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14
CORRELATION ANALYSIS 

AND LINEAR REGRESSION

Assessing the Covariability of  
Two Quantitative Properties

14.0 LEARNING OBJECTIVES

In this chapter, we discuss two related techniques for assessing a possible 
association between two quantitatively assessed properties of a set of phe-
nomena. These related techniques—correlation analysis and regression analy-
sis—are based on the measure of association said to be the covariance as 
developed from probability theory (Chapter 8). In this chapter, we discuss 
the following:

 • constructing what is said to be a scatter plot to provide a preliminary 
assessment of a possible association relationship between two 
properties based on curve fitting;

 • assessing the covariance of the occurrences of the two properties 
in terms of the correlation coefficient and then using the Central 
Limit Theorem to assess the statistical significance of that correlation 
coefficient; and

 • using the correlation coefficient to construct a linear mathematical 
model to estimate the covariability of the two properties as a 
mathematical function (this linear mathematical model is said to be 
a linear regression).
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368  Part IV ■ Tools for Making Statistical Inferences

14.1 MOTIVATION
Recalling the discussion of an explanatory (or association) study presented  
in the introduction to Part IV, each such study begins with the following 
question:

“Why do these different phenomena (people, places, or things) have dif-
ferent values for this property of interest?”

Following is the answer:

“These phenomena have different values for the property of interest (the 
behavioral property, Y) because they were found to also have different 
values for another property (the explanatory property, X).”

In Chapter 11, we described the scenario in which both the behavioral property 
(Y) and the explanatory property (X) were qualitative. In this case, the phenomena 
can be sorted into groups according to both properties, and a suspected association 
between the properties may be assessed using the method of Chi-Square Analysis 
based on the premise of stochastic independence. Then, in Chapters 12 and 13, we 
described scenarios in which the behavioral property (Y) was quantitative rather 
than qualitative. As in the case in which the two properties were qualitative, the 
phenomena may be sorted and assessed using the method of Chi-Square Analysis. 
However, given that the behavioral property is quantitative, we can expand the 
informational content of the analysis by noting that each group of phenomena 
can be characterized by a typical (mean) value of the behavioral property, and we 
can determine whether the different groups have different typical (mean) values 
for the behavioral property. In the scenario in which there are only two groups 
to compare, the method of assessing the significance of the groups’ differences is 
the t-test method of analysis (Chapter 12), and in the scenario in which there are 
several groups to compare, we use the method of Analysis of Variance (ANOVA) 
(Chapter 13).

Now, we will describe the investigative scenario in which both the behavioral 
property and the explanatory property are quantitative. To begin, we could start 
our analysis by sorting the phenomena into groups according to both properties 
in order to assess a possible association using either the method of Chi-Square 
Analysis or the method of Analysis of Variance. Typically, however, neither of these 
is the method of choice because neither takes full advantage of some useful infor-
mation. That is, because both properties of interest are quantitative, not only 
can we assess whether specific values of the behavioral property tend to co-occur 
with specific values of the explanatory property, but we also can determine whether  
specific quantitative differences in the behavioral property tend to co-occur  
with specific quantitative differences in the explanatory property. For example,
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Chapter 14 ■ Correlation Analysis and Linear Regression  369

 • a political scientist might assess the extent to which individuals who spend 
more time on the Internet (daily hours) might have greater, or lesser, 
knowledge of American history (assessed as a quiz score);

 • an economist might assess the extent to which job creation (new jobs per  
1000 persons) might be related to the rate of net imports of goods and services; or

 • a marketing manager might assess the extent to which those consumers who 
spend more time on social media also spend more money with online shopping.

This type of association is said to be covariance (Chapter 8), and two useful—and 
related—statistical methods of assessing the covariance of two quantitative proper-
ties of a set of phenomena are said to be correlation analysis and regression analysis. 
They are related in the following way:

1) The covariance of a set of coexisting properties is a measure of the extent to which

a) higher (lower) values of one property tend to co-occur with higher 
(lower) values of the other property;

b) higher (lower) values of one property tend to co-occur with lower 
(higher) values of the other property; or

c) higher values of one property tend to co-occur with higher and lower 
values of the other property.

Under scenario (a), the covariance will be a positive number, and this is said 
to represent a “direct” association. Under scenario (b), the covariance will 
be a negative number, and this is said to represent an “inverse” association. 
Finally, under scenario (c), the covariance will be a number near zero, and 
this is said to represent a non-association, or stochastic independence.

2) If the coexisting properties are converted to their standardized form 
(Chapter 5), the covariance is then said to be the correlation coefficient. 
Similar in interpretation to the covariance, the values of the correlation 
coefficient will range from a maximum of +1, representing scenario (a), 
to a minimum of −1, representing scenario (b), with a value near zero 
representing scenario (c).

3) The correlation coefficient can be used to construct a linear mathematical 
model describing the association between the two coexisting properties. This 
mathematical model is said to represent a regression model. If the two properties 
are X (explanatory) and Y (behavioral), the model will be of the form

Y = B X + C,
where B and C are constants.
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370  Part IV ■ Tools for Making Statistical Inferences

We describe this analytical technique in Section 14.2 through an example.
Before we proceed, however, we should inject an important caveat. The covari-

ance of two properties is only one of many types of possible “functional” relation-
ships between two properties. For example, two properties might be related in the 
following way:

Starting at x = 0, values of property Y increase with increasing values of 
property X; then, at value x = a, values of property Y decrease with increas-
ing values of property X.

This type of “real” relationship would fail the conditions of a covariance. The covari-
ance—or a linear relationship—is simply the most basic form of a functional rela-
tionship. Moreover, linear relationships are well represented in the natural world, so 
covariance analysis remains a useful start to any association study.

14.2 AN EXAMPLE
Dr. M, an educational psychologist at a high school district covering a large student 
body, has read several national studies suggesting that students who sleep more 
perform better academically. While the results seem reasonable, Dr. M knows that 
many intervening demographic factors might be involved, and the national results 
might not be as profound for the students in her district. Moreover, Dr. M was 
a light sleeper, she used her waking hours to study, and she was the class valedic-
torian. Consequently, Dr. M has decided to test this “more sleep, better perfor-
mance” proposition using data from her district. Because her district is relatively 
homogeneous in its demographic profile, the potential effects of demographic 
differences are less likely to be present. To this end, Dr. M initiates the follow-
ing study. Selecting 100 students at random, she asks them to monitor their daily 
school night sleeping habits (minutes of sleep) for 2 weeks. From these records, 
each student’s average sleeping time can be determined. Adding to this, she has 
each student’s academic record (grade point average, or GPA). The summary statis-
tics for these two properties for these students are found in Table 14.1.

Now, while Dr. M could use the Chi-Square Analysis or ANOVA method to 
assess the extent to which students with specific sleeping habits have specific grade 
point averages, she is more interested in the following proposition: Do students 

TABLE 14.1 ■  Sleeping Habits and GPA of 100 Randomly Selected 
Students in District A

Property Mean Standard Deviation

Sleep (minutes) 470.2 76.554

GPA (0–4) 2.8790 0.6525
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Chapter 14 ■ Correlation Analysis and Linear Regression  371

who tend to sleep more have (a) higher grade point averages, (b) lower grade point 
averages, or (c) both high and low grade point averages? Following our discussion 
of Chapter 8, these two properties are said to be coexisting, with scenario (a) repre-
senting a positive association, scenario (b) representing a negative, or inverse, asso-
ciation, and scenario (c) representing a non-association, or stochastic independence.

As a first step, Dr. M chooses to use a technique of visual analysis to assess the 
extent to which either scenario (a), scenario (b), or scenario (c) seems to describe 
the pattern in the co-occurrences of these two properties. This visual technique 
is said to be the construction of a scatter plot. A scatter plot is a pictorial repre-
sentation of a contingency table that is useful for displaying observations of phe-
nomena described by two coexisting quantitative properties, and it is constructed 
using Cartesian coordinates (named for the philosopher and mathematician René  
Descartes, 1596–1652). As a first step of analysis, the scatter plot provides an indica-
tion of the appropriateness of constructing a linear model to describe a potential 
association. That is, in some cases, a different mathematical model might better fit 
the observed phenomena, and where a linear model might suggest that no relation-
ship exists, a different mathematical model might reveal a “nonlinear” relationship 
between the two properties. As a technical note, while this analytical step is useful, 
it is also optional. See Section 14.3 for further details.

14.3 VISUAL INTERPRETATION  
WITH A SCATTER PLOT (OPTIONAL)
A scatter plot is a pictorial representation of a contingency table, and it is constructed 
using Cartesian coordinates:

 • Two orthogonal axes—one vertical and the other horizontal—are drawn 
to represent the two coexisting properties as dimensions. The horizontal 
axis is typically identified as the “X-axis,” and it is typically used to 
represent the independent (explanatory) property. The vertical axis is 
typically identified as the “Y-axis,” and it is typically used to represent the 
dependent (behavioral) property.

 • The zero point of each scale is placed at the intersection of the two axes. 
This intersection is said to be the origin of the coordinate system.

a) Positive values of the scale used to assess property X are placed on the 
horizontal axis to the right—or “east”—of the origin, and negative 
scale values of X (if relevant) are placed to the left—or “west”—of the 
origin.

b) Positive values of the scale used to assess Y are placed on the vertical 
axis above—or to the “north” of—the origin, and negative scale values 
of X (if relevant) are placed below—or to the “south” of—the origin.
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372  Part IV ■ Tools for Making Statistical Inferences

 • Each observation has a value for property X, and each observation also 
has a value for property Y; thus, each observation is represented as a 
dot according to its X-value and its Y-value. The X and Y values of an 
observation are said to be its “coordinates.”

Depicted in this format, a set of observations may be compared with any num-
ber of different mathematical models in an exercise said to be curve fitting. Some 
commonly used mathematical models include the parabola, the hyperbola, the 
“S-curve,” the exponential curve, and an oscillating sine wave. Each of these pat-
terns has a mathematical form, and choosing the mathematical form that best fits 
a set of observations is the “curve-fitting” exercise. Of all the mathematical models, 
however, the linear model is the simplest; thus, it is the model of choice unless com-
pelling evidence suggests otherwise. As a technical note, the mathematical models 
that are not the “linear” model are said to be “nonlinear.”

Now, from the students’ responses, Dr. M constructs the scatter plot shown in 
Figure 14.1. From this depiction, Dr. M sees a potential linear association between 
these two properties. That is, while the observations do not follow a line,

 • they do indicate a tendency for students with more sleeping hours to have 
higher grade point averages; and

 • the increase in grade point averages does not seem to accelerate or 
decelerate as typical sleep time increases.

Thus, Dr. M will proceed on the basis that the most logical model to describe 
these observations is a linear model.
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FIGURE 14.1 ■ Scatter Plot of Observed Values of Sleeping Habits and 
GPA for 100 Randomly Selected Students
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Chapter 14 ■ Correlation Analysis and Linear Regression  373

14.4 ASSESSING AN ASSOCIATION  
AS A COVARIANCE
As described in Chapter 8, the covariance is a measure of the covariability expected 
in the co-occurrences of two quantitative properties coexisting in the elements of 
a sample space. When describing the covariability in a set of actual observations, 
the covariance is interpreted as the “typical” covariability of the values of two such 
quantitative properties coexisting in a set of phenomena. As a model of covariabil-
ity, the covariance is based on the following:

 • Values of a quantitative property can be classified as “high” or “low.”

 • If “high” values of one property co-occur with “high” values of the 
coexisting property and “low” values of one property co-occur with “low” 
values of the coexisting property, this is identified as a “direct” association.

 • If “high” values of one property co-occur with “low” values of the 
coexisting property, this is identified as an “inverse” association.

As a measure of covariability, the covariance is based on the following:

 • Adopting the method of moments, “high” values and “low” values 
of a property are assessed in comparison with the mean for a set of 
observations. Expressed as an arithmetic difference (i.e., subtraction), a 
“high” value will yield a positive difference, and a “low” value will yield a 
negative difference.

 • Adopting a model of interaction from the physical sciences, coexisting 
properties of a phenomenon are represented as the product of their 
respective values.

a) A “high” value of one property co-occurring with a “high” value of the 
coexisting property will result in a positive number. Similarly, a “low” 
value of one property co-occurring with a “low” value of the coexisting 
property will also result in a positive number. Thus, a positive product 
represents a direct association.

b) A “high” value of one property co-occurring with a “low” value of the 
coexisting property will result in a negative number. Thus, a negative 
product represents an inverse association.

 • Combining the method of moments and physical science models, we can 
represent the “typical” co-occurrence of the two properties as the mean of 
the combined co-occurrences. This is said to be the covariance.

a) If the mean is positive, the typical co-occurrence is consistent with a 
direct association.
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374  Part IV ■ Tools for Making Statistical Inferences

b) If the mean is negative, the typical co-occurrence is consistent with an 
inverse association.

c) If the mean is zero, the mix of “direct” associations and “inverse” 
associations is equal, thereby indicating a non-pattern of association. 
This was identified in Chapter 8 as a “non-association,” and the two 
properties would be identified as stochastically independent.

 • In this way, the covariance technique provides an objective and 
interpretable assessment of an association between two properties.

In statistical practice, however, the standardized version of the covariance—
defined in Chapter 8 as the correlation coefficient—is typically found to be more use-
ful. To find the correlation coefficient for a set of phenomena with coexisting values 
of properties X and Y, we take the following steps:

1) For the set of phenomena, we find the mean value x– for property X and 
the mean value y– for property Y.

2) For the set of phenomena, we then find the standard deviation sx for 
property X and the standard deviation sy for property Y, using the Bessel 
Correction (Chapter 10) in both cases.

3) For each phenomenon, we standardize its value x for property X by the 
z-transformation,

x* = (x − x–) ∕ sx,

and we standardize its value y for property Y by the z-transformation,

y* = (y − y–) ∕ sy.

4) Then, for each phenomenon, we take the following steps:

a) We compare its standardized value for property X with the standardized 
mean for property X, which is 0. This gives us x* − 0.

b) We compare its standardized value for property Y with the standardized 
mean for property Y, which is 0. This gives us y* − 0.

c) We multiply the two comparisons,

(x* − 0) • (y* − 0) = x* • y*.

5) Finally, we add all these products together and find the mean by dividing 
the total by the number n of phenomena minus 1 (the Bessel Correction):

(∑ (x* • y*)) ∕ (n − 1).
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Chapter 14 ■ Correlation Analysis and Linear Regression  375

The result is the “standardized” covariance, or correlation coefficient, and it is 
denoted as r. In this way, the correlation coefficient provides an index of covariation 
as a percentage of the combined variability of the two coexisting properties. As an 
index, the correlation coefficient will always be within the range of −1 to +1, with −1 
indicating a strong inverse association, +1 indicating a strong direct association, 
and 0 indicating a non-association or stochastic independence. Furthermore, 
in statistical practice, the correlation coefficient is typically interpreted in the  
following way:

 • A value of r between −1.00 and −0.60 is interpreted as a strong inverse 
association between the two properties. This means that phenomena 
having high values for one property are very likely to have low values for 
the other property, and phenomena having low values for one property are 
very likely to have high values for the other property.

 • A value of r between −0.59 and -0.01 is interpreted as a weak inverse 
association between the two properties. This means that phenomena 
having high values for one property are somewhat more likely to have 
low values for the other property, and phenomena having low values for 
one property are somewhat more likely to have high values for the other 
property.

 • A value of r of 0 is interpreted as a non-association, indicating the 
stochastic independence of the two properties. This means that 
phenomena having high values for one property are just as likely to have 
high values for the other property as they are to have low values for the 
other property, and phenomena having low values for one property are just 
as likely to have high values for the other property as they are to have low 
values for the other property.

 • A value of r between 0.01 and 0.59 is interpreted as a weak direct 
association between the two properties. This means that phenomena 
having high values for one property are somewhat more likely to have 
high values for the other property, and phenomena having low values for 
one property are somewhat more likely to have low values for the other 
property.

 • A value of r between 0.60 and 1.00 is interpreted as a strong direct 
association between the two properties. This means that phenomena 
having high values for one property are very likely to also have high values 
for the other property, and phenomena having low values for one property 
are very likely to also have low values for the other property.

Finally, as a technical note, the correlation coefficient may also be found by first 
finding the “unstandardized” covariance of a set of observations and then dividing 
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376  Part IV ■ Tools for Making Statistical Inferences

the “unstandardized” covariance by the standard deviations of the two coexisting 
properties. While these two methods are mathematically equivalent, the method 
of first standardizing the observations and then finding the covariance better rep-
resents the meaningfulness of the correlation coefficient, and this fact will be usefully 
employed in our later discussion of regression.

Returning, then, to Dr. M’s investigation, she has assessed the correlation coef-
ficient describing the association between the sleeping habits of the surveyed stu-
dents and their grade point averages to be 0.427. Thus, Dr. M concludes that she 
has found tentative evidence of a weak positive association between these two prop-
erties. That is, those students who sleep more than an average amount are some-
what more likely to have better than average grade point averages, while students 
who sleep less than an average amount are somewhat more likely to have lower 
than average grade point averages. Dr. M considers this conclusion to be tentative, 
however, because she understands the need to rule out the likelihood that the result 
represents only the normal variability of sampling. That is, it could be that there is 
no “real” relationship between the two properties, and her results might have been 
different with a different sample of students. In other words, Dr. M needs to assess 
the statistical significance of her results, and here she can use the t-test for statistical 
significance.

As described in Chapter 12, the t-test uses the t-Probability Model to assess the 
probability that two samples with different means were drawn from the same popu-
lation. If that probability is very low—less than 0.05—we can conclude that the 
two samples probably were not drawn from the same population. Now, in the case 
of the correlation coefficient, it is a sample mean. Moreover, we can identify what 
the “ideal” correlation coefficient would be if the two properties were not related 
(i.e., stochastically independent). This “ideal” correlation coefficient is zero. Thus, it 
would be useful if we could use the t-Probability Model to assess the probability of 
drawing our actual sample—with a correlation coefficient of 0.427—and an “ideal” 
sample—with a correlation coefficient of zero—from the same “ideal” population in 
which the two properties are not related. If that probability is very low—less than 
0.05—we would conclude that the actual sample probably was not drawn from the 
“ideal” population, and we would conclude that the observed correlation coeffi-
cient probably was not the result of normal sampling variability. Now, the question 
is, can we use the t-Probability Model for this assessment? The answer is “yes,” and 
Box 14.1 provides a brief mathematical explanation.

Now, to use the t-test in this case, Dr. M compares the correlation coefficient of 
her sample (r) with the “ideal” correlation coefficient of a hypothetical population 
in which the two properties are not related. This “ideal” correlation coefficient is 0 
based on the premise of stochastic independence. Recalling that the actual correla-
tion coefficient and the ideal correlation coefficient both are sample “means,” this 
gives a difference of the two sample means as

(r − 0) = r.
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Chapter 14 ■ Correlation Analysis and Linear Regression 377

As with the Central Limit Theorem, the t-test 
and t-Probability Model are based on the math-
ematical fact regarding samples drawn from 
a population described by a quantitative prop-
erty X with a mean for the population of μ:

 • most samples will have means identical or
nearly identical to the population mean;

 • a slightly lesser number of samples will
have means that differ moderately from
the population mean; and

 • very few samples will have means that
differ greatly from the population mean.

This pattern fits a Normal Probability Model 
(Chapter 9).

Now, suppose a population of phenomena 
are described by the quantitative properties 
X and Y, with population means of μx and μy, 
respectively. Any sample from this population 
will have a mean x– for property X and a mean
y– for property Y. Separately, for the property X,

 • most samples will have a mean for
property X identical or nearly identical to
the population mean;

 • a slightly lesser number of samples will
have a mean for property X that differs
moderately from the population mean; and

 • very few samples will have a mean for
property X that differs greatly from the
population mean.

Similarly, for the property Y,

 • most samples will have a mean for
property Y identical or nearly identical to
the population mean;

 • a slightly lesser number of samples will
have a mean for property Y that differs
moderately from the population mean; and

 • very few samples will have a mean for
property Y that differs greatly from the
population mean.

In mathematical terms, the sample means
for property X are normally distributed, and the 

sample means for property Y are also normally 
distributed.

Now, from probability theory (see Feller, 
William, 1968, An Introduction to Probability 
Theory and Its Applications, Vol. 1, New York: 
John Wiley), we know that two normally dis-
tributed, and stochastically independent, “ran-
dom variables” drawn from the same “sample 
space” are also “bivariate normal.” That is, 
suppose X is a property of a set of phenomena, 
Y is a property of those phenomena, and the 
two properties are stochastically independent. 
Furthermore, suppose the values of X are nor-
mally distributed among the phenomena and 
the values of Y are also normally distributed 
among the phenomena. We can then describe 
each phenomenon as xy, where x is the X-value 
of the phenomenon and y is the Y-value. The set 
of all possible values of xy is then denoted as 
XY. Now, as a fact from probability theory (see 
Feller’s Introduction cited above), we know that 
the expected value of XY will be μx • μy, where μx 
and μy are the respective means for properties X  
and Y. We also know the following regarding 
the distribution of the values of xy among the 
phenomena:

• most phenomena will have an XY value 
identical or nearly identical to µx • µy;

• a slightly lesser number of phenomena will 
have an XY value that differs moderately 
from µx • µy; and

• very few phenomena will have an XY value 

that differs greatly from µx • µy.

In other words, the XY—or bivariate— 
values of the phenomena are “normally” 
distributed.

Returning to the t-test, for the purpose of 
significance testing, we can presume that we 
have a population of hypothetical phenom-
ena represented by the coexisting properties 
x* and y*, both of which are standardized. 
Moreover, we can presume that the two prop-
erties are stochastically independent. Thus, we 
have the expected value of x*

 
y* as 0 • 0 = 0. 

Furthermore, regarding samples drawn from 
this population,

BOX 14.1

(Continued)
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378  Part IV ■ Tools for Making Statistical Inferences

 • most samples will have a mean x* y* value 
identical or nearly identical to 0;

 • a slightly lesser number of samples 
will have a mean x*

 
y* value that differs 

moderately from 0; and

 • very few phenomena will have an x*
 
y* 

value that differs greatly from 0.

That is, the occurrence of sample mean 
x*

 
y* values will follow a Normal Probability 

Model.

As to the expected difference between two sample means drawn from this popula-
tion, she uses the formula

√ ((1 − r2) ∕ (n − 2)),

where n is the size of the sample and the Bessel Correction (−2) has been applied 
to reflect the appropriate degrees of freedom. (See Box 12.1 for a derivation of this 
formula.) In combination, this gives the t-statistic as

t = r ∕ √ ((1 − r2) ∕ (n − 2)) =

0.427 ∕ √ (1 − 0.182) ∕ 98) =

0.427 ∕ √ (0.818 ∕ 98) =

0.427 ∕ √0.00834 =

0.427 ∕ 0.09136 = 4.673.

Then, using the t-Probability Model appropriate for 98 degrees of freedom,  
Dr. M finds the p-value of such a t-value to be less than 0.001. She interprets this 
in the following way:

The probability of having selected her sample—with a correlation coef-
ficient of 0.427—from a hypothetical population in which the two 
properties are not related—thus, with a correlation coefficient of zero—is 
less than 0.001. Therefore, given this “improbability,” it is reasonable to 
believe that the sample probably did not come from a hypothetical popu-
lation in which the two properties were not related and, thus, that the 
two properties probably are related. In technical terms, she would say that 
the “null hypothesis”—that the two properties are not related—has been 
rejected, and the relationship may be judged to be statistically significant.

Dr. M can then be relatively confident in the findings of her study, which suggest 
the following:

 • students who tend to sleep more than average are somewhat more likely to 
have higher than average grade point averages; and

(Continued)
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Chapter 14 ■ Correlation Analysis and Linear Regression  379

 • students who tend to sleep less than average are somewhat more likely to 
have lower than average grade point averages.

14.5 REGRESSION ANALYSIS: 
REPRESENTING A CORRELATION  
AS A LINEAR MATHEMATICAL MODEL
Having found evidence of a direct association (or positive correlation) between 
sleeping habits and academic performance, Dr. M is curious to see whether the 
relationship might be used to predict exactly how much students’ grade point 
averages tend to change with each additional minute of sleep. Mathematically, a 
predictive model based on the correlation (whether positive or negative) is a linear 
model of the form

Y = (b • X) + c.

In this model, b and c are constants, and the model describes the expected grade 
point average (Y) associated with each possible value of “daily minutes sleeping” 
(X). More important, this model offers the following predictions:

 • for each additional unit (minute) of sleep, a student’s grade point average 
can be expected to change by b units (points); and

 • a student who sleeps zero hours (i.e., X = 0) can be expected to have a 
grade point average of c (i.e., Y = c).

In technical terms,

 • b is said to be the coefficient of the “variable” X; and

 • c is said to be the “constant” coefficient, referring to the fact that the 
property X is “held constant.”

Moreover, in describing the model in terms of Cartesian coordinates, b is said to 
represent the “slope” of the line represented by the model. It represents the expected 
change in Y (the behavioral property) due to a given change in X (the explanatory 
property).

 • It is correspondingly written as ∆y ∕ ∆x.

 • c is said to be the y “intercept,” corresponding to the value of Y when X = 0.

Now, how is a linear model constructed from a set of observations? There are two 
methods, both of which yield the same result.
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A) The method of estimation said to be ordinary least squares regression was 
developed by the parallel—and contentious—efforts of Pierre Simone 
Laplace, Adrien Marie Legendre, and Carl Friedrich Gauss at the end of 
the 18th century and beginning of the 19th century (see Stigler, Stephen M., 
1986, The History of Statistics, Cambridge, MA: Belknap Press). Using the 
calculus, a hypothetical line is proposed to represent “the best fit” among 
the observations. The difference between the hypothetical line and each 
observation is measured as a distance, and the calculus is used to find 
the hypothetical line that minimizes all of the differences squared. The 
resulting minimization process is said to result in the “least squares”; thus, 
the resulting hypothetical line is said to be the “least squares” model. The 
equation of this line will be

Y = ((sy • r) ∕ sx) • X − (((sy • r) ∕ sx) • x
–) + y–,

 where r is the correlation coefficient, x– is the mean observed value of 
property X, sx is the observed standard deviation in the values of property 
X, y– is the mean observed value of property Y, and sy is the observed 
standard deviation in the values of property Y. In constructing this line, it 
should be remembered that it represents the average of the co-occurrences 
of the two properties X and Y and that some of the actual co-occurrences 
will be consistent with the line and others will not. Put somewhat 
differently, the regression line in this form represents an estimate of what 
we might expect to find for the co-occurrences of the two properties X 
and Y.

B) A linear model can also be constructed using the correlation coefficient:

y* = r • x*,

 where y* and x*are the standardized versions of the properties Y and X. 
This is said to be the standardized version of the linear regression model. 
This “standardized” version can then be “unstandardized” by “reversing” the 
z-transformation. That is, the z-transformation is as follows:

y* = (Y − y–) ∕ sy and x* = (X − x–) ∕ sx,

 where x– is the mean observed value of property X, sx is the observed 
standard deviation in the values of property X, y– is the mean observed 
value of property Y, and sy is the observed standard deviation in the 
values of property Y. Substituting these values into the standardized 
model, we have

(Y − y–) ∕ sy = r • ((X − x–) ∕ sx).

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2018 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Chapter 14 ■ Correlation Analysis and Linear Regression  381

This gives the “unstandardized” model as

Y = (sy • r) • ((X − x–) ∕ sx) + y– =

Y = ((sy • r) ∕ sx) • X – (((sy • r) ∕ sx) • x
–) + y–,

which is equivalent to the result found using calculus.
Returning to our example, Dr. M has constructed the following linear model 

from her observations:

Y = 0.004 X + 1.167.

From this model, she then makes the following tentative predictions:

 • for every additional minute of sleep, an increase of 0.004 of a point can be 
expected in grade point average; and

 • students sleeping zero hours can be expected to have a grade point average 
of 1.167.

Why are the preceding predictions tentative? Because the linear model is based on sam-
ple statistics, and sample statistics carry the normal variability of sampling. Consequently, 
Dr. M understands that she needs to assess the statistical significance of the model. In test-
ing the statistical significance of the model, there are two parts to the model and 
two separate tests of significance.

First, Dr. M can ask whether the “slope” of the model is “real”—that is, statisti-
cally significant—or is simply a result of normal sampling variability. If the “slope” 
is not “real,” the predictive value of the model is questionable. Now, because the 
“slope” of the “unstandardized” model is based on the slope of the “standardized” 
model, the two models are tested simultaneously. That is, from the equation of the 
linear model, we have

Y = ((sy • r) ∕ sx) • X – (((sy • r) ∕ sx) • x
–) + y–.

This means that b = ((sy • r) ∕ sx), and if r is not statistically significant—that is, not 
“really” different from zero—neither is b. Thus, the significance testing results of the 
correlation coefficient—identified previously as the t-test—are extended to the signifi-
cance testing of the slope of both the “standardized” and “unstandardized” models. In 
our example, Dr. M conducted the t-test to assess the statistical significance of the cor-
relation coefficient and found the correlation coefficient to be statistically significant.

Second, Dr. M can ask whether the y “intercept” of the model is “real”—that is, 
statistically significant—or is simply a result of normal sampling variability. Again, if 
the intercept is not “real,” the predictive value of the model is questionable. Having 
tested the slope of the regression line for statistical significance, it remains to test 
the y-intercept as well. That is, we want to know if the value c is a proper representa-
tion of the relationship between the two attributes or simply reflective of the normal 
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variability in sampling. In this case, the null hypothesis is that the “real” y-intercept of 
the regression line is actually zero. Here, we might pose a three-part question:

“Why is the significance of the y-intercept not simply presumed given 
that the correlation coefficient was found to be statistically significant, how 
would it be tested, and why do we care?”

To answer the first question:

While the correlation coefficient and the regression model slope are based 
on relative differences in the two properties, the y-intercept is an absolute 
value, and two models might have similar slopes, but different y-intercepts. 
Thus, the y-intercept of the model needs to be tested using the actual 
observations rather than their standardized versions.

Then, to answer the third question:

If the y-intercept is not “correct,” it cannot be used for making predictions 
with the model.

Returning to the second question:

The y-intercept of the model is actually a mean of the possible y-intercepts 
based on the actual observations of the sample. That is, a possible y-inter-
cept can be constructed for each of the observations of the sample by using 
the slope of the model to project the value of Y where the value of X is zero. 
The mathematical description of these projections is presented in Box 14.2.

Now, how might we represent the “normal variability of sampling” with regard 
to the y-intercept of the sample? The answer: We can use the variability of the pro-
jected y-intercepts. That is, we can

a) compare each of the projected y-intercepts with the intercept of the model c;

b) square all of the differences; and

c) find the average (mean) of the squared differences.

The result is said to be the standard error of the y-intercept. With this, we can 
use the t-test for the comparison of two means, where the t-statistic (Chapter 12) is

t = (c − 0) ∕ “standard error of the differences.”

Fortunately, we can use a formula based on r, n, sy, x
–, and sx to describe the 

standard error of the y-intercept:

√ (((1 − r2) • n • sy) ∕ (n − 2)) • ((1 ∕ n) + (x– 2 ∕ (n • sx))).
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In mathematical terms, hypothetical projec-
tions of the y-intercept are made in the follow-
ing way. Let x1 be an observed value of X, and let 
y1 be its observed co-occurring value of Y. Then, 
let x2 be a given hypothetical value of X, and let 
y2 be its unknown, hypothetical co-occurring 
value of Y. From the regression model, we have

b = (y1 − y2) ∕ (x1 − x2), so

b • (x1 − x2) = (y1 − y2), and

(b • (x1 − x2)) − y1 = − y2, or

 y1 − (b • (x1 − x2)) = y2.

Now, suppose the given hypothetical value x2 
is zero. Thus, its corresponding unknown hypo-
thetical y-value (y2) is a projected hypothetical 
y-intercept. In a formula, this projection would be

y2 = y1 − (b • x1).

So, for every observed value of X and its 
observed co-occurring value of Y, a hypotheti-
cal y-intercept can be projected.

BOX 14.2

This gives us the t-statistic:

t = c ∕ √ (((1 − r2) • n • sy) ∕ (n − 2)) • ((1 ∕ n) + (x– 2 ∕ (n • sx))).

With this, we can use the t-probability model to assess the probability (p-value) 
of having drawn two samples from the same population with the different means 
of c and 0. If that probability is very low—less than 0.05—we can conclude that 
the two samples probably were not drawn from the same sample, and the differ-
ences between these means is statistically significant. As to which version of the  
t-Probability Model to use in testing the t-statistic, it would be the version appropri-
ate for (n − 2) degrees of freedom (i.e., applying the Bessel Correction for property 
X and property Y). In the case of Dr. M, her t-statistic was

t = 1.167 ∕ 0.371 = 3.147.

Then, consulting the t-Probability Model for (100 − 2) = 98 degrees of freedom, 
she finds the p-value to be 0.02. Because this p-value is less than 0.05, Dr. M is 
confident in concluding that the “real” y-intercept of the model probably is not zero, 
and the y-intercept of her model is statistically significant.

14.6 ASSESSING THE EXPLANATORY 
VALUE OF THE MODEL
Finally, for an explanatory study, we can address the “ultimate” question: “To what 
extent can the differences (variability) observed in the values of the explanatory 
property X be used to explain the differences (variability) observed in the values 
of the behavioral property Y?” This is said to be an assessment of the “fit” of the 
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model, with a reference to the extent to which observations of the sample—or the 
“dots” on the scatter plot—are consistent with the regression line:

 • a “perfect” fit is one in which every observation—or dot—is consistent 
with the regression model;

 • a “less perfect” fit is one in which the differences between the observations 
and the regression model are relatively small; and

 • a “poor” fit is one in which the differences between the observations and 
the regression model are large.

In standard statistical practice, a useful way of assessing the “fit” of a regres-
sion model is to employ the method of moments to find the “typical” variation of 
the actual observations to the projections of the model. As a first step, we need to 
define what we mean by an “error” in a prediction of the model. Suppose we have 
phenomena with the values (x, y) for properties X and Y. In terms of the predictions 
of the linear model, we have y(x) is the expected value of Y for the given value x. We 
then have the following:

y = y(x) + e, or

e = y − y(x),

where e is the error in the prediction of the model. This error is also said to be a 
residual, and it represents the “misfit” of the model for that particular phenomenon.

Now, returning to our question of variability, we can employ the method of 
moments to describe the variability in each observation of Y as (y − y–). Further-
more, we can express this difference in terms of the projected value of Y and the 
consequent error:

(y − y–) = (y − y(x)) + (y(x) − y–).

Moreover, with some algebraic manipulation (see Box 14.3 below for an expla-
nation), we have the mathematical fact that

∑(y − y–)2 = ∑(y − y(x))2 + ∑(y(x) − y–)2.

Here, we have the following interpretations:

•• ∑(y − y–)2 is said to be the “total sum of squares,” and it represents the 
“total variability in Y.”

•• ∑(y(x) − y–)2 is said to be the “regression sum of squares,” and it represents 
the “variability in Y explicitly related to the variability in X.” Moreover, it 
is said to be the variability in the behavioral property “explained” by the 
explanatory property.
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•• ∑(y − y(x))2 is said to be the “sum of the squares of the residuals,” 
and it represents the “total of the errors in the model predictions.” 
It is also said to be the “unexplained” variability in the behavioral 
property.

This gives us the following:

total variability in Y =
variability in Y directly related to the variability in X (“fit”) +

total model errors (“misfit”).

Now, with some additional algebraic manipulation, we have

(“total sum of squares” ∕ “total sum of squares”) =
(“regression sum of squares” ∕ “total sum of squares”) +

(“sum of the squares of the residuals” ∕ “total sum of squares”).

In this way, we have

1 = percentage of total variability in Y explained by the variability in X +
percentage of total variability in Y unexplained.

Finally, we have the following definition and mathematical fact:

 • The term (“regression sum of squares” ∕ “total sum of squares”) is said to 
be the coefficient of determination, and it is denoted as R2. It represents the 
percentage of total variability in the behavioral property “explained” by 
the variability in the explanatory property.

 • R2 is mathematically equal to the square of the correlation coefficient r (see 
Box 14.3).

This relationship is often written as

1 = percentage explained variability + percentage unexplained variability, or
1 = R2 + percentage unexplained variability.

Interpreted as a percentage, the R2 value of a regression model is typically inter-
preted in the following way:

 • If the value of R2 is 0.6 or greater, the variability in the explanatory 
property is seen to explain 60% of the variability in the behavioral 
property. In such cases, the model is judged to offer a “good” explanation 
of the behavioral property.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2018 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



386  Part IV ■ Tools for Making Statistical Inferences

 • If the value of R2 is less than 0.6, the variability in the explanatory 
is seen to explain less than 60% of the variability in the behavioral 
property. We would typically interpret this to mean that other properties 
may be involved in “determining” the values of the behavioral property, 
and the model does not offer a strong explanation of the behavioral 
property.

Returning to the example of Dr. M’s study of sleeping times and grade point 
averages, the R2 value of her regression model is (0.427)2 = 0.182, thereby suggest-
ing that the variability in sleeping times explains only 18.2% of the variability in 
grade point averages. However, this conclusion remains tentative. Why? Because 
in representing the “explained” variability in a behavioral property, the coefficient 
of determination is placed in contrast to the “unexplained” variability in that prop-
erty, and it may be the case that the difference between these two “variabilities” is 
simply the result of the normal variability of sampling. Consequently, the difference 
between these two variances needs to be tested for its statistical significance, and an 
appropriate method for doing so is with an Analysis of Variance.

Of course, one might ask why this is necessary. That is, because the coefficient 
of determination is the square of the correlation coefficient, one might reasonably 
suppose the statistical significance of the correlation coefficient would signal the 
statistical significance of the coefficient of determination. While this logic has some 
merit, it misses the differences in the two scenarios:

 • the significance testing of the correlation coefficient compares the 
regression model with a non-association; and

 • the significance testing of the coefficient of determination compares the 
“explained” variability in Y with the “unexplained” variability in Y.

Now, it may be recalled that the Analysis of Variance is based on the premise that 
two samples (S1 and S2) have been drawn from the same hypothetical population, but 
they have different variances (Var1 and Var2). The difference between the two sam-
ple variances is represented as their ratio, and this ratio is said to be the F-statistic:

Var1 ∕ Var2 = F.

From this, the F-Probability Model can then be used to find the probability of 
having selected such samples yielding such a ratio. It may also be recalled that the 
F-Probability Model has different versions based on the degrees of freedom of the two 
variances; if Var1 has df1 degree of freedom and Var2 has df2 degrees of freedom, 
the appropriate F-Probability Model is designated as (df1, df2). Furthermore, the 
F-statistic will have the expected value of

df2 ∕ (df2 – 2).
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In applying the F-test to the coefficient of determination, we have the following:

 • Var1 is the “regression sum of squares,” which has 1 degree of freedom. 
Why 1 degree of freedom? Because all of the values constituting the 
“regression sum of squares” are determined by the slope of the model—a 
constant—and the choice of the y-intercept.

 • Var2 is the mean of the “residual sum of squares,” which has 2 degrees of 
freedom. Why the mean? Because the “residual sum of squares” represents 
a set of n different variances (n), and the mean represents the “typical” 
variance. Applying the Bessel Correction, we get df2 = n – 2.

Applying the F-test to her regression model, Dr. M finds the following 
F-value:

1) Var1 = 7.691, with df1 = 1 degree of freedom.

2) The mean “residual sum of squares” is 34.455 ∕ (df2), with df2 = (100 − 2) = 98. 
This gives Var2 as 34.455 ∕ 98 = 0.352.

3) The F-value is Var1 ∕ Var2 = 7.691 ∕ 0.352 = 21.849.

Consulting the F-Probability Model for (1, 98), she finds the following prob-
ability, or p-value:

p < 0.001.

Thus, the probability that these two sets of variances represent samples drawn 
from the same hypothetical population is very low. Consequently, Dr. M is relatively 
confident the two sets of variances probably do not represent samples drawn from 
the same hypothetical population and that the sample represented by the “regression 
sum of squares” and the sample represented by the “mean residual sum of squares” 
were not drawn from the same hypothetical population; thus, she is relatively confi-
dent that the difference between these two variances is statistically significant. With 
this result, Dr. M has the following interpretation of her study:

 • Students who sleep more than the group average of 470.2 minutes per 
night are more likely to have better grade point averages. Moreover, grade 
point averages tend to improve by 0.004 point for every additional minute 
of sleep. Furthermore, these results are not likely due to normal sampling 
variability.

 • Although sleeping time seems to have a direct relationship with academic 
performance, sleeping time explains only 18.2% of the variability in the 
grade point averages in the group of students studied. Thus, other factors 
may also be involved.
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An explanation of the “fit” of a model can be 
developed from the standardized versions of 
the properties of interest. Suppose we are 
interested in comparing the typical variation 
in property Y with

 • the variability directly related to the 
variability in property X; and

 • the variability unrelated to the variability in 
the property X.

For simplicity, we can consider X and Y in 
their standardized forms x* and y*. Then, for 
every observed value of y*, we have

y* = rx* + e,

where

 • x. is the co-occurring value of x*;

 • rx. is the value of y* projected by the model; and

 • e is the error, or misfit, with the model.

Now, using the method of moments, we can 
find the typical variability of the values of y* as 
the variance:

(∑ y*2) ∕ n = 1.

Moreover, this is equal to (∑ (rx* + e)2)∕n. Now, 
if we expand (rx* + e)2 for each value of y*, we 
have

r2x*2 + 2rx ••e + e2.

In summary, for all the observed values of 
y*, we have

r2 ∑x*2 + 2r ∑x*e + ∑e2 =

r2 ∑x*2 + 2r(∑e (∑x*)) + ∑e2.

But, we also have the following:

 • because (∑x*2) ∕ n = 1, ∑x*2 = n; and

 • because (∑x*) ∕ n = 0, ∑x* = 0.

Thus, we have

r2 ∑x*2 + 2r(∑e (∑x*)) + ∑e2 = nr2 + ∑e2.

This gives us

(∑ y*2) ∕ n = (nr2 + ∑e2) ∕ n.

Finally, because (∑ y*2) ∕ n = 1, we have

1 = r2 + (∑e2) ∕ n.

In this formulation,

 • 1 = the total variability in y*;

 • r2 = the variability in y* related to the 
variability in x* as a percentage; and

 • (∑e2) ∕ n represents the variability in y* not 
related to the variability in x*, also as a 
percentage.

Now, to test the statistical significance of r2, 
we have the following:

 • total sum of squares = (∑ y*2);

 • regression sum of squares = nr2;

 • mean residual sum of squares = (∑e2) ∕  
n = 1 – r2; and

 • F = regression sum of squares ∕ mean 
residual sum of squares = nr2 ∕ (1 – r2).

For the “sleep” and “grade point average” 
example, r = 0.427 and n = 98 (with the Bessel 
Correction). This gives us the following:

a) r2 = 0.182;

b) nr2 = 98 • 0.182 = 17.836;

c) 1 – r2 = 1 – 0.182 = 0.818; so

d) F = 17.836 ∕ 0.818 = 21.804, which is within 
rounding error of the F-value of 21.849 
obtained using the unstandardized values 
of the two properties.

BOX 14.3
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14.7 Summary

1) The objective of an explanatory study is to 
assess the extent to which the different values 
observed in one property (Y, the behavioral 
property) of a set of n phenomena tend to 
co-occur with different values of another 
property (X, the explanatory property) of 
those phenomena. Where both properties are 
quantitative, we have the following:

 • In a direct relationship, high values of 
property X tend to co-occur with high values 
of property Y, and low values of property X 
tend to co-occur with low values of property Y.

 • In an inverse relationship, high values of 
property X tend to co-occur with low values of 
property Y, and low values of property X tend 
to co-occur with high values of property Y.

 • In a mixed relationship, or “non-relationship,” 
high values of property X tend to co-occur 
with both high and low values of property Y, 
and low values of property X tend to co-occur 
with both low and high values of property Y.  
Such a “non-relationship” is said to be 
stochastic independence.

2) The covariability of two properties may 
be visually assessed using a contingency 
table. However, when both of the properties 
are quantitative, a more practical visual 
display is the scatter plot using Cartesian 
coordinates.

3) When both co-occurring properties of a 
set of phenomena are quantitative, their 
co-occurrence in each phenomenon can be 
modeled as an interaction, and their interaction 
can be modeled mathematically by multiplying 
their respective values to yield their product. 
Using this representation, the covariability of 
the two properties within a set of phenomena 
can be quantified as the covariance:

Cov(XY) = (∑ (x − x–)(y − y–)) ∕ (n − 1),

where x is the X-value for a phenomenon, y 
is the co-occurring Y-value for that phenomenon, 
x– is the mean value of X for the set of phe-
nomena, y– is the mean value of Y for the set of  

phenomena, and (n – 1) reflects the application of 
the Bessel Correction:

a) a positive value indicates a direct 
association;

b) a negative value indicates an inverse 
association; and

c) a zero value indicates a non-
association, or the stochastic 
independence, of the two properties.

4) If both properties are first standardized, the 
“standardized” covariance is said to be the 
correlation coefficient. It is calculated as

(∑ (x*i • y*i)) ∕ (n − 1),

 where x*i and y*i are the standardized values 
of each pair of values (xi, yi). Alternatively, the 
correlation coefficient can also be calculated 
by dividing the “unstandardized” covariance by 
the standard deviation (sx) of property X and 
the standard deviation (sy) of property Y. The 
correlation coefficient is denoted as r, and its 
value will range between −1 and +1:

 • a value between −1 and −0.6 is interpreted 
as a strong inverse association;

 • a value between −0.59 and −0.01 is 
interpreted as a weak inverse association;

 • a value of 0 is defined as a non-association, 
or stochastic independence;

 • a value between 0.01 and 0.59 is interpreted 
as a weak direct association; and

 • a value between 0.6 and 1.0 is interpreted as 
a strong direct association.

5) Given the normal variability of sampling, it is 
always possible that a non-zero correlation 
coefficient found for a sample set of 
observations might reflect such sampling 
variability rather than a “real” relationship 
between the two properties. Because 
the correlation coefficient is a mean, the 
t-test may be used to compare the sample 
correlation coefficient to a hypothetical 
sample with a correlation coefficient of 
zero representing the premise that the 
two properties of interest (X and Y) are 

(Continued)
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stochastically independent. The t-statistic is 
derived as

t = r ∕ √ ((1 – r2) ∕ (n – 2)),

and the p-value is found from a t-Probability Model 
for (n – 2) degrees of freedom. If the p-value is less 
than 0.05, we conclude that the sample probably 
was not drawn from a hypothetical population in 
which the two properties are stochastically inde-
pendent, and the correlation coefficient of the 
sample probably is not reflective of normal sam-
pling variability. Otherwise, we cannot rule out the 
role of normal sampling variability as explaining 
the value of the correlation coefficient.

6) In some cases, an investigator might attempt 
to describe a relationship observed between 
two quantitative properties as a mathematical 
function, or model. This is said to be curve 
fitting, and it is facilitated by an examination 
of the scatter plot. In some cases, a linear 
mathematical model might seem appropriate, 
and such a model would have the form

Y = bX + c.

In this model,

 • b is said to be the slope of the line, and 
it represents the expected difference in 
Y-values given a difference in X-values. It is 
often represented symbolically as ∆y ∕ ∆x.

 • c is said to be “y-intercept,” and it 
represents the expected value of Y 
associated with a zero value of X.

 With such a model, the expected value of Y 
for a phenomenon can be projected from its 
co-occurring value x of X. This projected value 
is denoted as y(x), and it is said to be the value 
of the behavioral property explained by the 
explanatory property.

7) A linear model of a set of observations may be 
constructed analytically in two different ways, 
and while the approaches are different, the 
results are equivalent:

 • Using the “correlation coefficient method,” a 
model is constructed directly as

y* = r • x*,

 where y* and x* are the standardized 
versions of the properties Y and X. This is 
said to be the standardized version of the 
linear model.

 • Using calculus, a hypothetical line that 
minimizes the square of the differences 
between each observed value y and its 
hypothetical projection y(x) can be constructed. 
The resulting model is of the form

Y = ((sy • r) ∕ sx) • X – (((sy • r) ∕ sx) • x
–) + y–.

 This is said to be the unstandardized version 
of the linear model.

 Because both versions of the model are 
described using the correlation coefficient, and 
because the correlation coefficient is based 
on the average difference of the observed 
values from the mean, the model is said to be 
a regression model. In addition, because the 
“calculus method” is based on minimizing the 
squared differences between the model and 
the observations of the sample, the resulting 
model (regardless of the version) is said to be 
the “ordinary” least squares (or OLS) model.

8) Because the “relationships” suggested by 
an OLS model (slope and intercept) are 
based on sample statistics, it is possible 
that they simply represent the normal 
variability of sampling rather than a “real” 
association. Thus, the parts of the OLS 
model should be tested for their statistical 
significance:

 • Because the slope of the model will be 
based on the correlation coefficient, the 
statistical significance of the slope is 
based on the statistical significance of the 
correlation coefficient.

 • Because the y-intercept of the model 
is based on the average of a set of 
projected hypothetical y-intercepts, the 
y-intercept can be tested using the t-test. 
The premise of the t-test is that the 
y-intercept c of the model is “really” zero, 
and the t-statistic is

t = c ∕ √ (((1 – r2) • n • sy) ∕ (n – 2)) .  
((1 ∕ n) + (x–

2
 ∕ (n • sx))).

(Continued)
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 • Consulting the t-Probability Model for  
(n – 2) degrees of freedom, if the p-value 
is less than 0.05, we can conclude that the 
y-intercept probably is not “really” zero and 
that c is the appropriate y-intercept for this 
model. Otherwise, we cannot be confident that 
the proper y-intercept of the model is not zero.

9) Having constructed a linear model describing 
a set of sample observations, it is reasonable 
to ask the following question:

To what extent do the observed val-
ues y of the behavioral property 
exactly conform to their “explained” 
values y(x) projected by the model?

 This is said to be the “fit” of the model, and the 
differences between the observed values of Y 
and the “explained values” of Y are said to be 
“errors” or “residuals.” That is,

y = y(x) + e.

 Now, using the method of moments, we can 
describe the “fit” of a model as a percentage of 
the total variability of the behavioral property, 
starting with the following mathematical 
relationship:

∑(y − y–)2 = ∑(y(x) − y–)2 + ∑(y − y(x))2.

 In this formula, we have the following 
interpretation:

•• ∑(y − y–)2 represents the “total variability 
in Y” and is said to be the “total sum of 
squares”;

•• ∑(y(x) − y–)2 represents the “variability of Y 
explained as its covariability with X,” and it is 
said to be the “regression sum of squares”; and

•• ∑(y − y(x))2 represents the total “unexplained 
variability in Y,” and it is said to be the 
“residual sum of squares.”

From this, we have

1 = “regression sum of squares” ∕  
“total sum of squares” +

“residual sum of squares” ∕ “total sum of squares.”

That is,

1 = percentage of total variability  
explained by the model +

 percentage of total variability unexplained by 
the model.

Furthermore, we have

“regression sum of squares” ∕  
“total sum of squares” = r2.

 In this context, r2 is denoted as R2, it is said 
to be the coefficient of determination, and it 
is interpreted as the “percentage of total 
variability explained by the model”:

 • If R2 is 0.60 or above, we say that the 
regression model is a good fit and offers 
a good explanation of the variability in the 
behavioral property.

 • If R2 is below 0.60, we say that the 
regression model is a poor fit and offers only 
a partial explanation of the variability in the 
behavioral property.

10) Understanding that R2 is a sample statistic 
subject to the normal variability of sampling, 
a proper interpretation of an R2 value will 
include a test of statistical significance. In 
this context, the test compares the difference 
between the “explained variability” and the 
“unexplained variability,” and the procedure 
most typically used is ANOVA under the 
premise that the “explained variability” is not 
“really” different from the “typical unexplained 
variability.” We would construct the following 
F-statistic:

F = “explained variability” ∕ “typical unexplained 
variability” =

(“regression sum of squares”) ∕ (“residual sum of 
squares” ∕ (n – 2)).

 Consulting the F-Probability Model for (1, n – 2) 
degrees of freedom, we would interpret the 
p-value in the following way:

 • If this probability is below 0.05, we would 
say that we are relatively confident the 
“explained variability” and the “typical 

(Continued)
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392  Part IV ■ Tools for Making Statistical Inferences

unexplained variability” probably are not 
the same and, thus, that the “fit” of the 
model assessed as R2 probably is not the 
result of normal sampling variability and 
probably does represent the “real” fit of 
the model.

 • Otherwise, we would say that we cannot be 
confident that the “explained variability” 
and the “typical unexplained variability” are 
not the same and, thus, that the “fit” of the 
model—assessed as R2—cannot be judged 
to be statistically significant.

14.8 SPSS TUTORIAL
An educational psychologist is interested in the effect that Internet use might 
have on students’ academic performance, and her “suspicion” reflects two possible 
behavioral scenarios:

 • students might use the Internet primarily for knowledge acquisition; or

 • students might use the Internet primarily as entertainment.

Moreover, Internet use can be meaningfully assessed quantitatively as “hours per 
day,” and academic performance can be meaningfully assessed quantitatively as “grade 
point average,” so both properties can be assessed in comparative terms of “high” and 
“low” according to their respective scales of measurement. Of course, there are any 
number of possible patterns of co-occurrence that may be imagined—and modeled— 
for these two properties. However, two models are of particular interest here:

A) It may be the case that specific amounts of Internet use co-occur with 
specific grade point averages. Following are some examples:

 • “1 hour” of Internet use may co-occur among the students with a grade 
point average of 3.0, suggesting that this amount of Internet use is useful;

 • “2 hours” of Internet use may co-occur among the students with a grade point 
average of 2.5, suggesting that this amount of Internet use is a distraction;

 • “3 hours” of Internet use may co-occur with a grade point average of 
3.5, suggesting that this amount of Internet use is useful; and

 • “4 hours” of Internet use may co-occur among the students with a grade 
point average of 2.0, suggesting that this amount of Internet use is a 
distraction.

B) It may be the case that comparative values of Internet use co-occur with 
similarly comparative values for grade point averages:

 • If increasingly higher amounts of Internet use co-occur with increasingly 
higher grade point averages, we would say that this represents a direct 
relationship. This would suggest that the Internet is a useful learning tool.

(Continued)
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 • If increasingly higher amounts of Internet use co-occur with increasingly 
lower grade point averages, we would say that this represents an inverse 
relationship. This would suggest that the Internet is a distraction.

With these analytical models in mind, the psychologist collects a random 
sample of 50 students, asking each student his or her daily Internet use and 
grade point average. The results are found in Table 14.2.

TABLE 14.2 ■  Internet Use (hours daily) and GPA for a Sample of  
50 Students

6 hours; 2.2 3 hours; 3.2 4 hours; 2.5 3 hours; 3.0 5 hours; 2.25

2 hours; 3.25 2 hours; 3.0 1 hour; 3.6 0 hours; 3.6 0 hours; 4.0

2 hours; 3.4 3 hours; 3.0 6 hours; 1.5 4 hours; 2.0 3 hours; 2.5

3 hours; 2.0 4 hours; 2.0 4 hours; 2.0 5 hours; 3.0 2 hours; 3.5

5 hours; 2.0 6 hours; 1.8 7 hours; 1.8 3 hours; 3.0 7 hours; 1.9

7 hours; 1.75 3 hours; 3.2 2 hours; 3.0 4 hours; 3.0 5 hours; 2.75

7 hours; 2.5 2 hours; 3.1 2 hours; 3.2 1 hour; 4.0 1 hour; 3.55

1 hour; 3.75 1 hour; 3.8 3 hours; 3.0 2 hours; 3.5 3 hours; 2.0

4 hours; 3.5 6 hours; 1.9 8 hours; 1.9 4 hours; 3.2 2 hours; 3.0

3 hours; 2.5 2 hours; 3.0 1 hour; 3.6 0 hours; 3.9 0 hours; 4.0

Now, with these observations, the psychologist first needs to determine which 
model she is going to adopt in order to analyze the observations for a potential 
relationship between the two properties:

 • If Model “A” is adopted, the potential relationship between these two 
properties may be assessed using the Analysis of Variance techniques 
described in Chapter 13. That is, the students could be grouped 
together according to their hours of Internet use, and the average GPA 
could then be assessed for each group.

 • If Model “B” is adopted, the potential relationship between the two 
properties is expressed in terms of the relative differences in one property 
compared with the relative differences in the other property, and the 
measure of association relevant for such models is the covariance as 
discussed in the current chapter.

With these modeling options in mind, the psychologist enters the observations 
into an SPSS data file for further analysis.
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394  Part IV ■ Tools for Making Statistical Inferences

1) Entering the “Variable View,” the psychologist defines her two variables as 
“Inet” and “GPA.” Both are identified as “numeric” in type, both are set 
at a “width” of 8 characters, and both are set at “2 Decimals” in precision. 
Furthermore, each is given a label for the output, and each is identified as a 
“scale” measure (Screenshot 14.1).

2) In the “Data View,” the psychologist then enters the observations, with 
each student representing a case/row/record. The first student’s Internet use 
is entered as 6, and his or her GPA is entered as 2.2 (Screenshot 14.2).
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3) As a first step of analysis, the psychologist constructs a scatter plot. This is 
done by choosing “Graphs” from the task bar. This is followed by “Legacy 
Dialogs” and “Scatter/Dot” (Screenshot 14.3).

 This leads to the Scatter/Dot menu. Here the psychologist chooses “Simple 
Scatter” (Screenshot 14.4).

 In the Scatter/Dot menu, the psychologist selects the “Define” option, 
which leads to the Simple Scatterplot menu (Screenshot 14.5). Here, the 
two variables of the dataset are identified.

SCREENSHOT 14.4
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396  Part IV ■ Tools for Making Statistical Inferences

 The psychologist then identifies the variable “GPA” as the Y-axis and 
identifies “Internet use” as the X-axis. This reflects the presumption that 
“Internet use” is the explanatory property and GPA is the behavioral 
property in this investigatory model. Having completed the definition, the 
“OK” option is chosen (Screenshot 14.6).

This results in the desired scatter plot (Screenshot 14.7).
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 On review, the pattern of dots appears to support a potential linear 
association, so the psychologist proceeds on this basis.

4) Returning to the “Data View,” the psychologist proceeds to analyze 
her observations as a regression model. From the task bar, she chooses 
“Analyze,” “Regression,” and “Linear” (Screenshot 14.8).

 This leads to the “Linear Regression” dialog box. Here the two variables of 
the dataset are listed (Screenshot 14.9).
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398  Part IV ■ Tools for Making Statistical Inferences

 The psychologist then identifies “Internet use” as the independent variable 
and GPA as the dependent variable (Screenshot 14.10). She also clicks the 
“Statistics” option.

 In the “Linear Regression Statistics” menu, she identifies the following 
(Screenshot 14.11):

a) for “Regression Coefficients,” she chooses “Estimates”;

b) she chooses “Model Fit”;

c) she chooses “Descriptives”; and

d) she chooses “Part and Partial Correlations.”
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 She then completes the “Linear Regression Statistics” dialog by choosing 
“Continue.” This returns her to the “Linear Regression” dialog box 
(Screenshot 14.12). When she chooses “OK” in this dialog box, the 
program is started.

 When the program completes its calculations, the requested statistical 
reports are generated (Screenshots 14.13 and 14.14).
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5) The psychologist can then interpret the analytical results:

a) From the “Descriptive Statistics” report, the psychologist finds that the typical 
(mean) amount of daily Internet use among this set of students is 2.854 hours, 
and the typical (mean) grade point average among the students is 3.28.

b) From the “Correlations” report, the psychologist finds that the 
correlation coefficient (“Pearson Correlation”) between the properties 
“Internet Use” and “GPA” is assessed as −0.834. This result is found 
at the intersection of the row labeled “Pearson Correlation, GPA” and 
the column labeled “Internet Use.” Using the “standard” interpretation, 
this correlation is said to be a “strong inverse” association, meaning 
that those individuals using “greater” amounts of time on the Internet 
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are likely to have “lower” grade point averages. This result supports the 
behavioral model suggesting that Internet use is more likely to be a 
distraction than a learning tool.

c) Also from the “Correlations” report, the psychologist finds the result 
of the t-test comparing the sample correlation coefficient of −0.834 
with a hypothetical correlation coefficient of zero representing a 
hypothetical sample drawn from a population in which two properties 
are stochastically independent. The result of this t-test is found in the 
intersection of the row labeled “Sig, GPA” and the column labeled 
“Internet Use.” The value of 0.000 indicates that the probability of the 
actual sample and the hypothetical sample being drawn from the same 
population is less than 0.0005. This probability is sufficiently low—less 
than 0.05—for the psychologist to be relatively confident that the two 
samples were not drawn from such a population and that the sample 
correlation coefficient is not due to normal sampling variability and is, 
indeed, statistically significant. In formal terms, the null hypothesis—
that the sample correlation coefficient is simply a product of normal 
sampling variability and not indicative of an association between the 
two properties—may be confidently rejected.

d) Given the strength and statistical significance of the association between 
these two properties, the psychologist feels reasonably confident in the 
explanatory value of this linear model of this association. In terms of 
the properties Internet use and grade point average, the model is

GPA = (b • Internet use) + c.

 Using this model, the likely difference between two students’ grade 
point averages can be predicted by their different Internet use habits. 
This linear model—based on the correlation coefficient—can be found 
in the “Coefficients” report:

 • First, the slope of the estimated regression line is reported in the 
intersection of the row labeled “Internet Use” and the column 
labeled “Unstandardized Coefficients, B.” The assessed value of this 
coefficient is −0.286, and it may be interpreted as suggesting that 
if one student’s rate of Internet use is 1 hour greater than another 
student’s rate of Internet use, the student with the greater rate of 
Internet use is likely to have a GPA that is 0.286 points lower than 
the student with the lesser rate of Internet use. Conversely, the 
model suggests that if one student’s rate of Internet use is 1 hour 
less than another student’s rate of Internet use, the student with 
the lesser rate of Internet use is likely to have a GPA that is 0.286 
points higher than the student with the higher rate of Internet use.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2018 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.
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 • Furthermore, in the intersection of the row labeled “Internet 
Use” and the column labeled “Sig” is a replication of the result 
of the t-test for statistical significance previously reported for 
the correlation coefficient, and its interpretation is the same. 
Given that the linear model was constructed from the correlation 
coefficient, the interpretation of result of the t-test is the same for 
the coefficient of the linear model as for the correlation coefficient. 
That is, the slope of the linear model is not simply a reflection of 
the normal variability of sampling and is statistically significant.

 • As for the “constant” term of the linear model—or y-intercept—
the same question of statistical significance can be addressed. In 
the “Coefficients” report, in the intersection of the row labeled 
“Constant” and the column labeled “Unstandardized Coefficients, 
B” is the value of the constant term in the linear model. It can be 
interpreted as the expected grade point average of the hypothetical 
student who typically uses the Internet for zero hours, and it is 
assessed as 3.792. In the intersection of the row labeled “Constant” 
and the column labeled “Sig” is the result of the t-test assessing 
the probability that the “real” y-intercept of this model is zero and 
that the assessed value of 3.792 is simply a reflection of the normal 
variability of sampling. In this case, the result of the t-test is a 
probability of less than 0.0005, and the psychologist interprets this 
to suggest that the probability that the “real” y-intercept is zero is 
sufficiently low for her to conclude that the “real” y-intercept is not 
zero and the assessed value of the y-intercept is statistically significant.

 • Having affirmed the statistical significance of the constant term of the 
model, the model can be used to predict the likely grade point average 
of any student based on his or her Internet use. That is, if a student uses 
the Internet for x hours, his or her expected grade point average will be

3.792 + (−0.286 • x) = 3.792 − (0.286 • x),

in comparison with the hypothetical student who uses the Internet 
for zero hours. Thus, for a student who typically uses the Internet 
for 1 hour a day, his or her expected grade point average is

GPA of hypothetical student at zero Internet hours –

0.286 • 1 hour =

3.792 – (0.286 • 1) = 3.506.

 • As a note of interest, the “Coefficients” report also contains a 
column identified as “Standardized Coefficients.” In this column are 
the coefficients of the “standardized” version of the regression line
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standardized GPA = r • standardized Internet use,

 where r is the correlation coefficient. In statistical practice, the 
coefficient of a linear model expressed in its standardized version 
is identified as “Beta,” and the coefficient of a linear model in 
its unstandardized version is identified as “b.” Moreover, in the 
standardized version of the linear model, the “constant” is defined 
to be zero and, thus, is excluded from the column of “Standardized 
Coefficients.”

6) Finally, the psychologist can assess the extent to which the association 
model can be used to explain the differences observed among the students’ 
grade point averages:

a) In the report identified as the “Model Summary,” the coefficient 
of determination is denoted in the column labeled “R Square.” Its 
assessed value is 0.695, and this is interpreted as the percentage of 
the variation among the students’ grade point averages “explained” 
as the covariability with their Internet use. Following standard 
statistical practice, the psychologist interprets this percentage to 
indicate that the model provides a “good” explanation of that 
variability.

b) Turning to the report identified as “ANOVA,” the psychologist can 
finally assess the extent to which the coefficient of determination is an 
accurate portrayal of the covariability of the two properties and not 
simply the result of the normal variability of sampling. To this end, the 
F-statistic representing the ratio of

explained variance ∕ unexplained variance =
regression mean square ∕ residual mean square =

109.507.

 This is found in the intersection of the row labeled “Regression” and 
the column labeled “F.” When this F-statistic value is compared with 
the F-Distribution Probability Model representing the scenario in which 
a sample has been drawn from a population with an “F-ratio” of 1, 
the probability of observing such an F-statistic value is found to be less 
than 0.0005. This assessment is found in the intersection of the row 
labeled “Regression” and the column labeled “Sig.” On this basis, the 
psychologist concludes that it is improbable that this sample of students’ 
Internet use habits and Internet use could have been drawn from such 
a population; thus, the resulting coefficient of determination is likely 
not the result of normal sampling variability. Instead, the psychologist 
concludes that it is more likely that the coefficient of determination is a 
valid reflection of the covariability of the two properties Internet use and 
grade point average for this sample of students.
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14.9 Exercises

1) A real estate analyst is studying the relationship 
between home sale prices and living space 
(square footage) in a local housing market. The 
reason for this study is strategic; when offering 
a home for sale, it is important to choose a 
starting sales price that is close to the “market” 
price for homes with similar characteristics. 
Why? If a home is first offered at a selling price 
that is too far below the “market” price, the 
seller will not be able to realize the full value 
of selling his or her home. If a home is first 
offered at a selling price that is too far above 
the “market” price, the home will not be likely 
to attract any buyers, and the seller will be 
forced to make subsequent price reductions. In 
turn, these price reductions will be interpreted 
by buyers as desperation on the part of the 
seller, and buyers will act on this desperation 
by waiting for further price reductions. Again, 
this will leave the seller less likely to realize the 
full value of selling his or her home. It should 
be noted that this same strategic question is the 
basis for the financial analysis of “initial public 
offerings” (or IPOs) of corporate stocks.

 The model underlying this study is based on 
practical real estate experience; the two most 
important characteristics of a home are its 
location and its living space, and because 
all the homes of interest are in the same 

geographic area, the remaining characteristic 
of importance is size. Presumably, a larger 
living space will command a higher price, so 
the “research question” is not whether or not 
these two quantitative properties of a home 
sale are related but more specifically the 
exact quantitative nature of the relationship. 
That is, given a home’s size, what is a 
reasonable selling price to expect? To address 
this question, the analyst has conceptually 
constructed the linear model

sales price = (b • size) + c,

 where b represents the “differential” pricing 
applied to the square footage of the home 
being offered for sale.

 Based on this conceptual model, and 
motivated by the desire to have a strategic 
advantage in constructing home selling offers 
for her clients, the analyst has collected the 
sales history of 25 homes sold in the town 
over a 3-month period. The sales prices, in 
thousands of dollars, and living spaces, in 
square footages, are provided in Table 14.3.

 From these observations, the analyst can 
construct the appropriate statistical model for 
this particular market.

TABLE 14.3 ■  Home Sale Prices ($000) and Square Footage in a 

Nearby Town

$442; 2,975 
sq. ft.

$170; 1,169 
sq. ft.

$370; 1,680 
sq. ft.

$263; 1,500 
sq. ft.

$265; 1,262 
sq. ft.

$275; 1,778 
sq. ft.

$162; 1,600 
sq. ft.

$134; 1,342 
sq. ft.

$260; 1,300 
sq. ft.

$746; 3,032 
sq. ft.

$349; 1,826 
sq. ft.

$118; 800 
sq. ft.

$83; 1,000 
sq. ft.

$427; 2,185 
sq. ft.

$425; 2,450 
sq. ft.

$285; 2,022 
sq. ft.

$250; 1,050 
sq. ft.

$443; 1,973 
sq. ft.

$175; 1,110 
sq. ft.

$400; 2,438 
sq. ft.

$397; 1,493 
sq. ft.

$306; 1,344 
sq. ft.

$286; 1,211 
sq. ft.

$270; 1,800 
sq. ft.

$108; 386 
sq. ft.
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 To assist the analyst, use SPSS to construct 
a linear model of the association between the 
sales price of a home and its size. Because 
the square footage of a home is not dependent 
on its sales price, you may assume that the 
“square footage” of a home is the independent 
property and the “sales price” is the 
dependent property.

a) Construct the data set with each home sale 
represented by the properties “Size” and 
“Price.”

b) Construct a scatter plot of the observations 
to assess the applicability of using the 
covariance model.

c) Assuming that the covariance model is 
applicable, assess the linear regression 
model implied by the observations:

 • What is the “slope” of the linear 
model? What does it imply with 
regard to the average difference in 
selling price based on the difference 
in home size?

 • Is the “slope” statistically significant? 
What does this mean with regard to the 
preceding question?

 • What is the “constant” of the model? 
What does it mean as a selling price?

 • Is the “constant” statistically 
significant? What does this mean with 
regard to the preceding question?

 • Use the model to construct a selling 
price for a home with 1,800 square feet 
of space.

 • To what extent does the square footage 
of a home determine its selling price? 
That is, what proportion of the variation 
in selling prices is explained by the 
differences in square footage? In other 
words, what is the “fit” of the model? 
Is the “fitness” found for this model 
statistically significant?

2) Construct your own research investigation 
regarding a potential association between 
two quantitative properties of some set of 
phenomena of interest.

a) Describe the phenomena, the properties, 
and the motivation for the study.

b) Describe your speculative model of the 
association.

c) Obtain at least 25 observations of relevant 
phenomena.

d) Use SPSS to analyze your observations.

e) Report your analytical findings with regard 
to the speculative model you constructed.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2018 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.




