
  Learning Objectives
After reading this chapter, you should be able to:

1.	 Identify the four steps of hypothesis testing.

2.	 Define null hypothesis, alternative hypothesis, 
level of significance, test statistic, p value, and 
statistical significance.

3.	 Define Type I error and Type II error, and 
identify the type of error that researchers 
control.

4.	 Calculate the one-sample z test and interpret 
the results.

5.	 Distinguish between a one-tailed test and a 
two-tailed test, and explain why a Type III error 
is possible only with one-tailed tests.

6.	 Elucidate effect size and compute a Cohen’s d 
for the one-sample z test.

7.	 Define power and identify six factors that 
influence power.

8.	 Summarize the results of a one-sample z test in 
APA format.

7 Hypothesis Testing
Significance, Effect Size,  
and Power

cosmin4000/iStock/Thinkstock
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    Chapter Outline
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7.3	 Hypothesis Testing and Sampling Distributions

7.4	 Making a Decision: Types of Error

7.5	 Testing for Significance: Examples Using the  
z Test
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Nondirectional Tests
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7.11	 APA in Focus: Reporting the Test Statistic and 
Effect Size

The word hypothesis is loosely used in everyday language to describe an 
educated guess. We often informally state hypotheses about behaviors 
(e.g., who is the most outgoing among your friends) and events (e.g., which 
team will win the big game). Informally stating hypotheses in everyday 
language helps us describe or organize our understanding of the behav-
iors and events we experience from day to day.

In science, hypotheses are stated and tested more formally with the 
purpose of acquiring knowledge. The value of understanding the basic 
structure of the scientific process requires an understanding of how 
researchers test their hypotheses. Behavioral science is about under-
standing behaviors and events. You are in many ways a behavioral sci-
entist in that you already hypothesize about many behaviors and events, 
albeit informally. Formally, hypothesis testing in science is similar to 
a board game, which has many rules to control, manage, and organize 
how you are allowed to move game pieces on a game board. Most board 
games, for example, have rules that tell you how many spaces you can 
move on the game board at most at a time, and what to do if you pick up 
a certain card or land on a certain spot on the game board. The rules, in 
essence, define the game. Each board game makes most sense if players 
follow the rules.

Likewise, in science, we ultimately want to gain an understanding of 
the behaviors and events we observe. The steps we follow in hypothesis 
testing allow us to gain this understanding and draw conclusions from our 
observations with certainty. In a board game, we follow rules to establish 
a winner; in hypothesis testing, we follow rules or steps to establish con-
clusions from the observations we make. In this chapter, we explore the 
nature of hypothesis testing as it is used in science and the types of infor-
mation it provides about the observations we make.

Master the content.
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192     Part II:  Probability and the Foundations of Inferential Statistics

7.1 Inferential Statistics  
and Hypothesis Testing
We use inferential statistics because it allows us to observe samples to 
learn more about the behavior in populations that are often too large or 
inaccessible to observe. We use samples because we know how they are 
related to populations. For example, suppose the average score on a stan-
dardized exam in a given population is 150. In Chapter 6, we showed that 
the sample mean is an unbiased estimator of the population mean—if we 
select a random sample from a population, then on average the value of 
the sample mean will equal the value of the population mean. In our exam-
ple, if we select a random sample from this population with a mean of 150, 
then, on average, the value of a sample mean will equal 150. On the basis 
of the central limit theorem, we know that the probability of selecting any 
other sample mean value from this population is normally distributed.

In behavioral research, we select samples to learn more about pop-
ulations of interest to us. In terms of the mean, we measure a sample 
mean to learn more about the mean in a population. Therefore, we will use 
the sample mean to describe the population mean. We begin by stating 
a hypothesis about the value of a population mean, and then we select a 
sample and measure the mean in that sample. On average, the value of the 
sample mean will equal that of the population mean. The larger the differ-
ence or discrepancy between the sample mean and population mean, the 
less likely it will be that the value of the population mean we hypothesized 
is correct. This type of experimental situation, using the example of stan-
dardized exam scores, is illustrated in Figure 7.1.

  FIGURE 7.1   � The Sampling Distribution for a Population With a Mean 
Equal to 150

µ = 150

We expect the 
sample mean to be 
equal to the 
population mean.  

If 150 is the correct population mean, then the sample mean will equal 150, on average, with outcomes 
farther from the population mean being less and less likely to occur.

A hypothesis is a statement 
or proposed explanation for an 
observation, a phenomenon, or 
a scientific problem that can be 
tested using the research method. 
A hypothesis is often a statement 
about the value for a parameter in a 
population.

Hypothesis testing or 
significance testing is a method 
for testing a claim or hypothesis 
about a parameter in a population, 
using data measured in a sample. 
In this method, we test a hypothesis 
by determining the likelihood that a 
sample statistic would be selected 
if the hypothesis regarding the 
population parameter were true.
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Chapter 7:  Hypothesis Testing    193

The method of evaluating samples to learn more about characteristics in 
a given population is called hypothesis testing. Hypothesis testing is really a 
systematic way to test claims or ideas about a group or population. To illus-
trate, let us use a simple example concerning social media use. According 
to estimates reported by Mediakix (2016), the average consumer spends 
roughly 120 minutes (or 2 hours) a day on social media. Suppose we want to 
test if pre-millennial-generation consumers use social media comparably 
to the average consumer. To make a test, we record the time (in minutes) 
that a sample of pre-millennial consumers use social media per day, and 
compare this to the average of 120 minutes per day that all consumers (the 
population) use social media. The mean we measure for these pre-millen-
nial consumers is a sample mean. We can then compare the mean in our 
sample to the population mean for all consumers (µ = 120 minutes).

The method of hypothesis testing can be summarized in four steps. We 
describe each of these four steps in greater detail in Section 7.2.

1.	 To begin, we identify a hypothesis or claim that we feel should be 
tested. For example, we decide to test whether the mean number 
of minutes per day that pre-millennial consumers spend on social 
media is 120 minutes per day (i.e., the average for all consumers).

2.	 We select a criterion upon which we decide whether the hypothesis 
being tested should be accepted or not. For example, the hypothe-
sis is whether or not pre-millennial consumers spend 120 minutes 
using social media per day. If pre-millennial consumers use social 
media similar to the average consumer, then we expect the sam-
ple mean will be about 120 minutes. If pre-millennial consumers 
spend more or less than 120 minutes using social media per day, 
then we expect the sample mean will be some value much lower or 
higher than 120 minutes. However, at what point do we decide that 
the discrepancy between the sample mean and 120 minutes (i.e., 
the population mean) is so big that we can reject the notion that 
pre-millennial consumers use social media similar to the average 
consumer? In Step 2 of hypothesis testing, we answer this question.

3.	 Select a sample from the population and measure the sample 
mean. For example, we can select a sample of 1,000 pre-millennial 
consumers and measure the mean time (in minutes) that they use 
social media per day.

4.	 Compare what we observe in the sample to what we expect to 
observe if the claim we are testing—that pre-millennial consum-
ers spend 120 minutes using social media per day—is true. We 
expect the sample mean will be around 120 minutes. The smaller 
the discrepancy between the sample mean and population mean, 
the more likely we are to decide that pre-millennial consumers use 
social media similar to the average consumer (i.e., about 120 min-
utes per day). The larger the discrepancy between the sample mean 
and population mean, the more likely we are to decide to reject that 
claim.

Hypothesis testing or 
significance testing is a method 
for testing a claim or hypothesis 
about a parameter in a population, 
using data measured in a sample. 
In this method, we test a hypothesis 
by determining the likelihood that a 
sample statistic would be selected 
if the hypothesis regarding the 
population parameter were true.
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194     Part II:  Probability and the Foundations of Inferential Statistics

7.2 Four Steps to Hypothesis Testing
The goal of hypothesis testing is to determine the likelihood that a sam-
ple statistic would be selected if the hypothesis regarding a population 
parameter were true. In this section, we describe the four steps of hypoth-
esis testing that were briefly introduced in Section 7.1:

Step 1: State the hypotheses.

Step 2: Set the criteria for a decision.

Step 3: Compute the test statistic.

Step 4: Make a decision.

Step 1: State the hypotheses. We begin by stating the value of a population 
mean in a null hypothesis, which we presume is true. For the example 
of social media use, we can state the null hypothesis that pre-millennial 
consumers use an average of 120 minutes of social media per day:

H0: µ = 120.

This is a starting point so that we can decide whether or not the null 
hypothesis is likely to be true, similar to the presumption of innocence 
in a courtroom. When a defendant is on trial, the jury starts by assuming 
that the defendant is innocent. The basis of the decision is to determine 
whether this assumption is true. Likewise, in hypothesis testing, we start 
by assuming that the hypothesis or claim we are testing is true. This is 
stated in the null hypothesis. The basis of the decision is to determine 
whether this assumption is likely to be true.

The key reason we are testing the null hypothesis is because we think 
it is wrong. We state what we think is wrong about the null hypothesis  
in an alternative hypothesis. In a courtroom, the defendant is assumed to 
be innocent (this is the null hypothesis so to speak), so the burden is on 
a prosecutor to conduct a trial to show evidence that the defendant is not 
innocent. In a similar way, we assume the null hypothesis is true, placing 
the burden on the researcher to conduct a study to show evidence that  
the null hypothesis is unlikely to be true. Regardless, we always make a 
decision about the null hypothesis (that it is likely or unlikely to be true). 
The alternative hypothesis is needed for Step 2.

LEARNING CHECK 1

1.	 On average, what do we expect the sample mean to be 
equal to?

2.	 True or false: Researchers select a sample from a 
population to learn more about characteristics in that 
sample.

Answers: 1. The population mean; 2. False. Researchers select a sample from a population to learn more about characteristics in the 
population from which the sample was selected.

FYI
Hypothesis testing is a method of 
testing whether hypotheses about a 
population parameter are likely to be 
true.

The null hypothesis (H0), stated 
as the null, is a statement about a 
population parameter, such as the 
population mean, that is assumed 
to be true, and a hypothesis test is 
structured to decide whether or not 
to reject this assumption.

An alternative hypothesis 
(H1) is a statement that directly 
contradicts a null hypothesis by 
stating that the actual value of a 
population parameter is less than, 
greater than, or not equal to the 
value stated in the null hypothesis.
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Chapter 7:  Hypothesis Testing    195

The null and alternative hypotheses must encompass all possibilities 
for the population mean. For the example of social media use, we can state 
that the value in the null hypothesis is not equal to (≠) 120 minutes. In 
this way, the null hypothesis value (µ = 120 minutes) and the alternative 
hypothesis value (µ ≠ 120) encompass all possible values for the popula-
tion mean. If we believe that pre-millennial consumers use more than (>) 
or less than (<) 120 minutes of social media per day, then we can make a 
“greater than” or “less than” statement in the alternative hypothesis—this 
type of alternative is described in Example 7.2 (page 206). Regardless of the 
decision alternative, the null and alternative hypotheses must encompass 
all possibilities for the value of the population mean.

FYI
In hypothesis testing, we conduct 

a study to test whether the null 
hypothesis is likely to be true.

MAKING SENSE TESTING THE NULL HYPOTHESIS

A decision made in hypothesis testing relates to the null 
hypothesis. This means two things in terms of making a decision:

1.	 Decisions are made about the null hypothesis. Using 
the courtroom analogy, a jury decides whether a 
defendant is guilty or not guilty. The jury does not 
make a decision of guilty or innocent because the 
defendant is assumed to be innocent. All evidence 
presented in a trial is to show that a defendant is 
guilty. The evidence either shows guilt (decision: guilty) 
or does not (decision: not guilty). In a similar way, the 
null hypothesis is assumed to be correct. A researcher 
conducts a study showing evidence that this 
assumption is unlikely (we reject the null hypothesis) 
or fails to do so (we retain the null hypothesis).

2.	 The bias is to do nothing. Using the courtroom 
analogy, for the same reason the courts would 
rather let the guilty go free than send the innocent 
to prison, researchers would rather do nothing 
(accept previous notions of truth stated by a 
null hypothesis) than make statements that are 
not correct. For this reason, we assume the null 
hypothesis is correct, thereby placing the burden 
on the researcher to demonstrate that the null 
hypothesis is not likely to be correct. Keep in mind, 
however, that when we retain the null hypothesis, 
this does not mean that the null hypothesis is 
correct. Instead, it means that there is insufficient 
evidence to reject it; it is not possible to prove the 
null hypothesis.

Step 2: Set the criteria for a decision. To set the criteria for a decision, we state 
the level of significance for a hypothesis test. This is similar to the crite-
rion that jurors use in a criminal trial. Jurors decide whether the evidence 
presented shows guilt beyond a reasonable doubt (this is the criterion). 
Likewise, in hypothesis testing, we collect data to test whether or not the 
null hypothesis is retained, based on the likelihood of selecting a sample 
mean from a population (the likelihood is the criterion). The likelihood or 
level of significance is typically set at 5% in behavioral research studies. 
When the probability of obtaining a sample mean would be less than 5% 
if the null hypothesis were true, then we conclude that the sample we 
selected is too unlikely, and thus we reject the null hypothesis.

The alternative hypothesis is identified so that the criterion can be spe-
cifically stated. Remember that the sample mean will equal the population 
mean on average if the null hypothesis is true. All other possible values of  
the sample mean are normally distributed (central limit theorem). The 
empirical rule tells us that at least 95% of all sample means fall within 

Level of significance, or 
significance level, is a criterion 
of judgment upon which a decision 
is made regarding the value stated 
in a null hypothesis. The criterion 
is based on the probability of 
obtaining a statistic measured in 
a sample if the value stated in the 
null hypothesis were true.
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196     Part II:  Probability and the Foundations of Inferential Statistics

about 2 standard deviations (SD) of the population mean, meaning that there 
is less than a 5% probability of obtaining a sample mean that is beyond 
approximately 2 SD from the population mean. For the example of social 
media use, we can look for the probability of obtaining a sample mean 
beyond 2 SD in the upper tail (greater than 120), the lower tail (less than 
120), or both tails (not equal to 120). Figure 7.2 shows the three decision 
alternatives for a hypothesis test; to conduct a hypothesis test, you choose 
only one alternative. How to choose an alternative is described in this chap-
ter. No matter what test you compute, the null and alternative hypotheses 
must encompass all possibilities for the population mean.

Step 3: Compute the test statistic. Suppose we observe the sample and record a 
sample mean equal to 100 minutes (M = 100) that pre-millennial consum-
ers use social media per day. Of course, we did not observe everyone in 
the population, so to make a decision, we need to evaluate how likely this 
sample outcome is if the population mean stated in the null hypothesis 
(120 minutes per day) is true. To determine this likelihood, we use a test 
statistic, which tells us how far, or how many standard deviations, a sam-
ple mean is from the population mean. The larger the value of the test sta-
tistic, the farther the distance, or number of standard deviations, a sample 
mean outcome is from the population mean stated in the null hypothesis. 
The value of the test statistic is used to make a decision in Step 4.

FYI
In behavioral science, the criterion or 
level of significance is typically set at 
5%. When the probability of obtaining 
a sample mean would be less than 5% 
if the null hypothesis were true, then 
we reject the value stated in the null 
hypothesis.

The test statistic is a 
mathematical formula that identifies 
how far or how many standard 
deviations a sample outcome is 
from the value stated in a null 
hypothesis. It allows researchers 
to determine the likelihood of 
obtaining sample outcomes if the 
null hypothesis were true. The 
value of the test statistic is used to 
make a decision regarding a null 
hypothesis.

  FIGURE 7.2    The Three Decision Alternatives for a Hypothesis Test

µ = 120

We expect the 
sample mean to be 
equal to the 
population mean.  

µ = 120

µ = 120

H1: Pre-millennial
consumers use
more than120 minutes 
of social media 
per day.

H1: Pre-millennial
consumers use
less than 120 minutes 
of social media 
per day.

H1: Pre-millennial
consumers do
not use 120 minutes 
of social media 
per day.

Although a decision alternative can be stated in only one tail, the null and alternative hypotheses should encompass all possibilities for the population 
mean.
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Chapter 7:  Hypothesis Testing    197

Step 4: Make a decision. We use the value of the test statistic to make a deci-
sion about the null hypothesis. The decision is based on the probability of 
obtaining a sample mean, given that the value stated in the null hypothesis 
is true. If the probability of obtaining a sample mean is less than or equal 
to 5% when the null hypothesis is true, then the decision is to reject the 
null hypothesis. If the probability of obtaining a sample mean is greater 
than 5% when the null hypothesis is true, then the decision is to retain the 
null hypothesis. In sum, there are two decisions a researcher can make:

1.	 Reject the null hypothesis. The sample mean is associated with a 
low probability of occurrence when the null hypothesis is true. For 
this decision, we conclude that the value stated in the null hypoth-
esis is wrong; it is rejected.

2.	 Retain the null hypothesis. The sample mean is associated with 
a high probability of occurrence when the null hypothesis is true. 
For this decision, we conclude that there is insufficient evidence to 
reject the null hypothesis; this does not mean that the null hypoth-
esis is correct. It is not possible to prove the null hypothesis.

The probability of obtaining a sample mean, given that the value stated 
in the null hypothesis is true, is stated by the p value. The p value is a 
probability: It varies between 0 and 1 and can never be negative. In Step 2, 
we stated the criterion or probability of obtaining a sample mean at which 
point we will decide to reject the value stated in the null hypothesis, which 
is typically set at 5% in behavioral research. To make a decision, we com-
pare the p value to the criterion we set in Step 2.

When the p value is less than 5% (p < .05), we reject the null hypothesis, 
and when p = .05, the decision is also to reject the null hypothesis. When 
the p value is greater than 5% (p > .05), we retain the null hypothesis. The 
decision to reject or retain the null hypothesis is called significance. When 
the p value is less than or equal to .05, we reach significance; the decision is 
to reject the null hypothesis. When the p value is greater than .05, we fail to 
reach significance; the decision is to retain the null hypothesis. Figure 7.3 
summarizes the four steps of hypothesis testing.

FYI
We use the value of the test statistic 

to make a decision regarding the null 
hypothesis.

FYI
Researchers make decisions 

regarding the null hypothesis. The 
decision can be to retain the null  

(p > .05) or reject the null (p ≤ .05).

A p value is the probability of 
obtaining a sample outcome, given 
that the value stated in the null 
hypothesis is true. The p value 
for obtaining a sample outcome 
is compared to the level of 
significance or criterion for making 
a decision.

Significance, or statistical 
significance, describes a decision 
made concerning a value stated 
in the null hypothesis. When the 
null hypothesis is rejected, we 
reach significance. When the null 
hypothesis is retained, we fail to 
reach significance.

LEARNING CHECK 2

1.	 State the four steps of hypothesis testing.

2.	 The decision in hypothesis testing is to retain or reject 
which hypothesis: null or alternative?

3.	 The criterion or level of significance in behavioral 
research is typically set at what probability value?

4.	 A test statistic is associated with a p value less than .05. 
What is the decision for this hypothesis test?

5.	 If the null hypothesis is rejected, did we reach 
significance?

Answers: 1. Step 1: State the hypotheses. Step 2: Set the criteria for a decision. Step 3: Compute the test statistic. Step 4: Make a decision; 
2. Null hypothesis; 3. The level of significance is typically set at .05; 4. Reject the null hypothesis; 5. Yes.
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198     Part II:  Probability and the Foundations of Inferential Statistics

7.3 Hypothesis Testing  
and Sampling Distributions
The application of hypothesis testing is rooted in an understanding of 
the sampling distribution of the mean. In Chapter 6, we showed three 
characteristics of the mean, two of which are particularly relevant in this 
section:

1.	 The sample mean is an unbiased estimator of the population 
mean. On average, a randomly selected sample will have a mean 
equal to that in the population. In hypothesis testing, we begin by 
stating the null hypothesis. We expect that, if the null hypothe-
sis is true, then a random sample selected from a given popula-
tion will have a sample mean equal to the value stated in the null 
hypothesis.

2.	 Regardless of the distribution in a given population, the sampling 
distribution of the sample mean is approximately normal. Hence, 

  FIGURE 7.3    A Summary of the Four Steps of Hypothesis Testing

-------------------------------------------------- 
Level of Significance (Criterion) 

-------------------------------------------------- 

POPULATION

STEP 1: State the hypotheses. 
A researcher states a null 
hypothesis about a value in the 
population (H0) and an 
alternative hypothesis that 
contradicts the null hypothesis.

Conduct a study 
with a sample 

selected from a 
population.

STEP 2: Set the criteria for a 
decision. A criterion is set upon
which a researcher will decide 
whether to retain or reject the 
value stated in the null 
hypothesis.

A sample is selected from the
population, and a sample mean 
is measured.  

Measure data 
and compute 
a test statistic. 

STEP 3: Compute the test 
statistic. This will produce a 
value that can be compared to 
the criterion that was set before 
the sample was selected.

STEP 4: Make a decision. If the
probability of obtaining a sample
mean is less than or equal
to 5% when the null is true, then
reject the null hypothesis. If the
probability of obtaining a sample
mean is greater than 5% when
the null is true, then retain the
null hypothesis. 

If 150 is the correct population mean, then the sample mean will equal 150, on average, with outcomes farther from the population mean being less 
and less likely to occur.

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 7:  Hypothesis Testing    199

the probabilities of all other possible sample means we could select 
are normally distributed. Using this distribution, we can therefore 
state an alternative hypothesis to locate the probability of obtaining 
sample means with less than a 5% chance of being selected if the 
value stated in the null hypothesis is true. Figure 7.2 shows that we 
can identify sample mean outcomes in one or both tails using the 
normal distribution.

To locate the probability of obtaining a sample mean in a sampling 
distribution, we must know (1) the population mean and (2) the stan-
dard error of the mean (SEM; introduced in Chapter 6). Each value is 
entered in the test statistic formula computed in Step 3, thereby allow-
ing us to make a decision in Step 4. To review, Table 7.1 displays the 
notations used to describe populations, samples, and sampling dis-
tributions. Table 7.2 summarizes the characteristics of each type of 
distribution.

  TABLE 7.1 
 � A Review of the Notations Used for the Mean, Variance, and 
Standard Deviation in Populations, Samples, and Sampling 
Distributions

Characteristic Population Sample Sampling Distribution

Mean µ M Xor  µ µM =

Variance σ2 s2 or SD2

σ σ
M n
2 2

=

Standard deviation σ s or SD
σ σ

M
n

=

  TABLE 7.2   � A Review of the Key Differences Between Population, Sample, 
and Sampling Distributions

Population 
Distribution

Sample 
Distribution

Distribution of 
Sample Means

What is it? Scores of all 
persons in a 
population

Scores of a select 
portion of persons 
from the population 

All possible sample 
means that can be 
selected, given a certain 
sample size

Is it 
accessible?

Typically, no Yes Yes

What is the 
shape?

Could be any 
shape

Could be any shape Normal distribution 
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200     Part II:  Probability and the Foundations of Inferential Statistics

7.4 Making a Decision: Types of Error
In Step 4, we decide whether to retain or reject the null hypothesis. 
Because we are observing a sample and not an entire population, it is pos-
sible that our decision about a null hypothesis is wrong. Table 7.3 shows 
that there are four decision alternatives regarding the truth and falsity of 
the decision we make about a null hypothesis:

1.	 The decision to retain the null hypothesis is correct.

2.	 The decision to retain the null hypothesis is incorrect.

3.	 The decision to reject the null hypothesis is correct.

4.	 The decision to reject the null hypothesis is incorrect.

We investigate each decision alternative in this section. Because we will 
observe a sample, and not a population, it is impossible to know for sure 
the truth in the population. So for the sake of illustration, we will assume 
we know this. This assumption is labeled as Truth in the Population in 
Table 7.3. In this section, we introduce each decision alternative.

LEARNING CHECK 3

1.	 For the following statements, write increases or 
decreases as an answer. The likelihood that we reject 
the null hypothesis (increases or decreases):

(a)	 The closer the value of a sample mean is to the 
value stated by the null hypothesis.

(b)	 The farther the value of a sample mean is from the 
value stated in the null hypothesis.

2.	 A researcher selects a sample of 49 students to test 
the null hypothesis that the average student exercises 
90 minutes per week. What is the mean for the 
sampling distribution for this population of interest if the 
null hypothesis is true?

Answers: 1. (a) Decreases, (b) Increases; 2. 90 minutes per week.
  TABLE 7.3    Four Outcomes for Making a Decision

Decision

Retain the Null 
Hypothesis

Reject the Null 
Hypothesis

Truth in the 
Population

True CORRECT
1 − α

TYPE I ERROR
α

False TYPE II ERROR
β

CORRECT
1 − β
POWER

The decision can be either correct (correctly reject or retain the null hypothesis) or wrong (incorrectly 
reject or retain the null hypothesis).

FYI
A Type II error, or beta (β) error, is the 
probability of incorrectly retaining the 
null hypothesis.
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Decision: Retain the Null Hypothesis
When we decide to retain the null hypothesis, we can be correct or incor-
rect. The correct decision is to retain a true null hypothesis. This deci-
sion is called a null result or null finding. This is usually an uninteresting 
decision because the decision is to retain what we already assumed. For 
this reason, a null result alone is rarely published in scientific journals for 
behavioral research.

The incorrect decision is to retain a false null hypothesis: a “false 
negative” finding. This decision is an example of a Type II error, or 
beta (β) error. With each test we make, there is always some probabil-
ity that the decision is a Type II error. In this decision, we decide not to 
reject previous notions of truth that are in fact false. While this type of 
error is often regarded as less problematic than a Type I error (defined 
in the next paragraph), it can be problematic in many fields, such as 
in medicine where testing of treatments could mean life or death for 
patients.

Decision: Reject the Null Hypothesis
When we decide to reject the null hypothesis, we can be correct or incor-
rect. The incorrect decision is to reject a true null hypothesis: a “false 
positive” finding. This decision is an example of a Type I error. With 
each test we make, there is always some probability that our decision 
is a Type I error. A researcher who makes this error decides to reject 
previous notions of truth that are in fact true. Using the courtroom 
analogy, making this type of error is analogous to finding an innocent 
person guilty. To minimize this error, we therefore place the burden 
on the researcher to demonstrate evidence that the null hypothesis is 
indeed false.

Because we assume the null hypothesis is true, we control for Type 
I error by stating a level of significance. The level we set, called the 
alpha level (symbolized as α), is the largest probability of commit-
ting a Type I error that we will allow and still decide to reject the null 
hypothesis. This criterion is usually set at .05 (α = .05) in behavioral 
research. To make a decision, we compare the alpha level (or criterion) 
to the p value (the actual likelihood of obtaining a sample mean, if the 
null were true). When the p value is less than the criterion of α = .05, 
we decide to reject the null hypothesis; otherwise, we retain the null 
hypothesis.

The correct decision is to reject a false null hypothesis. In other 
words, we decide that the null hypothesis is false when it is indeed 
false. This decision is called the power of the decision-making process 
because it is the decision we aim for. Remember that we are only test-
ing the null hypothesis because we think it is wrong. Deciding to reject 
a false null hypothesis, then, is the power, inasmuch as we learn the 
most about populations when we accurately reject false notions of truth 
about them. This decision is the most published result in behavioral 
research.

FYI
Researchers directly control for the 

probability of a Type I error by stating 
an alpha (α) level.

FYI
The power in hypothesis testing is 

the probability of correctly rejecting a 
value stated in the null hypothesis.

Type II error, or beta (β) error, 
is the probability of retaining a null 
hypothesis that is actually false.

Type I error is the probability 
of rejecting a null hypothesis 
that is actually true. Researchers 
directly control for the probability 
of committing this type of error by 
stating an alpha level.

An alpha (α) level is the level 
of significance or criterion for a 
hypothesis test. It is the largest 
probability of committing a Type 
I error that we will allow and still 
decide to reject the null hypothesis.

The power in hypothesis testing is 
the probability of rejecting a false 
null hypothesis. Specifically, it is the 
probability that a randomly selected 
sample will show that the null 
hypothesis is false when the null 
hypothesis is indeed false.

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



202     Part II:  Probability and the Foundations of Inferential Statistics

7.5 Testing for Significance:  
Examples Using the z Test
We use hypothesis testing to make decisions about parameters in a pop-
ulation. The type of test statistic we use in hypothesis testing depends 
largely on what is known in a population. When we know the mean and 
standard deviation in a single population, we can use the one-sample  
z test, which we use in this section to illustrate the four steps of hypothe-
sis testing.

Recall that we can state one of three alternative hypotheses: A popu-
lation mean is greater than (>), less than (<), or not equal to (≠) the value 
stated in a null hypothesis. The alternative hypothesis determines which 
tail of a sampling distribution to place the level of significance in, as illus-
trated in Figure 7.2. In this section, we will use an example for a directional 
and a nondirectional hypothesis test.

Nondirectional Tests (H1: ≠)
In Example 7.1, we use the one-sample z test for a nondirectional, or two-
tailed, test, where the alternative hypothesis is stated as not equal to (≠) 
the null hypothesis. For this test, we will place the level of significance in 
both tails of the sampling distribution. We are therefore interested in any 
alternative to the null hypothesis. This is the most common alternative 
hypothesis tested in behavioral science.

Example 7.1

A common measure of intelligence is the intelligence quotient 
(IQ) test (Hafer, 2017; Naglieri, 2015) in which scores in the 
general healthy population are approximately normally distributed 
with 100 ± 15 (µ ± σ) . Suppose we select a sample of  
100 graduate students to identify if the IQ of those students 
is significantly different from that of the general healthy adult 
population. In this sample, we record a sample mean equal 
to 103 (M = 103) . Compute the one-sample z test to decide 
whether to retain or reject the null hypothesis at a .05 level of 
significance (α = .05) .

LEARNING CHECK 4

1.	 What type of error do we directly control?

2.	 What type of error is associated with decisions to retain 
the null hypothesis?

3.	 What type of error is associated with decisions to reject 
the null hypothesis?

4.	 State the two correct decisions that a researcher can 
make.

Answers: 1. Type I error; 2. Type II error; 3. Type I error; 4. Retain a true null hypothesis and reject a false null hypothesis.

The one-sample z test is a 
statistical procedure used to test 
hypotheses concerning the mean 
in a single population with a known 
variance.

Nondirectional tests, or two-
tailed tests, are hypothesis tests 
in which the alternative hypothesis 
is stated as not equal to (≠) a 
value stated in the null hypothesis. 
Hence, the researcher is interested 
in any alternative to the null 
hypothesis.

FYI
The one-sample z test is used to 
test hypotheses about a population 
mean when the population variance is 
known.

FYI
Nondirectional tests are used to test 
hypotheses when we are interested in 
any alternative to the null hypothesis.
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Chapter 7:  Hypothesis Testing    203

Step 1: State the hypotheses. The population mean IQ score is 100; therefore, µ = 100 is 
the null hypothesis. We are testing whether the null hypothesis is (=) or is not (≠) likely to be 
true among graduate students:

H0: µ = 100	� Mean IQ scores are equal to 100 in the population of graduate 
students.

H1: µ ≠ 100	� Mean IQ scores are not equal to 100 in the population of graduate 
students.

Step 2: Set the criteria for a decision. The level of significance is .05, which makes the alpha 
level α = .05. To locate the probability of obtaining a sample mean from a given population, 
we use the standard normal distribution. We will locate the z scores in a standard normal 
distribution that are the cutoffs, or critical values, for sample mean values with less than a 
5% probability of occurrence if the value stated in the null hypothesis (µ = 100) is true.

In a nondirectional (two-tailed) hypothesis test, we divide the alpha value in half so that an 
equal proportion of area is placed in the upper and lower tail. Table 7.4 gives the critical 
values for one- and two-tailed tests at .05, .01, and .001 levels of significance. Figure 7.4 
displays a graph with the critical values for Example 7.1 shown. In this example, α = .05, so 
we split this probability in half:

Splitting in half: in each tail.α α
2

05
2

0250= =. .

To locate the critical values, we use the unit normal table given in Table C.1 in Appendix C 
and look up the proportion .0250 toward the tail in Column C. This value, .0250, is listed for 
a z score equal to z = 1.96. This is the critical value for the upper tail of the standard normal 
distribution. Because the normal distribution is symmetrical, the critical value in the bottom 
tail will be the same distance below the mean, or z = −1.96. The regions beyond the critical 
values, displayed in Figure 7.4, are called the rejection regions. If the value of the test 
statistic falls in these regions, then the decision is to reject the null hypothesis; otherwise, 
we retain the null hypothesis.

Step 3: Compute the test statistic. Step 2 sets the stage for making a decision because the 
criterion is set. The probability is less than 5% that we will obtain a sample mean that is at 
least 1.96 standard deviations above or below the value of the population mean stated in 
the null hypothesis. In this step, we will compute a test statistic to determine whether the 
sample mean we selected is beyond or within the critical values we stated in Step 2.

The test statistic for a one-sample z test is called the z statistic. The z statistic converts 
any sampling distribution into a standard normal distribution. The z statistic is therefore a 
z transformation. The solution of the formula gives the number of standard deviations, or 

A critical value is a cutoff value 
that defines the boundaries beyond 
which less than 5% of sample 
means can be obtained if the null 
hypothesis is true. Sample means 
obtained beyond a critical value will 
result in a decision to reject the null 
hypothesis.

The rejection region is the 
region beyond a critical value in a 
hypothesis test. When the value 
of a test statistic is in the rejection 
region, we decide to reject the null 
hypothesis; otherwise, we retain the 
null hypothesis.

The z statistic is an inferential 
statistic used to determine the 
number of standard deviations in 
a standard normal distribution that 
a sample mean deviates from the 
population mean stated in the null 
hypothesis.

  TABLE 7.4   � Critical Values for One- and Two-Tailed Tests at Three 
Commonly Used Levels of Significance

Type of Test

Level of Significance (α) One-Tailed Two-Tailed

.05 +1.645 or −1.645 ± 1.96

.01 +2.33 or −2.33 ± 2.58

  .001 +3.09 or −3.09 ± 3.30

FYI
For two-tailed tests, the alpha is split 

in half and placed in each tail of a 
standard normal distribution.

FYI
A critical value marks  

the cutoff for the rejection region.
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204     Part II:  Probability and the Foundations of Inferential Statistics

z scores, that a sample mean falls above or below the population mean stated in the null 
hypothesis. We can then compare the value of the z statistic, called the obtained value, 
to the critical values we determined in Step 2. The z statistic formula is the sample mean 
minus the population mean stated in the null hypothesis, divided by the standard error  
of the mean:

z statistic: obtz M
M

M n
= =−µ

σ
σσ, .where

To calculate the z statistic, first compute the standard error (σM), which is the denominator 
for the z statistic:

σM
n

= ==
σ 15

100
1 50. .

Then compute the z statistic by substituting the values of the sample mean, M = 103; the 
population mean stated by the null hypothesis, µ = 100; and the standard error we just 
calculated, σM = 1.50:

z
M

M
obt = =

−
=

−µ

σ

103
2.00

100

1 50.
.

Step 4: Make a decision. To make a decision, we compare the obtained value to the  
critical values. We reject the null hypothesis if the obtained value exceeds a critical value. 
Figure 7.5 shows that the obtained value (zobt = 2.00) is greater than the critical value;  
it falls in the rejection region. The decision for this test is to reject the null hypothesis.

The probability of obtaining zobt = 2.00 is stated by the p value. To locate the p value or 
probability of obtaining the z statistic, we refer to the unit normal table in Table C.1 in 
Appendix C. Look for a z score equal to 2.00 in Column A, then locate the probability 
toward the tail in Column C. The value is .0228. Finally, multiply the value given in  

  FIGURE 7.4   � The Critical Values (± 1.96) for a Nondirectional (two-tailed) 
Test With a .05 Level of Significance

Critical values for a nondirectional 
(two-tailed) test with α = .05 

−1.96 1.96

Rejection region 
α = .0250 

Rejection region 
α = .0250 

0−1−2−3
Null

21 3

The obtained value is the value 
of a test statistic. This value is 
compared to the critical value(s) 
of a hypothesis test to make a 
decision. When the obtained 
value exceeds a critical value, we 
decide to reject the null hypothesis; 
otherwise, we retain the null 
hypothesis.

FYI
The z statistic measures the number of 
standard deviations, or z scores, that 
a sample mean falls above or below 
the population mean stated in the null 
hypothesis.
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Chapter 7:  Hypothesis Testing    205

Column C by the number of tails for alpha. Because this is a two-tailed test, we multiply 
.0228 by 2: p = (.0228) × 2 tails = .0456. Table 7.5 summarizes how to determine the  
p value for one- and two-tailed tests.

We found in Example 7.1 that if the null hypothesis were true, then p = .0456 that we 
would have selected this sample mean from this population. The criterion we set in Step 2 
was that the probability must be less than 5% or p = .0500 that we would obtain a sample 
mean if the null hypothesis were true. Because p is less than 5%, we decide to reject the 
null hypothesis. We conclude that the mean IQ score among graduate students in this 
population is not 100 (the value stated in the null hypothesis). Instead, we found that the 
mean was significantly larger than 100.

  FIGURE 7.5    Making a Decision for Example 7.1

The obtained value is 2.00,
which falls in the rejection region;
reject the null hypothesis.

Rejection region 
α = .0250 

Rejection region 
α = .0250 

0−1 1 3−2−3

2.00
Null

Retain the null
hypothesis 

2

−1.96 1.96

Because the obtained value falls in the rejection region (it is beyond the critical value in the upper tail), we 
decide to reject the null hypothesis.

FYI
A nondirectional test is conducted 

when it is impossible or highly unlikely 
that a sample mean will fall in the 

direction opposite to that stated in the 
alternative hypothesis.

  TABLE 7.5    Determining the p Value

One-Tailed Test Two-Tailed Test

Number of tails 1 2

Probability p p

p value calculation 1p 2p

To find the p value for the z statistic, find its probability (toward the tail) in the unit normal table and  
multiply this probability by the number of tails for alpha.

Directional Tests (H1: > or H1: <)
An alternative to the nondirectional test is a directional, or one-tailed, 
test, where the alternative hypothesis is stated as greater than (>) the null 
hypothesis or less than (<) the null hypothesis. For an upper-tail critical 
test, or a “greater than” statement, we place the level of significance in the 

Directional tests, or one-tailed 
tests, are hypothesis tests in 
which the alternative hypothesis is 
stated as greater than (>) or less 
than (<) a value stated in the null 
hypothesis. Hence, the researcher 
is interested in a specific alternative 
to the null hypothesis.
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206     Part II:  Probability and the Foundations of Inferential Statistics

upper tail of the sampling distribution. So we are interested in any alter-
native greater than the value stated in the null hypothesis. This test can be 
used when it is impossible or highly unlikely that a sample mean will fall 
below the population mean stated in the null hypothesis.

For a lower-tail critical test, or a “less than” statement, we place the 
level of significance or critical value in the lower tail of the sampling dis-
tribution. So we are interested in any alternative less than the value stated 
in the null hypothesis. This test can be used when it is impossible or highly 
unlikely that a sample mean will fall above the population mean stated in 
the null hypothesis.

To illustrate how to make a decision using the one-tailed test, we work 
in Example 7.2 with an example in which such a test could be used.

Example 7.2

Researchers in areas of child development and education are often 
interested in evaluating methods to promote reading proficiency 
and academic success (Crosnoe, Benner, & Davis-Kean, 2016; 
Phillips, Norris, Hayward, & Lovell, 2017). Suppose, for example, 
researchers were interested in looking at improvement in reading 
proficiency among elementary school students following a reading 
program. In this example, the reading program should, if anything, 
improve reading skills, so if any outcome were possible, it should be 
to see improvement. For this reason, we could use a one-tailed test 
to evaluate these data. Suppose elementary school children in the 
general population show reading proficiency increases of 12 ± 4  
(µ ± σ) points on a given standardized measure. If we select a sample 
of 25 elementary school children in the reading program and record a 
sample mean improvement in reading proficiency equal to 14  

(M = 14) points, then we compute the one-sample z test at a .05 level of significance to 
determine if the reading program was effective.

Step 1: State the hypotheses. The population mean is 12, and we are testing whether the 
alternative is greater than (>) this value:

H0: µ ≤ 12	� With the reading program, mean improvement is at most 12 points in 
the population.

H1: µ > 12	� With the reading program, mean improvement is greater than  
12 points in the population.

Notice a key change for one-tailed tests: The null hypothesis encompasses outcomes in 
all directions that are opposite the alternative hypothesis. In other words, the directional 
statement is incorporated into the statement of both hypotheses. In this example, the reading 
program is intended to improve reading proficiency. Therefore, a one-tailed test is used 
because there is a specific, expected, logical direction for the effect if the reading program 
were effective. The null hypothesis therefore states that the expected effect will not occur 
(that mean improvement will be at most 12 points), and the alternative hypothesis states that 
the expected effect will occur (that mean improvement will be greater than 12 points).

Step 2: Set the criteria for a decision. The level of significance is .05, which makes the 
alpha level α = .05. To determine the critical value for an upper-tail critical test, we locate 
the probability .0500 toward the tail in Column C in the unit normal table in Table C.1 in 
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Chapter 7:  Hypothesis Testing    207

Appendix C. The z score associated with this probability is between z = 1.64 and z = 1.65. 
The average of these z scores is z = 1.645, which is the critical value or cutoff for the 
rejection region. Figure 7.6 shows that, for this test, we place the entire rejection region, or 
alpha level, in the upper tail of the standard normal distribution.

  FIGURE 7.6   � The Critical Value (1.645) for a Directional (upper-tail critical) 
Hypothesis Test at a .05 Level of Significance

z = 1.645

Critical value for an upper-
tail critical test with α = .05 

Rejection region 
α = .05 

0−1−2−3
Null

21 3

When the test statistic exceeds 1.645, we reject the null hypothesis; otherwise, we retain the null 
hypothesis.

Step 3: Compute the test statistic. Step 2 sets the stage for making a decision because the 
criterion is set. The probability is less than 5% that we will obtain a sample mean that is at 
least 1.645 standard deviations above the value of the population mean stated in the null 
hypothesis. In this step, we compute a test statistic to determine whether or not the sample 
mean we selected is beyond the critical value we stated in Step 2.

To calculate the z statistic, first compute the standard error (σM), which is the denominator 
for the z statistic:

σM
n

= = =σ 4

25
0 80. .

Then compute the z statistic by substituting the values of the sample mean, M = 14; the 
population mean stated by the null hypothesis, µ = 12; and the standard error we just 
calculated, σM = 0.80:

z M

M
obt 2.50= = =− −µ

σ
14 12

0 80.
.

Step 4: Make a decision. To make a decision, we compare the obtained value to the  
critical value. We reject the null hypothesis if the obtained value exceeds the critical value. 
Figure 7.7 shows that the obtained value (zobt = 2.50) is greater than the critical value;  
it falls in the rejection region. The decision is to reject the null hypothesis. To locate the  
p value or probability of obtaining the z statistic, we refer to the unit normal table in Table C.1  
in Appendix C. Look for a z score equal to 2.50 in Column A, then locate the probability 
toward the tail in Column C. The p value is .0062 (p = .0062). We do not double the p value 
for one-tailed tests.

FYI
For one-tailed tests, the alpha level is 
placed in a single tail of a distribution.
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208     Part II:  Probability and the Foundations of Inferential Statistics

We found in Example 7.2 that if the null hypothesis were true, then  
p = .0062 that we would have selected a sample mean of 14 from this pop-
ulation. The criterion we set in Step 2 was that the probability must be less 
than 5% that we would obtain a sample mean if the null hypothesis were 
true. Because p is less than 5%, we decide to reject the null hypothesis 
that mean improvement in this population is equal to 12. Instead, we found 
that the reading program significantly improved reading proficiency scores 
more than 12 points.

The decision in Example 7.2 was to reject the null hypothesis using a 
one-tailed test. One problem that can arise, however, is if scores go in the 
opposite direction than what was predicted. In other words, for one-tailed 
tests, it is possible in some cases to place the rejection region in the wrong 
tail. Thus, we predict that scores will increase, and instead they decrease, 
and vice versa. When we fail to reject a null hypothesis because we placed 
the rejection region in the wrong tail, we commit a type of error called a 
Type III error (Kaiser, 1960). We make a closer comparison of one-tailed 
and two-tailed hypothesis tests in the next section.

FYI
Two-tailed tests are more conservative 
and eliminate the possibility of 
committing a Type III error. One-tailed 
tests are associated with greater 
power, assuming the value stated in 
the null hypothesis is false.

FYI
For a Type III error, the “wrong tail” 
refers to the opposite tail from where 
a difference was observed and would 
have otherwise been significant.

  FIGURE 7.7    Making a Decision for Example 7.2

The test statistic reaches 
the rejection region; reject 
the null hypothesis. 

0−1 1 2 3−2−3

2.50Null

Retain the null
hypothesis 

Rejection region 
α = .05 

Because the obtained value falls in the rejection region (it is beyond the critical value of 1.645), we 
decide to reject the null hypothesis.

A Type III error is a type of error 
possible with one-tailed tests in 
which a decision would have been 
to reject the null hypothesis, but 
the researcher decides to retain 
the null hypothesis because the 
rejection region was located in the 
wrong tail.

	 7.6	 RESEARCH IN FOCUS: DIRECTIONAL  
VERSUS NONDIRECTIONAL TESTS

Kruger and Savitsky (2006) conducted a study in which they performed two tests on the same data. They completed an upper-tail 
critical test at α = .05 and a two-tailed test at α = .10. As shown in Figure 7.8, these are similar tests, except in the upper-tail test, 
all the alpha level is placed in the upper tail, and in the two-tailed test, the alpha level is split so that .05 is placed in each tail. When 
the researchers showed these results to a group of participants, they found that participants were more persuaded by a significant 
result when it was described as a one-tailed test, p < .05, than when it was described as a two-tailed test, p < .10. This was interesting 
because the two results were identical—both tests were associated with the same critical value in the upper tail.
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When α = .05, all of that value is placed in the upper tail for an upper-tail critical test. The two-tailed equivalent would require a test 
with α = .10, such that .05 is placed in each tail. Note that the normal distribution is symmetrical, so the cutoff in the lower tail is the 
same distance below the mean (−1.645; the upper tail is +1.645).

Most editors of peer-reviewed journals in behavioral research will not publish the results of a study where the level of significance 
is greater than .05. Although the two-tailed test, p < .10, was significant, it is unlikely that the results would be published in a 
peer-reviewed scientific journal. Reporting the same results as a one-tailed test, p < .05, makes it more likely that the data will be 
published.

The two-tailed test is more conservative; it makes it more difficult to reject the null hypothesis. It also eliminates the possibility of 
committing a Type III error. The one-tailed test, though, is associated with greater power. If the value stated in the null hypothesis is 
false, then a one-tailed test will make it easier to detect this (i.e., lead to a decision to reject the null hypothesis). Because the  
one-tailed test makes it easier to reject the null hypothesis, it is important that we justify that an outcome can occur in only one 
direction. Justifying that an outcome can occur in only one direction is difficult for much of the data that behavioral researchers 
measure. For this reason, most studies in behavioral research are two-tailed tests.

  FIGURE 7.8    Placing the Rejection Region in One of Both Tails

z = 1.645 z = −1.645

Upper-tail critical test at a
.05 level of significance

Two-tailed test at a .10
level of significance 

The upper critical
value is the same

for both tests 

0−1−2−3
Null

21 3
z = 1.645

0−1−2−3
Null

21 3

LEARNING CHECK 5

1.	 Is the following set of hypotheses appropriate for a 
directional or a nondirectional hypothesis test?

	 H0: µ = 35

	 H1: µ ≠ 35

2.	 A researcher conducts a one-sample z test. The z 
statistic for the upper-tail critical test at a .05 level of 
significance is zobt = 1.84. What is the decision for this 
test?

(Continued)
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210     Part II:  Probability and the Foundations of Inferential Statistics

7.7 Measuring the Size  
of an Effect: Cohen’s d
A decision to reject the null hypothesis means that an effect is sig-
nificant. For a one-sample test, an effect is the difference between a 
sample mean and the population mean stated in the null hypothesis. 
In Examples 7.1 and 7.2 we found a significant effect, meaning that the 
sample mean was significantly larger than the value stated in the null 
hypothesis. Hypothesis testing identifies whether or not an effect exists 
in a population. When a sample mean would be likely to occur if the null 
hypothesis were true (p > .05), we decide that an effect does not exist in 
a population; the effect is not significant. When a sample mean would be 
unlikely to occur if the null hypothesis were true (typically less than a 5% 
likelihood, p < .05), we decide that an effect does exist in a population; 
the effect is significant. Hypothesis testing does not, however, inform us 
of how big the effect is.

To determine the size of an effect, we compute effect size. There are 
two ways to calculate the size of an effect. We can determine

1.	 how far scores shifted in the population, and

2.	 the percent of variance that can be explained by a given variable.

Effect size is most meaningfully reported with significant effects when 
the decision was to reject the null hypothesis. If an effect is not significant, 
as in instances when we retain the null hypothesis, then we are concluding 
that an effect does not exist in a population. It makes little sense to com-
pute the size of an effect that we just concluded does not exist. In this sec-
tion, we describe how far scores shifted in the population using a measure 
of effect size called Cohen’s d.

Cohen’s d measures the number of standard deviations an effect is 
shifted above or below the population mean stated by the null hypothesis. 
The formula for Cohen’s d replaces the standard error in the denominator 
of the test statistic with the population standard deviation (J. Cohen, 1988):

Cohen’s d M= −µ
σ

.

3.	 A researcher conducts a hypothesis test and finds that 
p = .0689. What is the decision for a hypothesis test at 
a .05 level of significance?

4.	 Which type of test, one-tailed or two-tailed, is 
susceptible to the possibility of committing a Type III 
error?

Answers: 1. A nondirectional (two-tailed) test; 2. Reject the null hypothesis; 3. Retain the null hypothesis; 4. One-tailed test.

(Continued)

For a single sample, an effect is 
the difference between a sample 
mean and the population mean 
stated in the null hypothesis. In 
hypothesis testing, an effect is not 
significant when we retain the null 
hypothesis; an effect is significant 
when we reject the null hypothesis.

Effect size is a statistical 
measure of the size of an effect 
in a population, which allows 
researchers to describe how far 
scores shifted in the population, or 
the percent of variance that can be 
explained by a given variable.

Cohen’s d is a measure of effect 
size in terms of the number of 
standard deviations that mean 
scores shifted above or below the 
population mean stated by the null 
hypothesis. The larger the value 
of d, the larger the effect in the 
population.
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The value of Cohen’s d is zero when there is no difference between 
two means, and it gets farther from zero as the difference gets larger. 
To interpret values of d, we refer to Cohen’s effect size conventions out-
lined in Table 7.6. The sign of d indicates the direction of the shift. When 
values of d are positive, an effect shifted above the population mean; 
when values of d are negative, an effect shifted below the population 
mean.

FYI
Hypothesis testing determines 

whether or not an effect exists in a 
population. Effect size measures the 
size of an observed effect from small 

to large.

  TABLE 7.6    Cohen’s Effect Size Conventions

Description of Effect Effect Size (d)

Small d < 0.2

Medium 0.2 < d < 0.8

Large d > 0.8

In Example 7.3, we will determine the effect size for the research study 
in Example 7.2 to illustrate how significance and effect size can be inter-
preted for the same set of data.

Example 7.3

In Example 7.2, we tested if a reading program could effectively improve reading 
proficiency scores in a group of elementary school children. Scores in the general 
population show reading proficiency increases of 12 ± 4 (µ ± σ) points on a given 
standardized measure. In our sample of children who took the reading program, mean 
proficiency scores improved by 14 points. In Example 7.3, we will determine the effect size 
for this test using Cohen’s d.

The numerator for Cohen’s d is the difference between the sample mean (M = 14) and 
the population mean (µ = 12). The denominator is the population standard deviation  
(σ = 4):

d M= = =− −µ
σ

14 12
4

0.50.

We conclude that the observed effect shifted 0.50 standard deviations above the mean 
in the population. This way of interpreting effect size is illustrated in Figure 7.9. For our 
example, we are stating that students in the reading program scored 0.50 standard 
deviations higher, on average, than students in the general population. This interpretation 
is most meaningfully reported when the decision was to reject the null hypothesis, as we 
did in Example 7.2. Table 7.7 compares the basic characteristics of hypothesis testing and 
effect size.

Cohen’s effect size 
conventions are standard rules 
for identifying small, medium, and 
large effects based on typical 
findings in behavioral research.

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



212     Part II:  Probability and the Foundations of Inferential Statistics

  FIGURE 7.9    Effect Size for Example 7.3

Population distribution 
assuming the null is false—
with a 2-point effect 

d = 0.50

Population distribution
assuming the null is true

µ = 12
σ = 4

µ = 14
σ = 4

0 4 8 16 20 24

2 6 10 18 22 26

12

14

Cohen’s d estimates the size of an effect in the population. A 2-point effect (14 − 12 = 2) shifted the distribu-
tion of scores in the population by 0.50 standard deviations.

  TABLE 7.7   � Distinguishing Characteristics for Hypothesis Testing and Effect Size

Hypothesis 
(Significance) Testing  Effect Size (Cohen’s d)

What value is being 
measured?

p value d

What type of distribution is 
the test based upon?

Sampling distribution Population distribution 

What does the test 
measure?

The probability of obtaining 
a measured sample mean

The size of a measured 
effect in the population

What can be inferred from 
the test?

Whether an effect exists in 
a population

The size of an effect from 
small to large

Can this test stand alone 
in research reports?

Yes, but a test statistic is 
increasingly reported with 
effect size

No, effect size is most 
often reported with a test 
statistic
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7.8 Effect Size, Power, and Sample Size
One advantage of knowing effect size, d, is that its value can be used to 
determine the power of detecting an effect in hypothesis testing. The 
likelihood of detecting an effect, called power, is critical in behavioral 
research because it lets the researcher know the probability that a ran-
domly selected sample will lead to a decision to reject the null hypothesis, 
if the null hypothesis is false. In this section, we describe how effect size 
and sample size are related to power.

The Relationship Between Effect Size and Power
As effect size increases, power increases. To illustrate, we will use a ran-
dom sample of quiz scores in two statistics classes shown in Table 7.8. 
Notice that only the standard deviation differs between these populations. 
Using the values given in Table 7.8, we already have enough information to 
compute effect size:

Effect size for Class :1 0.2038d M= = =− −µ
σ

40
10

.

Effect size for Class 2: d M= = =− −µ
σ

40 38
2

1 00. .

LEARNING CHECK 6

1.	 ________ measures the size of an effect in a population, 
whereas ______________ measures whether an effect 
exists in a population.

2.	 The scores for a population are normally distributed 
with a mean equal to 25 and standard deviation equal 

to 6. A researcher selects a sample of 36 students and 
measures a sample mean equal to 23. For this example,

(a)	 What is the value of Cohen’s d?

(b)	 Is this effect size small, medium, or large?

Answers: 1. Effect size, hypothesis testing; 2.()0.33,
2325

6
ad==−

−
 (b) Medium effect size.

  TABLE 7.8   � Characteristics for Two Hypothetical Populations of Quiz 
Scores

Class 1 Class 2

M1 = 40 M2 = 40

µ1 = 38 µ2 = 38

σ1 = 10 σ2 = 2
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214     Part II:  Probability and the Foundations of Inferential Statistics

The numerator for each effect size estimate is the same. The mean 
difference between the sample mean and the population mean is 2 points. 
Although there is a 2-point effect in both Class 1 and Class 2, Class 2 is 
associated with a much larger effect size in the population because the 
standard deviation is smaller. Because a larger effect size is associated 
with greater power, we should find that it is easier to detect the 2-point 
effect in Class 2. To determine whether this is true, suppose we select 
a sample of 30 students (n = 30) from each class and measure the same 
sample mean value that is listed in Table 7.8. Let us determine the power 
of each test when we conduct an upper-tail critical test at a .05 level of 
significance.

To determine the power, we will first construct the sampling distribu-
tion for each class, with a mean equal to the population mean and stan-
dard error equal to 

σ

n
:

Sampling distribution for Class 1: Mean: µM = 38

Standard error : 1.8210

30

σ

n
= =

Sampling distribution for Class 2: Mean: µM = 38

Standard error: σ

n
= =2 0.37

30

If the null hypothesis is true, then the sampling distribution of the mean 
for alpha (α), the type of error associated with a true null hypothesis, will 
have a mean equal to 38. We can now determine the smallest value of the 
sample mean that is the cutoff for the rejection region, where we decide 
to reject that the true population mean is 38. For an upper-tail critical 
test using a .05 level of significance, the critical value is 1.645. We can use 
this value to compute a z transformation to determine what sample mean 
value is 1.645 standard deviations above 38 in a sampling distribution for 
samples of size 30:

Cutoff for  (Class 1): 1.645 =α M

M

−

=

38
1 82

40 99
.

.

Cutoff for Class : 1.645

38.61

38  (  2)α =

=

M

M

−
0 37.

If we obtain a sample mean equal to 40.99 or higher in Class 1, then we 
will reject the null hypothesis. If we obtain a sample mean equal to 38.61 
or higher in Class 2, then we will reject the null hypothesis. To determine 
the power for this test, we assume that the sample mean we selected  
(M = 40) is the true population mean—we are therefore assuming that 
the null hypothesis is false. We are asking the following question: If we 
are correct and there is a 2-point effect, then what is the probability that  
we will detect the effect? In other words, what is the probability that a 
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sample randomly selected from this population will lead to a decision to 
reject the null hypothesis?

If the null hypothesis is false, then the sampling distribution of the 
mean for β, the type of error associated with a false null hypothesis, 
will have a mean equal to 40. This is what we believe is the true pop-
ulation mean, and this is the only change; we do not change the stan-
dard error. Figure 7.10 shows the sampling distribution for Class 1, and 
Figure 7.11 shows the sampling distribution for Class 2, assuming the 
null hypothesis is correct (top graph) and assuming the 2-point effect 
exists (bottom graph).

If we are correct, and the 2-point effect exists, then we are much more 
likely to detect the effect in Class 2 for n = 30. Class 1 has a small effect 
size (d = 0.20). Even if we are correct, and a 2-point effect does exist in this 
population, then of all the samples of size 30 we could select from this 
population, only about 29% (power = .2946) will show the effect (i.e., lead 
to a decision to reject the null). The probability of correctly rejecting the 
null hypothesis (power) is low.

Class 2 has a large effect size (d = 1.00). If we are correct, and a 2-point 
effect does exist in this population, then of all the samples of size 30 we 
could select from this population, nearly 100% (power = .9999) will show 
the effect (i.e., lead to a decision to reject the null). The probability of cor-
rectly rejecting the null hypothesis (power) is high.

FYI
As the size of an effect increases, 

the power to detect the effect also 
increases.

  FIGURE 7.10    Small Effect Size and Low Power for Class 1

Sample means in this region have 
less than a 5% chance of 
occurrence, if the null is true. 
Probability of a Type I error = .05 

About 29% of sample means 
selected from this population will 
result in a decision to reject the 
null, if the null is false. 
Power = .2946

Sampling distribution 
assuming the null is false—
with a 2-point effect 

Sampling distribution
assuming the null is true

µ = 38
SEM = 1.82 
n = 30

µ = 40
SEM = 1.82
n = 30

32.54 34.36 36.18 38 39.82 41.64 43.46

40
40.99

41.82 43.64 45.4634.54 36.36 38.18

In this example, when alpha is .05, the critical value or cutoff for alpha is 40.99. When α = .05, notice that only 
about 29% of samples will detect this effect (the power). So even if the researcher is correct, and the null is 
false (with a 2-point effect), only about 29% of the samples he or she selects at random will result in a decision 
to reject the null hypothesis.
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216     Part II:  Probability and the Foundations of Inferential Statistics

The Relationship Between Sample Size and Power
One common solution to overcome low effect size is to increase the sample 
size. Increasing sample size decreases standard error, thereby increasing 
power. To illustrate, we can compute the test statistic for the one-tailed 
significance test for Class 1, which had a small effect size. The data for 
Class 1 are given in Table 7.8 for a sample of 30 participants. The test sta-
tistic for Class 1 when n = 30 is

z M

n

obt 1.10.= = =− −µ
σ

40 38
10

30

For a one-tailed test that is upper-tail critical, the critical value is 
1.645. The value of the test statistic (+1.10) does not exceed the critical 
value (+1.645), so we retain the null hypothesis.

Suppose we increase the sample size to n = 100 and again measure a 
sample mean of M = 40. The test statistic for Class 1 when n = 100 is

z M

n

obt 2.00= = =− −µ
σ

40 38
10

100

.

The critical value is still 1.645. The value of the test statistic (+2.00), 
however, now exceeds the critical value (+1.645), so we reject the null 
hypothesis.

  FIGURE 7.11    Large Effect Size and High Power for Class 2

Sample means in this region have 
less than a 5% chance of 
occurrence, if the null is true. 
Probability of a Type I error = .05 

Almost 100% of sample means 
selected from this population 
will result in a decision to reject 
the null, if the null is false. 
Power = .9999

Sampling distribution 
assuming the null is false—
with a 2-point effect 

Sampling distribution
assuming the null is true

µ = 38
SEM = 0.37
n = 30

µ = 40
SEM = 0.37
n = 30

36.89 37.26 37.63 38 38.37 39.11

40 40.37 40.74 41.1138.89
38.61

39.26 39.63

38.74

In this example, when alpha is .05, the critical value or cutoff for alpha is 38.61. When α = .05, notice that practically any sample will detect this effect 
(the power). So if the researcher is correct, and the null is false (with a 2-point effect), nearly 100% of the samples he or she selects at random will 
result in a decision to reject the null hypothesis.

FYI
Increasing sample size increases 
power by reducing standard error, 
thereby increasing the value of the test 
statistic in hypothesis testing.
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Notice that increasing the sample size alone led to a decision to reject 
the null hypothesis, despite testing for a small effect size in the popu-
lation. Hence, increasing sample size increases power: It makes it more 
likely that we will detect an effect, assuming that an effect exists in a given 
population.

LEARNING CHECK 7

1.	 As effect size increases, what happens to the power?

2.	 As effect size decreases, what happens to the power?

3.	 When a population is associated with a small effect size, 
what can a researcher do to increase the power of the 
study?

4.	 True or false: The effect size, power, and sample size of 
a study can affect the decisions we make in hypothesis 
testing.

Answers: 1. Power increases; 2. Power decreases; 3. Increase the sample size (n); 4. True.

7.9 Additional Factors  
That Increase Power
The power is the likelihood of detecting an effect. Behavioral research 
often requires a great deal of time and money to select, observe, measure, 
and analyze data. For this reason, the institutions that offer substantial 
funding for research studies want to know that they are spending their 
money wisely and that researchers conduct studies that will show results. 
Consequently, to receive a research grant, researchers are often required 
to state the likelihood that they will detect an effect they are studying, 
assuming they are correct. In other words, researchers must disclose the 
power of their studies.

The typical standard for power is .80. Researchers try to make sure 
that at least 80% of the samples they select will show an effect when an 
effect exists in a population. In Section 7.8, we showed that increasing 
effect size and sample size increases power. In this section, we introduce 
four additional factors that influence power.

Increasing Power: Increase  
Effect Size, Sample Size, and Alpha
Increasing effect size, sample size, and the alpha level will increase power. 
Section 7.8 showed that increasing effect size and sample size increases 
power; here we discuss increasing alpha. The alpha level is the probability 
of a Type I error, and it is the rejection region for a hypothesis test. The 
larger the rejection region, the greater the likelihood of rejecting the null 
hypothesis, and the greater the power will be. Hence, increasing the size 

FYI
To increase power, increase effect size, 

sample size, and alpha; and decrease 
beta, population standard deviation, 

and standard error.
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218     Part II:  Probability and the Foundations of Inferential Statistics

of the rejection region in the upper tail in Example 7.2 (by placing all of the 
rejection region in one tail) increased the power of that hypothesis test. 
Similarly, increasing alpha will increase the size of the rejection region, 
thereby increasing power. That being said, it is widely accepted that alpha 
can never be stated at a value larger than .05. Simply increasing alpha 
is not a practical solution to increase power. Instead, the more practical 
solutions are to increase sample size, or structure your study to observe a 
large effect between groups.

Increasing Power: Decrease Beta,  
Standard Deviation (σ), and Standard Error
Decreasing beta error (β) increases power. In Table 7.3, β is given as the 
probability of a Type II error, and 1 − β is given as the power. The lower 
β is, the greater the solution will be for 1 − β. For example, say β = .20. 
In this case, 1 − β = (1 − .20) = .80. If we decrease β, say, to β = .10, the 
power will increase: 1 − β = (1 − .10) = .90. Hence, decreasing beta error 
increases power.

Decreasing the population standard deviation (σ) and standard error 
(σM) will also increase power. The population standard deviation is the 
numerator for computing standard error. Decreasing the population stan-
dard deviation will decrease the standard error, thereby increasing the 
value of the test statistic. To illustrate, suppose that we select a sample 
from a population of students with quiz scores equal to 10 ± 8 (µ ± σ). We 
select a sample of 16 students from this population and measure a sample 
mean equal to 12. In this example, the standard error is

σ σ
M

n
= = =8

16
2 00. .

To compute the z statistic, we subtract the sample mean from the pop-
ulation mean and divide by the standard error:

z M

M
obt

12 1.00.= = =− −µ
σ

10
2

An obtained value equal to 1.00 does not exceed the critical value for a 
one-tailed test (critical value = 1.645) or a two-tailed test (critical values = 
±1.96). The decision is to retain the null hypothesis.

If the population standard deviation is smaller, the standard error will 
be smaller, thereby making the value of the test statistic larger. Suppose, 
for example, that we reduce the population standard deviation to 4. The 
standard error in this example is now

σ σ
M

n
= = =4

16
1.0.

To compute the z statistic, we subtract the sample mean from the pop-
ulation mean and divide by this smaller standard error:

z M

M
obt = = =− −µ

σ
12 10

1
2 00. .
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	 7.11	 APA IN FOCUS: REPORTING  
THE TEST STATISTIC AND EFFECT SIZE

To report the results of a z test, we report the test statistic, p value (stated to no more than the thousandths place), and effect size of a 
hypothesis test. Here is how we could report the significant result for the z statistic in Example 7.2:

Children in the reading program showed significantly greater improvement (M = 14) in reading proficiency scores 
compared to expected improvement in the general population (µ = 12), z = 2.50, p = .006 (d = 0.50).

An obtained value equal to 2.00 does exceed the critical value for a  
one-tailed test (critical value = 1.645) and a two-tailed test (critical val-
ues = ±1.96). Now the decision is to reject the null hypothesis. Assuming 
that an effect exists in the population, decreasing the population standard 
deviation decreases standard error and increases the power to detect an 
effect. Table 7.9 lists each factor that increases power.

  TABLE 7.9   � A Summary of Factors That Increase Power—the Probability of 
Rejecting a False Null Hypothesis

To increase power:

Increase Decrease

d (Effect size) β (Type II error)

n (Sample size) σ (Standard deviation)

α (Type I error) σM (Standard error)

7.10 SPSS in Focus:  
A Preview for Chapters 8 to 14

In the behavioral sciences, it is rare that we know the value of the popula-
tion variance, so the z test is not a common hypothesis test. It is so uncom-
mon that there is no (direct) way to compute a z test in SPSS, although 
SPSS can be used to compute all other test statistics described in this 
book. For each analysis, SPSS provides output analyses that indicate the 
significance of a hypothesis test and the information needed to compute 
effect size and even power. SPSS is an easy-to-use, point-and-click statis-
tical software that can be used to compute nearly any statistic or measure 
used in behavioral research. For this reason, many researchers use SPSS 
software to analyze their data.

(Continued)
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220     Part II:  Probability and the Foundations of Inferential Statistics

Notice that when we report a result, we do not state that we reject or retain the null hypothesis. Instead, we report whether a result is 
significant (the decision was to reject the null hypothesis) or not significant (the decision was to retain the null hypothesis). Also, you 
are not required to report the exact p value, although it is recommended. An alternative is to report it in terms of p < .05, p < .01, or  
p < .001. In our example, we could state p < .01 for a p value actually equal to .006.

Finally, notice that the means are also listed in the summary of the data. Often we can also report standard deviations, which is 
recommended by the APA. An alternative would be to report the means in a figure or table to illustrate a significant effect, with error 
bars given in a figure to indicate the standard error of the mean. In this way, we can report the value of the test statistic, p value, effect 
size, means, standard deviations, and standard error all in one sentence and a figure or table.

(Continued)

 C hapter Summary Organized by Learning Objective

LO 1:	 Identify the four steps of hypothesis 
testing.
•	 Hypothesis testing, or significance 

testing, is a method of testing a claim 
or hypothesis about a parameter in 
a population, using data measured in 
a sample. In this method, we test a 
hypothesis by determining the likeli-
hood that a sample statistic would be 
selected if the hypothesis regarding 
the population parameter were true. 
The four steps of hypothesis testing 
are as follows:

Step 1: State the hypotheses.

Step 2: Set the criteria for a decision.

Step 3: Compute the test statistic.

Step 4: Make a decision.

LO 2:	 Define null hypothesis, alternative 
hypothesis, level of significance, 
test statistic, p value, and statistical 
significance.

•	 The null hypothesis (H0) is a state-
ment about a population parameter, 
such as the population mean, that is 
assumed to be true.

•	 The alternative hypothesis (H1) is a 
statement that directly contradicts 
a null hypothesis by stating that the 

actual value of a population param-
eter, such as the mean, is less than, 
greater than, or not equal to the 
value stated in the null hypothesis.

•	 Level of significance is a criterion 
of judgment upon which a decision 
is made regarding the value stated 
in a null hypothesis. The criterion is 
based on the probability of obtaining 
a statistic measured in a sample if 
the value stated in the null hypothe-
sis were true.

•	 The test statistic is a mathematical 
formula that allows researchers to 
determine the likelihood or proba-
bility of obtaining sample outcomes 
if the null hypothesis were true. The 
value of a test statistic can be used 
to make inferences concerning the 
value of a population parameter 
stated in the null hypothesis.

•	 A p value is the probability of obtain-
ing a sample outcome, given that 
the value stated in the null hypoth-
esis is true. The p value of a sample 
outcome is compared to the level of 
significance.

•	 Significance, or statistical signifi-
cance, describes a decision made 
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concerning a value stated in the null 
hypothesis. When a null hypothesis 
is rejected, a result is significant. 
When a null hypothesis is retained, a 
result is not significant.

LO 3:	 Define Type I error and Type II error, 
and identify the type of error that 
researchers control.
•	 We can decide to retain or reject a 

null hypothesis, and this decision 
can be correct or incorrect. Two 
types of errors in hypothesis testing 
are called Type I and Type II errors.

•	 A Type I error is the probability of 
rejecting a null hypothesis that is 
actually true. The probability of this 
type of error is determined by the 
researcher and stated as the level 
of significance or alpha level for a 
hypothesis test.

•	 A Type II error is the probability of 
retaining a null hypothesis that is 
actually false.

LO 4:	 Calculate the one-sample z test and 
interpret the results.
•	 The one-sample z test is a statisti-

cal procedure used to test hypothe-
ses concerning the mean in a single 
population with a known variance. 
The test statistic for this hypothesis 
test is

z M

M
M

n
obt ,where= =−µ

σ
σσ .

•	 Critical values, which mark the cut-
offs for the rejection region, can be 
identified for any level of signifi-
cance. The value of the test statistic 
is compared to the critical values. 
When the value of a test statistic 
exceeds a critical value, we reject the 
null hypothesis; otherwise, we retain 
the null hypothesis.

LO 5:	 Distinguish between a one-tailed test 
and two-tailed test, and explain why a 
Type III error is possible only with one-
tailed tests.

•	 Nondirectional (two-tailed) tests are 
hypothesis tests in which the alter-
native hypothesis is stated as not 
equal to (≠) a value stated in the null 
hypothesis. So we are interested in 
any alternative to the null hypothesis.

•	 Directional (one-tailed) tests are 
hypothesis tests in which the alter-
native hypothesis is stated as greater 
than (>) or less than (<) a value stated 
in the null hypothesis. So we are 
interested in a specific alternative to 
the null hypothesis.

•	 A Type III error is a type of error pos-
sible with one-tailed tests in which 
a result would have been signifi-
cant in one tail, but the researcher 
retains the null hypothesis because 
the rejection region was placed in the 
wrong or opposite tail.

LO 6:	 Elucidate effect size and compute a 
Cohen’s d for the one-sample z test.
•	 Effect size is a statistical measure 

of the size of an observed effect in a 
population, which allows research-
ers to describe how far scores shifted 
in the population, or the percent of 
variance that can be explained by a 
given variable.

•	 Cohen’s d is used to measure how 
far scores shifted in a population 
and is computed using the following 
formula:

Cohen’s d M= −µ
σ

.

•	 To interpret the size of an effect, we 
refer to Cohen’s effect size conven-
tions, which are standard rules for 
identifying small, medium, and large 
effects based on typical findings in 
behavioral research. These conven-
tions are given in Table 7.6.

LO 7:	 Define power and identify six factors that 
influence power.
•	 In hypothesis testing, power is the 

probability that a sample selected 
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at random will show that the null 
hypothesis is false when the null 
hypothesis is indeed false.

•	 To increase the power of detecting an 
effect in a given population:

a.	 Increase effect size (d), sample 
size (n), and alpha (α).

b.	 Decrease beta error (β), popula-
tion standard deviation (σ), and 
standard error (σM).

LO 8:	 Summarize the results of a one-sample 
z test in APA format.
•	 To report the results of a z test, we 

report the test statistic, p value, 
and effect size of a hypothesis test. 
In addition, a figure or table can be 
used to summarize the means and 
standard error or standard deviation 
measured in a study.

 K ey Terms
alpha (α) level
alternative hypothesis (H1)
beta (β) error
Cohen’s d
Cohen’s effect size conventions
critical value
directional tests
effect
effect size
hypothesis

hypothesis testing
level of significance
nondirectional tests
null hypothesis (H0)
obtained value
one-sample z test
one-tailed test
p value
power
rejection region

significance
significance level
significance testing
statistical significance
test statistic
two-tailed tests
Type I error
Type II error
Type III error
z statistic

 E nd-of-Chapter Problems

Factual Problems

  1.	 State the four steps of hypothesis testing.

  2.	 What are two decisions that a researcher 
makes in hypothesis testing?

  3.	 What is the power in hypothesis testing?

  4.	 What is a Type II error (β)?

  5.	 What is a Type I error (α)?

  6.	 What are the critical values for a one-sample 
nondirectional (two-tailed) z test at a .05 level 
of significance?

  7.	 Is a one-tailed test associated with greater 
power than a two-tailed test? Explain.

  8.	 How are the rejection regions, the probability 
of a Type I error, the level of significance, and 
the alpha level related?

  9.	 Alpha (α) is used to measure the error for deci-
sions concerning true null hypotheses. What is 
beta (β) error used to measure?

10.	 What three factors can be decreased to 
increase power?

11.	 What three factors can be increased to increase 
power?

12.	 Distinguish between the significance and the 
effect size of a result.

Concept and Application Problems

13.	 A researcher conducts a hypothesis test and 
concludes that his hypothesis is correct. 
Explain why this conclusion is never an appro-
priate decision in hypothesis testing.

14.	 Explain why the following statement is true: 
The population standard deviation is always 
larger than the standard error when the sam-
ple size is greater than one (n > 1).
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15.	 The weight (in pounds) for a population of 
school-aged children is normally distributed 
with a mean equal to 135 ± 20 pounds (µ ± σ).  
Suppose we select a sample of 100 children 
(n = 100) to test whether children in this pop-
ulation are gaining weight at a .05 level of 
significance.

(a)	 What is the null hypothesis? What is the 
alternative hypothesis?

(b)	 What is the critical value for this test?

(c)	 What is the mean of the sampling 
distribution?

(d)	 What is the standard error of the mean for 
the sampling distribution?

16.	 A researcher selects a sample of 30 partic-
ipants and makes the decision to retain the 
null hypothesis. She conducts the same study 
testing the same hypothesis with a sample of 
300 participants and makes the decision to 
reject the null hypothesis. Give a likely expla-
nation for why the two samples led to different 
decisions.

17.	 A researcher conducts a one-sample z test and 
makes the decision to reject the null hypothe-
sis. Another researcher selects a larger sam-
ple from the same population, obtains the 
same sample mean, and makes the decision 
to retain the null hypothesis using the same 
hypothesis test. Is this possible? Explain.

18.	 Determine the level of significance for a 
hypothesis test in each of the following popu-
lations given the specified standard error and 
critical values. Hint: Refer to the values given 
in Table 7.4:

(a)	 µ = 100, σM = 8, critical values: 84.32 and 
115.68

(b)	 µ = 100, σM = 6, critical value: 113.98

(c)	 µ = 100, σM = 4, critical value: 86.8

19.	 For each p value stated below, (1) what is the 
decision for each if α = .05, and (2) what is the 
decision for each if α = .01?

(a)	 p = .1000

(b)	 p = .0050

(c)	 p = .0250

(d)	 p = .0001

20.	 For each obtained value stated below, (1) what 
is the decision for each if α = .05 (one-tailed 
test, upper-tail critical), and (2) what is the 
decision for each if α = .01 (two-tailed test)?

(a)	 zobt = 2.10

(b)	 zobt = 1.70

(c)	 zobt = 2.75

(d)	 zobt = −3.30

21.	 Will each of the following increase, decrease, 
or have no effect on the value of a test statistic 
for the one-sample z test?

(a)	 The sample size is increased.

(b)	 The sample variance is doubled.

(c)	 The population variance is decreased.

(d)	 The difference between the sample mean 
and population mean is decreased.

22.	 The physical fitness score for a population of 
police officers at a local police station is 72, 
with a standard deviation of 7 on a 100-point 
physical endurance scale. Suppose the police 
chief selects a sample of 49 local police offi-
cers from this population and records a mean 
physical fitness rating on this scale equal to 
74. He conducts a one-sample z test to deter-
mine whether physical endurance increased at 
a .05 level of significance.

(a)	 State the value of the test statistic and 
whether to retain or reject the null 
hypothesis.

(b)	 Compute effect size using Cohen’s d.

23.	 A national firm reports mean earnings of  
$75 ± $12 (µ ± σ) per unit sold over the lifetime 
of the company. A competing company over the 
past 36 reporting periods had reported mean 
earnings equal to $78 per unit sold. Conduct a 
one-sample z test to determine whether mean 
earnings (in dollars per unit) are larger (com-
pared to that reported by the national firm) at 
a .05 level of significance.

(a)	 State the value of the test statistic and 
whether to retain or reject the null 
hypothesis.

(b)	 Compute effect size using Cohen’s d.

24.	 A local school reports that the average grade 
point average (GPA) in the entire school is 
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a mean score of 2.66, with a standard devia-
tion of 0.40. The school announces that it will 
be introducing a new program designed to 
improve GPA scores at the school. What is the 
effect size (d) for this program if it is expected 
to improve GPA by:

(a)	 0.05 points?

(b)	 0.10 points?

(c)	 0.40 points?

25.	 Will each of the following increase, decrease, 
or have no effect on the value of Cohen’s d?

(a)	 The population variance is increased.

(b)	 The sample size is decreased.

(c)	 The sample variance is reduced.

(d)	 The difference between the sample and 
population mean is increased.

26.	 State whether the effect size for a 1-point 
effect (M − µ = 1) is small, medium, or large 
given the following population variances:

(a)	 σ = 1

(b)	 σ = 2

(c)	 σ = 4

(d)	 σ = 6

27.	 As α increases, so does the power to detect an 
effect. Why, then, do we restrict α from being 
larger than .05?

28.	 Will increasing sample size (n) increase or 
decrease the value of standard error? Will this 
increase or decrease power?

Problems in Research

29.	 Directional versus nondirectional hypothesis 
testing. Cho and Abe (2013) provided a com-
mentary on the appropriate use of one-tailed 
and two-tailed tests in behavioral research. In 
their discussion, they outlined the following 
hypothetical null and alternative hypotheses  
to test a research hypothesis that males 
self-disclose more than females:

H0: µmales – µfemales ≤ 0

H1: µmales – µfemales > 0

(a)	 What type of test is set up with these 
hypotheses, a directional test or a nondi-
rectional test?

(b)	 Do these hypotheses encompass all possi-
bilities for the population mean? Explain.

30.	 The one-tailed tests. In their book, Common 
Errors in Statistics (and How to Avoid Them), Good 
and Hardin (2003) wrote, “No one will know 
whether your [one-tailed] hypothesis was con-
ceived before you started or only after you had 
examined the data” (p. 347). Why do the authors 
state this as a concern for one-tailed tests?

31.	 The value of a p value. In a critical commen-
tary on the use of significance testing, Charles 
Lambdin (2012) explained, “If a p < .05 result is 

‘significant,’ then a p = .067 result is not ‘mar-
ginally significant’” (p. 76). Explain what the 
author is referring to in terms of the two deci-
sions that a researcher can make.

32.	 Describing the z test. In an article describing 
hypothesis testing with small sample sizes, 
Collins and Morris (2008) provided the follow-
ing description for a z test: “Z is considered sig-
nificant if the difference is more than roughly 
two standard deviations above or below zero 
(or more precisely, |Z| > 1.96)” (p. 464). Based 
on this description,

(a)	 Are the authors referring to critical val-
ues for a one-tailed z test or a two-tailed  
z test?

(b)	 What alpha level are the authors referring 
to?

33.	 Sample size and power. Davis and Loprinzi 
(2016) evaluated a hypothesis related to engag-
ing children, adolescents, and adults in physi-
cal activity. As part of their study, they reported 
a sample size of 106 children, 128 adolescents, 
and 440 adults. Assuming equal effect sizes 
across these age groups, which age group is 
likely to be associated with greater power to 
detect effects of physical activity? Explain.
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34.	 Making decisions in hypothesis testing. Toll, 
Kroesbergen, and Van Luit (2016) tested their 
hypothesis regarding real math difficulties 
among children. In their study, the authors 
concluded: “Our hypothesis [regarding math 

difficulties] was confirmed” (p. 429). In this 
example, what decision did the authors make: 
Retain or reject the null hypothesis?

Answers for even numbers are in Appendix D.
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