose measuring instruments that have high reliability.

The other factor that affects σError
2  involves whether the conditions under which 

participants are treated and tested are held constant. Sloppy experimental procedures 
(not administering the treatments or instructions to our participants in the same way, 
or otherwise handling the participants in different ways that are not directly connected 
to the manipulation of the independent variables in our experiment) increase σError

2 , 
and thus in turn decrease the power of our statistical test. To improve the power of our 
statistical test, all experiments should be conducted in a way that ensures all participants 
in a given condition are treated the same.

It is clear from Equation 6.7 that anything we can do to decrease σE
2  and σC

2  will 
increase the µ

z *  and therefore move the non-central distribution to the right. Doing so 
will increase the power of our statistical test, which uses the z in Equation 6.3 as the test 
statistic.

The Sample Sizes

It is clear in Equation 6.7 that µ
z *  is also a function of the sample size. The larger the 

sample size (for any given difference µE 2 µC and any given values of σE
2  and σC

2 ), 
the larger the value of µ

z *  and the greater the power of our z-test. This relationship is 
illustrated in Figure 6.4. Power is represented by the shaded area of the distributions on 
which H0 is assumed to be false.
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Part III   ■   The Basics of Statistical  Inference162 

Clearly, as sample size increases, more and more of the distribution of the test statistic 
when H0 is false falls in the critical region of the distribution based on H0 being true, thus 
increasing the power. In this case, because the form and variance of the H1 distribution 
do not change, the location of that distribution must shift further into the critical 
region. This concept is illustrated in both sides of Figure 6.4. The difference between 
the two sides of Figure 6.4 reflects the size of the difference between µE and µC. In these 
examples, the difference between µE and µC on the right is twice as large as that on the 
left; hence, the power of the test at any given sample size is greater for detecting the larger 
difference. It should be noted, however, that if the sample sizes were large enough, the 

FIGURE 6.4 ■  In the top panels, there are distributions of the test statistic 
(Equation 6.3) when H0 is true, and in the middle and bottom 
panels, when the null hypothesis is false. In the middle 
panels, nE 5 nC 5 8, and in the bottom panels, nE 5 nC 5 18. 
On the left, µE 2 µC 5 5, and on the right, µE 2 µC 5 10. In all 
cases,  5 .05 and σE

2 =σC
2 =10 .

µE – µC = 5
nE = nC = 8

µE – µC = 10
nE = nC = 8

0

Distribution of z
when H0 is true

Critical region

Critical value

Type I or α error

0

Distribution of z
when H0 is true

Critical region

Critical value

Type I or α error

µE – µC = 5
nE = nC = 18

µE – µC = 10
nE = nC = 18
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Chapter 6   ■   General Principles of Hypothesis Testing 163 

H1 distribution would shift far enough into the critical region to allow detection of the 
difference between µE and µC, even if that difference were small. Therefore, any test can 
be made powerful enough to detect the smallest differences by increasing the sample size. 
We will have much more to say about this in the section “The Use of Power Functions” 
later in this chapter. 

The Value of  Selected for Our Test

Finally, if the critical value were shifted to the right by decreasing the probability of 
making a type I error from  5 .05, where the critical value is 1.64, to  5 .01, where 
the critical value increases to 2.33, the power of the statistical test would decrease because 
less of the H1 distribution would be in the critical region.

Power Functions

A power function is a functional relationship between the power of a test and various possible 
values of the alternative hypothesis for a given sample size. It is conventional to express the 
alternative hypothesis mE 2 mC fi 0 in terms of the number of standard deviations mE is 
from mC. This index is the standardized effect size, where

 ES = µE−µC

σ
 (6.11)

The horizontal axis of the power function graph is in units of the standardized effect 

size µE−µC

σ
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

, and the power is on the vertical axis.

To construct a power function, we must find the area of the alternative distribution 
curve (in this case, z*) that lies in the critical region for various possible values of  
µE 2 µC. Thus, if we adopt a certain critical value (based on our choice of alpha) and 
particular sample sizes (nE and nC), we can examine the probability that our test would 
reject H0 for different values of µE 2 µC. If we chose a different sample size and again 
looked at different values of µE 2 µC, we would construct another curve that would 
reflect the power at that sample size. In fact, if we chose many different values of n, 
we could construct a family of power functions. Similarly, we could hold sample size 
constant and vary alpha to construct another family of power functions that reflect the 
effects of that factor. Examples of these power functions are given below.

In the case of the z-test statistic under consideration, the power of the test can easily 
be found because we know that the distribution of z* is normal with a known mean 
(see Equation 6.8) and variance (σz

2 =1 ). Therefore, we can find the area of this normal 
curve that lies in the critical region by using the standard score transformation so that 
we can use the unit normal curve tables. The method for finding the power for the 
two-sample z-test is given in Box 6.2. The derivation in Box 6.2 is provided to illustrate 
how various factors affect the power of a test. All of these factors have similar effects in 
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Part III   ■   The Basics of Statistical  Inference164 

H0: µE 2 µC 5 0 with the z-test statistic.

The power of a test is defined as the probability 
of rejecting H0 when it is false. In this case, it is 
represented by the area of the z* distribution 
that lies in the critical region (see Figure 
6.4). Because z* is a normal distribution, we 
can find the power by converting to standard 
scores again and finding the area of the curve 
from the critical value to 1∞. To do this, we 
substitute into the following formula:

standard score =
score−mean

standard deviation

′z =
z−µ

z*

σ
z*

We will designate this standard score as z9 
(z-prime) to differentiate it from the other 
z-values used in this section. (The symbol z 
represents the test statistic in Equation 6.3 
and the distribution of Equation 6.3 when H0 
is true; z* represents the distribution of the 
z-test statistic when H0 is false.) From Box 6.1 
we know that

µz =
µE−µC

σE
2

nE

+
σC

2

nC

and σz
2 =1 .

This deviation can be simplified if the following 
assumptions are made:

1. σE
2 =σC

2 . (The two population variances are 
equal; this is called homogeneity of variance.)

2. nE 5 nC. (The sample sizes are equal.)

If we drop the subscripts on s2 and n to denote 
that they are equal,

µ
z* =
µE−µC

2σ2

n

=
µE−µC

σ
i

n
2

Because we want to find the area to the right of 
the critical value (c.v.),

′z =
c.v .−µ

z*

σ
z*  

′z =
c.v .−

µE−µC

σ
i

n
2

1

′z =c.v .−
µE−µC

σ
i

n
2

The value of z� determines the area of the 
z* curve that lies in the critical region. The 
smaller the value of z�, the greater the area 
of z* in the critical region and the greater the 
power. Note that when z� is a negative number, 
the power is greater than .5.

BOX 6.2
FORMULA FOR THE POWER FUNCTION  
FOR THE TEST OF THE NULL HYPOTHESIS
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Chapter 6   ■   General Principles of Hypothesis Testing 165 

all hypothesis tests. This derivation applies only to situations in which the distribution 
where H0 is false is normal. When that distribution is not normal, other methods must 
be used. Some of these strategies will be described in subsequent chapters. 

From the formula derived in Box 6.2, we can readily construct a set of power functions 
for any z-test of the hypothesis H0: µE 2 µC 5 0. Two examples of such functions are given 
below. In the first example, the probability of a type I () error is set at .05 and sample size 
is varied (see Table 6.1 and Figure 6.5). In the second example, sample size is held constant 
at 8 participants in a group and the value of  is varied (see Table 6.2 and Figure 6.6).

n Standardized Effect Size
 

µ
E
−µ

C

σ

0 0.5 1.0 1.5 2.0 2.5 3.0

2 .05 .13 .26 .44 .63 .80 .91

8 .05 .26 .63 .91 .99 .99 .99

18 .05 .44 .91 .99 .99 .99 .99

TABLE 6.1 ■  Power for the Test of H0: µE 2 µC 5 0 Against H1: µE 2 µC . 0 With 
a z-Statistic for Various Standardized Effect Sizes.  5 .05, and 
Sample Size (n) Is Varied

FIGURE 6.5 ■  Power functions for the z-test of H0: µE 2 µC 5 0 against H1: µE 2 
µC . 0 with  5 .05.
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Part III   ■   The Basics of Statistical  Inference166 

THE USE OF POWER FUNCTIONS

When used properly, power functions can help us decide how large a sample size to use 
to find a treatment effect of a certain size at a given level of . Too large a sample size 
can be wasteful of resources, while too small a sample size will not result in a test with 
enough power to consistently detect a real difference between the population means.

 Standardized Effect Size
 

µ
E
−µ

C

σ

0 0.5 1.0 1.5 2.0 2.5 3.0

.05 .05 .26 .63 .91 .99 .99 .99

.01 .01 .09 .37 .75 .95 .99 .99

.001 .001 .02 .14 .46 .82 .97 .99

TABLE 6.2 ■  Power for the Test of H0: µE 2 µC 5 0 Against H1: µE 2 µC . 0  
With a z-Statistic for Various Standardized Effect Sizes  
(Sample Size 5 8;  Is Varied)

FIGURE 6.6 ■  Power functions for the z-test of H0: µE 2 µC 5 0 against  
H1: µE 2 µC . 0 with sample size 5 8.
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Chapter 6   ■   General Principles of Hypothesis Testing 167 

If we are going to commit time and resources to an experiment, we want to do so in a 
way that maximizes our chances of finding an effect that we predicted. In view of the 
proceeding discussion about power, it is apparent that the sample size one chooses has a 
great deal to do with this.

Too small a sample size will lead to an experiment in which the power of the test 
(probability of rejecting H0 when it is false) is also too small. For example, if the effect 

size µE−µC

σ
=1 ,

 
then an experiment with a sample size of 8 in a group will have a 

power of .63 when alpha 5 .05 (see Table 6.1 and Figure 6.5). Thus, if the experiment 
were repeated a large number of times, over one third of these replications would not lead 
us to reject H0 even though mE and mC are one standard deviation apart (a rather large 
difference). If, however, the sample size is increased to 18 in a group, the power increases 
to .91, which means that less than 1 in 10 replications would not lead us to reject H0. 
In this case, the risk of making a type II error (not rejecting H0 when it is false) is at an 
acceptably small level.

On the other hand, too large a sample size can be wasteful of resources. For example, 
if the sample size above were increased from 18 per group to 25 (that is, 50 participants 
in all), the power would increase from .91 to .97, a gain in power that, while useful, 
might not be worth the added expense of the additional participants. In general, when 
the power of a test is around .9, adding more participants does little to increase it because 
there is so little room for further increase.

Clearly, the choice of sample size is an important matter. Too small a sample can lead 
to a test that possesses little power and consequently will most likely not lead to rejection 
of H0 even when it is false (type II error). This situation is most apt to occur when the 

difference between mE and mC is small (see Figures 5.5 and 5.6 where 
µE−µC

σ
 is a small 

number). Too large a sample size, on the other hand, creates a different problem. Note 

that in Figure 6.5, where µE−µC

σ
 is a large number, the power is very high and almost 

the same for a wide range of sample sizes. Thus, the smaller sample sizes lead to tests as 
powerful as the larger ones.

The major problem with using power functions to aid in the determination of sample 
size for an experiment is that one needs to have some estimate of the size of the difference 
between the population means. Because this unknown value is what the experimenter 
is attempting to find, power functions can only be useful if some thought is given to 
how small a difference one wants to look for. For example, would a difference of 0.1 

standard deviation 
µE−µC

σ
= 0.1

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟  be worth looking for? If so, it would be possible 

to choose a sample size large enough to have a test with power 5 .9 when that is the 
difference between mE and mC. In this situation, one would need 1,717 participants in a  
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Part III   ■   The Basics of Statistical  Inference168 

group. (As an exercise, you should try to verify this value.) Whether such a difference is 
worth looking for can only be decided in the context of a particular research area. Such 
a choice is not a statistical decision. The statistical model merely tells us what sample size 
to use to obtain a test with a certain power when the actual difference between µE and 
µC is of a particular magnitude. After we decide how large a difference between µE and 
µC to look for, the power function can be consulted to determine the smallest sample 
size necessary to achieve a test of a certain power. Fortunately, there are power functions 
available for all of the test statistics used in the social sciences that researchers can consult.

p-VALUES, , AND ALPHA (TYPE I) ERRORS: 
WHAT THEY DO AND DO NOT MEAN

The p-value, , and a type I ( error) are not the same thing. Unfortunately, many 
people inappropriately use these terms interchangeably. The problem is that the p-value 
was introduced by R. A. Fisher in his hypothesis-testing paradigm. Alpha and alpha 
error were introduced by Jerzy Neyman and Egon Pearson to test statistical hypotheses. 
Although we use concepts from both models, it is important for us to understand where 
they come from and what they mean and do not mean.

The model for testing statistical hypotheses presented here is a combination of two 
competing and perhaps contradictory paradigms, one by R. A. Fisher (1925, 1935) 
and the other by Jerzy Neyman and Egon Pearson (1928a, 1928b). Fisher’s paradigm 
is called significance testing, and Neyman and Pearson’s paradigm is called hypothesis 
testing. The concepts of significance, null hypothesis, and p-values come from Fisher, 
and the concepts of alternative hypotheses,  and  errors, and power come from 
Neyman and Pearson.

With Fisher’s significance-testing paradigm, we propose a null hypothesis that the 
sample comes from a specific infinite population, and the p-value is a measure of how 
unlikely it is that our data came from that population. Fisher adopted p , .05 as his 
criterion for an unlikely event when the null hypothesis is true. He called his paradigm 
a significance test and argued that, although obtaining a result where p , .05 could 
mean we have observed an unlikely event, such rare events can be taken as evidence that 
the null hypothesis is false. For Fisher, the smaller the observed p-value, the stronger the 
evidence against the null hypothesis. Fisher said nothing about alternative hypotheses, 
, , or power.

On the other hand, with Neyman and Pearson’s hypothesis-testing paradigm, 
we set up two competing hypotheses, the null hypothesis (H0) and the alternative 
hypothesis (H1), and test H0 against H1. These researchers introduced the probabilities 
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Chapter 6   ■   General Principles of Hypothesis Testing 169 

of committing two types of errors: type I or alpha errors (rejecting true null hypotheses) 
and type II or beta errors (retaining false null hypotheses). Rather than conceptualizing 
an experiment as sampling from an infinite population, they built their paradigm on 
repeated random sampling from a population. Therefore,  is the probability of getting 
results that fall in the critical region when H0 is true if we repeat the same experiment 
a large number of times. The same is the case for  with respect to getting results 
that do not fall in the critical region when the H0 is false. Neyman and Pearson also 
introduced the concept of the power of the test, or the probability of rejecting a false 
null hypothesis. Because the power of a test depends of a number of factors, such 
as sample size and effect size, they argued that we can improve our experiments by 
considering what the power of our test might be to detect a particular effect size in the 
population.

Because the concepts we use to describe statistical hypothesis testing come from these 
two competing paradigms, there is a lot of confusion about the proper understanding 
of p-values, , , and power (Hubbard, 2004; Hubbard & Bayarri, 2003; Huberty, 
1993).

Differentiating p-Values From  Levels

With the Neyman–Pearson paradigm, we select an -level (the probability of getting 
results in the critical region and rejecting H0) prior to conducting the experiment. 
Therefore,  is a fixed value. On the other hand, the p-value is not fixed; instead, it is 
a value that varies depending on our data. It is the probability of getting the value of 
our test statistic (or one more extreme), assuming the null hypothesis is true. As noted 
in this chapter, when the null hypothesis is false, we can make the p-value as small as 
we want by increasing the sample size. The p-value is not the probability of making, 
or having made, a type I error. We connect these two concepts by saying that we will 
reject the null hypothesis when the p-value is less than  (the value we selected to 
define the critical region), a statement that neither Fisher nor Neyman and Pearson 
would have made.

Can we calculate the probability that we might make a type I or  error? The 
answer to this question is no! What we can determine is the probability that we might make a 
type I or  error when the null hypothesis is true. That probability is , the probability of 
getting a result in the critical region when the null hypothesis is true (see Equation 6.5). 
Alpha is not the probability that a result in the critical region is a type I or  error. It is not 
the probability that we might make a type I or  error, because we can only make a type 
I or  error when the null hypothesis is true and our test statistic is in the critical region. 
As Pollard and Richardson (1987) noted, the probability that the null hypothesis is true 
and our test statistic is in the critical region equals the probability that the null hypothesis 
is true times the probability of getting a test statistic in the critical region when the null 
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hypothesis is true.6 Using the symbol H0 for the null hypothesis is true and D* for data in 
the critical region, Pollard and Richardson (1987) expressed this idea as follows:

 Pr(H0 and D*) 5 Pr(H0) × Pr(D*|H0) (6.12)

Pr(D*|H0) is , and Pr(H0) is an unknown value between 0 and 1 because we have no 
idea of how often the null hypothesis is true across all possible experiments that can be 
performed; therefore, the probability that we might make a type I or  error is less than 
, but we have no way of calculating that value.

Can we calculate the probability that we did make a type I or  error when 
we rejected the null hypothesis? The answer to this question is also no! As Pollard and 
Richardson (1987) noted, “When the null hypothesis is rejected, the probability of 
having made a Type I error is a probability about the null hypothesis because a Type I 
error has been made if and only if the null hypothesis is in fact true” (p. 160; emphasis 
added). This question is really about estimating the proportion of experiments in which 
the null hypothesis is true and the test statistic is in the critical region, that is, Pr(H0|D*). 
The formula for calculating a posterior (after-the-fact) probability is Bayes’ theorem:

  Pr µ0|D*( )=  
Pr D*|µ0( ) × Pr µ0( )

Pr D*( )
 (6.13)

It is clear from Equation 6.13 that to calculate the probability that the null hypothesis 
is true when our test statistic falls in the critical region, we need to know the probability 
that the null hypothesis is true (H0) and the probability of getting data that fall in the 
critical region in any experiment. Both of these values are unknown; therefore, there is 
no way to know after the fact whether our result that fell in the critical region occurred 
because the null hypothesis is false or because we made a type I or  error.

A WORD OF CAUTION ABOUT  
ATTEMPTING TO ESTIMATE THE  
POWER OF A HYPOTHESIS TEST  
AFTER THE DATA HAVE BEEN COLLECTED

Power is the probability of correctly rejecting the null hypothesis when that hypothesis 
is false. Because probability refers to future events, we use power functions to help us 

6 This logic is based on the addition law of probability: Pr(A and B) 5 Pr(A) × Pr(B|A).
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design our experiments so that when the null hypothesis is false, the probability that we 
will reject it will be high. Therefore, trying to calculate the power of a statistical test 
from the sample data gives us no more information than we already have.

The words of caution are simple: Do not do this! As noted above, the power of a hypothesis 
test is the probability of rejecting the null hypothesis when it is false. Although we cannot 
know the power of our test because we do not know the location of the distribution of our 
test statistic (the non-central distribution) when the null hypothesis is false, we do know 
the factors that affect the power of our test (the true difference between the population 
means; the sample size; the value for α we select; whether we are performing a one- or 
two-tailed test; and, in the case of hypothesis tests on population means, the population 
variance). We demonstrated that we can use power functions to select the sample sizes for 
an experiment when we are attempting to look for a given effect size (or one larger). We 
estimate the power of a hypothesis test before we perform the experiment, not afterward. See 
Lenth (2001) for some practical advice for selecting the appropriate sample sizes.

The issue of attempting to estimate the power of our statistical hypothesis test arises 
when the results of an experiment have been analyzed and the test statistic did not fall in the 
critical region. The failure to reject the null hypothesis could have been because of low power 
(due to a variety of factors noted above) even though there actually is an effect. On the other 
hand, if we could show that the power is indeed high, this information might be taken as 
evidence that the null hypothesis is true. A number of statistical software packages provide 
retrospective or post hoc (after-the-fact) power analyses based on the observed data. These 
analyses are based on the premise that the observed differences between sample means and 
the observed estimate of variance are perfect estimates of the parameters of the populations. 
However, as Hoenig and Heisey (1991) and Lenth (2007) observed, this type of analysis is 
doomed to failure. The reason is simple: The observed power (that is, the power calculated 
from the observed data) is a monotonic function of the p-value for that experiment; that 
is, the larger the p-value, the lower the observed power, and vice versa. Therefore, when p 
. .05, power will always be less than .5. In fact, .5 is the maximum value of the observed 
power when the null hypothesis is not rejected.

One possible use of a retrospective or post hoc power analysis is to try to determine 
what sample size we would need to reject the null hypothesis for the observed 
differences between sample means and the observed estimate of variance, assuming 
they are perfect estimates of the population effect size and variance, an assumption that 
is almost always false. While we could calculate how large a sample size we would need 
to find that effect size in a future experiment, it is not appropriate to use that information 
to add more participants to our sample. In fact, using the classical statistical model, it 
is never appropriate to keep collecting data until we have enough data to reject the null 
hypothesis!
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IS IT EVER APPROPRIATE TO USE  
A ONE-TAILED HYPOTHESIS TEST?

One-tailed tests are always more powerful than two-tailed tests when the difference 
between the sample means is in the predicted direction, but what will you do when 
there is a large difference in the opposite direction? Changing your theory and statistical 
hypothesis to accommodate that situation increases the probability of making a type 
I error. To discourage that practice, journal editors often advise authors to not use  
one-tailed tests. However, there are situations in which one-tailed tests are appropriate.

The answer to this question is “it depends.” One-tailed hypothesis tests are designed to 
test a directional hypothesis, for instance, that the mean of Group 1 is greater than the 
mean of Group 2. In such a situation, the null hypothesis would only be rejected if the 
mean for Group 1 were larger than the mean of Group 2 and large enough to result in the 
test statistic falling in the critical region. In this situation, the critical region would reside 
on only one side of the distribution such that, conventionally, 5% of the distribution on 
one side, but 0% of the distribution on the other side, would comprise the critical region. 
This circumstance would provide the most powerful test of the directional hypothesis, 
which was likely based on good theoretical foundations.

Such an outcome seems to be the optimal situation, with researchers being rewarded 
for their good theoretical foresight in predicting the direction of the mean difference 
with increased power to reject the null hypothesis in detecting it. However, researchers 
are often unsuccessful in their predictions (as researchers will begrudgingly admit). 
Sometimes the effect manifests differently than extant theory would suggest, such as 
when the mean of Group 1 is substantially less than the mean of Group 2 in our example 
above. Were the researchers using a one-tailed test, they would have no opportunity (that 
is, no power) to reject the null hypothesis in this case because there would be no critical 
region on that side of the distribution for their test statistic.

In thinking about their counterintuitive results, the researchers may, being bright 
and creative individuals, create a reasonable (nay, compelling!) explanation for why they 
would get results opposite to that which they predicted. Further, they may even convince 
themselves that they should have known that the results would turn out that way. 
Consequently, they may change their analytical approach to a two-tailed test in an effort 
to reject the null hypothesis, or they may even adopt a one-tailed test with a directional 
hypothesis opposite to their original directional hypothesis.

The problem with this hypothesizing after the results are known, or “HARKing” 
(Kerr, 1998), is that the probability of making a type I or alpha error has increased. 
The original one-tailed test in the wrong direction carried with it a 5% chance of 
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making a type I error if the null hypothesis were true. Following this one-tailed test 
with a two-tailed test raises that to a 7.5% chance of making a type I error if the null 
hypothesis were true (with the initial 5% critical region on one side of the distribution 
added to the subsequent 2.5% critical region on the other side of the distribution). 
Following the initial one-tailed test with a one-tailed test in the other direction 
similarly raises the probability of making a type I error if the null hypothesis were true 
to 10%. Given the severity of the consequences of making type I errors, it should be 
obvious that practices that may be exploited to increase these error rates are not things 
to be considered casually. And given the bias for the publication of significant effects 
and the “publish or perish” mentality that researchers too often face, the researchers 
may decide that the downsides of making type I errors are temporarily overshadowed 
by the short-term rewards of finding significant results.

For these reasons, it has become standard practice for many psychology journals 
to require authors to use two-tailed tests almost exclusively, thereby more explicitly 
controlling the probability of making type I errors when the null hypothesis is true. It is 
our opinion that one-tailed tests are valuable, particularly when an effect in the opposite 
direction is as meaningful as no effect (such as when a new therapy has either no effect or 
makes the clients’ situations worse—in either case, the therapy would be discontinued). 
However, researchers who intend to use them should be well prepared to justify why they 
were appropriate to use, and we recommend that researchers do so proactively.

WHAT SHOULD WE MEAN  
WHEN WE SAY OUR RESULTS  
ARE STATISTICALLY SIGNIFICANT?

When R. A. Fisher described the results of an experiment as significant, he meant that 
the result was unlikely to occur by chance if the tested hypothesis were true. That does 
not mean that the observed difference is important or of consequence. Furthermore, 
statistical significance is not the same as practical significance. What is the correct way 
to deal with situations in which our p-value is slightly larger than the criterion we 
adopted for judging the result of our experiment as unlikely?

We say our results are “statistically significant” when our test statistic falls in the critical 
region and we reject our null hypothesis in favor of our alternative hypothesis. What 
should we mean when we say our results are statistically significant?

It is unfortunate that Fisher used the term significance testing to describe his paradigm 
for statistical inference because in everyday discourse, significance and significant mean 
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something very different than they do in statistics. The dictionary definitions of these 
terms include the language “important” and “of consequence.” Such a definition is not 
what Fisher meant when he applied those terms to experiments. As noted above, Fisher used 
those terms to describe the situation in which the obtained p-value is below a certain level 
judged to be improbable when the null hypothesis is true, which is all significance means in 
the context of statistical inference and hypothesis testing. Unfortunately, we tend to drop 
the adjective statistically and just say a result is “significant,” adding to the confusion. 

Fisher went on to argue that the smaller the observed p-value, the stronger the 
evidence against the null hypothesis, and some people take that to mean that the smaller 
the p-value, the more significant the results are in terms of their importance. But as we 
have seen in this chapter, as long as the null hypothesis is false, the p-value can be made 
as small as we want by increasing the sample size. David Bakan (1966) made a persuasive 
argument that the null hypothesis is never true; that is, anything we do that treats the 
participants in our experiments differently will have some effect, even if that effect is 
small. Furthermore, in the Neyman and Pearson hypothesis-testing paradigm, we reject 
the null hypothesis whenever our test statistic falls in the critical region, but it does not 
matter where in that region the test statistic falls. Therefore, it is not correct to say that a 
result is “more significant” when the p-value is small or that a small p-value is a reflection 
of a large treatment effect.

Can a Result Be “Marginally Significant”?

As noted above, Fisher used the p-value as a measure of the strength of the evidence 
against the null hypothesis, and he proposed the use of p , .05 as the threshold beyond 
which the result of an experiment is considered to be unlikely when the null hypothesis is 
true. He would have treated p , .049 and p , .051 as similar results. On the other hand, 
Neyman and Pearson set the value of  5 .05 to differentiate those results in the critical 
region that lead us to reject the null hypothesis from those that do not. Clearly, the 
decision to adopt Fisher’s p , .05 as the threshold is arbitrary. As Rosnow and Rosenthal 
(1989) commented, “Surely, God loves the .06 nearly as much as the .05.” So what does 
it mean, and what should we do, when the p-value in our experiment is slightly greater 
than .05? Such results are sometimes referred to as marginally significant, approaching 
significance, nearly significant, or trending. It has become more common over the past 40 
years for psychologists to use these terms to describe those situations (Pritschet, Powell, 
& Horne, 2016).

One argument for using such terms is to convey to the reader that the researcher is 
not confident that the null hypothesis is false but still thinks there is something worth 
reporting, and by using terms like marginally significant, the researcher can highlight 
findings that do not fall in the region of rejection so that the reader can decide how 
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to interpret those findings. Researchers who use these terms need to be careful about 
how they characterize these findings, because, despite the arbitrary nature of the .05 
threshold, these findings do not result in rejection of the null hypothesis, and researchers 
should not make strong conclusions as if they did.

Statistical Significance Versus Practical Significance

Statistical significance is not the same as practical significance, or importance. The 
importance of the results of an experiment depends on the context and other nonstatistical 
aspects of an experiment, even when the treatment effects are small (Prentice & Miller, 
1992). In Chapter 7, we will look at how to estimate the effect size, and in Chapter 13 
we will look at another way to estimate the effect size. In both cases, the measure of 
effect size is not affected by the sample size. It has long been the recommendation of the 
American Psychological Association, and it is being required by more and more journals, 
that researchers accompany their significance tests with effect sizes when reporting the 
results of their studies. But even then, researchers should be careful not to overstate the 
implications of their “significant” findings and the effect sizes they compute.

What Should We Do (or Not Do) When  
Our Data Do Not Allow Us to Reject the Null Hypothesis? 

This situation happens to all of us. We carefully consider how many participants to use 
when we design our experiment to find an effect size of at least a certain magnitude, and 
we conduct our study carefully. But our obtained results are not in the critical region, 
and therefore we cannot reject our statistical null hypothesis. Where do we go from here? 

When we have not rejected our null hypothesis, we have not provided evidence that 
the null hypothesis is true. As we have discussed earlier, when our null hypothesis is false, 
our statistical test result is not always in the critical region. That is, we may have made a 
type II (or beta) error. 

There are a number of perspectives to consider in determining what this finding 
allows us to conclude. Bakan (1966) argued that the null hypothesis is never true because 
it is hard to conceive of a situation in which different treatments will have exactly the same 
effects on behavior. And logically it makes sense that a firm stance on any prediction that 
a predetermined exact value is true is unlikely to be verified by our findings. Therefore, it 
should be obvious that non-rejection of a null hypothesis, which does not allow us to say 
that predetermined exact value is true, is not evidence that the null hypothesis is true. We 
can only conclude that we do not have sufficient evidence to demonstrate that it is false.

In Fisher’s (1925, 1928) significance-testing model, obtaining a result with a p , .05 
can be taken as evidence that the null hypothesis is false, but obtaining a result with 
p . .05 cannot be taken as evidence that the null hypothesis is true. In this model, a   
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non-significant result could be due to a number of possibilities, from the null hypothesis 
being true to the treatment effect being small. Under these circumstances, we cannot 
draw a firm conclusion about the null hypothesis. At best, we can say the results of our 
experiment are inconclusive.

On the other hand, Neyman and Pearson (1928a, 1928b) viewed the situation as a 
test between two competing hypotheses, H0 and H1. According to their perspective, we 
can reject the null hypothesis and accept the alternative when our test statistic is in the 
critical region. On the other hand, we “accept” the null hypothesis when the data are 
not in the critical region. However, according to them, “accepting” the null hypothesis 
does not mean that we are concluding that the null hypothesis is true. Their position is 
that we should “act” as if the null hypothesis is true until we get more data to indicate 
otherwise.

Bakan (1966) provided a justification for Neyman and Pearson’s approach to non-
rejection of the null hypothesis by distinguishing between “sharp” and “loose” null 
hypotheses. A sharp null hypothesis is that there is absolutely no difference between 
the population parameters; as he noted, this situation rarely, if ever, occurs. A loose null 
hypothesis is a range of values around a sharp null hypothesis such that any difference in 
the interval is too small for us to conclude that the null hypothesis is false. By adopting 
this approach, we do not accept the sharp null hypothesis; rather we say that the difference 
is too small to be meaningful for us. 

In summary, when our research yields findings that do not fall in the critical region, we 
fail to reject the null hypothesis. Therefore, we “retain” it, but we do not officially “accept” 
it. Failing to find an effect is not the same as verifying that the effect does not exist. Indeed, 
absence of evidence is not evidence of absence. We recommend that researchers who have 
strong theoretical reasons to predict an effect, but do not find it in their studies, consider 
conducting their studies again with stronger manipulations, more reliable measures, and 
generally greater power. If the effect is out there and is strong enough to warrant interest 
(that is, it has a nontrivial effect size), you will likely find it. On the other hand, if your 
data from multiple well-designed studies fail to allow you to reject the null hypothesis, 
then the effect may be too small to be of value, or, possibly, the null hypothesis may be 
true—whether or not you can technically conclude that is the case.

A FINAL WORD
Although the principles described in this chapter were developed for the two-sample 
z-test for population means when the population variance is known, they apply to all 
statistical hypothesis tests using the classical statistical model. The two-sample z-test was 
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Summary

Starting with our research question, we generate a set 

of mutually exclusive and exhaustive experimental 

hypotheses stated in terms of the independent and 

dependent variables in our research study. With 

the classical statistical model, we create a parallel 

set of statistical hypotheses stated in terms of the 

unknown parameters of the populations from 

which our random samples are obtained. We obtain 

estimates of these unknown parameters from our 

samples. (See the summary flowchart in Figure 6.7.)

In a two-group experiment in which the 

statistical hypotheses are about the difference 

between the means of the populations (µE 2 µC), 

the data of interest are XE −XC . Assuming that 

the populations are normal distributions with 

known variances, the distribution of XE −XC

is a normal distribution. To find the probability 

of obtaining our observed value of XE −XC , we 

apply the z-score transformation. Then, we create 

our test statistic by assuming the hypothesis we can 

test (the null hypothesis) is true. When our null 

hypothesis is true, our test statistic has a normal 

distribution with µz 5 0 and σz
2 =1, and we can 

create a critical region (based on our definition of 

an improbable event) such that, if the value of our 

test statistic fell in this region, we would reject our 

null hypothesis. The procedure for creating our 

test statistic and performing our statistical test is 

summarized in the flowchart in Figure 6.7.

When our null hypothesis is false, our test 

statistic is a non-central normal distribution 

(symbolized as z*) with µz* fi 0 and σz*
2 5 1. The 

value of µz* is a function of the actual value of µE 2 

µC, the variances of the populations, and the sample 

sizes. The greater the value of µz*, the greater the 

power of our test (probability of rejecting a false null 

hypothesis). We can use power functions to help 

us decide how large a sample size to use to obtain a 

high level of power.

When our null hypothesis is true, a result 

falling in the critical region will lead us to make a 

type I error or α error (we reject the null hypothesis 

when it is true). On the other hand, when our 

null hypothesis is false, a result falling outside the 

critical region will lead us to make a type II error or 

β error (we do not reject the null hypothesis when 

it is false). The convention is to use α 5 .05 as our 

definition of an improbable event when the null 

hypothesis is true. We do not know the probability 

of making a β error, but because power 5 1 2 β, 

those factors that increase the power also decrease 

the probability of making a β error.

The method for hypothesis testing described in 

this chapter is a hybrid of models described by R. A. 

Fisher and by J. Neyman and E. S. Pearson. Because 

these two models are in some ways incompatible, 

we need to be careful about how we use concepts 

like p-value, α, and α error.

chosen to illustrate those basic principles in a direct way. In subsequent chapters, we will 
apply these principles to other test statistics. Therefore, it is important that we master 
these basic principles before moving forward.

In the next chapter, we will use Student’s t to analyze the results from Barlett’s 
(2015) two-group experiment described in Chapter 1. As we will see, the shape of the 
t-distribution is affected by the sample size, and the shape and location of the non-central 
t-distribution is affected by the sample size and the effect size. Nevertheless, the basic 
principles described here apply.

Copyright ©2018 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Part III   ■   The Basics of Statistical  Inference178 
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FIGURE 6.7 ■ Summary flowchart
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Conceptual Exercises

1. Your test statistic is in the critical region, and 

you reject the null hypothesis. What is the 

probability that you made a type I or α error? 

Why? 

2.  Comment on the appropriateness of the 

following statement: 

 My test statistic is not in the critical region, 

but the observed power of my test is high; 

therefore, the data indicate that I should accept 

the null hypothesis.

3. Fisher argued that the smaller the p-value, the 

stronger the evidence against the null hypothesis. 

That is, p , .001 indicates stronger evidence 

against the null hypothesis than p , .01. Does it 

follow that p , .001 indicates a larger treatment 

effect than p , .01? Why or why not?

4.  Are you more likely to make an alpha (or type 

I) error with a large sample size or with a small 

sample size? Why or why not?

5. What are the effects of increasing sample 

size on:

a.  the probability of making a type I 

(or alpha) error? 

b. the probability of making a type II (or beta) 

error? 

 Why in each case?

6.  What does p , .05 tell us about the null 

hypothesis? About the alternative hypotheses? 

7.  Comment on the following statements and 

explain what, if anything, is wrong:

a. We will make a type I error a small 

proportion of the time—the exact proportion 

being specified by our alpha level.

b. Although I did not reject the null 

hypothesis, the power of my test 

indicates that I would have rejected the 

null hypothesis if I had enrolled 5 more 

participants in each group.

c. If the sample sizes are equal, then a p-value 

of .001 represents a larger treatment effect 

than does a p-value of .05.

8. In general terms, how does one construct a 

power function for a statistical test? (Hint: 

Define the power of a test. What part of what 

distribution contains the power? How is this 

fact then translated into a power function?) 

9. Why does a test statistic for which p , . 001 

not necessarily represent a large treatment 

effect? 

10. Although we usually expect to collect data 

to support a research hypothesis that more 

closely matches the alternative hypothesis, 

the hypothesis we actually test is the null 

hypothesis. What are the two reasons for why 

we do so?

11. Respond to the following statement: 

I am not convinced that there really is a 

difference here because the sample size is so 

small. We all know that with small sample 

sizes, there is a lot of variability in the 

sample means; the central limit theorem 

tells us that! Therefore, I am not convinced 

that the significant result is real. If the 

experimenter had used a larger sample size 

and gotten a significant result, then I would 

believe that there is something there.

 In your response, be sure to respond to the 

assertions about the sample size and the 

variability of the sample means, as well as 

the other parts of the statement. What false 

assumptions is the author making, and why are 

they false? What is the correct state of affairs? 

How should we interpret the significance of an 

experimental result?
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Student Study Site

Visit the Student Study Site at https://study.sagepub.com/friemanstats for a variety of useful tools 

including data sets, additional exercises, and web resources.
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