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CHAPTER 2. THE CLASSICAL  
LINEAR REGRESSION MODEL (CLRM)

In Chapter 1, we showed how we estimate an LRM by the method of least 
squares. As noted in Chapter 1, estimation and hypothesis testing are the 
twin branches of statistical inference. Based on the OLS, we obtained the 
sample regression, such as the one shown in Equation (1.40). This is of 
course a sample regression function (SRF) because it is based on a specific 
sample drawn randomly from the purported population. What can we say 
about the true population regression function (PRF) from the SRF? In prac-
tice, we do not observe the PRF and have to “guess” it from the SRF. To 
obtain the best possible guess, we need a framework, which is provided by 
the classical linear regression model (CLRM). The CLRM is based on 
several assumptions, which are discussed below.

2.1 Assumptions of the CLRM

We now discuss these assumptions. In Chapters 5 and 6, we will examine 
these assumptions more critically. However, keep in mind that in any sci-
entific inquiry we start with a set of simplified assumptions and gradually 
proceed to more complex situations.

Assumption 1: The regression model is linear in the parameters as in 
Equation (1.1); it may or may not be linear in the variables, the Ys and  Xs.

Assumption 2: The regressors are assumed fixed, or nonstochastic, in the 
sense that their values are fixed in repeated sampling. However, if the 
regressors are stochastic, we assume that each regressor is independent 
of the error term or at least uncorrelated with it. We will discuss this  
assumption in more detail in Chapter 6.

Assumption 3: Given the values of the X variables, the expected, or mean, 
value of the error term ui is 0.

 E ui( | )X =  0  (2.1)

In matrix notation, we have

 E( | )u X = 0  (2.1a)

where 0 is the null vector.
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More explicitly,

E

u

u

u

u

E u

E u

E u

E un n

1

2

3

1

2

3

 























=
















( )

( )

( )

( )








=























0

0

0

0



Because of this critical assumption, and given the values of the regressors, 
we can write Equation (1.5) as

 

E E(( | ) | )y X BX u X

BX

= +
=  (2.2)

This is the PRF. In regression analysis, our primary objective is to estimate 
this function. The PRF thus gives the mean value of the regressand corre-
sponding to the given values of the regressors, noting that conditional on 
these values the mean value of the error term is 0.

Assumption 4: The variance of each ui, given the values of X, is constant 
or homoscedastic (i.e., of equal variance). That is,

 var( 2ui | )X =σ  (2.3)

In matrix notation,

 var 2( | ) ( )u X uu I= =E ′′ σ  (2.3a)

where I is an n × n identity matrix (see also Assumption 5).

If var( )ui iX =σ 2, the error variance is said to be heteroscedastic, or of 
unequal variance. We will discuss this case in Chapter 5.

Figure 2.1 is a picture of both homoscedasticity and heteroscedasticity.

Assumption 5: There is no correlation between error terms belonging to 
two different observations. That is,

 
cov( )u u i ji j, | ,X = ≠0  (2.4)

where cov stands for covariance, and i and j are two different error terms. 
Of course, if i = j, we get the variance of ui given in Equation (2.3).

Figure 2.2 shows a likely pattern of autocorrelation.
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Assumptions 4 and 5 can be expressed as

E i j

i j

( )uu I′′ = =
= ≠

σ 2 if

if0

Figure 2.1 Homoscedasticity and Heteroscedasticity
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where 0 is the null matrix and I is the identity matrix. We discuss this 
assumption further in Chapter 5. More compactly, we can express Assump-
tions 4 and 5 as

E( )uu I′ = =














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σ
σ

σ
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2

2

0

0
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Assumption 6: There is no perfect linear relationship among the X vari-
ables. This is the assumption of no multicollinearity. Strictly speaking, 
multicollinearity refers to the existence of more than one exact linear 
relationship, and collinearity refers to the existence of a single exact 
linear relationship. But this distinction is rarely maintained in practice, 
and multicollinearity refers to both cases. Imagine what would happen in 
the wage regression given in Equation (1.5), if we were to include work  
experience both in years and in months!

In matrix notation, this assumption means that the X matrix is of full 
column rank. In other words, the columns of the X matrix are linearly inde-
pendent. This requires that the number of observations, n, is greater than 
the number of parameters estimated (i.e., the k regression coefficients). We 
discuss this assumption further in Chapter 7.

Assumption 7: The regression model used in the analysis is correctly 
specified, that is, there is no (model) specific error or bias. In practice, 
this is a tall assumption, but in Chapter 7, we discuss fully the import of 
this assumption.

Assumption 8: Although not a part of the original CLRM, for statistical 
inference (hypothesis testing), we assume that the error term ui follows the 
normal distribution with 0 mean and (constant) variance σ  2. Symbolically,

 
ui N~ ( , )0 σ 2  (2.5)

Or in matrix notation,

 u I~ ( , )N 0 σ 2  (2.5a)

The assumption of the normality of the error term is crucial if the sample size 
is rather small; it is not essential if we have a very large sample. However, 
we will revisit this assumption in Chapter 7. With this assumption, CLRM is 
known as the classical normal linear regression model (CNLRM).
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Since we are assuming that the X matrix is nonstochastic but u is sto-
chastic, the regressand Y is also stochastic. In addition, since u is normally 
distributed with 0 mean and constant variance, Y inherits the properties of 
u. More specifically,

 y BX I~ ( , )N σ 2  (2.6)

That is, the regressand is distributed normally with mean BX and the (con-
stant) variance σ2.

Under Assumption 8, we can use the method of maximum likelihood 
(ML) as an alternative to OLS. We will discuss ML more thoroughly in 
Chapter 3 because of its general applicability in many areas of statistics.

With one or more of the preceding assumptions, in this chapter, we dis-
cuss the following topics:

 1. The sampling distribution of the OLS estimators, b

 2. An estimator of the unknown variance, σ  2

 3. The relationship between the residual e and the error u

 4. Small-sample properties of the OLS estimators

 5. Large-sample properties of the OLS estimators

2.2 The Sampling or Probability  
Distributions of the OLS Estimators

Remember that the population parameters in B, although unknown, are 
constants. However, this is not true of the estimated b coefficients, for their 
values depend on the sample data at hand. In other words, the b coefficients 
are random. As such, we would like to find their sampling or probability 
distributions to establish properties of the (OLS) estimators.

Recall that

b X X X y= ( )−( ) , .′′ ′′1 using Equation 116

Therefore,

 

b X X X XB u

X X X XB X X

= +[ ] ( )
= +

−

−

( ) ( ) , .

( )

′′ ′′

′′ ′′ ′′

1

1

using Equation 15

 ( ))

)

−

−= +

1

 ( 1

X u

B X X X u

′′

′′ ′′  (2.7)
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By the definition of covariance, we obtain

cov(

using Equat

b b B b B X X X u X X X u) ( )( ) ] ,= − − = − −E E′′ ′′ ′′ ′′ ′′ ′′[( ) ] [( )1 1

iion  2 7.

) )

]

( )
=

=

− −

− −

E

E

[( ) ( )

( ) ( (

X X X uu X X X

X X X uu X X X

′′ ′′ ′′ ′′

′′ ′′ ′′ ′′

1 1

1 1

==

=

− −

−

( ) (

(

X X X IX X X

X X

′′ ′′σσ ′′

′′

1 2 1

1

)

)σ 2  (2.8)

In deriving this expression, we have used properties of the transpose of an 
inverse matrix, and the assumption that X is fixed and that the variance of 
ui is constant and the us are uncorrelated. Notice that we can move the 
expectations operator through X because it is assumed fixed. The variances 
of the individual elements of b are on the main diagonal (running from 
upper left to lower right), and the off-diagonal elements give the covari-
ances between pairs of coefficients in b.

Since

b X X X y= −( )′′ ′′1  (1.16)

and the X matrix is fixed, b is a linear function of y. Using Assumption 8, we 
know that y is normally distributed. It is a property of the normal distribution 
that any linear function of a normally distributed variable is also normally 
distributed. Therefore, b is ipso facto normally distributed as follows:

 b B X X~ ( , ( ) )N σ 2 ′′ −1  (2.9)

That is, b is normally distributed with B as its mean (see Equation 2.20) and 
the variance established in Equation (2.8). In other words, under the normality 
assumption, the sampling distribution of the OLS estimator is normal, as 
shown in Equation (2.9). This finding will aid us in testing hypotheses about 
any element of B or any linear combination thereof. It may be noted that a 
sampling distribution is a probability distribution of an estimator or of any test 
statistic. In other words, it describes the variation in the values of a statistic 
over all possible samples, here the variation in b over all possible samples.1

1Suppose we draw several independent samples and for each sample we compute a 
(test) statistic, such as the mean, and draw a frequency distribution of all these sta-
tistics. Roughly speaking, this frequency distribution is the sampling distribution of 
that statistic. In our case, under the assumed conditions, the probability or sampling 
distribution of any component of b is normal as shown in Equation (2.9).
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For any single element of b, bk, we can express Equation (2.9) as

 b N B xk k
kk~ ( , )σ 2  (2.9a)

where x kk is the kth diagonal element of (X′X)−1. The square root of σ 2x kk 
will give the standard error of bk (see Figure 2.3).

However, before we can engage in hypothesis testing, we need to esti-
mate the unknown σ 2. Remember that σ 2 refers to the variance of the error 
term u. Since we do not observe u directly, we have to rely on the estimated 
residuals, e, to learn about the true variance. Toward that end, we need to 
establish the relationship between u and e. Recall that

 e y= −ŷ  (2.10)

Substituting for ŷ from (1.23), we obtain

e y Xb

y X X X X y b

My

= 

= −

=

=

−
− ( ) , . . )′′ ′′

1
substituting for from Eq  (116

MM XB + u( )

where

 

M I X X X X

Mu MXB

= −

= =

−[ ( ) ]

, .

′′ ′′1

2
because 0  (2.11)

Figure 2.3 The Distribution of bk, a Component of the Vector b

 b bk

2MXB= [XB – X(XX′)−1X′XB] = XB – IXB = 0, where I is the identity matrix.
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As noted in Chapter 1, M is a very important matrix in the analysis of 
LRMs. It is an idempotent matrix, a square matrix with the property that 
M = M  2. For further properties of the idempotent matrices, see Appendix A 
on linear algebra.

Since M is constant because it is a function of (fixed) X, we can write

 

E E

E

( ) ( )

( )

e Mu

M u

=

=

=0  (2.12)

because E(u) = 0, by Assumption 1. We have thus shown that the expecta-
tion of each element of e is 0.

Now,

 

cov(e ee Muu M

M uu M

IM M

) )

�

= =

=

= =

E E

E

( ) (

( )

′′ ′′ ′′

′′ ′′

σ σ2 2  (2.13)

recalling the properties of M. This equation gives the covariance matrix of e.

Since e is a linear function of u and since u is normally distributed by 
Assumption 8, we have

 e M~ ( , )N 0 σ 2  (2.14)

Therefore, like the mean of u, the mean of e is 0, but unlike u, the residuals 
are heteroscedastic as well as autocorrelated.3

What Equations (2.13) and (2.14) show is that the residuals e1, e2, . . .  , en 
have zero mean values, generally have different variances, and have nonzero 
covariances. Remember that in the (population) CLRM errors, u1, u2, . . . , un 
have zero expectations, have constant variance, and are not autocorrelated 
(by assumption). In other words, the properties that hold for u generally do 
not hold for e, except for zero expectations.

3Actually, the distribution of e is degenerate as its variance–covariance matrix is 
singular. On this, see Vogelvang, B. (2005). Econometrics: Theory and applications 
with Eviews (chapter 4). Harlow, England: Pearson-Addison Wesley.
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Although we have assumed that the variance of u (not of e) is constant, 
equal to σ 2, we are yet to estimate it from the sample data. Toward that end, 
we proceed as follows.

Even though we do not observe u, we observe e (after the regression is 
estimated). Naturally, we will have to estimate the unknown variance from 
the estimated e. From Equation (2.11), we know that

e  Mu=   (2.11)

Therefore,

 

E E

E

( ) ( )

( )

e e u M Mu

u Mu

′′ ′′ ′′
′′

=
=  (2.15)

because of the properties of M. Now,

 

E E

E

E

( ) ( )e e u Mu

u Mu u Mu

Mu

′′ ′′=
= ′ ′

=
[tr( )], since  is a scalar

tr ([ uu′′ )] changing the order of multiplication inside 

the trace

== tr[ since the trace and expectations operators aM uu(E ′′ )] , rre  

both l inear

tr

tr(

tr( tr(

2

2

2

=

=

= − ( ) −

[ ( )]

)

) )

M I

M

I X X X X

σ

σ

σ ′′ ′′1





= − 
=

−

,

) )

using the definition of

tr( tr((2

M

I X X X Xσ n ′′ ′′) 1

σσ

σ

2

2

tr( tr( since

since tr

I I X X X X I

I

n k k

n k

) ) , ( )

( ),

−[ ] =

= − ( ) =

−′′ ′′1

nn kkand tr I( ) =  (2.16)

The notation tr(M) means the trace of the matrix M, which is simply the 
sum of the entries of the main diagonal of M. In deriving the steps in  
Equation (2.16), we have made use of several properties of the trace of a 
matrix, such as the fact that trace is a linear operator and if AB and BA are 
both square matrices, then tr(AB) = tr(BA).
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As a result, we can now write

 
E

n k

′
−







 =

e e
σ 2

 
(2.17)

If we now define

 
S

n k n k
i2
2

=
′
−

=
−

e e Σe
 (2.18)

then

 E S( )2 2=σ  (2.19)

In words, S  2 is an unbiased estimator of the true error variance σ 2. S, the square 
root of S 2, is called the standard error (se) of the estimate or the standard 
error of the regression. In practice, therefore, we use S 2 in place of σ 2.

2.3 Properties of OLS Estimators:  
The Gauss–Markov Theorem4

The OLS estimators possess some ideal or optimum properties, which  
are contained in the well-known Gauss–Markov theorem:5 Given the 
assumptions of the classical regression model, in the class of unbiased lin-
ear estimators, the least-squares estimators have minimum variance; that is, 
they are best linear unbiased estimators, BLUE for short. In other words, 
no other linear, unbiased estimator of B can have a smaller variance than 
the OLS estimator given in Equation (2.8).

To establish this theorem, first note that b, the OLS estimator of B, is a 
linear function of the regressand y, as we have established in Chapter 1 (see 
Equation 1.16).6 To prove that b is unbiased, we proceed as follows:

b X X X y

X X X XB u y

X X

= ( )
= +[ ]
=

−

−

( ) .

( ) ,

( )

′′ ′′

′′ ′′

′′

1

1

116

substituting for
−− −

−

+

= +

1 1

1

 X XB X X X u

B X X X u

′′ ′′ ′′

′′ ′′

( )

( )

4In Appendix C, we discuss both small-sample and large-sample properties of OLS 
and ML estimators.
5Although known as the Gauss–Markov theorem, the least-squares approach of 
Gauss antedates (1821) the minimum-variance approach of Markov (1900).
6See the discussion in Darnell, A. C. (1994). A dictionary of econometrics (p. 155). 
Cheltenham, England: Edward Elgar.
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Now

 

E E( ) ) )b B X X X u

B

= +
=

− ( (1′′ ′′
 (2.20)

In words, the expected value of b is equal to B, thus proving that b is unbiased. 
(Recall the definition of unbiased estimator.) Note that E(u|X) = 0 by assumption.

To prove that in the class of unbiased linear estimators the least-squares esti-
mators have the least variance (i.e., they are efficient), we proceed as follows:

Let b* be another linear estimator of B such that

 b A X X X y* [ ( ) ]= + − 1′′ ′′  (2.21)

where A is some nonstochastic k × n matrix, similar to X. Simplifying, we obtain

 

b Ay X X X y

Ay b

* ( )= +
= +

−′′ ′′1

 (2.22)

where b is the least-squares estimator given in Equation (1.16).
Now

 

E Eb A X X X y

A X X X XB

AX I B

* ( )

( )

( )= +  ( )
= +  ( )
= +( )

−

−

′′ ′′

′′ ′′

1

1

 (2.23)

Now E(b*) = B if and only if AX = 0. In other words, for the linear estimator 
b* to be unbiased, AX must be 0.

Thus,

b A X X X XB u y

B A X X

* ) , )

)

= +  +[ ]
= + +

−

−

 ( substituting for (

 (

1′′ ′′

′′ 11 X u X′′  =, because A 0

Given that u has zero mean and constant variance (= σ 2I), we can now 
find the variance of b* as follows:

 

 cov( )  (  (

 (

1 1

1

b A X X X uu A X X X

A X X X

* = +  + 
= +

− −

−

E ′′ ′′ ′′ ′′ ′′ ′′

′′

) )

) ′′′′ ′′ ′′ ′′ ′′
′′ ′′

′′

  + 
= +

=

−

−

− 

E( )

)

)

uu A X X X

AA X X

X X

)  (

 (

(

1

2

2 1

σ

σ

1

++

= ( ) +

AA

b AA

′′

′′

σ

σ

2

2var   (2.24)
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Since AA′ is a positive semidefinite matrix, Equation (2.24) shows that the 
covariance matrix of b* is equal to the covariance matrix of b plus a positive 
semidefinite matrix. That is, cov(b*) > cov(b), unless A = 0. This shows that 
in the class of unbiased linear estimators, the least-square estimator b has 
the least variance, that is, it is efficient compared with any other linear 
unbiased estimator of B.

It is important to note that in establishing the Gauss–Markov theorem we 
do not have to assume that the error term u follows a particular probability 
distribution, such as the normal. To establish the theorem, we only need 
Assumptions 1 to 5.

It is also important to note that if one or more assumptions underlying 
the Gauss–Markov theorem are not satisfied, the OLS estimators will not 
be BLUE. Also, bear in mind that the Gauss–Markov theorem holds only 
for linear estimators, that is, linear functions of the observation vector y. 
There are situations where nonlinear (in-the-parameter) estimators are 
more efficient than the linear estimators. In this book, we do not deal with 
nonlinear estimators, for that requires a separate book.7

To sum up, we have shown that under the Gauss–Markov assumptions, 
b, the least-square estimator of B, is BLUE, that is, in the class of unbiased 
linear estimators, b has the least variance. We also showed how to estimate 
B and the variance of the estimated B.

2.4 Estimating Linear Functions of the OLS Parameters

We have shown how to estimate B, that is, each of its elements. Suppose 
we want to estimate some linear function of the elements of B, that is, that 
of B1, B2, B3, . . . , Bk. More specifically, suppose we want to estimate t′B, 
where t′ is a 1 × k vector of real numbers and B is a k × 1 vector of the 
parameters in B. It can be shown that the BLUE of t′B is t′b, where b is the 
least-square estimator of B (see also Appendix C).

What this means is that whether we estimate all the elements of B, or one 
of its elements, or estimate a linear combination (t′B), we can use the OLS 
regression.

Let λ = t′B. By choosing t appropriately, we can make λ equal to any element 
of B, or to the sum of the elements of B that might be of interest to researchers. 
Suppose in Equation (1.2), we want the coefficient of B1 equal to 4, and the 
coefficient of B5  equal to −1, and the rest of the coefficients to be all zeros. In 
other words, we want λ = 4B1 − B5. Here, t ′ = (4, 0, 0, 0, −1, 0, 0, 0, . . .)′.

Using the definition of variance, we can now find the variance of the 
estimated λ (= λ̂), which is

7For examples of nonlinear estimators and their applications, see Gujarati, D. 
(2015). Econometrics by example (2nd ed.). London, England: Palgrave Macmillan.
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 var ( ) (var( )) ( )λ σ= ′ = ′ ′ −t b t t X X t2 1λ̂  (2.25)

But keep in mind that in general the variance of λ̂ depends on every element 
of the covariance matrix of b, the estimator of B. However, if some ele-
ments of the vector t are equal to zero, var(λ̂) does not depend on the cor-
responding rows and columns of the covariance matrix σ2(X′X)−1.

As an example, consider λ = 4B1 − B5. In this case,

 

var( ) var( ) var( ) cov( , )

var( ) var

λ = + +
= +

t b t b t t b b

b
1
2

1 5
2

5 1 5 1 5

1

2

16 (( ) cov( , )b b b5 1 58−
λ̂

 
(2.26)

Notice in this example only the variances of b1 and b5 and their covariances 
are involved, as the values of the other parameters in the k-variable regres-
sion (1.2) are assumed to be zero. But if there are more nonzero coeffi-
cients, the variances and their pairwise covariances will also be involved in 
computing the variance of the linear combination t′B.

2.5 Large-Sample Properties of OLS Estimators

2.5.1 Consistency of OLS Estimators

We have shown that the OLS estimators of the CLRM are unbiased, 
which is a small, or finite sample, property. We can also show that the OLS 
estimators are consistent, that is, they converge to their true values as the 
sample size increases indefinitely. Convergence is a large-sample property.

Proof: A sufficient condition for an unbiased estimator to be consistent is 
for its variance to converge to zero as the sample size n increases indefi-
nitely. For the OLS estimator b, we have already shown that its variance is

cov( 2 1b X X) ( )= −σ ′′  (2.8)

which we can write as

 
cov( ) ( )b X X= ′− −σ 2

1 1

n
n  (2.27)

To see the behavior of this expression as n → ∞, we have

 

p p
n

n

p
n

n n

n n

lim cov( ) lim ( )

lim lim(

→∞ →∞

− −

→∞ →∞

= ′










=

b X X
σ

σ

2
1 1

2

nn− −′1 1X X )  

(2.28)

where plim is probability limit (see Appendix C for details).
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We have assumed that the elements of the matrix X are bounded, which 
means the second term in the preceding equation is bounded for all n. 
Therefore, the second term above can be replaced by a matrix of finite 
constants. Now, the limit of the first term in Equation (2.28) tends to zero 
as n increases indefinitely. As a result,

 
p
n
limcov( )
→∞

=b 0  (2.29)

which establishes that b is a consistent estimator of B. In establishing this 
result, we have used some of the properties of the plim operator.

2.5.2 Consistency of the OLS  
Estimator of the Error Variance

We have proved that S 2 is an unbiased estimator of σ 2. Assuming values 
of ui are independent and identically distributed (iid), we can prove that S 2 
is also a consistent estimator of σ 2. The proof is as follows:

 

S
n k

n k

n

n k n

2

1

=
− ′ −

−

=
′ − ′ ′

−

=
−









′
−

′

−

( ) ( )

( ( ) )

y Xb y Xb

u I X X X X u

u u u XX X X X u

n n n
. .′







′









−1

 

(2.30)

Note: e = My = Mu, where M = [I − X(X′X)X′]. Also note how the entries are 
manipulated by multiplying or dividing them by the sample size or the 
adjusted sample size without affecting the basic relationships.

Taking the plim of both sides of Equation (2.30), we obtain

p S p
n

n k
p

n
p

n
p

n
plim lim lim lim lim l2

1

=
−









′
−

′
⋅

′





 ⋅

−
u u u X X X

iim

( ), lim

′









= − ⋅ ⋅
′






 =

=

−
−

−

X u

X X

n

Q p
n

Q1 0 02 1
1

1

2

σ

σ

where
 
(2.31)

which establishes the result. Note that for large n, (n − k) ≈ n.
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In deriving the preceding result, we have used Khinchine’s theorem 
(see Appendix B) as well as the properties of the plim.

2.5.3 Independence of the OLS  
Estimators and the Residual Term, e

What this says is that each element of b is uncorrelated with each ele-
ment of the least-squares residual vector e. The proof is as follows:

Recall that

b B X X X u

e Mu

= +
=

−( ) ( . )

( . )

′′ ′′1 2 7

2 11

are both linear functions of the error term u.
Now the covariance of b and e is

 

cov( var(

since 

1

2 1

b e X X X u M

X X X M

MX X M

, ) ( ) )

( )

,

=

=
= = ↔

−

−

′′ ′′ ′′

′′ ′′ ′′
′′ ′′

σ
0 0  (2.32)

This shows that b and e are uncorrelated.
It may be noted that if we assume that u is normally distributed, b and e 

are not only uncorrelated but also independent. In Chapter 3, we will con-
sider the normal linear regression model, which explicitly assumes that 
the error term u is normally distributed and will see the consequence of the 
normality assumption.

2.5.4 Large-Sample Distribution of b:  
Asymptotic Normality of the OLS Estimators

It can be shown that8

 b N B X Xasy 2 1~ ( , ( ) )σ ′′ −  (2.33)

where asy means asymptotically (i.e., n → ∞).
In other words, as the sample size n increases indefinitely, b is approxi-

mately normally distributed with mean equal to B and variance equal to 

8The proof is rather complicated and can be found in Theil, H. (1971). Principles of 
econometrics (pp. 380–381). New York, NY: Wiley; see also Mittlehammer, R. C. 
(1996). Mathematical statistics for economics and business (pp. 443–447). New 
York, NY: Springer.
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σ 2(X′X)−1. Each element of b is individually normally distributed with 
variance equal to the appropriate element of the variance matrix σ 2(X′X)−1. 
This result holds whether u is normally distributed or not.

It may be noted that if the errors ui are not iid, even then b is asymptoti-
cally normally distributed as in (2.33) under certain conditions.9

2.5.5 Asymptotic Normality of S2

If in addition to the classical assumptions, it is assumed that values of ui 
are iid and have bounded fourth-order moments about the origin, S 2 is 
asymptotically normally distributed. These results also hold true even if the 
ui values are not iid.10

2.6 Summary

The CLRM, y = XB + u, is the foundation of regression analysis. It is based 
on several assumptions. The basic assumptions are that (1) the data matrix 
X is nonstochastic, (2) it is of full column rank, (3) the expected value of 
the error term is zero, and (4) the covariance matrix of the error term 
E( )uu I′ =σ 2 . This means the error variance is constant and equal to σ 2 and 
that the error terms are mutually uncorrelated.

We used the method of OLS to estimate the parameters of an LRM. One 
reason for using OLS is that it does not require us to make assumptions 
about the probability distribution of the error term, and it is comparatively 
easy to estimate. Parameters of the CLRM estimated by OLS are called 
OLS estimators. OLS estimators have several desirable statistical proper-
ties such as (1) they are unbiased and (2) among all linear unbiased estima-
tors of B, they have minimum variances. This is called the Gauss–Markov 
theorem. These are small-sample properties.

OLS estimators have these asymptotic, or large-sample, properties:  
(1) The OLS estimators of B as well as the estimator of the error variance 
are consistent estimators and (2) the OLS estimators asymptotically follow 
the normal distribution.

Exercises

2.1 Consider the bivariate regression: Y B B X ui i i= + +1 2 . Under the classi-
cal linear regression assumptions, show that

9See Mittlehammer, R. C. (1996). Mathematical statistics for economics and busi-
ness (p. 445). New York, NY: Springer.

10See Mittlehammer, R. C. (1996). Mathematical statistics for economics and busi-
ness (pp. 448–449). New York, NY: Springer.
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a.

 

cov( , )
( )

b b X
X Xi

1 2

2

2
= −

−
σ

Σ

b. cov( , )Y b2 0=

2.2 Show that for the model in Exercise 2.1,

RSS=
−Σ Σ Σ

Σ
x y x y

x
i i i i

i

2 2 2

2

( )

where RSS is the residual sum of squares and

x X X y Y Y x y X X Y Yi i i i i i i i= − = − = − −( ); ( ); ( )( )

2.3 Verify the following properties of OLS estimators:

a. The OLS regression line (plane) passes through the sample means of 
the regressand and the regressors.

b. The mean values of the actual Y and the estimated Y( = Ŷ ) are the same.

c. In the CLRM with intercept, the mean value of the residuals ( )e  is 
zero.

d. As a result of the preceding property, the k-variable sample CLRM 
can be expressed as

y b x b x b x ei i i k k i i= + + + +2 2 3 3 

where y Y Y x X Xi i ki ki k= − = −( ); ( )

2.4 Consider the following bivariate regression model:

Y B B X ui i i
* * * *= + +1 2

where

Y
Y Y

s
X

X X

si
i

Y
i

i

X

* *;=
−

=
−

where sY and sX are the sample standard deviations of Y and X. Y Xi i
* *and

are known as standardized variables, often known as Z scores. Since the 
units of measurement of the Z scores in the numerator and the denominator 
are the same, they are called “pure” or “unitless” numbers. 
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a. Show that a standardized variable has a zero mean and unit variance.

b. What are the formulas to estimate B1
* and B2

*?

c. What is the relationship between B1
* and B1 and between B2

*  and B2?

2.5 The sample correlation coefficient between variables Y and X, rXY, is 
defined as

r
x y

x y
XY

i i

i i

=
Σ

Σ Σ2 2

where

x X X y Y Yi i i i= − = −( ); ( )

If we standardize variables as in Exercise 2.4, does it affect the correlation 
coefficient between X and Y? Show the necessary calculations.

2.6  Consider variables X1, X2, and X3. Now consider the following correla-
tion coefficients:

r X X

r
12 1 2

13

correlation coefficient between and 

correlatio

=
= nn coefficient between and 

correlation coefficient
1 3

23

X X

r =   between and 2 3X X

r
r r r

r r
12 3

12 13 23

13
2

23
21 1

. =
−

− −

r12 3.  is called the partial correlation coefficient between X1 and X2 holding 
the influence of the variable X3. The concept of partial correlation is akin to 
the concept of a partial regression coefficient.

a. What other partial correlation coefficients can you compute?

b. If we standardize the three variables as in Exercise 2.4, would the 
correlation coefficients among the standardized variables be differ-
ent from the unstandardized variables?

c. Would partial correlation coefficients be affected by standardizing 
the variables? Explain.

2.7 Consider the following LRM:

Y B B X B X B X B X ui i i i i i= + + + + +1 2 2 3 3 4 4 5 5
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How would you test the following hypotheses?

a.

 

B B B B B2 3 4 5= = = = , ,that is  all partial regression coefficients  

are the same.

b. B B B B2 3 4 5= =and

c. B B B2 3 42+ =

 2.8 Remember that the hat matrix, H, is expressed as

H X X X X= −( )′′ 1

Show that the residual vector e can also be expressed as

e I H y= −( )

 2.9 Prove that the matrices H and (I − H) are idempotent.

2.10* For the following matrix, compute its eigenvalues:

1 0 0

0 1 0

0 0 1

















(*Optional)

2.11 Consider the following regression model (see Chapter 7, Equation 
(7.30)):

Y B B X B X ui i i i= + + +1 2 3
2

Models like this are called polynomial regression models, here a second-
degree polynomial.

a. Is this an LRM?

b. Can OLS be used to estimate the parameters of this model?

c. Since X Xi i
2 is the square of , does this model suffer from perfect 

collinearity?

2.12 Consider the following model:

Y B B X B X B X ui i i i i= + + + +1 2 2 3 3 4 4

You are told that B2 = 1.
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a. In this case, is it legitimate to estimate the following regression? 

( )Y X B B X B X ui i i i i− = + + +2 1 3 3 4 4

This model is called a restricted linear regression, whereas the preceding 
model is called an unrestricted linear regression (see Chapter 4, Appendix 4A 
for further details).

b. How would you estimate the restricted regression, taking into account 
the restriction that B2 = 1?
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