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10
ESTIMATION STUDIES

Inferring the Parameters of a 
Population from the Statistics of a 

Sample

10.0 LEARNING OBJECTIVES

In this chapter, we discuss the construction and interpretation of estimation 
studies. Our learning objectives include the following:

 • using a sample to estimate the characteristics of a property of a 
population when the property is qualitative/categorical;

 • using a sample to estimate the characteristics of a property of a 
population when the property is quantitative/scale; and

 • a brief discussion of the practical problems of sampling.

10.1 MOTIVATION
In Chapter 2, we described the scenario in which an investigator is interested in 
characterizing a large set of phenomena with regard to a particular property, but all 
the phenomena of interest cannot be observed for logistical reasons. For example, 
a sociologist might be interested in assessing the “feelings of alienation” for the 
adult population of the United States, but assessing all those individuals is clearly 
not feasible. In such cases, the investigator might judiciously select a small set of  

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2018 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



276  Part IV ■ Tools for Making Statistical Inferences

phenomena from the larger set and use the assessments of the values of the property 
found for this small set of phenomena to characterize the occurrences of the prop-
erty in the larger set. In this way, the investigator is using specific observations to 
reach a general conclusion; thus, the investigator is applying the logic of inference. 
In more formal terms, we have the following:

 • The set of phenomena in which the investigator is interested is said to be 
a population, and the judiciously selected phenomena actually observed is 
said to be a sample. As discussed in Chapter 9, the logic by which a sample 
can be used to represent a population requires the process of selecting the 
sample set of phenomena to be equivalent to a lottery. This was said to be 
random selection.

 • In an objectively assessed property, the occurrences of the different values 
of that property found in a sample can be summarized as a statistic. These 
descriptive sample statistics were described in Chapters 3 to 5. If they could 
be observed, the occurrences of the different values of the property existing 
in the population could also be summarized in the same manner as the 
descriptive statistics of a sample. However, these summaries are said to be 
parameters when constructed for a population.

 • In an estimation study, an investigator uses the statistics of a sample to 
estimate the unknown parameters of the population from which the 
sample was drawn.

As noted in Chapter 7, the logical basis for making such projections—or statis-
tical inferences—can be found in probability theory. However, probability theory 
also yields the following caveat:

A sample can be expected to be only an imperfect representation of the 
population from which it is drawn, and two different samples drawn 
from the same population might be substantially different with regard to 
the values of the property of interest held by those selected phenomena. 
Thus, the inference process is imperfect.

Fortunately, using these same probability models, we can set some limits to the 
extent of the potential imperfection in using a sample statistic to estimate a popula-
tion parameter. These “imperfection limits” are often said to be confidence intervals. 
Such confidence intervals take the following form:

With a “high” probability (often 95%), we can be confident that the popu-
lation parameter will be between the values (Statistic − a) and (Statistic + a), 
where Statistic is the relevant sample statistic and a is a measure of vari-
ability estimated by the sample.
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Chapter 10 ■ Estimation Studies  277

In a somewhat confusing and arrogant usage, the extent to which a sample sta-
tistic might vary from the underlying population parameter is said to be an “error” 
(the usage is arrogant in that the term error presumes a mistake, and no sample can 
be expected to be a “perfect” representation of a population). This usage was previ-
ously encountered in Chapter 9 with the term “standard error of the mean.” In this 
chapter, we discuss the construction of such confidence intervals for different types 
of estimation studies.

As a second matter of concern, when using a statistic from a sample to estimate 
a parameter for a population where the property of interest is quantitative, it can be 
shown that the variance of the sample will underestimate the variance of the population 
from which the sample was drawn. This underestimation was identified by Friedrich 
Bessel (1784–1846), and the correction to this underestimation is said to be the Bessel 
Correction (Upton, Graham, and Ian Cook, 2014, A Dictionary of Statistics, 3rd ed., 
Oxford, UK: Oxford University Press). In this chapter, we also discuss this “correction.”

10.2 ESTIMATING THE  
OCCURRENCE OF A QUALITATIVE 
PROPERTY FOR A POPULATION
Two candidates, A and B, are competing for election in a state with a popula-
tion of N potential voters. To better plan the campaign, the campaign manager of 
Candidate A, Paula, wants to have some sense of the proportion of voters favoring 
each—or none—of the two candidates. Thus, each voter may be characterized as 
having one of the following four dispositions:

 • favoring A, denoted as (A);

 • favoring B, denoted as (B);

 • rejecting both, denoted as (C); and

 • undecided, denoted as (D).

While Paula would prefer to contact every voter, the logistics of this approach 
are prohibitive. However, from her understanding of probability theory, Paula is 
relatively confident that a randomly selected sample of voters might provide a rea-
sonable representation of this population; thus, she conducts a survey of n potential 
voters and finds what is shown in Table 10.1.

Thus, Paula would project these relative frequencies—or proportions—onto 
the population of N voters. However, her justification for doing so requires an 
appropriate probability model to describe the relationship she can expect between 
an “unknown” population and samples extracted from that population. In fact, 
such a model can be constructed using the concept of a Bernoulli trial described in  
Chapter 9. For a detailed explanation of this model, see Box 10.1.
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278  Part IV ■ Tools for Making Statistical Inferences

TABLE 10.1 ■  Voting Dispositions of a Randomly Selected Sample of  
n Voters

Disposition Frequency Relative Frequency

A a a ∕ n = f(A)

B b b ∕ n = f(B)

C c c ∕ n = f(C)

D d d ∕ n = f(D)

Total n 1.00

In this population of N voters, we know that some 
number α favor A, some number β favor B, some 
number γ reject both (C), and some number δ are 
undecided (D). Now, even if we do not know the 
values α, β, γ, and δ, we do know that if we were 
to randomly choose a potential voter from this 
population, we have the following potential out-
comes and probabilities of occurrence:

 • the individual will favor A with a 
probability of α ∕ N = p(A);

 • the individual will favor B with a 
probability of β ∕ N = p(B);

 • the individual will reject both 
candidates with a probability of  
γ ∕ N = p(C); or

 • the individual will be undecided with a 
probability of δ ∕ N = p(D).

With this understanding, how might we 
characterize our expectations regarding a 
sample constructed from a series of n inde-
pendent selections from this population? While 
the Central Limit Theorem would be directly 
applicable for a quantitative/scale property, the 
property in this case is qualitative. However, 
by applying the model of a Bernoulli trial as 
discussed in Chapter 9, we can make a direct 
prediction as to what to expect from a sample 
constructed from this population.

Let us first consider the dispositional 
value “favors A.” From this perspective, we 

can identify two types of individuals in this 
population:

 • those who “favor A,” which we will 
denote as (A); and

 • those who do not “favor A,” which 
we will denote as (~A) and includes 
those who “favor B,” those who “reject 
both candidates,” and those who are 
“undecided.”

From this perspective, we can describe the 
population as shown in Table 10.2.

Now, if we were to randomly select an indi-
vidual from this population, we could expect 
outcomes with the probabilities shown in 
Table 10.3.

BOX 10.1

TABLE 10.2 ■  Population 
of N Voters Described by Their 
Disposition Toward Candidate A

Disposition
Number of 
Individuals

Does not favor A  
(~A)

β + γ + δ = N − α

Favors A

(A)

A

Total NDo n
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Chapter 10 ■ Estimation Studies  279

Continuing with our narrative, our interest is 
in assessing the relative proportion of individu-
als in the population having the disposition (A) 
using a sample selected from this population. 
From this perspective, it would then be reason-
able to ask for each selection from the population 
the number of individuals who “favor A.” Here 
we have two potential outcomes:

 • 1 if the individual “favors A”; or

 • 0 if the individual does not “favor A.”

Because this outcome will vary for each 
selection, we can identify the outcome of each 
selection as a “random variable,” which we will 
denote as Xi. Moreover, for n independent selec-
tions from this population, the total number of 
individuals found to “favor A” will be equal to 
the sum of the individual selections, or

X1 + X2 + . . . + Xn−1 + Xn.

We will denote this total as XA.
Now, for a set of n independent selections 

from this population, how many individuals can 
we expect to find who “favor A”? That is, what is 
E(XA)? To this question, the answer is

E(XA) = E(X1) + E(X2) + . . . + E(Xn−1) + E(Xn).

Moreover, for this population, we can assess 
the expected value of each selection experiment—
denoted as E(Xi)—as shown in Table 10.4.

Thus, we would identify p(A) as the expected 
value of a single selection from this population 
of N voters, and the expected number of n such 
selections is

E(XA) = p(A) + p(A) + . . . + p(A) + p(A) =  

n • p(A).

From this, we can then assess the relative 
proportion of the sample who “favor A” as XA ∕ n, 
and the expected value of the relative proportion 
of the sample who “favor A” is

E(XA ∕ n) = E(XA) ∕ n = (n • p(A)) ∕ n = p(A).

Thus, we can logically justify using the actual 
relative proportion of those who “favor A” in our 
sample of n individuals—denoted earlier as f(A)—
as a reasonable estimate of p(A), which is the 
relative proportion of those who “favor A” in the 
population of N voters. In a similar way, we would

 • estimate the proportion of individuals 
in the population “favoring B” by using 
f(B);

 • estimate the proportion of individuals 
in the population “rejecting both 
candidates” by using f(C); and

 • estimate the proportion of individuals in 
the population who are “undecided” by 
using f(D).

TABLE 10.3 ■  Probability Model of a 
Random Selection of an Individual from 
a Population of N Voters

Disposition
Number of 
Individuals

Probability 
of Selection

(~A) N − α (N − α) ∕ N = 1 − 
p(A) = p(~A)

(A) α α ∕ N = p(A)

Total N 1

TABLE 10.4 ■  Expected Value of X i, 
Where X Is the Number of Individuals 
Who Favor A in a Single Random 
Selection from a Population of N Voters

Value Probability Contribution

0 p(~A) = 1 − p(A) 0 • (1 − p(A)) = 0

1 p(A) 1 • p(A) = p(A)

Total 1.00 p(A)
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280  Part IV ■ Tools for Making Statistical Inferences

Now, while Paula is logically justified in using the sample proportions she col-
lected to estimate proportions of supporters and non-supporters of her candidate 
among the population of potential voters, she also knows that there is a potential 
for error in those estimations. That is, Paula knows that any two samples taken 
from a population can vary, and she cannot know whether the sample she has 
collected has the “right” proportions relative to the population. However, she 
does have some idea as to the variation she might expect among the potential 
samples she might collect. That is, using the same logical model of a Bernoulli 
trial, Paula can construct an estimate of the variability that can be expected 
among the potential samples that may be drawn from a population. For exam-
ple, with regard to the proportion of the population supporting Candidate A— 
p(A)—the expected variability among the potential samples drawn from this 
population is estimated as

√ ((f   (A) − f   (A)2) ∕ n),

where f   (A) is the observed proportion of voters in the sample supporting Candidate 
A and n is the size of the sample. Now, what can Paula infer about the correctness of 
the sample she has obtained? Paula can be relatively confident that the population 
proportion of voters supporting Candidate A—p(A)—is not likely to be less than

f   (A) − √ ((f   (A) − f   (A)2) ∕ n)

and is not likely to be greater than

f   (A) + √ ((f   (A) − f   (A)2) ∕ n).

Similarly, Paula can estimate the correctness of her sample with regard to the 
other voter dispositions:

 • the expected variability among the potential samples drawn from this 
population with regard to the observed proportion of voters in the sample 
supporting Candidate B is estimated as

√ ((f   (B) − f   (B)2) ∕ n);

 • the expected variability among the potential samples drawn from this 
population with regard to the observed proportion of voters in the sample 
who reject both candidates is estimated as

√ ((f   (C   ) − f   (C   )2) ∕ n); and

 • the expected variability among the potential samples drawn from this 
population with regard to the observed proportion of voters in the sample 
who are undecided is estimated as

√ ((f   (D) − f   (D)2) ∕ n).
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Chapter 10 ■ Estimation Studies  281

Unfortunately, we cannot use these results to compare the accuracy of the dif-
ferent relative proportions because such comparisons violate the model by which 
these estimates of variability were constructed. For the details of this logical model, 
see Box 10.2.

Although we may be logically justified in using 
sample proportions to estimate proportions in a 
population, we need to acknowledge the potential 
for error in those projections. That is, we know 
that any two samples taken from a population 
may vary, and we cannot know whether the sam-
ple we have collected has the “right” proportions 
relative to the population. However, we do have 
some idea as to the variation we might expect 
among the potential samples we might collect.

Returning to our preceding discussion, for 
a sample of n individual selections from our 
population of N voters, we have the following 
expectation regarding the relative proportion of 
those individuals who “favor A”:

E(XA ∕ n) = (E(X1) + E(X2) + . . . + E(Xn−1) + E(Xn)) ∕ n =

E(X1 ∕ n) + E(X2 ∕ n) + . . . + E(Xn−1 ∕ n) + E(Xn ∕ n).

Now, we also know that the expected  
variability—or variance—in the sample propor-
tion XA ∕ n is

Var(XA ∕ n) = Var(X1 ∕ n) + Var(X2 ∕ n) + . . . +  

Var(Xn−1 ∕ n) + Var(Xn ∕ n) =

1 ∕ n2 • Var(X1) + 1 ∕ n2 • Var(X2) + . . . + 1 ∕ n2 • 

Var(Xn−1) + 1 ∕ n2 • Var(Xn) =

1 ∕ n2 • (Var(X1) + Var(X2) + . . . + Var(Xn−1) + 

Var(Xn)).

Then, to assess Var(Xi), we have Table 10.5.
This gives us

Var(XA ∕ n) = (1 ∕ n2) • (n • (p(A) – p(A)2)) = 1 ∕ n • 

((p(A) − p(A)2).

More useful, however, in assessing the 
potential variability among the sample propor-
tions is the standard deviation σn of those pro-
portions = √ Var(XA ∕ n) = √ ((p(A) − p(A)2) ∕ n). In 
concept, this assessment of variability is similar 
to the standard error of the mean discussed in 
Chapter 9.

Now, with this understanding of the poten-
tial variability in the samples we might collect 
from this population, how do we interpret the 
actual sample proportion f(A) = a ∕ n?

1) It is reasonable to expect that the actual 
sample proportion of f(A) is exactly 

BOX 10.2

TABLE 10.5 ■  Expected Variance in Xi, Where Xi Is the Number of Individuals Who 
Favor A in a Single Random Selection from a Population of N Voters

Value
Difference 
from E(X i)

Difference 
Squared Probability Contribution to Variance

0 0 − p(A) p(A)2 1 − p(A) p(A)2 • (1 − p(A)) = p(A)2 − p(A)3 

1 1 − p(A) 1 − 2p(A) + p(A)2 p(A) p(A) − 2p(A)2 + p(A)3

Total 1.00 p(A) − p(A)2

(Continued)
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282  Part IV ■ Tools for Making Statistical Inferences

equal to the unknown population 
proportion of p(A).

2) It is possible, however, that our sample 
proportion f(A) might actually be less 
than the population proportion p(A). 
However, from our understanding of the 
standard deviation and expectations, 
we know that our expected sample 
proportion is not likely to be less than 
the population proportion minus the 
potential “error.” That is,

f(A) ≥ p(A) − √ ((p(A) − p(A)2) ∕ n).

 This in turn means

f(A) + √ ((p(A) − p(A)2) ∕ n) ≥ p(A).

 That is, the population proportion 
is likely to be not greater than the 
expected sample proportion plus the 
standard error. Now, because we do not 
know the actual population proportion 
p(A), we can only use our best 
estimate of p(A) = f(A). Thus, we would 
reasonably project our population 
proportion to be no greater than

f(A) + √ ((f(A) − f(A)2) ∕ n).

3) Similarly, it is possible that our sample 
proportion f(A) might actually be greater 
than the population proportion p(A). 
However, from our understanding of the 
standard deviation and expectations, 
we know that our expected sample 
proportion is not likely to be greater 
than the population proportion plus the 
standard error. That is,

f(A) ≤ p(A) + √ ((p(A) − p(A)2) ∕ n).

 This in turn means

f(A) − √ ((p(A) − p(A)2) ∕ n) ≤ p(A).

 That is, the population proportion is 
likely to be not less than the expected 
sample proportion minus the standard 
error. Now, because we do not know the 

actual population proportion p(A), we 
can only use our best estimate of p(A) = 
f(A). Thus, we would reasonably project 
our population mean to be no less than

f(A) − √ ((f(A) − f(A)2) ∕ n).

4) Combining these two sets of 
expectations, we have

f(A) − √ ((f(A) − f(A)2) ∕ n) ≤ 

p(A) ≤ f(A) + √ ((f(A) − f(A)2) ∕ n).

In a similar fashion, we would address the 
projections of the population proportions of 
those who “favor Candidate B,” “reject both 
candidates,” and are “undecided”:

5) We would project the population 
proportion of those “favoring Candidate B” 
= p(B) to be equal to the sample proportion 
f(B), but we would acknowledge the 
potential for error in this projection by 
providing the  
likely range of the population proportion 
as

f(B) − √ ((f(B) − f(B)2) ∕ n) ≤  

p(B) ≤ f(B) + √ ((f(B) − f(B)2) ∕ n).

6) We would project the population 
proportion of those “rejecting both 
candidates” = p(C) to be equal to the 
sample proportion f(C), but we would 
acknowledge the potential for error in 
this projection by providing the likely 
range of the population proportion as

f(C) − √ ((f(C) − f(C)2) ∕ n) ≤  

p(C) ≤ f(C) + √ ((f(C) − f(C)2) ∕ n).

7) We would project the population 
proportion of those “undecided” = p(D) 
to be equal to the sample proportion 
f(D), but we would acknowledge the 
potential for error in this projection 
by providing the likely range of the 
population proportion as

f(D) − √ ((f(D) − f(D)2) ∕ n) ≤  

p(D) ≤ f(D) + √ ((f(D) − f(D)2) ∕ n).

(Continued)
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Now, having estimated the different proportions of the different voting disposi-
tions projected for the population of potential voters, can Paula proceed with confi-
dence in constructing her candidate’s campaign strategy using these assessments? Not 
quite. It is possible that although Paula has properly assessed the potential variability 
in her projections, she cannot be confident that the observed differences in these rela-
tive proportions are not simply the result of the normal variability of sampling. Using 
the terminology introduced in Chapter 9, she cannot be certain of the statistical signifi-
cance of these observed differences. Fortunately, Paula can apply another logical model 
to address this question. However, this logical model requires several analytical steps 
that are beyond the scope of the current discussion, but these steps will be addressed 
in the next chapter. For that reason, we defer this matter to Chapter 11.

As a final comment, we will turn our attention to our assessment of the varia-
tion that can be expected in our estimate of the population proportion p(A). That 
variability was assessed to be equal to

√ ((f   (A) − f (A)2) ∕ n).

Here it may be noted that the variability among the potential samples drawn 
from a population decreases as the size of the sample increases, and the size of the 
sample is under the control of the investigator. This is the basis of the maxim

“The larger the sample, the better the estimate.”

By this, we mean

“The larger the sample, the less the probability of obtaining a sample that is a 
poor representation of the population.”

For some investigations, however, the cost in time and the difficulty of sample 
collection may be sufficiently high where a trade-off is necessary. That is, the inves-
tigator is willing to accept a greater uncertainty in the results of the investigation in 
order to actually conduct the investigation. In those fields in which sample collec-
tion is particularly difficult, such as medical research, the relation between sample 
size and sample uncertainty is often used to determine a minimum sample size 
necessary to achieve an acceptable level of uncertainty with regard to the correctness 
of the sample as an estimate of the population parameter. This “acceptable level of 
uncertainty” is said to be “statistical power.”

10.3 ESTIMATING THE OCCURRENCE  
OF A QUANTITATIVE PROPERTY  
FOR A POPULATION
Dan Roberts (D.R.) is a newspaper publisher, and he is desirous of knowing the 
amount of time readers actually spend reading the daily newspaper. Why would 
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he care? Because he can presume that the greater the reading time, the greater the 
reading depth. If the typical reader spends a relatively short time reading, it is 
unlikely the reader will “go for depth”; thus, articles must be correspondingly brief 
to capture the reader’s attention. On the other hand, if the typical reader spends a 
relatively long period of time reading, it is likely the reader is looking for concep-
tual depth in each article, and a conceptually shallow article will lose the reader’s 
attention. Why would D.R. care about capturing the reader’s attention? Because 
a reader’s attention that is not captured is less likely to continue purchasing that 
newspaper brand.

Because D.R. is concerned with understanding the reading habits of the general 
population of newspaper readers, his logical model can be described as shown in 
Table 10.6.

TABLE 10.6 ■  Potential Reading Times (X) of a Population of 
N Readers

Time (hours) Proportion of Population Relative Proportion

0 N0.0 N0.0 ∕ N = p(0.0)

0.5 N0.5 N0.5 ∕ N = p(0.5)

1.0 N1.0 N1.0 ∕ N = p(1.0)

1.5 N1.5 N1.5 ∕ N = p(1.5)

2.0 N2.0 N2.0 ∕ N = p(2.0)

. . . . . . . . .

23.0 N23.0 N23.0 ∕ N = p(23.0)

23.5 N23.5 N23.5 ∕ N = p(23.5)

24.0 N24.0 N24.0 ∕ N = p(24.0)

Total N 1.00

In this model, there are 48 potential values of reading time and some unknown 
proportion of the population (of unknown size) for each one, and by using this 
model D.R. can address three questions:

(1) For marketing reasons, D.R. might ask, “What is the size of each 
proportion of readers?” In marketing terms, each of these reading time 
groups represents a “market segment,” and D.R. might develop a strategy 
to appeal to a particular group of readers.

(2) D.R. might also ask the question, “Can a typical reader be identified with 
regard to a typical amount of reading time?” In asking this question,  
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D.R. might attempt a strategy of appealing to the potential readership 
with a generally acceptable news format. To address this question,  
D.R. can use the conceptual model we developed in Chapter 4 for 
identifying a typical phenomenon from a sample of phenomena. In this 
case, D.R. would conceptually construct a “typical” reader based on the 
mean reading time (μ) of the unknown population (Table 10.7).

TABLE 10.7 ■  Conceptual Assessment of the Mean Reading Time (μ) of 
a Population of N Readers

Time (hours) Relative Proportion Contribution to the Mean

0.0 p(0.0) 0.0 • p(0.0)

0.5 p(0.5) 0.5 • p(0.5)

1.0 p(1.0) 1.0 • p(1.0)

. . . . . . . . .

23.5 p(23.5) 23.5 • p(23.5)

24.0 p(24.0) 24.0 • p(24.0)

Total 1 μ

However, because the actual proportions and total number of potential readers 
are unknown, the model remains conceptual, and the unknown mean reading 
time μ is said to be a parameter of the population.

(3) Finally, D.R. might also ask the question, “What is the typical 
variability in the typical reading time among the potential newspaper 
readers?” Why would D.R. care about the variability among the readers’ 
habits? The variability among the readers’ habits presents a risk to 
any marketing strategy. That is, if there is a relatively small amount of 
variability among the readers’ habits, a strategy of offering a generally 
acceptable article length will have a relatively good chance of success. 
However, if the variability among the readers’ habits is large, a strategy 
of offering a generally acceptable article length based on the mean-time 
reader will be less likely to succeed because the shorter-time readers and 
longer-time readers will similarly find articles appealing to the mean-
time readers as unacceptable. To address this question, D.R. can use the 
conceptual model we developed in Chapter 5 for identifying a typical 
variability found among a set of phenomena. This typical amount of 
variability was assessed as the variance and interpreted as the standard 
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As with the assessment of the population mean, the actual number of individu-
als characterized by each “reading time” value is unknown, so the variance and 
the standard deviation in these reading time values are also unknown. Moreover, 
like the mean, the variance and the standard deviation are said to be parameters 
of the population.

Now, because interviewing every potential newspaper reader is not a feasible 
option, D.R. commissions a study in which a random sample of potential readers 
are asked to identify the amount of time they spend daily reading the newspaper. 
The results of this survey are reported in Table 10.9.

TABLE 10.8 ■  Calculation of the Variance (σ2) in the Reading Times (X) 
of a Population of N Readers

Time 
(hours) Time – μ = ∆ ∆2

Relative 
Proportion

Contribution to  
the Variance

0.0 0.0 − μ (0.0 − μ)2 p(0.0) (0.0 − μ)2 • p(0.0)

0.5 0.5 − μ (0.5 − μ)2 p(0.5) (0.5 − μ)2 • p(0.5)

1.0 1.0 − μ (1.0 − μ)2 p(1.0) (1.0 − μ)2 • p(1.0)

. . . . . . . . . . . . . . .

23.5 23.5 − μ (23.5 − μ)2 p(23.5) (23.5 − μ)2 • p(23.5)

24.0 24.0 − μ (24.0 − μ)2 p(24.0) (24.0 − μ)2 • p(24.0)

Total . . . . . . 1.0 σ2

TABLE 10.9 ■  Reading Times (X) of a Sample of 1000 Readers

Time (hours) Frequency Relative Frequency

0.0 100 0.10

0.5 400 0.40

1.0 200 0.20

1.5 200 0.20

2.0 100 0.10

Total 1000 1.00

deviation (Table 10.8). For an unknown population, the variance is 
denoted as Var or σ2, and the standard deviation, which is the square 
root of the variance, is denoted as σ.
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With the results of this survey, D.R. can answer the first of his questions as 
follows:

 • The proportion of potential readers who spend zero hours reading the 
newspaper is not likely to be less than

0.10 − √ ((0.10 − 0.01) ∕ 1000) =

0.10 − √(0.09 ∕ 1000) =

0.10 − 0.0095 = 0.0905

 and is not likely to be greater than

0.10 + 0.0095 = 0.1095.

 • The proportion of potential readers who spend 0.5 hour reading the 
newspaper is not likely to be less than

0.40 − √ ((0.40 − 0.16) ∕ 1000) =

0.40 − √ (0.24 ∕ 1000) =

0.40 − 0.0155 = 0.3845

 and is not likely to be greater than

0.40 + 0.0155 = 0.4155.

 • The proportion of potential readers who spend 1 hour reading the 
newspaper is not likely to be less than

0.20 − √ ((0.20 − 0.04) ∕ 1000) =

0.20 − √ (0.16 ∕ 1000) =

0.20 − 0.0126 = 0.1874

 and is not likely to be greater than

0.20 + 0.0126 = 0.2126.

 • The proportion of potential readers who spend 1.5 hours reading the 
newspaper is not likely to be less than

0.20 − √ ((0.20 – 0.04) ∕ 1000) =

0.20 − √ (0.16 ∕ 1000) =

0.20 − 0.0126 = 0.1874
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 and is not likely to be greater than

0.20 + 0.0126 = 0.2126.

 • The proportion of potential readers who spend 2 hours reading the 
newspaper is not likely to be less than

0.10 − √ ((0.10 − 0.01) ∕ 1000) =

0.10 − √(0.09 ∕ 1000) =

0.10 − 0.0095 = 0.0905

 and is not likely to be greater than

0.10 + 0.0095 = 0.1095.

With regard to his second question, D.R. understands from the Central Limit 
Theorem of probability theory (Chapter 9) that the mean value of a property found 
for any random sample collected from a population is likely to be equal to the mean 
value of that property for the population from which the sample was drawn. This is 
true regardless of the distribution of the property values existing in that population. 
Consequently, D.R. reasons that he can use the mean value of the property “reading 
time” assessed for his sample of 1000 potential newspaper readers (denoted as x–) to 
estimate the reading time μ of the typical potential newspaper reader in the larger 
population. To assess the mean reading time x– for the sample set of individuals, 
D.R. uses the method described in Chapter 5. This analysis is found in Table 10.10.

Thus, D.R. would estimate the typical reading time for the typical individual 
of the population as 0.9 hour. However, D.R. is also aware that no sample can be 
assumed to be a perfect representation of the population from which it was drawn; 

TABLE 10.10 ■  Assessing the Mean Reading Time (x–) of a Sample of 
1000 Readers

Time (hours) Frequency Contribution to the Mean (time • frequency)

0.0 100 0

0.5 400 200

1.0 200 200

1.5 200 300

2.0 100 200

Total 1000 900

x– = 900 hours ∕ 1000 individuals = 0.9 hour per individual.
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thus, D.R. takes the extra step of assessing the potential “error” in this particu-
lar estimate of the mean reading time for this population of potential newspaper 
readers. Now, to make this assessment, D.R. first needs to assess the potential 
variability in the reading times of the population of potential newspaper readers, 
and in making this assessment D.R. has no other choice than to use the variability 
observed in reading times of the 1000 individuals of his survey. In this way, D.R. 
is also addressing his third question as to the variability in the reading times of 
the population of potential newspaper readers. To assess the variability of reading 
times observed for his sample set of individuals, D.R. uses the method of moments 
described in Chapter 5 (Table 10.11).

As described in Chapter 5, to find the variance, D.R. would find the mean value 
of ∆2 by dividing the total value of the observed differences squared by the number 
of observations. This would give the variance as

s2 = 340 ∕ 1000 = 0.340.

However, when using a sample variance to estimate a population variance, it is 
standard practice to apply the Bessel Correction, which is to reduce the divisor by 1.  
This would give the “corrected” variance as

s2 = 340 ∕ 999 = 0.3403.

Now, based on his understanding of the Central Limit Theorem, D.R. knows the 
following:

 • the sample he has collected might have a mean value of X that is less than 
the population mean μ; and

 • the sample he has collected might have a mean value of X that is greater 
than the population mean μ; but

TABLE 10.11 ■  Calculation of the Variance (s2) in the Reading Times (X) of a Sample of 
1000 Readers

Time (hours) Time − x– = ∆ ∆2 Frequency

Contribution to the Variance  

(∆2 • frequency)

0.0 0.0 − 0.9 = −0.9 0.81 100 81

0.5 0.5 − 0.9 = −0.4 0.16 400 64

1.0 1.0 − 0.9 = 0.1 0.01 200 2

1.5 1.5 − 0.9 = 0.6 0.36 200 72

2.0 2.0 − 0.9 = 1.1 1.21 100 121

Total . . . . . . 1000 340
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 • his sample mean is most likely to have a mean value of X that is equal to the 
population mean μ.

Moreover, even if the sample D.R. has chosen has a mean value of X that is not 
equal to the mean value of X for the population, he can be relatively confident that 
the mean value of X for his sample is within the following bounds:

 • x– is not likely to be less than μ − (σ ∕ √n); and

 • x– is not likely to be greater than μ + (σ ∕ √n),

where n is the size of his sample. Why? Because the value (σ ∕ √n) is the expected 
variation in the mean values of X that would be found among all of the potential 
samples that might be drawn from the population of potential newspaper readers. 
This was described as the standard error of the mean in Chapter 9. Thus, D.R. has 
the following expectations:

 • If x– is not likely to be less than μ − (σ ∕ √n), then x– ≥ μ − (σ ∕ √n). This, in 
turn, means 

x– + (σ ∕ √n) ≥ μ.

 • If x− is not likely to be greater than μ + (σ ∕ √n), then x– ≤ μ + (σ ∕ √n). This, 
in turn, means

x− − (σ ∕ √n) ≤ μ.

 • Together, he has

x– − (σ ∕ √n) < μ < x– + (σ ∕ √n).

Now, because σ is unknown, D.R. follows the common practice of using the 
standard deviation of his sample (s) to estimate the unknown standard deviation 
(σ) of the population. In this case,

s2 = 0.3403 and

s = √0.3403 = 0.5834.

Thus, D.R. can estimate the typical reading time μ for the population of poten-
tial newspaper readers as

x− − (s ∕ √n) ≤ μ ≤ x− + (s ∕ √n) or

0.9 − (0.5834 ∕ √1000) ≤ μ ≤ 0.9 + (0.5834 ∕ √1000) or

0.9 − (0.184) ≤ μ ≤ 0.9 + (0.184) or

0.716 < μ < 1.084.
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Finally, D.R. can address his third question by interpreting the meaning of the 
standard deviation estimated for the reading habits of the population of potential 
newspaper readers. Here the mean reading time estimated for the population is 
0.9 hour, and the estimated standard deviation in reading time is 0.5834 hour. As 
discussed in Chapter 5, the standard deviation of a set of observations can be inter-
preted in two ways:

 • the standard deviation can simply reflect the natural variability of the 
values of the property; or

 • the standard deviation can reflect the existence of two distinct groups of 
values with respective means of μ − σ and μ + σ.

To compare these two possible interpretations, D.R. considers the following:

 • Was the distribution of reading time values found in the sample 
multimodal? If so, this fact would support the interpretation of the 
standard deviation representing two distinct groups. In this case, the 
answer is “no.”

 • Was the standard deviation σ smaller than the smallest increment on the 
scale of measurement? If so, the scale of measurement is insufficiently 
precise to distinguish between the two groups. In this case, the standard 
deviation is 0.5834 hour, while the smallest scale increment is 0.5 hour.

With these conflicting assessments, D.R. concludes that there is insufficient evi-
dence to interpret the standard deviation as indicating two distinct groups of indi-
viduals with different reading habits.

10.4 SOME NOTES ON SAMPLING
In probability theory, the concept of “random sampling” is intuitively straight-
forward. However, in empirical practice, approximating the theoretical “random 
selection process” is fraught with logistical problems, and numerous techniques 
have been developed to address these problems. While an understanding of such 
techniques is useful in designing empirical studies, the description of these tech-
niques lies beyond the scope of this text. Nevertheless, two general “problems” in 
sampling are of particular note in observing human behavior.

Selection Bias

Suppose we are interested in peoples’ opinions on their favorite genre of music, 
and we have designed a questionnaire—said to be an “instrument”—to assess these 
opinions. Now, in order to administer this questionnaire, we need to find individuals, 
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capture their attention, and enlist their agreement to volunteer their time to complete 
the questionnaire. Some individuals will be more accessible than others, and some 
individuals will be more willing to volunteer their time to complete the question-
naire. Clearly, this reality of sampling does not correspond to the theoretical model of 
a lottery in which a ball is blindly selected from a bag, and the probability of selecting 
one individual rather than another is not equal. This is an example of what is said to 
be selection bias, and it is an unavoidable problem in some empirical studies. At best, 
a practitioner should understand when his or her research project is subject to such 
bias, and temper his or her conclusions regarding the accuracy of his or her sampling.

Response Bias

Suppose we are interested in people’s opinions on several alternative options 
regarding a controversial policy issue. Having designed a questionnaire “instru-
ment” to assess these opinions, we proceed to administer the instrument among a 
random sample of individuals. In assessing each individual’s opinion, we are pre-
suming that the individual will honestly express his or her true feelings. Unfortu-
nately, this may or may not be the case. For example, suppose there are two policy 
alternatives, and one has received a great deal of promotional support by a number 
of prominent social institutions, while the other policy option has been disparaged 
by those same institutions. Human nature being as it is, it would not be unreason-
able to expect some individuals who favor the disparaged policy to be reticent to 
reflect their preference in their completion of the questionnaire, and this reality 
of opinion assessment clearly does not correspond to the necessary presumption 
of “honesty.” This is an example of what is said to be response bias, and it is an 
unavoidable problem in some empirical studies. In some cases, a researcher may 
attempt to elicit “honesty” indirectly through a series of proxy questions, but this 
introduces two new problems:

 • First, the proxy questions may or may not be a proper representation of the 
individual’s direct opinion on the policy.

 • Second, the use of such techniques may present an ethical concern regarding 
the “tricking” of the respondent to reveal his or her true preferences.

While these indirect methods are commonly used, the practitioner should 
understand the problems in doing so, and a responsible practitioner will accord-
ingly temper his or her conclusions regarding the accuracy of the sample results.

10.5 SPSS TUTORIAL
The techniques for analyzing observations of phenomena described by a quali-
tative property—presented in Chapter 3—are appropriate for both case studies 
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and estimation studies. For analyzing observations of phenomena described by a  
quantitative property, most statistical software programs automatically apply the 
Bessel Correction even if the observations being analyzed are part of a case study 
rather than an estimation study. This is true of SPSS, so the tutorial presented in 
Chapter 5 was technically incorrect for the case study applications described but 
was technically correct for an estimation study.

10.6 Summary

 • In an estimation study, an investigator is 
interested in characterizing a set of phenomena 
(population) with regard to a property of 
interest, but observing the full population is 
infeasible. To estimate the characteristics of 
the population, the investigator instead collects 
a random sample of phenomena from the 
population and uses the characteristics of the 
sample to estimate the characteristics of the 
population. The characteristics of the sample 
are said to be statistics, the characteristics 
of the population are said to be parameters, 
and the logical justification by which sample 
statistics can be used to estimate population 
parameters is based on probability theory.

 • For a population of phenomena described by a 
qualitative, ordinal, or quantitative property, the 
population may be characterized by the relative 
proportions of the values of the property of 
interest, and the relative proportions of the 
values of the property found in a random 
sample of the population are good estimates 
of the relative proportions of the values of the 
property in the population. However, these 
estimates cannot be expected to be perfect and, 
thus, are subject to some measure of potential 
error. The potential error in an estimate of a 
population proportion is equal to

√ ((f(A) − f(A)2) ∕ n),

 where f(A) is the relative proportion estimated 
from the sample and n is the size of the sample.

 • For a population of phenomena described by 
a quantitative property, the population also 
may be characterized by the mean value of 
the property, the variance in the values of the 
property, and the standard deviation in the 
values of the property. If a randomly selected 

set of phenomena is drawn from the population 
as a sample, the sample mean, the sample 
variance, and the sample standard deviation 
all are good estimates of the corresponding 
population parameters. However, these 
estimates cannot be expected to be perfect 
and, thus, are subject to some measure of 
potential error. The potential error in the 
estimate of a population mean is equal to

s ∕ √n,

 where s is the standard deviation of the values of 
the property found in the sample and n is the size of 
the sample. This potential error in the estimate of 
the population is said to be the standard error of the 
mean. As a technical note, when a sample variance 
is used to estimate a population, the sample 
variance is subjected to the Bessel Correction, in 
which the total of the squared differences from the 
mean is divided by the sample size minus 1 rather 
than by the sample size.

 • In theory, the random selection process is 
conceived as a lottery. However, approximating 
this model is fraught with logistical problems, 
and numerous techniques have been developed 
to address these problems. While a description 
of these collection techniques is beyond 
the scope of this test, we can address two 
additional problems in sampling where the 
property of interest involves human behavior. 
First, because not all of the individuals in a 
population are equally accessible, or equally 
willing to be “observed,” any sample set of 
phenomena will be subject to selection bias. 
Second, not all individuals will tell the truth 
in revealing their preferences or behavioral 
habits; thus, samples of such properties are 
subject to response bias.
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10.7 Exercises

1) Design and conduct a small-scale estimation 
study in which the property of interest is 
qualitative.

a) Identify the population of interest. (If you 
plan to investigate some aspect of human 
behavior, do not include individuals under 
the age of 18 years in your population.)

b) Identify the property of interest.

c) Design an assessment instrument.

d) Design your sampling technique. (If you 
plan to investigate some aspect of human 
behavior, do not include individuals under 
the age of 18 years in your sampling 
technique.)

e) Collect the sample.

f) Estimate the characteristics of the 
population from the sample, including the 
potential errors in the estimates.

2) Design and conduct a small-scale estimation 
study in which the property of interest is 
quantitative.

a) Identify the population of interest. (If you 
plan to investigate some aspect of human 
behavior, do not include individuals under 
the age of 18 years in your population.)

b) Identify the property of interest.

c) Design an assessment instrument.

d) Design your sampling technique. (If you 
plan to investigate some aspect of human 
behavior, do not include individuals under 
the age of 18 years in your sampling 
technique.)

e) Collect the sample.

f) Estimate the characteristics of the 
population from the sample, including 
potential errors in the estimates.

Optional exercises: These exercises demon-
strate the relationship between theoretical pre-
dictions of probability and statistical outcomes.

3) A Sampling Experiment. Obtain 50  
3 × 5-inch index cards and cut each one 
into two halves at the midpoint of the long  
(5-inch) axis, resulting in 100 cards.

 • On 50 of those cards, write “Candidate A.”

 • On 30 of those cards, write “Candidate B.”

 • On 10 of those cards, write “Neither, C.”

 • On 10 of those cards, write “Undecided, D.”

In doing so, we have created a population 
of 100 potential voters with the following 
dispositions:

 • 50% favor Candidate A = p(A);

 • 30% favor Candidate B = p(B);

 • 10% reject both candidates = p(C); and

 • 10% are undecided = p(D).

Place the 100 cards into a medium paper 
bag, fold the top, and shake the bag. Then, 
randomly select a card from the deck, record 
the disposition written on the card, and return 
the card to the bag. Repeat this procedure 
nine times. This will result in a sample set of 
10 observations of the property “preference 
for candidates.” Summarize your sample as in 
Table 10.12.

a) From your sample, find f(A) and 
compare with p(A) = 0.50.

b) Calculate √ ((f(A) − f(A)2) ∕ 10).

 • Is p(A) = 0.50 greater than  
f(A) − √ ((f(A) − f(A)2) ∕ 10)?

 • Is p(A) = 0.50 less than  
f(A) + √ ((f(A) − f(A)2) ∕ 10)?

BOX 10.3
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c) From your sample, find f(B) and 
compare with p(B) = 0.30.

d) Calculate √ ((f(B) − f(B)2) ∕ 10).

 • Is p(B) = 0.30 greater than  
f(B) − √ ((f(B) − f(B)2) ∕ 10)?

 • Is p(B) = 0.30 less than  
f(B) + √ ((f(B) − f(B)2) ∕ 10)?

e) From your sample, find f(C) and 
compare with p(C) = 0.10.

f) Calculate √ ((f(C) − f(C)2) ∕ 10).

 • Is p(C) = 0.10 greater than  
f(C) − √ ((f(C) − f(C)2) ∕ 10)?

 • Is p(C) = 0.10 less than  
f(C) + √ ((f(C) − f(C)2) ∕ 10)?

g) From your sample, find f(D) and 
compare with p(D) = 0.10.

h) Calculate √ ((f(D) − f(D)2) ∕ 10).

 • Is p(D) = 0.10 greater than  
f(D) − √ ((f(D) − f(D)2) ∕ 10)?

 • Is p(D) = 0.10 less than  
f(D) + √ ((f(D) − f(D)2) ∕ 10)?

4) Another Sampling Experiment. In this 
experiment, we will simulate an economy 
in which 63% of the working-age adults 
participate in the workforce and 37% do 
not. As a note of interest, this participation 
rate is similar to that estimated for the 
United States. Thus, among the population 
of working-age adults, we have the 
following distribution of workweek hours:

 • 37% work zero hours;

 • 7% work 10 hours;

 • 16% work 20 hours;

TABLE 10.12 ■  Voting Dispositions of a Randomly Selected 
Sample of 10 Voters

Disposition Frequency Relative Frequency

A a a ∕ 10 = f(A)

B b b ∕ 10 = f(B)

C c c ∕ 10 = f(C)

D d d ∕ 10 = f(D)

Total 10 1.00

TABLE 10.13 ■  Weekly Work Hours for a Population of  
N Workers

Hours Probability Contribution to the Mean (μ)

 0 0.37  0 • 0.37 = 0.0

10 0.07 10 • 0.07 = 0.7

20 0.16 20 • 0.16 = 3.2

40 0.32 40 • 0.32 = 12.8

60 0.08 60 • 0.08 = 4.8

Total 1.00 21.5

(Continued)
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 • 32% work 40 hours; and

 • 8% work 60 hours.

Moreover, we can describe the population in 
terms of the distribution of working-age adults 
by their weekly work hours  
(Table 10.13).

Thus, for any working-age adult individual 
randomly selected from this population, the 
expected number of work hours per week (μ) is 
21.5. Moreover, the variability we might expect 
in this selection—the Variance—is 408.75 
hours2, and the standard deviation is 20.22 
hours (see Table 10.14).

For policy purposes, the government needs 
to know the expected work activities of this 
population of working-age individuals to 

project the cost of potential unemployment 
benefits. However, because it is impractical 
for the government to canvass every working-
age adult, the government relies on random 
samples collected from the population. In this 
exercise, you will have an opportunity to check 
the accuracy of such sampling.

a) Obtain 50 3 × 5-inch index cards, and cut 
each one into two halves at the midpoint of 
the long (5-inch) axis, resulting in 100 cards.

 • On 37 of those cards, write “0 hours.”

 • On 7 of those cards, write “10 hours.”

 • On 16 of those cards, write “20 hours.”

 • On 32 of those cards, write “40 hours.”

 • On 8 of those cards, write “60 hours.”

TABLE 10.14 ■  Variance in Expected Weekly Work Hours for a Population of  
N Workers

Hours Hours − μ = ∆ ∆2 Probability
Contribution to the Mean =  

∆2 • Probability

0 −21.5 462.25 0.37 462.25 • 0.37 = 171.03

10 −11.5 132.25 0.07 132.25 • 0.07 = 9.26

20 −1.5 2.25 0.16 2.25 • 0.16 = 0.36

40 18.5 342.25 0.32 342.25 • 0.32 = 109.52

60 38.5 1482.25 0.08 1482.25 • 0.08 = 118.58

Total 1.00 408.75

TABLE 10.15 ■  Weekly Work Hours for a Sample of 10 Working-Age Individuals

Hours Relative Frequency

 0  f(0)

10 f(10)

20 f(20)

40 f(40)

60 f(60)

Total 1.00

(Continued)
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In doing so, you will have created a population 
of 100 working-age individuals equivalent to 
the population of this hypothetical economy.

b) Place the 100 cards into a medium paper 
bag, fold the top, and shake the bag. Then, 
randomly select a card from the deck, 
record the work hours written on the card, 
and return the card to the bag. Repeat 
this procedure nine times. This will result 
in a sample set of 10 observations of the 
property “weekly work hours.” Summarize 
your sample of 10 observations in a relative 
frequency distribution (see Table 10.15).

c) Compare the sample proportions with 
those of the population:

 • Compare the sample proportion of 
those working “0 hours” = f(0) with the 
population proportion of those working 
“0 hours” = 0.37.

 • Compare the sample proportion of 
those working “10 hours” = f(10) with 
the population proportion of those 
working “10 hours” = 0.07.

 • Compare the sample proportion of 
those working “20 hours” = f(20) with 
the population proportion of those 
working “20 hours” = 0.16.

 • Compare the sample proportion of 
those working “40 hours” = f(40) with 

the population proportion of those 
working “40 hours” = 0.32.

 • Compare the sample proportion of 
those working “60 hours” = f(60) with 
the population proportion of those 
working “60 hours” = 0.08.

d) Find the mean work hours (x–) of the 
sample. Compare this with the population 
mean = 21.5 hours.

e) Find the standard deviation in work hours 
(s) of the sample. Compare this with the 
standard deviation in work hours of the 
population = 20.22.

f) Use the standard deviation of your 
sample (s) to estimate the standard 
deviation of the population (σ), and 
find the standard error of the mean “for 
samples of size 10” taken from this 
population = σ ∕ √10.

 • Is the population mean μ = 21.5 
greater than or equal to

x– − standard error of the mean?

 • Is the population mean μ = 21.5 less 
than or equal to

x– + standard error of the mean?
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