
CHAPTER 3. INTERDEPENDENCY
AMONG OBSERVATIONS

Interaction and Social Science

In this chapter, we examine how insights from spatial analysis can help
researchers take dependence between observations into account and deal
with spatially clustered phenomena. The term spatial has a broad mean-
ing in this context. On the one hand, space can refer to conventional
forms of geographical distances. At the same time, one can also expand
the concept of space to the myriad ways in which observations may be
connected. This includes forms of social connectivities beyond networks
defined purely by geographical proximity. The term social can be defined
in terms of transactions, legacy, heritage, and many other aspects of
social, economic, and political life.

In particular, we focus on two important regression models with (spa-
tially) dependent observations. The first of these concerns situations in
which there is a spatially lagged dependent variable, where the response
for one observation has a direct impact on other connected observations.
The second focuses on regressionmodels in which errors are spatially cor-
related. We recognize that there is a much larger set of interesting spatial
modeling perspectives. This monograph is not intended to provide an
exhaustive survey of these, but rather serves to introduce models with
spatially lagged dependent variables and those with spatially correlated
error terms. Many empirical undertakings in social science may benefit
from these approaches that until very recently have been widely ignored
in much of the empirical social science literature.

These types of models allow us to examine the impact that one obser-
vation has on other, proximate observations. We believe this is important
not only from first principles but also from the simple fact that many
social phenomena are spatially “clustered.”

In short, there are myriad studies across the gamut of the social sci-
ences that employ data that are actually organized on a spatial tem-
plate, whether the units are counties, cities, states, countries, firms, or
individuals. It often turns out that the characteristics of these units are
highly clustered in particular spatial regions. In many of these applica-
tions, it is plausible to assume that there may be dependencies across the
observations. In practice, this clustering is generally ignored or treated

25

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



26

as a nuisance. Ignoring these dependencies imposes a substantial price
on our ability to generate meaningful inferences about the processes we
study. Spatial analysis provides one way of reducing that price and tak-
ing advantage of the information we have about how social processes are
interconnected. We turn next to a simple example of how this works in
an important area of social science, namely, the study of the diffusion of
democratic institutions.

Democracy Around the World

To motivate our discussion, we use a simple example with data where
observations are unlikely to be independent of one another. Social sci-
entists have long been interested in possible explanations for why some
countries are democracies and others not. An early and influential con-
tribution by Lipset (1959) suggested that there were certain social requi-
sites for democratic rule. One of these requisites was high levels of aver-
age income; Lipset noted that average wealth tends to be considerably
higher for the more democratic countries (p. 75). This argument—which
has served as a cornerstone of comparative analysis for more than four
decades—suggested that societies with higher average income were more
likely to have democratic institutions. Table 3.1 provides an abbreviated
view of data on gross domestic product (GDP) per capita and level of
democracy for most countries in the world in 2014–2015.

Our measure of democracy is the so-called Polity index, which classi-
fies countries on a series of institutional criteria. The index ranges from
−10 for the least democratic societies to 10 for the most democratic soci-
eties. Gleditsch and Ward (1997) provide further details on the construc-
tion of this index. We have sorted this table on GDP per capita and
democracy so that it is easier to see simple patterns among the variables.
As can be seen, some wealthy societies, such as Denmark, are indeed
democratic, while low-income countries, such as Sierra Leone and North
Korea, are autocracies. Interestingly, Lipset suggested that in 1959, Aus-
tralia, Belgium, Canada, Denmark, Ireland, Luxembourg, the Nether-
lands, New Zealand, Norway, Sweden, Switzerland, the United King-
dom, and the United States made up a list of “stable democracies” in
Europe and North and South America. The unstable democracies and
dictatorships in 1959 included Austria, Finland, France, West Germany,
Italy, and Spain. All these countries are now democracies and generally
considered no less stable than the countries on the other list. Despite the
fact that we can find some cases at either end of the per capita income
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Table 3.1. Democracy Data (PITF: 2015) and Logged GDP per
Capita (WB: 2014)

Country Polity ln GDP per Capita

Luxembourg 10 11.67
Norway 10 11.48
Qatar −10 11.46
Switzerland 10 11.36
Australia 10 11.03
Denmark 10 11.02
Sweden 10 10.99
Singapore −2 10.93
Ireland 10 10.92
United States 10 10.91
Burundi −1 5.66
Central African Republic −10 5.87
Malawi 6 5.89
Niger 6 6.07
Congo (DRC) 5 6.08
Gambia −5 6.09
Madagascar 6 6.12
Liberia 6 6.13
Guinea 4 6.29
Somalia 5 6.29

Note. Top and bottom 10 countries in terms of logged GDP per capita are shown.
GDP = gross domestic product.

spectrum that clearly are consistent with Lipset’s claim, is there a strong
general relationship between wealth and democracy? India is democratic
in spite of low average national income, and although India has recently
experienced high rates of growth, it remains far below the levels observed
for Organisation for Economic Co-operation and Development (OECD)
countries. At the same time, it is also hard to ignore the existence of many
relatively high income autocracies situated in the Middle East, which
seems to contradict the claim made by Lipset. To evaluate the relation-
ship more generally, we turn to a systematic, comparative analysis.

Following the work of Lipset (1959) and many others since, it is com-
mon in empirical, comparative work on democracy to consider democ-
racy as a linear function of the natural log ofGDPper capita.We estimate
the level of democracy in a country, measured by the Polity score, given
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its GDP per capita using ordinary least squares (OLS) regression.

Polity score = β0 + β1ln GDP per capita + ϵ. (3.1)

The estimates for this linear regression of democracy on GDP per
capita are shown in Table 3.2. The positive sign of the coefficient for ln
GDP per capita illustrates the positive relationship between democracy
and income, but the estimated substantive impact is actually relatively
small when we take into account the metric of the variables.

Table 3.2. OLS Regression of Polity on Logged GDP per Capita

β̂ σβ̂ t Value Pr(>|t|)

Intercept −5.70 2.88 −1.98 0.05
GDP 1.14 0.33 3.44 0.00

More specifically, this linear model predicts that a country with
Burundi’s GDP per capita ($287 in 2014) would have a democracy score
of approximately 1. By contrast, for a country that has a level of GDP per
capita income approximately twice that ofUzbekistan ($2038), themodel
predicts an associated democracy score of about 3. For most analysts,
scores of 1 and 3 are considered to be similar on the Polity democracy
index. Thus, there does not seem to be a large impact of even fairly dra-
matic differences in income on the predicted level of democracy, despite
the statistical significance of the estimated coefficient for the log of GDP
per capita.1

Figure 3.1 shows that despite the precisionwithwhich the linear effects
are estimated, the estimatedOLS equation predicts democracy levels that
are generally not close to the actual values in the data. Only 1 in 20
of the actual observations fall within a standard error of the regression
line. Nonetheless, the implied, estimated effect of wealth on democracy
is not only small—more than doubling the GDP per capita has a small
impact on democracy—for poor countries, such as Uzbekistan. Almost
any standard analysis of these residuals will reflect the first impression
given in this figure: They do not look “well behaved,” in the sense that
the mean prediction of the model is a full two points higher than the

1 We recognize that there are different inferential frameworks, but in this primer we will
stick mainly with a classical interpretation of estimated coefficients and empirical standard
errors. The analysis in this paragraph does not consider the uncertainty around these
estimates.
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Figure 3.1. Polity Scores as a Function of Logged GDP per Capita,
2014–2015

Note. Ordinary least squares regression line with the regression standard error as a gray
band.

Source: Created by Ward and Gleditsch.

mean of the actual data, suggesting that the model actually overpredicts
the Polity score substantially.

Figure 3.2 provides a q-q plot of the quantiles of the observed resid-
uals from the linear model in Table 3.2 against the expected quantiles
under a normal distribution. As can be seen, there is substantial and
patterned variation around the estimated regression line or general ten-
dency. But are these residuals organized in a way that is dependent on the
interdependencies of the observations? Both Figure 3.2 and the density
plot in Figure 3.3 show convincingly that the residuals are not distributed
normally. The normal distribution is shown as a solid line in Figure 3.3.
The residuals have tails that are far too large, and the residuals are skewed
to the right considerably. It is clear in this example that the distribu-
tion of the residuals from the OLS regression reported in Table 3.2 is
problematic. Although linear regression is relatively robust to violations
against nonnormality and significance tests can be adjusted by alterna-
tive estimates of the standard errors (Lumley et al., 2002), the basic lack
of fit of the model raises problems about whether the model specifica-
tion itself can be trusted. These residuals suggest that the underlying sys-
tematic model does not capture the relationship between democracy and
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Figure 3.2. Q-Q Plot Examination of the Normality of the Residuals
From the OLS Regression of GDP (Logged per Capita) on
the Polity Score

Note. Normally distributed residuals would fall along the solid line. The actual obtained
results are shown as dots, and these do not generally fall close to normal distribution.

Source: Created by Ward and Gleditsch.

economic output very well, potentially in part as a result of dependencies
among the data—specifically clustering of similar values. For example,
it may be that countries exert influence on each other beyond their indi-
vidual income in ways that produce such results.

Introducing Spatial Dependence

One possibility for explaining these results is that, in addition to char-
acteristics of individual countries, the prospects for democracy in one
country are not independent of whether neighboring countries have
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Figure 3.3. Density Plot of the Residuals From the OLS Regression of
GDP (Logged per Capita) on the Polity Score

Source: Created by Ward and Gleditsch.

democratic institutions or not. During the Cold War, Soviet interven-
tion enforced socialist rule in many states in Eastern Europe. Moreover,
democratic transitions in many Latin American states appear to have
been influenced by processes in other countries (Gleditsch and Ward,
2006). Looking at the data organized alphabetically, it would be hard to
identify easily whether there are any pockets or regions of similar regimes
beyond what we would expect from GDP per capita. Even with the infor-
mation sorted on salient features for comparison, careful analytical study
may be required to identify various kinds of patterns.

Exploratory examination of plausible spatial (and spatial-like) clus-
tering may be important in a variety of situations, revealing aspects of
social interaction that aremissing from unconnected displays. Potentially
unobserved clusters can influence our understanding of what is actually
occurring in the part of the model we think we do understand. Before we
turn to an examination of how to take spatial correlation into account,
we explain a bit more about why it is important to do so.

Even if an analyst simply wants to compare means and construct
classical statistical tests, such as difference of means tests, if the data
are spatially correlated this becomes problematic. Consider a one-sample
t-test on variable y defined as

t =
1
n

∑n
i=1 yi
σ√
n

.

If there is a correlation among observations that are near one another
temporally or spatially (first-order serial correlation), then the actual
standard error will be larger for positive values of serial correlation
(and smaller for negative values). Researchers tend to be sensitive to the

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



32

problem of serially correlated observations over time but often neglect
the fact that the same problem will apply for serial correlation across
observations at the same point in time. Using the unadjusted estimate of
the variance will result in having a t-value that is larger than warranted.
This increases the chance of making a Type I error, even for situations
in which there is only a small amount of spatial autocorrelation and
abundant observations.

In short, because of serial, spatial correlation among the observations
—for whatever reason—classical tests are biased in terms of accepting
the hypothesized substantive account, even when it is untrue. Assuming
that the data are spatially dependent such that the dependence is inversely
proportional to the distance between observations, ρ represents the resul-
tant, first-order spatial correlation. This correlation measures how sim-
ilar neighbors are on some measured attribute. As a result of this corre-
lation, the true standard error of the data is given approximately by

σy ≈

√
1 + ρ

1 − ρ

σ√
n
.

A simple way to understand the impact of spatial correlation is to
imagine a variable y observed on n observations: y1, y2, . . . , yn−1, yn. In
many situations, we think of these observations as being independent of
one another and each identically distributed, typically from a normal
distribution of unknown mean μ and variance σ2. The typical estimator
of μ is

y =

n∑
i=1

yi/n.

Since the observations are thought to arise from a normal distribution,
inference depends on y and σ. The 95% confidence interval is given as
y± 1.96σ/

√
n. If there is spatial correlation among the yi that is greater,

the closer the observations yi and yj are to each other spatially, then as
Cressie (1993, p. 14) shows, the covariance for positive values of ρ will be

cov (yi, yj) = σ2 × ρ|i−j| (3.2)

and the variance is

var (y) = n−2


n∑

i=1

n∑
j=1

cov (yi, yj)

 (3.3)
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which expands to

= {σ
2

n
}
[
1 + 2{ ρ

1 − ρ
}{1 − 1

n
} − 2{ ρ

1 − ρ
}2 1 − ρn−1

n

]
.

The factor
[
1 + 2{ ρ

1−ρ}{1 − 1
n} − 2{ ρ

1−ρ}
2 1−ρn−1

n

]
essentially is the dis-

count on the number of observations that is imposed by spatial correla-
tion, which does not disappear in large samples.

If n = 10 and ρ = 0.26 (as in Cressie’s example), then the discount
is about 40%. This means that 10 spatially correlated observations have
the same precision as about six independent observations. This in turn
implies that ignoring the spatial correlation leads to a confidence inter-
val that is far too small when there is positive spatial correlation among
observations. In general, ignoring spatial dependence will tend to under-
estimate the real variance in the data. Thus, for a sample of 158 observa-
tions on GDP, the 95% confidence band under an assumption of normal-
ity would be 1.96×σ√

n , but if there were a spatial correlation of 0.65—the
actual value of ρ̂ for GDP from the above example—the correct con-
fidence interval would be approximately 4.22 instead of 1.96, more than
twice as large. In the case of the level of democracy, ρ̂ is 0.47, which leads
to a 95% confidence band that is 3.26×σ√

n , which is almost 70% wider.2

If there are different forms of spatial correlation, then different spe-
cific adjustments may be required, but the general point is that if there
is positive spatial correlation, the sample mean will have less precision.
As a result, the null hypothesis will frequently be rejected when it is true.
It is unwise to rely on statistical tests that perform well in independent
and identically distributed (iid) samples if the underlying data are spa-
tially (inter)dependent. Schabenberger and Gotway (2005) illustrate this
relative excess variability of the least squares estimator for different lev-
els of autocorrelation in different sample sizes. For ρ > 0, this excess
variability rises with n such that with ρ = 0.9, the excess variability is
approximately 14 when the sample size approaches 50. The important
point is that spatially correlated data will wreak considerable havoc with
statistical tests designed for iid data, leading researchers to reject the null
hypothesis because the standard tests underestimate the variability.

In Latin America, most states are democracies in 2015, despite large
differences in their GDP per capita. By comparison, in the Middle East,

2 Even for the mean, Grenander (1954) illustrates that the minimum unbiased estimator

should not ignore the value of correlated observations: μ̂ =

[
y1+(1−ρ)

∑n−1
i=2 yi+yn

]
[n−(n−2)ρ] .
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most states are autocratic, despite having GDP per capita levels that
are consistently higher than the world average. Indeed, mapping these
attributes suggests that both democracy and GDP per capita display
spatial clustering (images not included). In many cases, visualization and
mapping reveal structure in the data that is not readily available from
looking at the data in tabular format.

The clustering of regime types around the world is evident in this dis-
play. There are low levels of democracy clustering in the Middle East and
South and East Asia, but Latin America, Europe, and North America
have higher levels of democracy.

Measuring Spatial Association and Correlation

Unfortunately, just as patterns may be ignored in a data matrix, humans
are adept at seeing structure when there really is none. As such, it is use-
ful to have more formalized ways of evaluating whether observations are
spatially clustered or related across some forms of ties between observa-
tions. We turn to formal exploratory tools in the next section.

Exploring such associations, however, requires that we have some idea
about which observations are likely to be related to one another. For
a set of n units, each observation i can be potentially related to all the
(n − 1) possible units, but in practice, however, we can usually assume
that some interactions or ties are more important than others. The net-
work or structure between units that we are interested in must generally
be specified prior to analysis of dependence between observations. The
techniques that we explore here usually start from a graph or list L of
relations between connected observations. For many purposes, it is prac-
tical to use a matrix to represent the connectivities between observations.
For example, we can define a binary matrixC that specifies connectivities
between individual observations. We have an entry cij = 1 if two obser-
vations i and j are considered connected, cij = 0 if not.

The basic ideas of measuring spatial associations and correlations can
be thought of as cross-product statistics, following Hubert et al. (1981),
which cross-multiply a measure of spatial proximity with a measure of
the similarity of values on some particular attribute.3 Let Sij be some

3 In the context of spatial point processes, these are sometimes known as join-count statis-
tics, since they count the number of neighboring points with similar attributes.
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measure of the spatial proximity of two observations i and j and let Uij

be the similarity on some underlying variable of concern. Cross-product
statistics will have the general form

n∑
i=1

n∑
j=1

SijUij ∀ i ̸= j.

IfUij defines similarity as amean normalized cross-product on the under-
lying variable, say [(yi − ȳ)(yj − ȳ)], then with appropriate scaling, sum-
ming this product over all observations yields a measure of spatial cor-
relation known as the Moran’s I statistic. If Uij is defined as a squared
difference, such as (yi − yj)

2, the resulting statistic is known as Geary’s
C. We primarily focus on Moran’s I, which we define in more detail sub-
sequently.

For example, spatial association in the case of measures of democracy
would join ameasure of how close countries were to one another in terms
of some spatial measurement, such as whether their outer boundaries are
within 200 kilometers of one another, with a measure of the similarity of
democracy scores for each pair of countries examined. These statistics
are useful as heuristics for identifying spatial patterns. Perhaps they are
most useful as a diagnostic heuristic for examining the residuals from
modeling exercises in which it is believed that there is no (remaining)
spatial patterning not accounted for by the model used.

The first task in formally assessing such correlations is to specify the
interdependencies among data. This requires developing a list of which
observations are connected to one another.4 This is an important step,
but one that we will only illustrate here. Linkages might be established
by physical distance, say the distance between capital cities, as in our
example. However, other transmission mechanisms such as the density of
transportation networks via roadways, trains, waterways, and air carriers
may be a better indicator of connection in particular circumstances.
Similarly, instead of capital city distances, scholars have used the length
of the border between neighboring countries, for example, as a measure
of interaction opportunities among adjacent countries.

4 There are different types of spatially organized data. The data we are exploring are often
called areal data, or (irregular) lattice data—deriving from a lattice of field experiments.
There are problems with each of these terms, and throughout this monograph these are
denoted as regional data. We do not examine any approaches that explicitly deal with
individual points.
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Weidmann et al. (2010) developed a database and an R package
(cshapes) that has shapefiles for all the countries in the world, back to
1946. This is a very flexible R package that allows one to select a set of
countries and a date, and the appropriate shapefiles are provided (Weid-
mann and Gleditsch, 2015). At the same time, it allows the specification
of a distance matrix for the chosen set of countries. This package com-
putes a distance matrix for the given data. It can compute different types
of distance matrices: capital distances, centroid distances, and minimum
distances between polygons.

A subset of these data are portrayed in Tables 3.3 and 3.4 in two
ways: as a list and as a matrix. Many computer programs organize large

Table 3.3. A List Representation of Connections for Eight
European Countries

List Format

Country Connections

Denmark Germany, Norway, Sweden
Finland Norway, Sweden
France Germany, Italy, UK
Germany Denmark, France, Italy, Sweden
Italy France, Germany
Norway Denmark, Finland, Sweden
Sweden Denmark, Finland, Germany, Norway
UK France

Table 3.4. (Adjacency) Matrix Representation of Connections for Eight
European Countries

Connectivity Matrix Format

Denmark Finland France Germany Italy Norway Sweden UK

Denmark 0 0 0 1 0 1 1 0
Finland 0 0 0 0 0 1 1 0
France 0 0 0 1 1 0 0 1
Germany 1 0 1 0 1 0 1 0
Italy 0 0 1 1 0 0 0 0
Norway 1 1 0 0 0 0 1 0
Sweden 1 1 0 1 0 1 0 0
UK 0 0 1 0 0 0 0 0
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matrices as lists, since it allows a more efficient storage of information,
allowing only the nonzero elements to be included in memory. Indeed,
for small subsets, it is easier, perhaps, to derive spatial characteristics and
record them as lists of connections. However, each list can be converted
easily into a square matrix that portrays the observations along the rows
and columns and the linkages in the interior of the matrix. A matrix
representation is also helpful for defining certain variables or measures
reflecting spatial structures and variation. Table 3.3 presents a set of
connectivity data as a list; Table 3.4 illustrates the corresponding binary
matrix C of these connections.

These data can also be presented as a simple network graph (see Fig-
ure 3.4). Such graphs are illuminating, but they quickly become convo-
luted, crowded, and difficult to read when the number of nodes is high.

UK

France

Germany

Italy

Finland

Sweden

Norway

Denmark

Figure 3.4. A Simple Network Visualization of the Linkages Among
Eight European Countries

Source: Created by Ward and Gleditsch.
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Figure 3.5. A Simple Network Visualization of the Linkages Among
195 Countries in cshapes in 2015

Note. Adjacency set to true for distances less than 200 kilometers. The size of vertices is
proportional to outdegree.

Source: Created by Ward and Gleditsch.

The network map of the links between all 195 countries shows the crowd-
ing, as many countries have a large number of connections (Figure 3.5).
Both Russia and China have 19 other countries to which they are con-
nected (by a minimum distance of 200 kilometers). Such visual network
representations may be a useful way to examine some data sets, especially
those that are smaller or very much bigger.

Once we have a potential network of connections between observa-
tions specified by a list L or a connectivity matrix C, we can explore
whether the values on a variable of concern, which we denote here as
y, are similar across connected or neighboring observations. One way to
do this would be to look at whether two connected observations i and
j tend to be similar to each other, for example by determining whether
high or low values for i tend to go together with high or low values for
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j. But i is usually connected to many observations, and we do not have
spatial clustering unless it is similar to many of its neighbors. To com-
bine information about the connected observations, we usually assume
that all neighbors carry equal weight and that the weight of each is pro-
portional to 1 over the total number of connectivities. The main goal of
getting a spatial lag is to derive an average value that exists in a neighbor-
ing region.What is the average value of democracy in the neighbors of the
United States? What is the average value of GDP per capita of Ghana’s
neighbors? Are these average values of neighboring observations corre-
lated with each country’s own score on democracy or GDP per capita?
We present a heuristic statistic for gauging this, a statistic that measures
the spatial correlation. In much the same way that a researcher might
generate the correlation matrix among independent variables, this spatial
correlation might also provide heuristic information about the observed
data.

Let ys
i denote the mean or average of y across all connected observa-

tions, or the “lag” of y over space. Matrix representation makes it easier
to see the construction of the spatial lag ys

i from y and the connectivity
matrixC. We can create a row-normalized connectivity weight matrixW,
where each row sums up to 1 by dividing each row vector ci· of the binary
connectivity matrix C by the total number of links

∑
ci·. An example is

given in Table 3.5.
In this context, the scalar ys

i = ci·y calculates (by summing) the average
or mean across all neighboring observations of one unit i. This is often
referred to as the spatial lag. The relationship ys = Wy reminds us how
each ys

i is related to values of y for other states and the connectivity
weights wi.. Table 3.6 presents the 10 largest positive and negative spatial

Table 3.5. Row-Standardized Connectivity Matrix for a Subset of Eight
European Countries

Denmark Finland France Germany Italy Norway Sweden UK

Denmark 0 0 0 1/3 0 1/3 1/3 0
Finland 0 0 0 0 0 1/2 1/2 0
France 0 0 0 1/3 1/3 0 0 1/3
Germany 1/4 0 1/4 0 1/4 0 1/4 0
Italy 0 0 1/2 1/2 0 0 0 0
Norway 1/3 1/3 0 0 0 0 1/3 0
Sweden 1/4 1/4 0 1/4 0 1/4 0 0
UK 0 0 1 0 0 0 0 0
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lags for the democracy variable. Bahrain has a democracy score of −8,
for example, but is surrounded by neighboring countries that all have
the maximum negative democracy score, −10. Ireland and Portugal, on
the other hand, have the highest possible democracy score as do all their
neighbors.

Table 3.6. Democracy Data (PITF: 2015)

Country Polity Polity, Spatially Lagged

Canada 10.00 10.00
Ireland 10.00 10.00
Belgium 8.00 10.00
France 9.00 10.00
Switzerland 10.00 10.00
Portugal 10.00 10.00
Germany 10.00 10.00
Czech Republic 9.00 10.00
Sweden 10.00 10.00
Denmark 10.00 10.00
Saudi Arabia −10.00 −5.00
Iraq 6.00 −6.00
Cambodia 2.00 −6.00
Sudan −4.00 −7.00
Jamaica 9.00 −8.00
Bahrain −10.00 −9.00
Qatar −10.00 −9.00
United Arab Emirates −8.00 −9.00
Oman −8.00 −9.00
Dominican Republic 8.00 −10.00

Note. Top and bottom 10 countries in terms of spatially lagged Polity scores.

Measuring Proximity

Formany social scientists, developing ameasure of the proximity of units
being studied is perhaps themost important step in spatial analysis.What
is distance, in a social context? While many physical scientists will be able
to use a strict measure of geographical or Euclidean distance to gauge
how close trees are to one another, for example, this issue is considerably
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Figure 3.6. Map of Centroids (Open Circles) and Capital Cities (Filled
Circles)

Note. The United States, Canada, Russia, China, and India all have large distances between
these two locations. Norway has a centroid outside its boundaries.

Source: Created by Ward and Gleditsch.

more complicated for many social science analyses. How close are, for
example, the United States and Mexico? If we use a strict contiguity
measure, they are contiguous neighbors since they share a land border.
But Canada also shares a land border with the United States. Does
this imply that it is equally close to the United States? The straight-line
distance from Washington, D.C., to Mexico City is approximately 3,000
kilometers, while the distance fromWashington, D.C., to Ottawa is about
700 kilometers. We might use the length of borders between countries, or
the distances between the average of the 10 largest population centers
in each country. Figure 3.6 illustrates the difference between these two
specifications. In some countries, the centroid is quite distant from the
actual capital city, but in small countries this cannot be the case. China,
Canada, Russia, Australia, and the United States are examples that
illustrate the distance between these two locations. By contrast, in North
and South Korea there is little distance between the centroids and the
capital cities.

Another important issue in applied work is how to deal with missing
spatial data. Imputation may be one approach, though other alterna-
tives exist (Griffith, 2003). A real problem is that social science data are
frequently missing, but rarely randomly missing. In nonspatial applica-
tions, this may be handled in the standard fashion—by imputation or,
more frequently, by deletion of observations with missing information.

Copyright ©2019 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



42

However, in the spatial framework, such missing data may create holes
in the spatial representation and undermine establishing a salient and
complete representation of the spatial proximities. Another problem that
can occur in some kinds of spatial setups is that some observations will
not be linked to other observations. For example, New Zealand is not
within 200 kilometers of any other independent Polity. Two strategies are
widely employed to circumvent these situations. Islands isolates are often
deleted from the analysis, since at a substantive level they are not con-
nected, and thereby will not affect other observations via the spatial pro-
cess being studied. More prosaically, deleting them will purge the result-
ing spatial weights matrix of certain singularities (rows and columns
composed entirely of zeros). A second strategy is simply to choose the
nearest or most plausible neighbors for the islands, linking Australia and
New Zealand as neighbors, for example, even if all other linkages are
set for 200 kilometers. More generally, one can use nearest k neighbor
distances for all units.

Above we have suggested two basic metrics for measuring distance,
but this just scratches the surface. This metric of distance could be
thought of in terms of average travel times, the number of mobile phone
conversations between each pair of points, the amount of tourism from
each point to every other location, or any variety of different measures
of distance and interactions. Countries that have a large amount of com-
merce with each other, for example, can be thought of as economically
“close” (Lofdahl, 2002). Griffith (1996) offers some ideas about how such
measures can and should be developed.

It would seem natural to estimate the similarity between states’ own
level of democracy and the levels of their neighbors by the correlation
between y and ys. The linear association between a value and a weighted
average of its neighbors is known as the Moran’s I statistic (Moran,
1950a,b), a global correlation of the values of an observation with those
of its neighbors. The generalized Moran’s I is given by a weighted, scaled
cross-product:

I =
n
∑

i

∑
j̸=i wij (yi − ȳ) (yj − ȳ)(∑

i

∑
j̸=i wij

)∑
i (yi − ȳ)2

,

where w denotes the elements of the row standardized weights matrix W
and y is the variable of concern.

If the observations of y are iid, then I can be considered normal
(asymptotically) with a mean that is −1

n−1 . The variance of Moran’s I is
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then given by

var(I) =
n2(n − 1) 1

2

∑
i̸=j(wij + wji)

2 − n(n − 1)
∑

k(
∑

j wkj +
∑

i wik)
2 − 2(

∑
i̸=j wij)

2

(n + 1)(n − 1)2(
∑

i̸=j wij)2
.

If the variable of concern is standardized as zi, Moran’s I is simply

I =
1
2

∑
ij

cijzizj, ∀ i ̸= j.

The Moran’s I statistic is often used as a test of spatial correlation by
constructing a Z-score with the mean and variance components.

Moran’s I does not really have a fixed metric, and its expected value
is −1/(n−1) rather than 0. However, the Moran’s I statistic can be given
a graphical interpretation that helps convey how spatial association
among individual cases will give rise to different values of the statistic.
Consider a scatterplot of ỹ against its average among neighbors’ ỹs (we
use a standardized ỹ = [y − ȳ]/sd[y] so that the value has a mean
of 0 and a standard deviation of 1). In this plot, the distribution of
observations in the four quadrants around the mean of ỹ and ỹs captures
a picture of the spatial association of the variable y. If there is no
spatial clustering or association in y, the individual values of ys should
not vary systematically with y. However, if there is a positive spatial
association, individual observations that have values above or below the
mean on y should also be low and high, respectively, on ys, or among
proximate countries. The bulk of the cases should fall in the South-West
and North-East quadrants where units are similar to their neighbors,
and we should have few observations in the North-West or South-East
quadrants. If we fit a regression line to this scatterplot, its slope is the
Moran’s I correlation given the original variable y and the connectivity
list L or matrix C.

Figure 3.7 provides a stylized plot illustrating the Moran’s I statistic
and the interpretation of a scatterplot of a variable and the first-order
spatial lag. The slope of the regression line is the average spatial correla-
tion in the data; it is the Moran’s I statistic. To illustrate this concept, we
present a plot of the residuals from the OLS regression against the spatial
lag of those residuals, where the weights were created by a 400-kilometer
distance band. This kind of plot is known as an Anselin-Moran plot.

The computed Moran’s I statistic for these OLS residuals is 0.85, with
a variance of 0.003. This has an associated standard score of 7.803 that
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Figure 3.7. Anselin-Moran Plot of OLS Residuals

Note. Polity scores aremodeled as a function of loggedGDP per capita. Data are from 2015
for the Polity scores. GDP is from 2014. Spatial weights are dichotomized at 400 kilometers.

Source: Created by Ward and Gleditsch.

is much larger than −1
180 and has an associated p value that is ≈ 0. This

tells us that the OLS results, which assume independent observations,
are strongly affected by the spatial clustering in the dependent and inde-
pendent variables. As a result, they are likely to be misleading for both
the statistical and substantive inferences that we may wish to draw about
the relationship between democracy and its social requisite of wealth, as
captured in GDP per capita. What is pretty clear is that the residuals are
skewed to the left, having more negative than positive values (when stan-
dardized). There is a strong cluster of observations between 0 and 1, but
very few large positive residuals. Thus, the model tends to underpredict
the Polity score by a substantial amount. Some of this underprediction
may be because of the spatial correlation that characterizes these data,
and indeed the residuals of the OLS estimates.
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Estimating Spatial Models

What might constitute a simple set of steps for spatial analysis?

1. Map the data, especially the dependent variable. This can be done
in a variety of contexts, ranging from spreadsheet plug-ins, map
mash-ups, andGIS packages, butwe find it best to undertake this in
the context of a platform thatwill permit statistical analysis of these
data. We illustrate the use of R libraries, especially maptools and
spdep for constructing simple maps of the distribution of variables.

2. Determine if there is some discernible spatial correlation in the
dependent variable. For most applications—that is, not point
processes—that we consider, this means calculating the Moran’s
I statistic, to gauge the magnitude of spatial correlation. Analysts
may in some cases wish to proceed to examine and plot/map each
observation’s contribution to spatial correlation, through a local
indicator of spatial association (aka LISA). We do not pursue this
in any detail. See Gleditsch and Ward (2000), Anselin (1995), and
Ord and Getis (1995) for further discussion and examples.

3. Precisely incorporate these spatially lagged variables into a statis-
tical framework and examine the resultant residuals for remain-
ing spatial association. Subsequent chapters detail several common
specifications of spatial models.

4. In addition to employing the OLS model heuristics to gauge the fit
of the model and the degree of uncertainty in the estimated param-
eters, the equilibrium impact should be computed and examined.
This means teasing out the equilibrium, feedback implications of
the estimated spatial model for the dependent variable, and gaug-
ing their plausibility.

We now turn to an illustration of these steps in the context of our
running example.

Mapping the Data and Constructing the Spatial Weights Matrices

We have illustrated mapping of data with the democracy scores for 195
countries in 2015. In this subsection, we illustrate the use of mapping
with the residuals from the OLS model. We have also shown that the
residuals from the regression of democracy on income display spatial
association. We calculated the Moran’s I, using a 400-kilometer distance
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Figure 3.8. Choropleth of Local Indicators of Spatial Autocorrelation—
the Localized Moran’s I

Note. Spatial weights dichotomized at 400 kilometers.

Source: Created by Ward and Gleditsch.

band from the outer boundaries of countries to determine each country’s
“neighbors.” As previously reported, the Moran’s I in this case had a
value of 0.85. This is significant in a classical sense, and allows us to be
confident that the spatial patterns are actually influencing the regression
results in a substantial fashion, that is, introducing bias into estimates
and standard errors.

Looking for Spatial Patterns

We also illustrate the construction of the so-called Anselin-Moran plot,
adapted from the works of Anselin (1996) and Shin (2001). This plots
the standardized value of each input variable—in this case the residuals—
against its spatial lag or average value for its connected observations. The
shaded boxes indicate concordant observations where a value above the
mean of the residual is accompanied by a positive value for its neighbors.
The axes contain a “rug plot,” indicating the distribution of the variables.

In addition to mapping the first-order spatial lag of democracy, it is
also useful to map the contributions of each observation to the global
Moran’s I statistic. This quantity is known as the LISA statistic. Herein
we standardize these, and provide a mapping that is displayed in Fig-
ure 3.8. The local Moran is developed in Ord and Getis (1995), Anselin
(1995, 1996), and Getis and Ord (1996).

This map illustrates which countries have the most unusual situa-
tions in terms of their neighbor’s level of democracy. Southern and
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Western Africa fall into this category, as does India. Jamaica, Bosnia-
Herzegovina, Haiti, Swaziland, and Mongolia have the largest negative
values of the localized Moran’s I. Bahrain and Qatar have the highest
LISA values. These have been colored based on the LISA values, which
have been cut at the first and third quartiles, along with the median.

Summary

Having first carefully examined our data and visual displays of these
data, we explored the results of an OLS regression positing that the level
of democracy is a linear function of wealth, measured as logged GDP
per capita. We inspected the residuals from this regression and found
convincing evidence that the residuals appear to display spatial clus-
tering, violating the regression assumption that the error terms of indi-
vidual observations can be considered independent of one another. As
such, OLS assuming independent observations will not be a compelling
method for analyzing the relationship between income and democracy.
More fundamentally, a model assuming independent observation where
only income matters for democracy ignores important features of obvi-
ous geographical clustering. We have also shown how maps and simple
statistics can be used as informative heuristics to assess the extent and
nature of spatial clustering.

Even if one is not interested in regression analysis, there is room for
examining spatial patterns in social science data. We show that whether
one is going to simply do a test of means or use a regression approach
to examining data that are spatially organized, failure to take the spatial
correlation into account will lead to incorrect inferences that are gener-
ally biased away from rejecting the stated hypotheses.

Cartographic displays of correlational data provide an exploratory
heuristic for determining the presence of spatial patterns, patterns that
can complicate statistical inference. We turn next to estimation of regres-
sion models with spatially lagged dependent variables, an approach that
can take spatial dependencies explicitly into account.
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