
CHAPTER

11
Hypothesis Testing with  
Chi-Square

CHAPTER OBJECTIVES

After reading this chapter, you should be able to

 • Understand the process of hypothesis testing
 • Define and apply the concept of “statistical significance”
 • Test relationships among categorical variables
 • Evaluate chi-square test assumptions
 • Discuss how sample size affects statistical significance
 • Consider tests involving control variables

Descriptive analysis goes only so far. An important task of statistics is to 
provide statistical evidence for determining whether relationships exist. This 
is essential to public policy, for example, establishing whether a program or 
policy had any impact, such as whether an anger management program affected 
classroom violence. It is also essential to science, establishing whether or not two 
variables are related. This chapter discusses general procedures for testing whether 
a relationship exists. This is also called hypothesis testing. Different statistical 
tests for hypothesis testing are used for different measurement levels of variables 
involved in relationships. This chapter, using chi-square, shows how to test for 
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178 Essential Statistics for Public Managers and Policy Analysts

relationships between two categorical variables, but the process as described 
here is valid for other measurement levels, too. Only after the existence of any 
relationships has been established does it make sense to analyze them further.

WHAT IS CHI-SQUARE?

Chi-square (pronounced “ky-square”) is a quantitative measure used to 
determine whether a relationship exists between two categorical variables. The 
Greek notation for chi-square is χ2, which can be used interchangeably with its 
Latin alphabet spelling, chi-square. Many statistics quantify the relationship 
between variables in some way. We continue here with the example from Chapter 
8 to illustrate the process of calculating chi-square and determining whether a 
relationship exists, but you are also encouraged to identify categorical variables 
in your field of interest.

In Chapter 8 we examined the relationship between two categorical 
variables, namely, gender and the year of promotion for a sample of employees. 
Managers are concerned that employees are promoted at unequal rates based 
on gender, raising the possibility of gender discrimination in the workplace. The 
data are shown again, in Table 11.1. We want to establish whether a relationship 
exists between gender and year of promotion. Table 11.1 shows both frequency 
counts and column percentages (in parentheses).

Chi-square provides a quantitative measure of the relationship between two 
categorical variables, first, by determining what the distribution of observations 

Table 11.1  Year of Promotion by Gender: Frequencies 
and Percentages (frequency counts in 
parentheses)

Gender

Year Male Female Total

1  32.6%  15.4%  23.2%
(14) (8) (22)

2 37.2 26.9 31.6
(16) (14) (30)

3 16.2 42.3 30.5
(7) (22) (29)

4 14.0 15.4 14.7
(6) (8) (14)

Total 100.0 100.0 100.0
(43) (52) (95)
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Hypothesis Testing with Chi-Square  179

(frequencies) would look like if no relationship existed and, second, by 
quantifying the extent to which the observed distribution (such as in Table 11.1) 
differs from that determined in the first step. This section explains the calculation 
of chi-square, which is used in the next section for hypothesis testing (that is, 
determining whether a relationship exists).

What would the relationship in Table 11.1 look like if no relationship existed 
between gender and year of promotion? When no relationship exists between 
gender and the year of promotion, then men and women, by definition, do not 
differ in promotion rates. The column percentages in Table 11.1 will then be 
identical for men and women; they will not differ from the aggregate sample of 
all men and women. This distribution is shown in the “Total” column. When 
no relationship exists between men and women, both men and women will 
be promoted at those rates. Hence, 23.2 percent of both men and women will 
be promoted in their first year, 31.6 percent will be promoted in their second 
year, 30.5 percent will be promoted in their third year, and 14.7 percent will be 
promoted in their fourth year.

The frequencies associated with these rates when no relationship exists are 
called expected frequencies. Table 11.2 shows these expected frequencies. For 
example, when no difference in promotion rates exists between men and women, 
30.5 percent of 43 men, or 13.1 men, would have been promoted in their third 
year. Similarly, 30.5 percent of 52 women, or 15.9 women, would have been 
promoted in their third year. The other expected frequencies are calculated in 
similar fashion in Table 11.2.

Clearly, when the data indicate that no relationship exists between these 
variables, the values of observed and expected frequencies must be identical. 
Also, the greater the relationship, the greater the difference between the observed 
and expected frequencies. The chi-square statistic (χ2) measures the difference 

Table 11.2  Year of Promotion by Gender: Expected 
Frequencies

A: Percentages B: Counts

Gender Gender

Year Male Female Total Male Female

1
2
3
4
Total
(n =)

 23.2%
31.6
30.5
14.7

100.0
(43)

 23.2%
31.6
30.5
14.7

100.0
(52)

 23.2%
31.6
30.5
14.7

100.0
(95)

(23.2/100)*43 = 10.0
(31.6/100)*43 = 13.6
(30.5/100)*43 = 13.1
(14.7/100)*43 = 6.3

43.0

(23.2/100)*52 = 12.1
(31.6/100)*52 = 16.4
(30.5/100)*52 = 15.9
(14.7/100)*52 = 7.6

52.0
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180 Essential Statistics for Public Managers and Policy Analysts

between the expected and observed frequencies and is thus a quantitative 
measure of this relationship. Chi-square is defined in the following manner:

Σ −
i

i i

i

O E
E

( )2

where Oi is the observed frequency in a cell and Ei is the expected frequency 
in a cell. As is readily seen, when Ei = Oi, the chi-square value for that cell is 
zero. Using the frequencies shown in Tables 11.1 and 11.2 (part B), we find that 
the chi-square value of the first cell is [(14 – 10)2/10 = 42/10 = 16/10 =] 1.60. 
Calculating chi-square for all of the cells yields 8.97, as shown in Table 11.3. Of 
course, the value of chi-square is usually calculated by computer.1 (It should be 
noted that additional examples of chi-square calculations can be found online, 
e.g., at Khan Academy.2)

In short, when no relationship exists between 
the variables, chi-square equals zero. The greater the 
relationship, the greater the value of chi-square. Finally, 
note also that chi-square is always positive and that 
it provides no information about the direction of the 
relationship.3

HYPOTHESIS TESTING

We now use chi-square to determine whether a relationship exists between 
gender and promotion. This is called hypothesis testing. In our example, the 
hypothesis is that a relationship exists between gender and the rate of promotion; 
a hypothesis is a tentative statement about some relationship or condition that is 
subject to subsequent verification. The purpose of hypothesis testing is, simply, 
to determine whether a relationship exists. Specifically, we ask, “What is the 
probability that the above distribution of promotion rates among 95 men and 
women is consistent with a distribution in which men and women are promoted 
at equal rates?” That is, is a chi-square value of 8.97 sufficiently large to conclude 
that men are promoted at a faster rate than women?4 A key task in statistics is to 
determine how large any measure of a relationship must be in order to say that it 
is “statistically significant.” This part of hypothesis testing involves

 • The null hypothesis
 • The concept of statistical significance
 • Critical values
 • Steps to determine statistical significance

These issues are relevant to all statistical tests, such as chi-square tests, 
t-tests, and others discussed in this book.

Key Point

Chi-square is a 
quantitative measure of a 
relationship between two 
categorical variables.
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Hypothesis Testing with Chi-Square  181

The Null Hypothesis
Since statistics is a careful and cautious discipline, we presume that no 
relationship between variables exists and that any relationship that is found may 
have been obtained purely by chance. The null hypothesis states that any observed 
pattern is due solely to chance and that, hence, no relationship exists. Thus, the 
null hypothesis (that is, that no relationship exists) is assumed, and an objective 
of statistical testing is to examine whether the null hypothesis can be rejected. 
This idea is similar to the court of justice in which individuals are presumed 
innocent until proven guilty beyond a reasonable doubt. In our example, we 
presume that no relationship exists between gender and the rate of promotion.

In statistics the specific concern is that we may find a relationship in our 
sample when in fact none exists in the population. This may occur because of a 
fluke in our random sample. We endeavor to disprove this possibility. Another 
way of looking at this issue is that if we assume that a relationship does exist, 
we might be guilty of not trying hard enough to prove that it doesn’t exist. By 
assuming that a relationship doesn’t exist, we need only satisfy the standard of 
“reasonable evidence” in order to claim that it does exist. That standard is that 
it should be very unlikely to find a relationship among variables (that is, a test-
statistic value such as chi-square) of a certain (large) magnitude when in fact no 
relationship exists in the population.

The null hypothesis is stated as follows:

H0: No relationship exists between gender and the rate of promotion.

The alternate hypothesis is stated as follows:

HA: A relationship exists between gender and the rate of promotion.

Table 11.3  Year of Promotion by Gender: Expected 
Frequencies

Gender

Male Female Total

Year Obs. Exp. x2 Obs. Exp. x2 x2

1
2
3
4
Total

14
16
 7
 6
43

10.0
13.6
13.1
 6.3
43.0

1.60
0.42
2.84
0.01
4.87

8
14
22
 8
52

12.1
16.4
15.9
 7.6
52.0

1.39
0.35
2.34
0.02
4.10

2.99
0.77
5.18
0.03
8.97

Note: Obs. = observed frequency; exp. = expected frequency.
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182 Essential Statistics for Public Managers and Policy Analysts

H0 is the null hypothesis, and HA is called the alternate hypothesis. H0 is 
also sometimes called the straw man because we endeavor to “strike it down” or 
disprove it. The alternate hypothesis is the logical opposite of the null hypothesis; 
all possibilities must be accounted for between the null hypothesis and the 
alternate hypothesis.

In most instances, the null hypothesis is that no relationship exists between 
two variables, and the alternate hypothesis is that a relationship does exist 
between two variables. However, if the researcher has a priori information that 
a relationship can exist only in one direction (for example, that men can be 
promoted faster than women but that women cannot be promoted faster than 
men), then it is appropriate to state the null hypothesis as “men are not promoted 
faster than women” and the alternate hypothesis as “men are promoted faster 
than women.” However, because, as is often the case, we cannot a priori rule out 
the direction of the relationship (it could be that women are promoted faster 
than men), we use the customary approach indicating that no relationship exists. 
If a relationship exists, we later can determine its direction.

Many scholars prefer to state these hypotheses as follows:

H0:  No relationship exists between gender and the rate of promotion in 
the population.

HA:  A relationship exists between gender and the rate of promotion in 
the population.

This usage clearly indicates that we are using sample data to draw inferences 
about relationships in the population. Indeed, we are not interested in our sample 
per se. Who cares about the preferences of, say, 500 citizens? We care about them 
only to the extent that their opinions represent those of the entire population. In 
the end, we want to know how the population, not merely a sample of it, thinks 
about something. We use a sample to infer conclusions about the population. To 
distinguish conclusions about the sample from those of the population, we use 
Greek letters to refer to the population. Then, the hypotheses are also written as 
follows:

H0: µm = µf

HA: µm ≠ µf

where  µ is the rate of promotion in the population, and the m and f subscripts 
stand for “male” and “female,” respectively. When we work with sample data, the 
purpose of hypothesis testing is to test the significance of the relationship in the 
population.
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Hypothesis Testing with Chi-Square  183

Statistical Significance
The phrase statistically significant often carries considerable weight in public 
discourse. To say that something is statistically significant is tantamount to 
throwing the weight of science behind a statement or fact. But what exactly does 
the phrase mean? Statistical significance simply refers to the probability of being 
wrong about stating that a relationship exists when in fact it doesn’t. The phrase 
level of statistical significance refers to the level of that probability—in other 
words, how often we would be wrong to conclude that a relationship exists when 
in fact none exists, or how often we would incorrectly reject the null hypothesis 
when in fact it is true. One reason we might wrongly reject the null hypothesis is 
that our data are a random sample; had we drawn a different sample, we might 
have concluded otherwise.

The statistical standard for significance is 5 percent in the social sciences; 
we are willing to tolerate a 1-in-20 chance of being wrong in stating that a 
relationship exists (that is, concluding that the null hypothesis should be rejected 
when in fact it shouldn’t). Many researchers also consider a 1-in-100 (1 percent) 
probability of being wrong as an acceptable standard of significance. The latter is 
a stricter standard. We are less likely to be wrong stating that a relationship exists 
(when in fact it doesn’t exist) when it is significant at the 1 percent level than 
when it is significant at only the 5 percent level.

We could set the bar even higher—for example, by choosing a level of 
significance of one-tenth of 1 percent—but doing so may cause us to conclude 
that no relationship exists when in fact one does. A standard of less than 1 
percent is thus thought to be too risk averse. Why not settle for a 10 percent 
level of significance? If we did so, we would be accepting a 10 percent chance of 
wrongfully concluding that a relationship exists when in fact none does. Usually, 
that is thought to be too risky.5

By convention, 5 percent is usually thought to be the uppermost limit 
of risk that we accept. Thus, relationships that are significant at more than 5 
percent (say, 6 percent) are said to be not significant. Only relationships that 
are significant at 5 percent or less are considered significant, and relationships 
that are significant at 1 percent or less are said to be highly significant. Another 
convention is that most relationships are reported as being significant only at the 
1 percent or the 5 percent level. Thus, a relationship that is statistically significant 
at the 3 percent level is reported as being significant at the 5 percent level but not 
at the 1 percent level. A relationship that is significant at one-tenth of 1 percent is 
reported as being significant at the 1 percent level.

Finally, the phrase level of significance should not be confused with the term 
confidence level. The confidence level refers to the probability that an unknown 
population parameter falls within a range of values calculated from the sample, 
as discussed in Chapter 10. Sometimes the phrase level of confidence is taken as 
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184 Essential Statistics for Public Managers and Policy Analysts

being synonymous with 100 percent minus the level 
of statistical significance; for example, a 5 percent 
level of significance is said to be the same as a 95 
percent confidence level. However, the phrase level of 
significance should be used in connection with matters 
of hypothesis testing.

The Five Steps of Hypothesis Testing
Recall the question asked earlier: How large should chi-
square be so that we can conclude that a statistically 
significant relationship exists between gender and year 

of promotion or, in other words, so that we can reject the null hypothesis and 
accept the alternate hypothesis? All statistical tests follow the same five steps of 
hypothesis testing:

1. State the null hypothesis (in Greek letters).
2. Choose a statistical test.
3. Calculate the test statistic (t.s.) and evaluate test assumptions.
4. Look up the critical value (c.v.) of the test.
5. Draw a conclusion:

If |t.s.| < c.v., do not reject the null hypothesis.
If |t.s.| ≥ c.v., reject the null hypothesis.

We already discussed the first item and mentioned the second item in 
the introduction to Section III. Readers also may wish to consult the Statistics 
Roadmap at the beginning of this book for more detailed guidance on selecting 
test statistics. We have seen how to calculate the chi-square test statistic. Most 
statistical tests make assumptions about variables; we will soon address those of 
the chi-square test statistic. Now we discuss critical values. The critical value is 
the minimum value that a test statistic must be in order to rule out chance as the 
cause of a relationship. Technically, the critical value is the value above which the 
test statistic is sufficiently large to reject the null hypothesis at a user-specified 
level of significance.

The following discussion is provided to enhance conceptual understanding 
because, again, computers do most of the work. The critical value of any test 
statistic is determined by two parameters: (1) the desired level of statistical 
significance and (2) the number of degrees of freedom (df). As stated earlier, 
by convention, analysts are interested in rejecting the null hypothesis at the 
1 percent and 5 percent levels. The degrees of freedom address the practical, 
statistical problem that the magnitude of most test statistics is affected by the 
number of observations or categories. For example, the formula for calculating 
the chi-square test statistic requires us to calculate a value for each cell and then 

Key Point

The null hypothesis 
states that no 
relationship exists. The 
critical value is the 
minimum value that 
a test statistic must 
be to reject the null 
hypothesis.
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Hypothesis Testing with Chi-Square  185

add them all up. All things being equal, the larger the number of cells, the larger 
the value of this test statistic. The degrees of freedom statistic controls for this 
problem.6 (This also means that it is generally meaningless to compare the values 
of different chi-square test statistics based on tables of unequal sizes and, as we 
will soon see, unequal numbers of observations.)

Each type of statistical test has its own way of calculating degrees of 
freedom. The degrees of freedom for any chi-square test are defined by the 
formula (c – 1)*(r – 1), where c is the number of columns in a contingency table 
and r is the number of rows. In Table 11.1, df = (2 – 1)*(4 – 1) = 3. If our table 
had six rows and four columns, the number of degrees of freedom would be  
[(6 – 1)*(4 – 1) =] 15, and so on.

To determine the critical value of our test, we turn to a table of chi-square 
critical values (see Appendix B). The table shows the levels of significance in 
columns and the degrees of freedom in rows. Assume that we wish to test whether 
our previously calculated χ2 test statistic (8.97) is statistically significant at the 5 
percent level. The critical value at this level of significance and three degrees of 
freedom is shown to be 7.815. Thus, applying the very last step in the method for 
testing hypotheses, we evaluate the absolute value of 8.97 as indeed larger than 
the critical value. The absolute value is stated in step 5 because some test statistics, 
but not χ2, can have negative values, and because the critical value is always 
positive. So we conclude that a relationship exists between gender and the rate of 
promotion at the 5 percent level of significance. Alternatively, we can write that a 
statistically significant relationship exists between gender and the rate of promotion 
(χ2 = 8.97, p < .05). This important language is found in most analyses.

But is this relationship also significant at the 1 percent level? The critical 
value of this chi-square test at the 1 percent level and three degrees of freedom is 
11.341. We evaluate that the absolute value of 8.97 is less than the critical value 
at this level of significance, and so we conclude that the relationship between 
gender and years of promotion is significant at the 5 percent level but not at 
the 1 percent level. We should always identify the highest level of significance, 
which in this instance is the 5 percent level. But if the test statistics had also 
been greater than the critical value at the 1 percent level, then the 1 percent level 
would be concluded.7

Note some features of the table of chi-square critical values in Appendix 
B. First, at any given level of significance, the value of the chi-square critical 
values increases as the degrees of freedom increase. This is consistent with the 
problem mentioned earlier: contingency tables with more rows and columns 
will have larger test statistics simply as a result of having more cells. The degrees 
of freedom “compensate” for this fact. Second, at any given number of degrees 
of freedom, the value of the chi-square critical values increases as the level 
of significance decreases. This, too, makes sense because a 1 percent level of 
significance will have a higher threshold than a 5 percent level.
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186 Essential Statistics for Public Managers and Policy Analysts

Statistical software programs calculate test statistics and report the level of 
statistical significance at which the test statistic is significant. For example, software 
output might have shown “p = .029,” which indicates that the test statistic is 
statistically significant at the 5 percent level but not at the 1 percent level. The 
probability “p = .000” means that the relationship is highly significant, at better 
than the 1 percent level. The probability “p = .1233” or “p = .9899” indicates that 
the relationship is not significant. Software programs do not ordinarily report 
critical values at the 1 percent and 5 percent levels; rather, they show the level of 
significance at which test statistics are significant. Looking up critical values is a 
valuable exercise that increases conceptual understanding but one that you will 
need to do only sporadically.

Here is another example that you can follow to gain additional practice 
with hypothesis testing. Table 11.4 shows data related to the effectiveness of 
training for 20 qualified unemployed individuals. The second column (“Training 
participation”) indicates the individuals’ participation status, and the third 
column captures data regarding employment 2 years after the training session. 
You are asked to conduct a chi-square test to examine the relationship between 
training participation and employment status. What is your null hypothesis?

The null hypothesis is that there is no relationship between training 
participation and employment status. The alternate hypothesis is that training 
participation is related to employment. The calculation of chi-square is shown in 
Table 11.5.

The value of χ2 is 5.05. This example has [(2 – 1)* 
(2 – 1) =] 1 degree of freedom. The critical value at 
the 0.05 level is 3.841 (see Appendix B). Because χ2 (= 
5.05) is larger than the critical value, we reject the null 
hypothesis and conclude that training participation is 
related to employee status at the 5 percent level.

Chi-Square Test Assumptions
Nearly all test statistics make assumptions about the 
variables that are used. Assessing test assumptions is 
a critical task in statistical testing, because violations 
of test assumptions invalidate test results. Analysts 
need to be familiar with the assumptions of different 
tests and of ways for addressing violations of test 

assumptions when they occur. There are three chi-square test assumptions. 
First, the variables must be categorical, which applies to our variables. Second, 
the observations are independent, as ours are. Independent samples are those 
in which each observation is independent of other observations in the sample. 
The concept of dependent samples is discussed more fully in Chapter 12 and 
typically involves experimental situations such as before-and-after measurement. 

Getting Started

Replicate these results 
on your computer.

Getting Started

Test whether a 
relationship exists 
between two variables of 
your choice.
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Hypothesis Testing with Chi-Square  187

Table 11.4  Training Participation and Employment

ID Training participation
Employment status 2 years after the 
training session

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Not participating
Not participating
Participating
Not participating
Participating
Not participating
Not participating
Participating
Not participating
Participating
Not participating
Participating
Participating
Not participating
Participating
Participating
Participating
Participating
Not participating
Participating

Not employed
Employed
Employed
Not employed
Employed
Employed
Not employed
Employed
Not employed
Employed
Not employed
Not employed
Employed
Not employed
Employed
Employed
Not employed
Not employed
Not employed
Employed

Table 11.5  Calculating χ2 for Job Training Performance

Training participation

Not participating Participating Total

Obs. Exp. χ2 Obs. Exp. χ2 χ2

Not employed
Employed
Total

7.00
2.00
9.00

4.50
4.50
9.00

1.39
1.39
2.78

 3.00
 8.00
11.00

 5.50
 5.50
11.00

1.14
1.14
2.27

2.53
2.53
5.05

Note: Obs. = observed count; exp. = expected count.

Third, all cells must have a minimum of five expected observations. When this 
condition is not met, it is usually because the contingency table contains a large 
number of rows and columns relative to the number of observations. That is, the 
data are spread too thinly across too many cells. To correct this problem, simply 
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188 Essential Statistics for Public Managers and Policy Analysts

redefine the data categories (that is, combine adjacent rows or columns) to create 
a smaller number of cells. Examination of Table 11.2 shows that our data meet 
this third assumption, too. The smallest expected frequency count is 6.3. If our 
data had violated this assumption, we would have combined rows or columns, 
recalculated results, and reported the revised conclusions. Some analysts, 
however, feel that this third assumption is too strong.8

Although chi-square is useful for testing whether a relationship exists, we 
have also noted some limitations: chi-square provides no information about 
the direction or strength of the relationship, and the third assumption may be 
problematic at times. For this reason, analysts often consider an alternative 
statistic, Kendall’s tau-c, discussed below, which offers information about 
significance, direction, and strength as well.

Statistical Significance and Sample Size
Most statistical tests are also affected by sample size, which has implications for 
the likelihood of finding statistically significant relationships. Specifically, it is 

easier to find statistically significant relationships in 
large datasets than in small ones. This is more than 
a statistical artifact; rather, it reflects that having 
more information makes us more confident of our 
conclusions, and vice versa. The sample size affects 
the statistical significance of many widely used test 
statistics, including chi-square.

For example, assume we had a sample of 950 employees, rather than 95 
employees, with the same relative distribution as shown in Table 11.1 (see  
Table 11.6). It is easy to verify that the data in Table 11.6 are distributed in the 
same exact manner as shown in Table 11.1. But the added observations affect the 
calculation of the chi-square test statistic. The value of the chi-square test statistic 
in the first cell is (Oi – Ei)

2/Ei, or [(140 – 100)2/100 =] 16. This is exactly 10 times 
that of the previously calculated value. Indeed, each cell value is 10 times larger, 
as is the chi-square test statistic, which now becomes 89.7. Yet the chi-square 
critic value is still defined as (c – 1)(r – 1). The critical value for rejecting the null 
hypothesis at the 1 percent level is still 11.341. Whereas previously we could not 
reject the null hypothesis at this level, we now succeed in doing so by virtue of 
having more observations. This phenomenon occurs with many other widely used 
test statistics, too.

Of course, the opposite is also true: if we had tried to test for significance 
using only, say, 20 observations (instead of 95), we would have failed to 
reject the null hypotheses at even the 5 percent level. This reflects our having 
too little information to be sufficiently confident in our conclusions. By 
convention, many researchers prefer to test their null hypotheses on sample 
sizes of about 100 to a few hundred (say, 400). This is only a rough guideline. 

Getting Started

All test statistics have 
assumptions. It is 
essential to address 
them.
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Hypothesis Testing with Chi-Square  189

One implication is that analysts are neither surprised to find statistically 
significant relations in large samples, nor are they surprised to find the lack 
of statistical significance in small samples. Another implication is that, when 
working with large samples, analysts can find minute differences between 
groups to be statistically significant, even when the differences have very little 
practical relevance. Bigger samples are not necessarily better; they merely 
increase the importance of questions about the practical significance of 
findings. Box 11.1 discusses statistical power, which often is used to determine 
a minimum sample size.

Finally, recall from Chapter 8 that once statistical significance has been 
established, analysts must turn to the task of establishing practical relevance. 
Are the differences between categories large or small? Are they large enough 
to warrant interest from policy makers? Are they large enough to conclude 
that programs and policy have a salient impact on society? This is the essential 
task that must follow after statistical hypothesis testing. The descriptive 
techniques discussed in Chapter 8 regarding the analysis of contingency tables 
and the use of column percentages are essential to 
providing these answers, building on the results 
established here.

The above is the core of hypothesis testing, as 
illustrated by chi-square, and you will find these 
principles repeated in subsequent chapters. We know 
the above is a lot to take in. Still, we extend the above 
with two useful applications for public managers and analysts which, in their 
own way, can help consolidate the above through further examples and practice.

Key Point

A larger sample makes 
it easier to reject the null 
hypothesis.

Table 11.6  Year of Promotion by Gender: Observed and 
Expected Counts

A: Observed counts B: Expected counts

Gender Gender

Year Male Female Total Male Female

1
2
3
4
Total

140
160
70
60

430

80
140
220
80

520

220
300
290
140
950

100
136
131
63

430

121
164
159
76

520
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190 Essential Statistics for Public Managers and Policy Analysts

In Greater Depth . . .
Box 11.1 Power and Sample Size

The level of statistical significance indicates how often we would be wrong 
to reject the null hypothesis when in fact it is true. However, another 
possible testing error occurs when we fail to reject the null hypothesis 
when in fact we should. The former is called a Type I (or α) error, 
wrongfully concluding that a relationship exists. The latter is called a Type 
II (or β) error, wrongfully concluding that a relationship does not exist.

If β is the probability of wrongfully concluding that a relationship does 
not exist when in fact it does (Type II error), then 1 – β is the probability 
of correctly rejecting the null hypothesis when we should. This probability, 
1 – β, is called statistical power.

Null
hypothesis

True

False

Type I (a)
error

Type II (b)
error

Correct 
(Power, 1 – b)

Correct

Decision
 Reject Accept

A typical reason for Type II errors is that the sample size is too small 
relative to the relationships or differences for which we are testing; we just 
don’t have enough statistical evidence to reject the null hypothesis. The 
purpose of analyzing power is usually to determine minimum sample size. 
It has been suggested that the power of tests should be at least .80. Formulas 
for calculating power vary from test to test; they depend on the sample size, 
the level of statistical significance, and the effect size (for example, difference 
between means). Effect size, too, is defined differently for different tests.9 
Typically, analysts use tables or power calculators, many of which are now 
available on the Internet.10 Analysts err on the side of caution by postulating 
small effect sizes (that is, small differences between means or large standard 
deviations), thereby indicating a need for larger samples.
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Hypothesis Testing with Chi-Square  191

THE GOODNESS-OF-FIT TEST

Chi-square is most commonly used to determine whether two variables are 
statistically related to each other. However, an interesting adaptation for 
managers and analysts is using chi-square for testing whether a program or 
policy exceeds a standard or norm. Assume we test 400 cars and find a 6 percent 
failure rate. Is that any different from a norm of 8 percent? You can readily think 
of other applications, such as students who pass a test or clients who succeed in a 
treatment, or you might think of water samples, housing, or anything else against 
a stated norm. What might be relevant in your area of interest?

When using chi-square for this purpose, program or policy outcomes are 
regarded as the observed frequencies, and the norm is used for calculating expected 
frequencies. This is called the goodness-of-fit test, which tests whether these 
two distributions are significantly different (Ha). Let’s work through the above 
example. The above two distributions for the cars example are shown in Table 11.7. 
The left data column shows the actual frequencies, and the right column shows 
the expected frequencies that would exist if the actual distribution was exactly 
consistent with the norm. Specifically, the actual frequencies are [0.06*400 =] 24 
failed cars and [0.94*400 =] 376 passed cars. The expected frequencies are  
[0.08*400 =] 32 failed cars and [0.92*400 =] 368 passed cars. This calculation is 
different from Table 11.6, because the norm is not really an empirical variable.

The null hypothesis is that the two distributions are similar, and the alternate 
hypothesis is that they are dissimilar. Using the chi-square formula,  
Σ(Oi – Ei)

2/Ei, we calculate chi-square as (24 – 32)2/32 = 2.000 for the failed 
category and as (376 – 368)2/368 = 0.174 for the passed category. Thus, the chi-
square test statistic is [2.000 + 0.174 =] 2.174. The degrees of freedom for this 
test is defined as the number of rows (r) minus 1, or [2 – 1 =] 1. From Appendix 
B, the chi-square critical value at the 5 percent level and df = 1 is 3.841. Because 
the test statistic is less than the critical value, |t.s.| < c.v., we fail to reject the null 
hypothesis. Hence, we conclude that the failure rate is not different from the 
prespecified norm of 8 percent. The failure rate is neither higher nor lower than 
the standard; it meets the standard.

The above example can be expanded by considering more than just two 
response categories such as pass or fail. Assume that we just completed a 
citizen survey yielding 1,034 responses. We next want to know whether the age 
distribution of these respondents is consistent with that of the U.S. Census for the 
area, checking for problems of under- or oversampling. Hence,

H0:  The age distribution of the sample is consistent with that of the 
population.

HA:  The age distribution of the sample is inconsistent with that of the 
population.
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192 Essential Statistics for Public Managers and Policy Analysts

The results are shown in Table 11.8. Here, the census population frequencies 
are the expected frequencies, and the sample frequencies are the observed 
frequencies. With 1,034 completed survey responses, the expected frequency of 
the 18–45 age category is [1,034*0.623 =] 644. The expected frequencies of the 
other two categories are, respectively, [1,034*0.241 =] 249 and [1,034*0.136 =] 
141; similarly, the observed (actual) frequencies are 649, 277, and 108. Using the 
usual chi-square formula, we find that the chi-square value for the first category 
(age 18–45) is [(649 – 644)2/644 =] 0.039. The values for the second and third 
categories are calculated similarly and are, respectively, 3.149 and 7.723. Thus, 
the chi-square test statistic is 10.91 (with rounding). The number of degrees 
of freedom is r – 1, or [3 – 1 =] 2. The critical value at the 5 percent level of 
significance with df = 2 is 5.991 (see Appendix B); thus we conclude that the 
sample is significantly different from the population.11 Further inspection of Table 
11.8 suggests that the researchers undersampled older respondents. Perhaps they 
might want to reweight their findings to examine the effect or continue surveying 
older respondents.

The goodness-of-fit test is a useful extension of chi-square for public 
managers and analysts for comparing a variable against a stated norm.

A NONPARAMETRIC ALTERNATIVE

We now bring you one more piece of useful information. While chi-square is a 
widely known and popular statistic, it has some limitations. As we have seen, it 
provides no information about the direction or strength of relationships, and 
it is limited by some test assumptions (though they are not as cumbersome as 
some we will see later). Statisticians have developed alternative measures that 
overcome these limitations. For example, Kendall’s tau-c belongs to the family 

Table 11.7  Test Failure Rates

Actual (observed) Norm (expected)

Passed
Failed

376
 24

368
 32

Table 11.8  U.S. Census Response by Age Groups

Age U.S. Census (%) Survey sample (%)

18–45
46–65
66+

62.3
24.1
13.6

62.8
26.8
10.4
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Hypothesis Testing with Chi-Square  193

of nonparametric statistics, which derive their name from the fact that they have 
very few test assumptions. They are a bit less powerful, but quite useful.

Kendall’s tau-c can be used as an alternative to chi-square and provides 
information about the level of significance as well as the strength and direction 
of relationships.12 Kendall’s tau-c can vary from +1.00 to –1.00. A positive 
sign indicates a positive relationship and a negative sign indicates a negative 
relationship (see Chapter 8). A value of zero indicates that no relationship exists 
between the variables, and a value of |1.00| indicates a perfect relationship. 
Although there are no absolute standards, many analysts regard scores of less 
than |0.25| as indicating weak relationships; scores of between |0.25| and |0.50|, 
moderate relationships; and scores of greater than |0.50|, strong relationships. 
Beyond this, computers readily calculate the level at which Kendall’s tau-c 
is statistically significant. Thus, this statistic provides three important pieces 
of information about any relationship: significance, direction, and strength. 
Another advantage of Kendall’s tau-c is that it does not have the third test 
assumption of chi-square, that all cells must have a minimum of five expected 
observations. This assumption is unnecessary given the way that Kendall’s tau-c 
is calculated.

Using the data from this chapter’s example (see Table 11.1), the computer 
calculates the value of Kendall’s tau-c as .269, which is significant at the .029 
level, indicating a positive and moderately strong relationship that is significant 
at the 5 percent level. However, in this example, the positive sign has no inherent 
meaning because the variable “gender” is a nominal variable. This example 
provides a good reminder to interpret outcomes in appropriate (mindful) ways; 
it is senseless to describe the relationship in Table 11.1 as either a positive or a 
negative one. Also, the computer-generated value of chi-square is significant at 
the .016 level; Kendall’s tau-c indeed determines the statistical significance of 
this relationship as a bit less than the chi-square test. But both statistics come to 
the same conclusion, namely, that this relationship is significant at the 5 percent 
level. Though Kendall tau-c is a bit less powerful than chi-square, it is a useful 
alternative as it adds information on the direction and strength of relationships. 
Appendix 11.2 offers a few more nonparametric statistics that, at times, may be 
useful.

SUMMARY

When researchers assess the existence and nature of relationships between two 
variables, hypothesis testing and chi-square applications are invaluable tools. 
Hypothesis testing is an important step in data analysis because it establishes 
whether a relationship exists between two variables in the population, that is, 
whether a relationship is statistically significant. Processes of hypothesis testing 
involve
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194 Essential Statistics for Public Managers and Policy Analysts

1. Stating the null hypothesis
2. Choosing the appropriate test statistics
3. Ensuring that data meet the assumptions of the test statistics
4. Calculating the test statistic values
5. Comparing the test statistic values against critical values and determining 

at what level a relationship is significant (or relying on the computer to 
calculate test statistics and to state the level at which they are statistically 
significant)

When analysts are confronted with two categorical variables, which can 
also be used to make a contingency table, chi-square is a widely used test for 
establishing whether a relationship exists (see the Statistics Roadmap at the 
beginning of the book). Chi-square has three test assumptions: (1) that variables 
are categorical, (2) that observations are independent, and (3) that no cells 
have fewer than five expected frequency counts. Remember, violation of test 
assumptions invalidates any test result. Chi-square is but one statistic for testing a 
relationship between two categorical variables.

Once analysts have determined that a statistically significant relationship 
exists through hypothesis testing, they need to assess the practical relevance of 
their findings. Remember, large datasets easily allow for findings of statistical 
significance. Practical relevance deals with the relevance of statistical differences 
for managers; it addresses whether statistically significant relationships have 
meaningful policy implications.

KEY TERMS

Alternate hypothesis (p. 182)
Chi-square (p. 178)
Chi-square test assumptions (p. 186)
Critical value (p. 184)
Degrees of freedom (p. 184)
Dependent samples (p. 186)
Expected frequencies (p. 179)
Five steps of hypothesis testing  

(p. 184)
Goodness-of-fit test (p. 191)

Independent samples (p.186)
Kendall’s tau-c (p.193)
Level of statistical significance  

(p. 183)
Null hypothesis (p. 181)
Purpose of hypothesis testing (p. 180)
Sample size (and hypothesis testing) 

(p. 188)
Statistical power (p. 190)
Statistical significance (p. 183)

APPENDIX 11.1: RIVAL HYPOTHESES: ADDING A 
CONTROL VARIABLE

We now extend our discussion to rival hypotheses. The following is but one 
approach (sometimes called the “elaboration paradigm”), and we provide other 
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Hypothesis Testing with Chi-Square  195

(and more efficient) approaches in subsequent chapters. First mentioned in 
Chapter 2, rival hypotheses are alternative, plausible explanations of findings. We 
established earlier that men are promoted faster than women, and in Chapter 8 
(see “Pivot Tables”) we raised the possibility that the promotion rate is different 
between men and women because men are more productive than women. We 
can now begin to examine this hypothesis formally using chi-square. Again, 
managers will want to examine this possibility among several.

Assume that we somehow measured productivity. Variables associated with 
rival hypotheses are called control variables. The control variable “productivity” 
is added to our dataset. To examine the rival hypothesis, we divide the sample 
into two (or more) groups, namely, employees with high productivity and those 
with low productivity. For each of these groups, we make a contingency table 
analysis by gender. If it is true that productivity, and not gender, determines the 
rate of promotion, then we expect to find no differences in the rate of promotion 
within the same level of productivity (high or low) because the differences 
exist across levels of productivity, and not by gender. Next, we construct a table 
(see Table 11.A1.1). Note that the control variable “goes on top.” We still have 
a total of 95 employees, 43 of whom are men and 52 of whom are women. For 
simplicity, and to avoid violating chi-square test assumptions (we must maintain 
a minimum of five expected frequencies in each cell), the variable “year of 
promotion” has been grouped, although this needn’t be done in other instances. 
The relevant hypotheses are now as follows:

H10:  No relationship exists between gender and rate of promotion 
among employees with high productivity.

H1A:  A relationship exists between gender and rate of promotion 
among employees with high productivity.

H20:  No relationship exists between gender and rate of promotion 
among employees with low productivity.

H2A:  A relationship exists between gender and rate of promotion 
among employees with low productivity.

Chi-square test statistics are calculated for each of the two different 
productivity groups. We could find that one or both relationships are now 
statistically significant. When both relationships are not statistically significant, 
the result is called an explanation of the initial findings; that is, the statistically 
significant result has been explained away. Sometimes it is said that the previous 
relationship has proven to be spurious. When both relationships are statistically 
significant, the result is called a replication of the initial findings. When only one 
of the relationships is statistically significant, the result is called a specification of 
the initial findings. We would want to examine further the relationship that is not 
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196 Essential Statistics for Public Managers and Policy Analysts

explained away. Finally, rarely does using a control variable result in uncovering 
statistically significant relationships that are otherwise insignificant. When this 
does occur, however, the result is called a suppressor effect; that is, the existing 
relationship is suppressed in the absence of the control variable.

Through our data, we obtain the following results. The chi-square test 
statistic for the relationship between gender and year of promotion among 
employees with low productivity is 2.39, which is not statistically significant 
(p = .117). Thus, we conclude that gender does not discriminate in the rate of 
promotion among employees with low levels of productivity. But the chi-square 
test statistic for the relationship between gender and year of promotion among 
employees with high productivity is 6.65, which is statistically significant at the 1 
percent level (p = .010). Gender differences continue to explain differences in the 
rate of promotion among employees with high levels of productivity. This type of 
finding is called a specification.13

Although this approach allows us to test rival hypotheses, two limitations 
may be noted: results are sometimes inconclusive (for example, in the case of 
specification), and the added cells require a larger number of observations. Table 
11.A1.1 acknowledges this problem; rows were combined. In Chapter 15 we 
discuss multiple regression as an alternative for continuous dependent variables, 
which is a much more commonly used and efficient approach than discussed 
here.

APPENDIX 11.2: NONPARAMETRIC TESTS  
FOR SPECIFIC SITUATIONS

Kendall’s tau-c is one of several nonparametric tests that computer programs 
routinely compute. Nonparametric tests have very few test assumptions, and 
many are based on the idea of proportional reduction in error (PRE), the 
improvement that is expressed as a fraction, in predicting a dependent variable 

Table11.A1.1  Year of Promotion by Gender: 
Controlling for Productivity

Low productivity High productivity

 Gender Gender

Year Male (%) Female (%) Male (%) Female (%)

1–2 Years
3+ Years
Total
(n =)

 47
 53
100
(17)

 22
 78
100
(18)

 85
 15
100
(26)

 52
 47
100
(34)
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Hypothesis Testing with Chi-Square  197

due to knowledge of the independent variable.14 This results in a measure of 
strength and direction of the relationship as described in the text. A plethora of 
PRE and nonparametric statistics exist. Computers often calculate Gamma (γ), 
Somers’ d, Kendall’s tau-b (τb), and Kendall’s tau-c (τc), which are all PRE-based, 
nonparametric alternatives to chi-square. They typically produce quite similar 
results, but Kendall’s tau-c is the most conservative (lower p-values) and hence 
most commonly used, and some of these have quite specific uses; Kendall’s tau-b 
is only for square tables, and Goodman-Kruskal’s tau and lambda are only for 
nominal level variables.

Various PRE- and nonparametric statistics have been developed to address 
some rather specific situations that public managers and analysts may face. For 
example, evaluators are sometimes used to assess program or agency performance. 
Then, the Kruskal-Wallis H test assesses whether programs differ in their ratings. 
Assume that 15 evaluators are each asked to evaluate one of three programs, 
and an index score is constructed of their evaluations. Each evaluator evaluates 
a different program and the null hypothesis is that, on average, each program 
has the same average ranking; the program ratings are not different. The data 
are shown in Table 11.A2.1 (for presentation, the variables are shown in separate 
columns, but the data are entered in statistical software programs as two variables 
and 15 observations only). The rating is a continuous variable, but Kruskal-Wallis 
H assigns ranks to the rating variable (thus creating an ordinal variable from 
the continuous variable). The computer calculated H test statistic for these data 
(which has a chi-square distribution) is 7.636 (df = 2, p = .022 < .05).15 Thus, the 
three programs do have different mean rankings. Information provided with this 
result shows that the mean rankings are, respectively, 4.70, 7.00, and 12.30.

A variation on the above occurs when several evaluators assess different 
(multiple) program items, and we want to know whether evaluators agree in 
their ratings. This is an example of dependent sample, defined as samples or 
respondents that are connected or matched up in some way (for more on this, 
see Chapter 12, “T-test Assumptions”). Dependent samples typically involve 
repeated measures (the case here) or matched subjects; statistics have been 

Table 11.A2.1  Ratings of Three Programs

Program Rating Rank Program Rating Rank Program Rating Rank

1
1
1
1
1
Mean

2.5
2.9
4.0
3.2
1.2

3
4

10.5
5
1

 4.7

2
2
2
2
2

3.4
3.3
4.0
3.9
2.1

 7.5
6

10.5
9
2

 7.0

3
3
3
3
3

4.8
5.0
5.0
3.4
4.2

 13
14.5
14.5
 7.5

 12
12.3
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198 Essential Statistics for Public Managers and Policy Analysts

developed for these scenarios. The Friedman test, developed by the well-known 
economist Milton Friedman, addresses the above case. Considering the data of 
Table 11.A2.2, the computer-calculated Friedman test statistic for these data is 
0.545 (df = 2, p = .761 > .05). Thus, we conclude that the ratings of the evaluators 
are not different; the evaluators agree with each other. When columns and rows 
are reversed, the Friedman test assesses whether differences exist among the 
mean rankings of items. This test can also be used to examine test score changes 
in before-and-after situations. Then, the rows are subjects and the columns are 
the subjects’ before-and-after scores.16 Hence, it is a quite versatile test.

Managers and analysts may also need to assess whether discrimination 
is occurring in programs or policies. Assume that we want to test whether 
program staff is discriminating against minority clients by failing to provide 
them with services that are provided to other, white clients. To examine this 
possibility, we match up pairs of minority and white clients; each pair has similar 
equivalent conditions and are trained to provide similar responses to questions; 
the main difference is race. This strategy is used in testing for discrimination 
in employment interviews or in bank lending practices; pairs of majority and 
minority job (or loan) seekers are sent to interviews (or to apply for loans), 
intermingled with other candidates. This scenario illustrates matched subjects, 
hence, again involving a dependent sample.

The McNemar test determines the level at which dissimilar outcomes are 
statistically significant. For example, consider Table 11.A2.3, in which each 
count compares the employment outcomes of the paired testers. The McNemar 

Table 11.A2.2  Ratings of Three Evaluators

Item Rater 1 Rater 2 Rater 3

1
2
3
4
5

5
4
3
2
1

3
2
3
4
1

4
2
3
3
1

Table 11.A2.3  Employment Discrimination Test

White applicants

Minority applicants Hired Not hired Total

Hired
Not hired
Total

0
8
8

1
2
3

 1
10
11
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Hypothesis Testing with Chi-Square  199

test compares whether the eight instances in which a white but not minority 
applicant received a job are significantly different from the one instance in which 
the minority candidate, not the white one, received the job. The test for these 
data is significant (p = .039 < .05), which means that this disparate outcome 
cannot be attributed to chance alone.17 The McNemar test is also an example of a 
test designed for small samples (that is, those with small frequency counts).

Finally, a variety of small-sample tests exist for independent samples. 
Although chi-square can be used, researchers also argue for the Fisher exact 
test for 2-by-2 tables and the Chi-square with the Yates continuity correction. 
Small samples bias the expected frequencies slightly upward; the Yates continuity 
correction corrects this bias by subtracting 0.50 from the difference of expected 
and observed frequencies, while this produces a conservative test statistic, some 
argue that this correction overcorrects.18,19

These examples show how rather specialized statistics can be adapted to the 
practice of management and policy. The analytical task in these instances is to 
align one’s problem with some method of statistical testing.

Notes
 1. The companion website (http://study.sagepub.com/bermaness4e) replicates 

these calculations on an Excel spreadsheet called “Chi-Square.” The 
computer-calculated value of chi-square is slightly higher, 9.043, due to 
rounding errors in calculating the expected frequency counts. This same 
result is achieved when using expected frequency counts with three decimal 
places. The expected frequency counts, then, for men are 9.976, 13.588, 
13.115, and 6.321; and for women 12.064, 16.432, 15.860, and 7.644. Of 
course, maintaining three decimal places is more labor intensive for the 
illustrative, manually calculated example in the text, which retains only one 
decimal place in calculating the expected frequencies.

 2. See “Pearson’s Chi-Squared Test,” https://www.khanacademy.org/math/
probability/statistics-inferential/chi-square/v/pearson-s-chi-square-test-
goodness-of-fit.

 3. See Chapter 8 for a discussion of the direction of relationships.
 4. It is commonly said that inferential statistics state the degree of certainty by 

which we can say that a relationship exists beyond chance alone. This is plainly 
said, and some academics will take issue with how this is phrased. People are 
free to make their own plain-sense interpretation of statistical formulas.

 5. Such a level might be acceptable at times in administration, and scientists 
occasionally report a 10 percent level, too.

 6. The concept of degrees of freedom is not easy to explain. Some texts explain 
it as the number of calculations that are not predetermined after others have 
already occurred. Succinctly, if an array (or column) has four data elements, 
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200 Essential Statistics for Public Managers and Policy Analysts

and the sum total is also known, then after choosing the first three elements, 
the fourth element is predetermined; hence, we are free to choose only three 
elements, and the array is said to have three degrees of freedom, or c – 1.

 7. For example, if the test statistic of our data had been, say, 15.0, then p < .01 
rather than p < .05 would be concluded and reported. This is not the case 
here, though.

 8. The rationale is to ensure that chi-square calculations are not unduly affected 
by small differences in cells with low counts. Note that the expected frequency 
is in the denominator of the chi-square formula. Some analysts feel that the 
standard of no cells with expected frequencies below 5.0 is too strict. They feel 
that (1) all cells should have greater expected frequency counts than 1.0 and  
(2) no more than 20 percent of cells should have expected frequency counts 
lower than 5.0. The standard adopted in the text is more conservative. The point 
is, of course, that test statistics should not be affected by a few sparse cells.

 9. This is defined as (µ1 – µ2)/σpooled, where σpooled = √[(σ1
2 + σ2

2)/2]. Small 
effect sizes are defined as those for which µ1 – µ2 is about .2 σpooled, medium 
effect sizes are about .5 σpooled, and large effect sizes are .8 σpooled. For a 
chi-square test, effect size is defined as the Phi coefficient, z, for two-by-two 
tables, √(χ2/N), and as the contingency coefficient, C, for larger tables, √[χ2/
(χ2 + N)]. Some of these measures are discussed in later chapters.

10. For example, see http://www.dssresearch.com/toolkit/spcalc/power.asp or 
http://power.education.uconn.edu/otherwebsites.htm.

11. Note that if the sample had consisted of only 300 completed responses, then 
the chi-square would have been 3.16, which is not significant. Also, you 
can verify, by redoing the preceding calculations (using a spreadsheet), that 
completing another 12 surveys among the 66+ group (increasing the sample 
size to 1,046) reduces the chi-square test statistic to 5.955, which provides a 
sample that no longer is significantly different from that of the population. 

12. The formula for Kendall’s tau-c is quite different from chi-square and is a 
based on a concept of ‘similar’ and ‘dissimilar’ pairs of data: the formula is 
2m(Ns – Nd)/N2(m – 1), where m is the smaller number of rows or columns, 
N is the sample size, Ns is the number of similar pairs and Nd is the number 
of dissimilar pairs. In short, similar pairs are pairs of observations that each 
rank similarly low (or high), and dissimilar pairs are pairs in which one 
observation scores high and the other low. The direction of relationships is 
determined by comparing the number of similar pairs against the number of 
dissimilar pairs. When there are more similar pairs than dissimilar pairs, the 
relationship is said to be positive. When there are more dissimilar pairs than 
similar pairs, the relationship is negative.

13. This approach is rather inefficient. Note that we had to combine categories 
in order to preserve an adequate number of observations in each cell. In 
subsequent chapters, we examine approaches that are more efficient and 
more conclusive. Of course, when productivity is found to cause explanation 
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or specification, you subsequently want to report on the bivariate 
relationship between the rate of promotion and productivity. That, of course, 
is a different relationship from the one discussed here.

14. PREs can be calculated in different ways, and the following is purely 
illustrative of the concept. Assume that in a sample of 160 people, 90 people 
are not on welfare and 70 are on welfare. If we guess that each person is 
not on welfare, we will be wrong 70 times, which is better than guessing 
that each person is on welfare, in which case we would be wrong 90 times. 
However, if the number of welfare recipients at each level of income is also 
known, then we can make even fewer wrong guesses (or, errors). Assume 
that 60 of 100 welfare program participants also have low incomes; we then 
make only 40 errors guessing that people with low income also receive 
welfare. Likewise, if 10 of 60 people with high incomes also are known to get 
welfare, we make 10 errors guessing that those with high incomes are not 
on welfare. The total number of errors taking income into account is thus 
(40 + 10 =) 50, which is slightly less than the earlier 70 wrong guesses. The 
proportional reduction in errors (wrong guesses) can be defined as follows:

Errors without knowledge of
the independent variable








 −

EErrors with knowledge of
the independent variable

Err











oors without knowledge of the independent variable

 Thus, our PRE is [(70 – 50)/70 =] 0.286. In other words, as a result of 
knowing respondents’ incomes, we improved our guesses of their welfare 
situation by 28.6 percent. As discussed in the text, this is evidence of a 
moderately strong relationship. 

15. The formula for H is

12
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T
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T
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... ( ),
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+ +
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 where Ti is the sum of ranks in group 1, and so on.
16. The Friedman test is quite sensitive to the number of items; it is best to have 

at least 10 rows.
17. The McNemar test statistic is defined as X2

McNemar = (|f0,1 – f1,0|)2/(f0,1 + f1,0).
18. The chi-square statistic with Yates continuity correction is defined as
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(| | . )
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− −
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− −

0 5
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Σ19. The following measures may also be considered. Phi (φ) is defined as √X2/n, 

and ranges from zero to one for two-by-k tables (k ≥ 2). Phi-squared (φ2) has 
a “variance-explained” interpretation; for example, a φ2 value of 0.35 (or φ 
= 0.59) means that 35 percent of the variance in one variable is explained by 
the other. Yule’s Q is a measure of association with a PRE interpretation but 
without a test of statistical significance. 
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