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6
DATA MUNGING

LEARNING OBJECTIVES

•• Describe what data munging is.
•• Demonstrate how to read a CSV data file.
•• Explain how to select, remove, and rename rows and columns.
•• Assess why data scientists need to be able to munge data.
•• Demonstrate how to munge data in R while using the following functions:  

read.csv, url, gsub, rownames, colnames, order.

© iStockphoto.com/Tuned_In
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Chapter 6   ■   Data Munging  49

Data munging is the process of turning a data set with a bunch of junk in it into a nice 
clean data set. Why is data munging required and why is it important? Well, often 

R does not guess correctly the structure of the data set, or perhaps R reads a number or a 
date and thinks it is a simple string. Another issue might be that the data file might have 
additional information that is useful for humans, but not for R. If you think about it, so 
far we have only explored simple data sets that we created within R. Clearly, the larger 
the data set, the more difficult it becomes to just type the data into R. Working through 
these issues, so that R can process the data in a dataframe is often a lot of work. It’s a big 
part of data science, but perhaps not the most glamorous.

READING A CSV TEXT FILE
So, in this chapter, we will explore how to read in a data set that is stored as a comma-
delimited text file (known as a CSV file—which stands for comma separated values) that 
needs to be cleaned up. As we will see in future chapters, there are many formats that we 
might have to be able to process to get data into R, but for now we will focus on a very 
common human readable file format. Our first real data set will be U.S. census data. The 
U.S. Census Bureau has stored population data in many locations on its website, with 
many interesting data sets to explore. We will use one of the simpler data sets available at 
www2.census.gov/programs-surveys/popest/tables/2010-2011/state/totals/

Click on the CSV link for nst-est2011-01.csv; you will either download a CSV (comma 
separated value file) or your browser will show a bunch of text information, with the first 
few lines likes like:

table with row headers in column A and column headers in rows 
3 through 4. (leading dots indicate sub-parts),,,,,,,,, 
"Table 1. Annual Estimates of the Population for the  
United States, Regions, States, and Puerto Rico: April 1,  
2010 to July 1, 2011",,,,,,,,, Geographic Area,"April 1,  
2010",,Population Estimates (as of July 1),,,,,,, 
Census,Estimates Base,2010,2011,,,,, United States,"308, 
745,538","308,745,538","309,330,219","311,591, 
917",,,,, Northeast,"55,317,240","55,317,244","55,366, 
108","55,521,598",,,,, Midwest,"66,927,001","66,926, 
987","66,976,458","67,158,835",,,,, South,"114,555, 
744","114,555,757","114,857,529","116,046,736",,,,,  
West,"71,945,553","71,945,550","72,130,124","72,864, 
748",,,,,.Alabama,"4,779,736","4,779,735","4,785,401", 
"4,802,740",,,,,
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50  An Introduction to Data Science

Now, having the data in the browser isn’t useful, so let’s write some R code to read in 
this data set.

> urlToRead <-
+ "http://www2.census.gov/programs-surveys/
+    popest/tables/2010-2011/state/totals/
+    nst-est2011-01.csv"
> testFrame <- read.csv(url(urlToRead))

The first line of code just defines the location (on the web) of the file to load (note 
that the URL is so long, it actually takes four lines to define the assignment). As we noted 
before, since the CSV file is human readable, you can actually cut and paste the URL into 
a web browser, and the page will show up as a list of rows of data. The next row of code 
reads the file, using the read.csv command. Note we also use the url() function so R knows 
that the filename is a URL (as opposed to a local file on the computer).

Next, let’s take a look at what we got back. We can use the str() function to create a 
summary of the structure of testFrame:

> str(testFrame)
'data.frame': 66 obs. of 10 variables:

$ table.with.row.headers.in.column.A.and.column.

headers.in.rows.3.through.4...leading.dots.indicate.sub.

parts.: Factor w/ 65 levels "",".Alabama",..: 62 53 1 

64 55 54 60 65 2 3 ...

$ X: Factor w/ 60 levels "","1,052,567",..: 1 59 60

27 38 47 10 49 32 50 ...

$ X.1: Factor w/ 59 levels "","1,052,567",..: 1 1 59

27 38 47 10 49 32 50 ...

$ X.2: Factor w/ 60 levels "","1,052,528",..: 1 60 21

28 39 48 10 51 33 50 ...

$ X.3: Factor w/ 59 levels "","1,051,302",..: 1 1 21

28 38 48 10 50 33 51 ...

$ X.4: logi NA NA NA NA NA NA ...

$ X.5: logi NA NA NA NA NA NA ...

$ X.6: logi NA NA NA NA NA NA ...

$ X.7: logi NA NA NA NA NA NA ...

$ X.8: logi NA NA NA NA NA NA ...
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Chapter 6   ■   Data Munging  51

The last few lines are reminiscent of that late 1960s song entitled, “Na Na Hey 
Hey Kiss Him Goodbye.” Setting aside all the NA NA NA NAs, however, the overall 
structure is 66 observations of 10 variables, signifying that the spreadsheet contained 
66 rows and 10 columns of data. The variable names that follow are pretty bizarre. 
Now you understand what data scientists mean by junk in their data. The first variable 
name is

table.with.row.headers.in.column.A.and.column.headers.in.rows.3.through.4...
leading.dots.indicate.sub.parts.

REMOVING ROWS AND COLUMNS
What a mess! It is clear that read.csv() treated the upper-left-most cell as a variable label, 
but was flummoxed by the fact that this was really just a note to human users of the 
spreadsheet (the variable labels, such as they are, came on lower rows of the spreadsheet). 
Subsequent variable names include X, X.1, and X.2: clearly the read.csv() function did 
not have an easy time getting the variable names out of this file.

The other worrisome finding from str() is that all of our data are factors. This indi-
cates that R did not see the incoming data as numbers, but rather as character strings 
that it interpreted as factor data. Again, this is a side effect of the fact that some of the 
first cells that read.csv() encountered were text rather than numeric. The numbers came 
much later in the sheet. Clearly, we have some work to do if we are to make use of these 
data as numeric population values. This is common for data scientists, in that sometimes 
the data are available, but need to be cleaned up before they can be used. In fact, data 
scientists often use the phrase “data munging” as the verb to describe the act of cleaning 
up data sets. So, let’s get data munging!

First, let’s review one way to access a list, a vector or a dataframe. As mentioned 
briefly in a previous chapter, in R, square brackets allow indexing into a list, vector, or 
dataframe. For example, myList[3] would give us the third element of myList. Keeping 
in mind that a dataframe is a rectangular structure, really a two-dimensional structure, 
we can address any element of a dataframe with both a row and column designator: 
myFrame[4,1] would give the fourth row and the first column. A shorthand for taking 
the whole column of a dataframe is to leave the row index empty: myFrame[, 6] would 
give every row in the sixth column. Likewise, a shorthand for taking a whole row of a 
dataframe is to leave the column index empty: myFrame[10, ] would give every column 
in the tenth row. We can also supply a list of rows instead of just one row, like this: 
myFrame[ c(1,3,5), ] would return rows 1, 3, 5 (including the data for all columns, 
because we left the column index blank).

Copyright ©2017 by SAGE Publications, Inc.   
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Draf
t P

roo
f - 

do
 no

t c
op

y, 
po

st,
 or

 di
str

ibu
te



52  An Introduction to Data Science

So, with the summary command, we can see those five columns are all just NA, and 
so can be removed without removing any data from testFrame. We can use the following 
command keeps the first five columns of the dataframe:

> testFrame <- testFrame[,1:5]

In the same vein, the tail() function shows us that the last few rows just contained some 
Census Bureau notes:

> tail(testFrame,5)

Using this knowledge, we will use an easy trick to get rid of stuff we don’t need. The 
Census Bureau put in three header rows that we can eliminate like this:

> testFrame <- testFrame[-1:-8,]

The minus sign used inside the square brackets refers to the index of rows that should 
be eliminated from the dataframe. So the notation -1:-8 gets rid of the first eight rows. We 
also leave the column designator empty so that we can keep all columns for now. So the 
interpretation of the notation within the square brackets is that rows 1 through 8 should 
be dropped, all other rows should be included, and all columns should be included. We 
assign the result back to the same data object, thereby replacing the original with our new, 
smaller, cleaner version.

Next, we can see that of the 10 variables we got from read.csv(), only the first five 
are useful to us (the last five seem to be blank). How can we know that the last columns 
are not useful? Well, we can use the summary command we saw last chapter to explore 
testFrame, but only look at the summary for the last five columns:

> summary(testFrame[,6:10])

X.4 X.5 X.6 X.7 X.8

Mode:logical Mode:logical Mode:logical Mode:logical Mode:logical

NA's:58 NA's:58 NA's:58 NA's:58 NA's:58
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Chapter 6   ■   Data Munging  53

So we can safely eliminate those like this:

> testFrame <- testFrame[-52:-58,]

If you’re alert you will notice that we could have combined some of these commands, 
but for the sake of clarity we have done each operation individually. The result is a 
dataframe with 51 rows and five observations.

RENAMING ROWS AND COLUMNS
Now we are ready to perform a couple of data transformations. But before we start these 
transformations, let’s give our first column a more reasonable name:

> testFrame$stateName <- testFrame[,1]

We’ve used a little hack here to avoid typing out the ridiculously long name of that 
first variable/column. We’ve used the column notation in the square brackets on the right-
hand side of the expression to refer to the first column (the one with the ridiculous name) 
and simply copied the data into a new column entitled stateName.

Rather than create a new column, we could have renamed the column. So, let’s also 
do this renaming, using the colnames() function. If this function is just called with a 
dataframe as a parameter, then the function returns the column names in the dataframe, 
as shown below:

> colnames(testFrame)

[1]

"table.with.row.headers.in.column.A.and.column.headers

.in.rows.3.through.4...leading.dots.indicate.sub.parts

."

[2] "X"

[3] "X.1"

[4] "X.2"

[5] "X.3"

[6] "stateName"
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54  An Introduction to Data Science

We also can use colnames() to update the column names in the dataframe. We do this 
by having the colnames() function on the left side of the assignment statement. Putting 
this together, we first use colnames() to store the current column names, then update the 
first element to a new name, and finally use colnames() to update the column names in 
the dataframe:

> cnames <- colnames(testFrame)

> cnames[1] <- “newName”

> cnames

[1] "newName" "X"     "X.1"     "X.2"     "X.3"

"stateName"

> colnames(testFrame) <- cnames

> colnames(testFrame)

[1] "newName" "X"     "X.1"     "X.2"     "X.3"

"stateName"

This points out one of the good (and bad) aspects of using R—there is often more than 
one way to get something done. Sometimes there is a better way, but sometimes just an 
alternative way. In this situation, for very large data sets, renaming columns would typi-
cally be slightly better than creating a new column. In any event, since we have created 
the new column, let’s remove the first column (since we already have the column name we 
want with the last column in the data set).

> testFrame <- testFrame[,-1]

CLEANING UP THE ELEMENTS
Next, we can change formats and data types as needed. We can remove the dots from in 
front of the state names very easily with the gsub() command, which replaces all occur-
rence of a pattern and returns the new string. The g means replace all (it actually stands 
for global substitute). There is also a sub function, but we want all the dots to be removed, 
so we will use the gsub() function.

> testFrame$stateName <- gsub("\\.","",

+       testFrame$stateName)
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Chapter 6   ■   Data Munging  55

The two backslashes in the string expression above are called escape characters and they 
force the dot that follows to be treated as a literal dot rather than as a wildcard character. 
The dot on its own is a wildcard that matches one instance of any character.

Next, we can use gsub() and as.numeric() to convert the data contained in the popu-
lation columns to usable numbers. Remember that those columns are now represented 
as R factors and what we are doing is taking apart the factor labels (which are basically 
character strings that look like this: 308,745,538) and making them into numbers. First, 
let’s get rid of the commas.

> testFrame$april10census <-gsub(",", "", testFrame$X)

> testFrame$april10base <-gsub(",", "", testFrame$X.1)

> testFrame$july10pop <- gsub(",", "", testFrame$X.2)

> testFrame$july11pop <- gsub(",", "", testFrame$X.3)

Next, let’s get rid of spaces and convert to a number:

> testFrame$april10census <- as.numeric(gsub(" ", "",

+     testFrame$april10census))

> testFrame$april10base <- as.numeric(gsub(" ", "",

+     testFrame$april10base))

> testFrame$july10pop <- as.numeric(gsub(" ", "",

+     testFrame$july10pop))

> testFrame$july11pop <- as.numeric(gsub(" ", "",

+     testFrame$july11pop))

This code is flexible in that it will deal with both unwanted commas and spaces, and 
will convert strings into numbers whether they are integers or not (i.e., possibly with digits 
after the decimal point).

Finally, let’s remove the columns with the X names:

> testFrame <- testFrame[,-1:-4]

By the way, the choice of variable names for the new columns in the dataframe was based 
on an examination of the original data set that was imported by read.csv(). We can confirm 
that the new columns on the dataframe are numeric by using str() to accomplish this.
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56  An Introduction to Data Science

> str(testFrame)

'data.frame': 51 obs. of  5 variables:

 $ stateName      : chr  "Alabama" "Alaska" "Arizona" 

"Arkansas" ...

 $ april10census:  num  4779736 710231 6392017 2915918 

37253956 ...

 $ april10base  :  num  4779735 710231 6392013 2915921 

37253956 ...

 $ july10pop    :  num  4785401 714146 6413158 2921588 

37338198 ...

 $ july11pop    :  num  4802740 722718 6482505 2937979 

37691912 ...

Perfect! Let’s take a look at the first five rows

> head(testFrame,5)

stateName april10census april10base july10pop july11pop

9    Alabama 4779736 4779735 4785401 4802740

10     Alaska 710231 710231 714146 722718

11    Arizona 6392017 6392013 6413158 6482505

12   Arkansas 2915918 2915921 2921588 2937979

13 California 37253956 37253956 37338198 37691912

Well, the data look good, but what are the 9, 10, 11, 12, and 13? They are row names—
which the read.csv function defined. At the time, those numbers were the same as the row 
number in the file. But now, these make no sense (if you remember, we deleted the first 
eight rows in this data set). So, we have to do one more command to remove the confusing 
row names with the following one line of R code:

> rownames(testFrame) <- NULL

This line basically tells R that we do not want to have row names and is similar to 
colnames(), but works on the row names, not the column names.
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Chapter 6   ■   Data Munging  57

> head(testFrame,5)

stateName april10census april10base july10pop july11pop

1    Alabama 4779736 4779735 4785401 4802740

2     Alaska 710231 710231 714146 722718

3    Arizona 6392017 6392013 6413158 6482505

4   Arkansas 2915918 2915921 2921588 2937979

5 California 37253956 37253956 37338198 37691912

That’s much better. Notice that we’ve spent a lot of time just conditioning the data we 
got in order to make it usable for later analysis. Herein lies a very important lesson. An 
important, and sometimes time-consuming, aspect of what data scientists do is to make 
sure that data are fit for the purpose to which they are going to be put. We had the conve-
nience of importing a nice data set directly from the web with one simple command, and 
yet getting those data actually ready to analyze took several additional steps.

SORTING DATAFRAMES
Now that we have a real data set, let’s do something with it! How about showing the 
five states with the highest populations? One way to do this is to sort the data set by the 
july11pop. But, while we can sort a vector with the sort command, sorting the dataframe 
is somewhat more challenging. So, let’s explore how to sort a column in a dataframe, 
and basically reorder the dataframe. To accomplish this, we will use the order() function 
together with R’s built-in square bracket notation.

As a reminder, we can supply a list of rows to access the dataframe: myFrame[ c(1,3,5), ]  
would return rows 1, 3, 5 (including the data for all columns, because we left the column 
index blank). We can use this feature to reorder the rows, using the order() function. We 
tell order() which variable we want to sort on, and it will give back a list of row indices 
in the order we requested.

Putting it all together yields this command:

> sortedStates <-

+   testFrame[order(testFrame$july11pop), ]

Working our way from the inside to the outside of the expression above, we want to sort 
in the order of the population, as defined by the july11pop column. We wrap this inside 
the order() function. The order() function will provide a list of row indices that reflects the 
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58  An Introduction to Data Science

population of the states. We use the square brackets notation to address the rows in the 
testFrame, taking all of the columns by leaving the index after the comma empty. Finally, 
we stored the new dataframe in variable sortedStates. Let’s take a look at our results:

> head(sortedStates,5)

         stateName april10census april10base

   59       Wyoming       563626      563626

   17 District of Columbia       601723      601723

   54         Vermont       625741      625741

   43        North Dakota       672591      672591

   10              Alaska       710231      710231  

            july10pop     july11pop

   51        564554        568158

   9         604912        617996

   46        625909        626431

   35        674629        683932

   2         714146        722718

Well, that is close, but it’s the states with the lowest populations. We wanted the states 
with the largest (greatest) populations. We can either use the tail command to see the 
states with the largest population, or do the sort, but tell R to sort largest to smallest. We 
tell R we want the largest populations first by putting a minus sign (–) next to the vector 
we want sorted. What this actually does is that it makes the large numbers large negative 
numbers (so they are smaller), and the small numbers small negative numbers (so they are 
larger relative to the negative larger numbers). Wow, that’s confusing, but it is easy to do 
in R, and is done as follows:

> sortedStates <-

+  testFrame[order(-testFrame$july11pop), ]

> head(sortedStates,5)

stateName april10census april10base july10pop july11pop

5  California  37253956  37253956  37338198  37691912

44      Texas  25145561  25145561  25253466  25674681

33   New York  19378102  19378104  19395206  19465197

10    Florida  18801310  18801311  18838613  19057542

14   Illinois  12830632  12830632  12841980  12869257
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Chapter 6   ■   Data Munging  59

That’s it! We can see California has the most people, followed by Texas, and then 
New York.

In summary, as you have seen, data munging requires lots of knowledge of how to 
work with dataframes, combined with persistence to get the data into a format that is 
useful. While we have explored some common challenges related to data munging, there 
are other challenges we did not get to in this chapter. One classic challenge is working 
with dates, in that there are many formats such as a year with two or four digits, and 
dates with the month or day is listed first. Another challenge often seen is when we want 
to combine two data sets. Combining them can be useful, for example when you have a 
data set with a person’s name (or id) and her purchase history. A related data set might 
have that person’s name (or id) and the state where she lives.

Practice reading in a data set; this time the data set is about loans. Go to the lendingClub website (http://www.lendingclub.com/
info/download-data.action), download a CSV file and then read in the file (using read.csv). Then, clean up the data set, making 
sure all the columns have useful information. This means you must explore the data set to understand what needs to be done! One 
trick to get you started is that you might need to skip one or more lines (before the header line in the CSV file). There is a skip 
parameter that you can use in your read.csv() command.

Chapter Challenge

http://www2.census.gov/programs-surveys/popest/

Sources

read.csv() read in a CSV file

url() make sure R knows that the file is a URL (not a local file)

gsub() substitute one string for another

rownames() get/set the row names for the data

colnames() get/set the column names for the dataframe 

order() return the indices in the order of the vector supplied

R Commands Used in This Chapter
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